import numpy as np import pyarrow as pa from dora import DoraStatus from ultralytics import YOLO pa.array([]) CAMERA_WIDTH = 960 CAMERA_HEIGHT = 540 class Operator: """ Object Detection: Infering object from images using Deep Learning model YOLOv8. The output sent is bounding box representing the corners of the bounding box as well as their COCO label. """ def __init__(self): self.model = YOLO("yolov8n.pt") def on_event( self, dora_event, send_output, ) -> DoraStatus: if dora_event["type"] == "INPUT": return self.on_input(dora_event, send_output) return DoraStatus.CONTINUE def on_input( self, dora_input, send_output, ) -> DoraStatus: """Handle image""" frame = dora_input["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) results = self.model(frame, verbose=False) # includes NMS # Process results boxes = np.array(results[0].boxes.xyxy.cpu()) conf = np.array(results[0].boxes.conf.cpu()) # COCO Label label = np.array(results[0].boxes.cls.cpu()) # concatenate them together arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) send_output("bbox", pa.array(arrays.ravel()), dora_input["metadata"]) return DoraStatus.CONTINUE