import pyarrow as pa import whisper from pynput import keyboard from pynput.keyboard import Key from dora import DoraStatus import numpy as np import pyarrow as pa import sounddevice as sd model = whisper.load_model("base") SAMPLE_RATE = 16000 MAX_DURATION = 20 class Operator: """ Transforming Speech to Text using OpenAI Whisper model """ def on_event( self, dora_event, send_output, ) -> DoraStatus: global model if dora_event["type"] == "INPUT": ## Check for keyboard event with keyboard.Events() as events: event = events.get(1.0) if event is not None and event.key == Key.up: send_output("led", pa.array([0, 255, 0])) ## Microphone audio_data = sd.rec( int(SAMPLE_RATE * MAX_DURATION), samplerate=SAMPLE_RATE, channels=1, dtype=np.int16, blocking=True, ) audio = audio_data.ravel().astype(np.float32) / 32768.0 ## Speech to text audio = whisper.pad_or_trim(audio) result = model.transcribe(audio, language="en") send_output( "text", pa.array([result["text"]]), dora_event["metadata"] ) send_output("led", pa.array([0, 0, 255])) del model import gc # garbage collect library gc.collect() return DoraStatus.CONTINUE