import os import torch import requests from io import BytesIO from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor from transformers.image_utils import ( to_numpy_array, PILImageResampling, ChannelDimension, ) from transformers.image_transforms import resize, to_channel_dimension_format API_TOKEN = os.getenv("HF_TOKEN") DEVICE = torch.device("cuda") PROCESSOR = AutoProcessor.from_pretrained( "HuggingFaceM4/tr_272_bis_opt_step_15000_merge", token=API_TOKEN, ) MODEL = AutoModelForCausalLM.from_pretrained( "HuggingFaceM4/tr_272_bis_opt_step_15000_merge", token=API_TOKEN, trust_remote_code=True, torch_dtype=torch.bfloat16, ).to(DEVICE) image_seq_len = MODEL.config.perceiver_config.resampler_n_latents BOS_TOKEN = PROCESSOR.tokenizer.bos_token BAD_WORDS_IDS = PROCESSOR.tokenizer( ["", ""], add_special_tokens=False ).input_ids def convert_to_rgb(image): # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background # for transparent images. The call to `alpha_composite` handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite # The processor is the same as the Idefics processor except for the BILINEAR interpolation, # so this is a hack in order to redefine ONLY the transform method def custom_transform(x): x = convert_to_rgb(x) x = to_numpy_array(x) height, width = x.shape[:2] aspect_ratio = width / height if width >= height and width > 980: width = 980 height = int(width / aspect_ratio) elif height > width and height > 980: height = 980 width = int(height * aspect_ratio) width = max(width, 378) height = max(height, 378) x = resize(x, (height, width), resample=PILImageResampling.BILINEAR) x = PROCESSOR.image_processor.rescale(x, scale=1 / 255) x = PROCESSOR.image_processor.normalize( x, mean=PROCESSOR.image_processor.image_mean, std=PROCESSOR.image_processor.image_std, ) x = to_channel_dimension_format(x, ChannelDimension.FIRST) x = torch.tensor(x) return x def download_image(url): try: # Send a GET request to the URL to download the image response = requests.get(url) # Check if the request was successful (status code 200) if response.status_code == 200: # Open the image using PIL image = Image.open(BytesIO(response.content)) # Return the PIL image object return image else: print(f"Failed to download image. Status code: {response.status_code}") return None except Exception as e: print(f"An error occurred: {e}") return None # Create text token inputs image_seq = "" * image_seq_len instruction = "What is this?" # Create pixel inputs image = download_image( "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" ) def ask_vlm(instruction, image): inputs = PROCESSOR.tokenizer( [ f"{BOS_TOKEN}{image_seq}{instruction}", ], return_tensors="pt", add_special_tokens=False, padding=True, ) raw_images = [ [image], ] output_images = [ [PROCESSOR.image_processor(img, transform=custom_transform) for img in img_list] for img_list in raw_images ] total_batch_size = len(output_images) max_num_images = max([len(img_l) for img_l in output_images]) max_height = max([i.size(2) for img_l in output_images for i in img_l]) max_width = max([i.size(3) for img_l in output_images for i in img_l]) padded_image_tensor = torch.zeros( total_batch_size, max_num_images, 3, max_height, max_width ) padded_pixel_attention_masks = torch.zeros( total_batch_size, max_num_images, max_height, max_width, dtype=torch.bool ) for batch_idx, img_l in enumerate(output_images): for img_idx, img in enumerate(img_l): im_height, im_width = img.size()[2:] padded_image_tensor[batch_idx, img_idx, :, :im_height, :im_width] = img padded_pixel_attention_masks[batch_idx, img_idx, :im_height, :im_width] = ( True ) inputs["pixel_values"] = padded_image_tensor inputs["pixel_attention_mask"] = padded_pixel_attention_masks inputs = {k: v.to(DEVICE) for k, v in inputs.items()} generated_ids = MODEL.generate( **inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10 ) generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True) return generated_texts print(ask_vlm(instruction, image))