|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers import util |
|
|
|
from dora import DoraStatus |
|
import os |
|
import sys |
|
import inspect |
|
import torch |
|
import pyarrow as pa |
|
|
|
SHOULD_NOT_BE_INCLUDED = [ |
|
"utils.py", |
|
"sentence_transformers_op.py", |
|
"chatgpt_op.py", |
|
"whisper_op.py", |
|
"microphone_op.py", |
|
"object_detection_op.py", |
|
"webcam.py", |
|
] |
|
|
|
SHOULD_BE_INCLUDED = ["planning_op.py"] |
|
|
|
|
|
|
|
def get_all_functions(path): |
|
raw = [] |
|
paths = [] |
|
for root, dirs, files in os.walk(path): |
|
for file in files: |
|
if file.endswith(".py"): |
|
if file not in SHOULD_BE_INCLUDED: |
|
continue |
|
path = os.path.join(root, file) |
|
with open(path, "r", encoding="utf8") as f: |
|
|
|
sys.path.append(root) |
|
|
|
raw.append(f.read()) |
|
paths.append(path) |
|
|
|
return raw, paths |
|
|
|
|
|
def search(query_embedding, corpus_embeddings, paths, raw, k=5, file_extension=None): |
|
|
|
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0] |
|
top_results = torch.topk(cos_scores, k=min(k, len(cos_scores)), sorted=True) |
|
out = [] |
|
for score, idx in zip(top_results[0], top_results[1]): |
|
out.extend([raw[idx], paths[idx], score]) |
|
return out |
|
|
|
|
|
class Operator: |
|
""" """ |
|
|
|
def __init__(self): |
|
|
|
self.model = SentenceTransformer("BAAI/bge-large-en-v1.5") |
|
self.encoding = [] |
|
|
|
path = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
self.raw, self.path = get_all_functions(path) |
|
|
|
self.encoding = self.model.encode(self.raw) |
|
|
|
def on_event( |
|
self, |
|
dora_event, |
|
send_output, |
|
) -> DoraStatus: |
|
if dora_event["type"] == "INPUT": |
|
if dora_event["id"] == "query": |
|
values = dora_event["value"].to_pylist() |
|
|
|
query_embeddings = self.model.encode(values) |
|
output = search( |
|
query_embeddings, |
|
self.encoding, |
|
self.path, |
|
self.raw, |
|
) |
|
[raw, path, score] = output[0:3] |
|
print( |
|
( |
|
score, |
|
pa.array([{"raw": raw, "path": path, "query": values[0]}]), |
|
) |
|
) |
|
send_output( |
|
"raw_file", |
|
pa.array([{"raw": raw, "path": path, "query": values[0]}]), |
|
dora_event["metadata"], |
|
) |
|
else: |
|
input = dora_event["value"][0].as_py() |
|
index = self.path.index(input["path"]) |
|
self.raw[index] = input["raw"] |
|
self.encoding[index] = self.model.encode([input["raw"]])[0] |
|
|
|
return DoraStatus.CONTINUE |
|
|
|
|
|
if __name__ == "__main__": |
|
operator = Operator() |
|
|