import cv2 import numpy as np from dora import DoraStatus CAMERA_WIDTH = 960 CAMERA_HEIGHT = 540 FONT = cv2.FONT_HERSHEY_SIMPLEX writer = cv2.VideoWriter( "output01.avi", cv2.VideoWriter_fourcc(*"MJPG"), 60, (CAMERA_WIDTH, CAMERA_HEIGHT), ) GOAL_OBJECTIVES = [10, 0] import numpy as np def find_largest_gap_midpoint(bboxes, image_width, goal_x): """ Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap. Parameters: - bboxes (np.array): A numpy array where each row represents a bounding box with the format [min_x, min_y, max_x, max_y, confidence, label]. - image_width (int): The width of the image in pixels. Returns: - int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap. """ if bboxes.size == 0: # No bounding boxes, return the midpoint of the image as the largest gap return image_width // 2 events = [] for bbox in bboxes: min_x, max_x = bbox[0], bbox[2] events.append((min_x, "enter")) events.append((max_x, "exit")) # Include image boundaries as part of the events events.append( (0, "exit") ) # Start of the image, considered an 'exit' point for logic simplicity events.append( (image_width, "enter") ) # End of the image, considered an 'enter' point # Sort events, with exits before enters at the same position to ensure gap calculation correctness events.sort(key=lambda x: (x[0], x[1] == "enter")) # Sweep line algorithm to find the largest gap current_boxes = 1 last_x = 0 largest_gap = 0 gap_start_x = None largest_gap_mid = None # Midpoint of the largest gap for x, event_type in events: if current_boxes == 0 and gap_start_x is not None: # Calculate gap gap = x - gap_start_x if gap > largest_gap: largest_gap = gap gap_end_x = gap_start_x + x largest_gap_mid = (gap_start_x + x) // 2 if goal_x < gap_end_x and goal_x > gap_start_x: return goal_x return largest_gap_mid # elif goal_x > gap_end_x: # return max(gap_end_x - 50, largest_gap_mid) # elif goal_x < gap_start_x: # return min(gap_start_x + 50, largest_gap_mid) if event_type == "enter": current_boxes += 1 if current_boxes == 1: gap_start_x = None # No longer in a gap elif event_type == "exit": current_boxes -= 1 if current_boxes == 0: gap_start_x = x # Start of a potential gap return largest_gap_mid class Operator: """ Plot image and bounding box """ def __init__(self): self.bboxs = [] self.buffer = "" self.submitted = [] self.lines = [] self.gap_x = CAMERA_WIDTH // 2 self.position = [0, 0, 0] def on_event( self, dora_event, send_output, ): if dora_event["type"] == "INPUT": id = dora_event["id"] value = dora_event["value"] if id == "position": value = dora_event["value"].to_numpy() [x, y, z] = value self.position = [x, y, z] if id == "image": image = ( value.to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)).copy() ) cv2.resize(image, (CAMERA_HEIGHT * 2, CAMERA_WIDTH * 2)) cv2.putText( image, self.buffer, (20, 14 + 15 * 25), FONT, 0.5, (190, 250, 0), 2 ) i = 0 for text in self.submitted[::-1]: color = ( (0, 255, 190) if text["role"] == "user_message" else (0, 190, 255) ) cv2.putText( image, text["content"], ( 20, 14 + (13 - i) * 25, ), FONT, 0.5, color, 2, ) i += 1 writer.write(image) cv2.resize(image, (CAMERA_HEIGHT * 3, CAMERA_WIDTH * 3)) cv2.imshow("frame", image) if cv2.waitKey(1) & 0xFF == ord("q"): return DoraStatus.STOP elif id == "keyboard_buffer": self.buffer = value[0].as_py() elif id == "bbox": self.bboxs = value.to_numpy().reshape((-1, 6)) self.gap_x = find_largest_gap_midpoint( self.bboxs, image_width=CAMERA_WIDTH, goal_x=10 ) elif "message" in id: self.submitted += [ { "role": id, "content": value[0] .as_py() .replace("\n", " ") .replace("- ", ""), } ] return DoraStatus.CONTINUE ## Angle = Arctan Proj Object y / x ## Relation linearire 0 - 60 ; 0 - CAMERA_WIDTH