vukuzenzele-sentence-aligned / vukuzenzele-sentence-aligned.py
lastrucci01
updating vukuzenzele aligned to use a dataset generator
9064e7f
raw
history blame
3.3 kB
"""TODO: Add a description here."""
import csv
import json
import os
import datasets
from itertools import combinations
LANGUAGES = ['afr', 'eng', 'nbl', 'nso', 'sot', 'ssw', 'tsn', 'tso', 'ven', 'xho', 'zul']
LANGUAGE_PAIRS = list(combinations(LANGUAGES, 2))
_CITATION = """\
@dataset{marivate_vukosi_2023_7598540, author = {Marivate, Vukosi and Njini, Daniel and Madodonga, Andani and Lastrucci, Richard and Dzingirai, Isheanesu Rajab, Jenalea}, title = {The Vuk'uzenzele South African Multilingual Corpus}, month = feb, year = 2023, publisher = {Zenodo}, doi = {10.5281/zenodo.7598539}, url = {https://doi.org/10.5281/zenodo.7598539} }
"""
_DESCRIPTION = """\
The dataset contains editions from the South African government magazine Vuk'uzenzele. Data was scraped from PDFs that have been placed in the data/raw folder. The PDFS were obtained from the Vuk'uzenzele website.
"""
_HOMEPAGE = "https://arxiv.org/abs/2303.03750"
_LICENSE = "CC 4.0 BY"
_URL = "https://raw.githubusercontent.com/dsfsi/vukuzenzele-nlp/master/data/opt_aligned_out/"
class VukuzenzeleMonolingualConfig(datasets.BuilderConfig):
"""BuilderConfig for VukuzenzeleMonolingual"""
def __init__(self, **kwargs):
"""BuilderConfig for Masakhaner.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(VukuzenzeleMonolingualConfig, self).__init__(**kwargs)
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class VukuzenzeleMonolingual(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = []
for pair in LANGUAGE_PAIRS:
name = "aligned-{}-{}.jsonl".format(pair[0], pair[1])
description = "Vukuzenzele {}-{} aligned dataset".format(pair[0], pair[1])
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=f"{name}", version=VERSION, description=f"{description}"),)
def _info(self):
features = datasets.Features(
{
"src": datasets.Value("string"),
"tgt": datasets.Value("string"),
"score": datasets.Value("float"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = {
"train": f"{_URL}{self.config.name}"
}
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
yield key, {
"src": data["src"],
"tgt": data["tgt"],
"score": data["score"],
}