--- language: - eng - afr - nbl - xho - zul - nso - sep - tsn - ssw - ven - tso pretty_name: "The Vuk'uzenzele South African Multilingual Corpus" tags: - multilingual - government license: "cc-by-4.0" task_categories: - sentence-similarity - translation arxiv: 2303.03750 --- # The Vuk'uzenzele South African Multilingual Corpus Github: [https://github.com/dsfsi/vukuzenzele-nlp/](https://github.com/dsfsi/vukuzenzele-nlp/) Zenodo: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7598539.svg)](https://doi.org/10.5281/zenodo.7598539) Arxiv Preprint: [![arXiv](https://img.shields.io/badge/arXiv-2303.03750-b31b1b.svg)](https://arxiv.org/abs/2303.03750) # About The dataset was obtained from the South African government magazine Vuk'uzenzele, created by the [Government Communication and Information System (GCIS)](https://www.gcis.gov.za/). The original raw PDFS were obtatined from the [Vuk'uzenzele website](https://www.vukuzenzele.gov.za/). The datasets contain government magazine editions in 11 languages, namely: | Language | Code | Language | Code | |------------|-------|------------|-------| | English | (eng) | Sepedi | (sep) | | Afrikaans | (afr) | Setswana | (tsn) | | isiNdebele | (nbl) | Siswati | (ssw) | | isiXhosa | (xho) | Tshivenda | (ven) | | isiZulu | (zul) | Xitstonga | (tso) | | Sesotho | (nso) | # Datasets The datasets consist of pairwise sentence aligned data. There are 55 distinct datasets of paired sentences. The data is obtained by comparing [LASER](https://github.com/facebookresearch/LASER) embeddings of sentence tokens between 2 languages. If the similarity is high, the sentences are deemed semantic equivalents of one another and the observation is outputted. Naming convention: The naming structure of the pairwise_sentence_aligned folder is `aligned-{src_lang_code}-{tgt_lang_code}.csv`. For example, `aligned-afr-zul.csv` is the aligned sentences between Afrikaans and isiZulu. The data is in .csv format and the columns are `src_text`,`tgt_text`,`cosine_score` where: - `src_text` is the source sentence - `tgt_text` is the target sentence - `cosine_score` is the cosine similarity score obtained by comparing the sentence embeddings, it ranges from 0 to 1 **Note:** The notion of source (src) and target (tgt) are only necessary for distinction between the languages used in the aligned pair, as the sentence semantics should be bidirectional. (hallo <-> sawubona) # Citation Vukosi Marivate, Andani Madodonga, Daniel Njini, Richard Lastrucci, Isheanesu Dzingirai, Jenalea Rajab. **The Vuk'uzenzele South African Multilingual Corpus**, 2023 > @dataset{marivate_vukosi_2023_7598540, author = {Marivate, Vukosi and Njini, Daniel and Madodonga, Andani and Lastrucci, Richard and Dzingirai, Isheanesu Rajab, Jenalea}, title = {The Vuk'uzenzele South African Multilingual Corpus}, month = feb, year = 2023, publisher = {Zenodo}, doi = {10.5281/zenodo.7598539}, url = {https://doi.org/10.5281/zenodo.7598539} } ### Licence * Licence for Data - [CC 4.0 BY](LICENSE.md)