from dora import DoraStatus import pylcs import textwrap import pandas as pd import os import pyarrow as pa import numpy as np from ctransformers import AutoModelForCausalLM MIN_NUMBER_LINES = 4 MAX_NUMBER_LINES = 21 def search_most_simlar_line(text, searched_line): lines = text.split("\n") values = [] for line in lines[MIN_NUMBER_LINES:MAX_NUMBER_LINES]: values.append(pylcs.edit_distance(line, searched_line)) output = lines[np.array(values).argmin() + MIN_NUMBER_LINES] return output def strip_indentation(code_block): # Use textwrap.dedent to strip common leading whitespace dedented_code = textwrap.dedent(code_block) return dedented_code def replace_code_with_indentation(original_code, replacement_code): # Split the original code into lines lines = original_code.splitlines() if len(lines) != 0: # Preserve the indentation of the first line indentation = lines[0][: len(lines[0]) - len(lines[0].lstrip())] # Create a new list of lines with the replacement code and preserved indentation new_code_lines = indentation + replacement_code else: new_code_lines = replacement_code return new_code_lines def replace_source_code(source_code, gen_replacement): initial = search_most_simlar_line(source_code, gen_replacement) print("Initial source code: %s" % initial) replacement = strip_indentation( gen_replacement.replace("```python\n", "") .replace("\n```", "") .replace("\n", "") ) intermediate_result = replace_code_with_indentation(initial, replacement) print("Intermediate result: %s" % intermediate_result) end_result = source_code.replace(initial, intermediate_result) return end_result def save_as(content, path): # use at the end of replace_2 as save_as(end_result, "file_path") with open(path, "w") as file: file.write(content) class Operator: def __init__(self): # Load tokenizer self.llm = AutoModelForCausalLM.from_pretrained( "TheBloke/OpenHermes-2.5-Mistral-7B-GGUF", model_file="openhermes-2.5-mistral-7b.Q4_K_M.gguf", model_type="mistral", gpu_layers=50, ) def on_event( self, dora_event, send_output, ) -> DoraStatus: if dora_event["type"] == "INPUT": input = dora_event["value"][0].as_py() with open(input["path"], "r", encoding="utf8") as f: raw = f.read() prompt = f"{raw[:400]} \n\n {input['query']}. " print("revieved prompt: {}".format(prompt)) output = self.ask_mistral( "You're a python code expert. Respond with only one line of code that modify a constant variable. Keep the uppercase.", prompt, ) print("output: {}".format(output)) source_code = replace_source_code(raw, output) send_output( "output_file", pa.array( [{"raw": source_code, "path": input["path"], "gen_output": output}] ), dora_event["metadata"], ) return DoraStatus.CONTINUE def ask_mistral(self, system_message, prompt): prompt_template = f"""<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant """ # Generate output outputs = self.llm( prompt_template, ) # Get the tokens from the output, decode them, print them # Get text between im_start and im_end return outputs.split("<|im_end|>")[0] if __name__ == "__main__": op = Operator() # Path to the current file current_file_path = __file__ # Directory of the current file current_directory = os.path.dirname(current_file_path) path = current_directory + "/planning_op.py" with open(path, "r", encoding="utf8") as f: raw = f.read() op.on_event( { "type": "INPUT", "id": "tick", "value": pa.array( [ { "raw": raw, "path": path, "query": "Set rotation to 20", } ] ), "metadata": [], }, print, )