Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
Romanian
Size:
10K<n<100K
ArXiv:
License:
File size: 5,360 Bytes
7fc1052 47bb048 7fc1052 47bb048 7fc1052 7c007f2 bc91912 30fe6d6 bc91912 d886f9d bc91912 7fc1052 35aa5d8 7fc1052 bc91912 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
annotations_creators:
- found
language_creators:
- found
language:
- ro
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: RoSent
dataset_info:
features:
- name: original_id
dtype: string
- name: id
dtype: string
- name: sentence
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative
'1': positive
splits:
- name: train
num_bytes: 8367687
num_examples: 17941
- name: test
num_bytes: 6837430
num_examples: 11005
download_size: 14700057
dataset_size: 15205117
---
# Dataset Card for RoSent
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [GitHub](https://github.com/dumitrescustefan/Romanian-Transformers/tree/examples/examples/sentiment_analysis)
- **Repository:** [GitHub](https://github.com/dumitrescustefan/Romanian-Transformers/tree/examples/examples/sentiment_analysis)
- **Paper:** [arXiv preprint](https://arxiv.org/pdf/2009.08712.pdf)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset is a Romanian Sentiment Analysis dataset. It is present in a processed form, as used by the authors of [`Romanian Transformers`](https://github.com/dumitrescustefan/Romanian-Transformers) in their examples and based on the original data present in at [this GitHub repository](https://github.com/katakonst/sentiment-analysis-tensorflow). The original data contains product and movie reviews in Romanian.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
This dataset is present in Romanian language.
## Dataset Structure
### Data Instances
An instance from the `train` split:
```
{'id': '0', 'label': 1, 'original_id': '0', 'sentence': 'acest document mi-a deschis cu adevarat ochii la ceea ce oamenii din afara statelor unite s-au gandit la atacurile din 11 septembrie. acest film a fost construit in mod expert si prezinta acest dezastru ca fiind mai mult decat un atac asupra pamantului american. urmarile acestui dezastru sunt previzionate din multe tari si perspective diferite. cred ca acest film ar trebui sa fie mai bine distribuit pentru acest punct. de asemenea, el ajuta in procesul de vindecare sa vada in cele din urma altceva decat stirile despre atacurile teroriste. si unele dintre piese sunt de fapt amuzante, dar nu abuziv asa. acest film a fost extrem de recomandat pentru mine, si am trecut pe acelasi sentiment.'}
```
### Data Fields
- `original_id`: a `string` feature containing the original id from the file.
- `id`: a `string` feature .
- `sentence`: a `string` feature.
- `label`: a classification label, with possible values including `negative` (0), `positive` (1).
### Data Splits
This dataset has two splits: `train` with 17941 examples, and `test` with 11005 examples.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The source dataset is present at the [this GitHub repository](https://github.com/katakonst/sentiment-analysis-tensorflow) and is based on product and movie reviews. The original source is unknown.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Stefan Daniel Dumitrescu, Andrei-Marious Avram, Sampo Pyysalo, [@katakonst](https://github.com/katakonst)
### Licensing Information
[More Information Needed]
### Citation Information
```
@article{dumitrescu2020birth,
title={The birth of Romanian BERT},
author={Dumitrescu, Stefan Daniel and Avram, Andrei-Marius and Pyysalo, Sampo},
journal={arXiv preprint arXiv:2009.08712},
year={2020}
}
```
### Contributions
Thanks to [@gchhablani](https://github.com/gchhablani) and [@iliemihai](https://github.com/iliemihai) for adding this dataset. |