Commit
•
58c54d7
1
Parent(s):
657a1f5
- .gitattributes +1 -0
- LICENSE.md +83 -0
- dtu.tar.gz +3 -0
- dtu_results/.DS_Store +0 -0
- dtu_results/mesh/scan105.ply +3 -0
- dtu_results/mesh/scan106.ply +3 -0
- dtu_results/mesh/scan110.ply +3 -0
- dtu_results/mesh/scan114.ply +3 -0
- dtu_results/mesh/scan118.ply +3 -0
- dtu_results/mesh/scan122.ply +3 -0
- dtu_results/mesh/scan24.ply +3 -0
- dtu_results/mesh/scan37.ply +3 -0
- dtu_results/mesh/scan40.ply +3 -0
- dtu_results/mesh/scan55.ply +3 -0
- dtu_results/mesh/scan63.ply +3 -0
- dtu_results/mesh/scan65.ply +3 -0
- dtu_results/mesh/scan69.ply +3 -0
- dtu_results/mesh/scan83.ply +3 -0
- dtu_results/mesh/scan97.ply +3 -0
- eval_dtu/eval.py +166 -0
- eval_dtu/evaluate.py +62 -0
- eval_dtu/evaluate_single_scene.py +148 -0
- eval_dtu/render_utils.py +169 -0
.gitattributes
CHANGED
@@ -56,3 +56,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
56 |
# Video files - compressed
|
57 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
56 |
# Video files - compressed
|
57 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
59 |
+
*.ply filter=lfs diff=lfs merge=lfs -text
|
LICENSE.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Gaussian-Splatting License
|
2 |
+
===========================
|
3 |
+
|
4 |
+
**Inria** and **the Max Planck Institut for Informatik (MPII)** hold all the ownership rights on the *Software* named **gaussian-splatting**.
|
5 |
+
The *Software* is in the process of being registered with the Agence pour la Protection des
|
6 |
+
Programmes (APP).
|
7 |
+
|
8 |
+
The *Software* is still being developed by the *Licensor*.
|
9 |
+
|
10 |
+
*Licensor*'s goal is to allow the research community to use, test and evaluate
|
11 |
+
the *Software*.
|
12 |
+
|
13 |
+
## 1. Definitions
|
14 |
+
|
15 |
+
*Licensee* means any person or entity that uses the *Software* and distributes
|
16 |
+
its *Work*.
|
17 |
+
|
18 |
+
*Licensor* means the owners of the *Software*, i.e Inria and MPII
|
19 |
+
|
20 |
+
*Software* means the original work of authorship made available under this
|
21 |
+
License ie gaussian-splatting.
|
22 |
+
|
23 |
+
*Work* means the *Software* and any additions to or derivative works of the
|
24 |
+
*Software* that are made available under this License.
|
25 |
+
|
26 |
+
|
27 |
+
## 2. Purpose
|
28 |
+
This license is intended to define the rights granted to the *Licensee* by
|
29 |
+
Licensors under the *Software*.
|
30 |
+
|
31 |
+
## 3. Rights granted
|
32 |
+
|
33 |
+
For the above reasons Licensors have decided to distribute the *Software*.
|
34 |
+
Licensors grant non-exclusive rights to use the *Software* for research purposes
|
35 |
+
to research users (both academic and industrial), free of charge, without right
|
36 |
+
to sublicense.. The *Software* may be used "non-commercially", i.e., for research
|
37 |
+
and/or evaluation purposes only.
|
38 |
+
|
39 |
+
Subject to the terms and conditions of this License, you are granted a
|
40 |
+
non-exclusive, royalty-free, license to reproduce, prepare derivative works of,
|
41 |
+
publicly display, publicly perform and distribute its *Work* and any resulting
|
42 |
+
derivative works in any form.
|
43 |
+
|
44 |
+
## 4. Limitations
|
45 |
+
|
46 |
+
**4.1 Redistribution.** You may reproduce or distribute the *Work* only if (a) you do
|
47 |
+
so under this License, (b) you include a complete copy of this License with
|
48 |
+
your distribution, and (c) you retain without modification any copyright,
|
49 |
+
patent, trademark, or attribution notices that are present in the *Work*.
|
50 |
+
|
51 |
+
**4.2 Derivative Works.** You may specify that additional or different terms apply
|
52 |
+
to the use, reproduction, and distribution of your derivative works of the *Work*
|
53 |
+
("Your Terms") only if (a) Your Terms provide that the use limitation in
|
54 |
+
Section 2 applies to your derivative works, and (b) you identify the specific
|
55 |
+
derivative works that are subject to Your Terms. Notwithstanding Your Terms,
|
56 |
+
this License (including the redistribution requirements in Section 3.1) will
|
57 |
+
continue to apply to the *Work* itself.
|
58 |
+
|
59 |
+
**4.3** Any other use without of prior consent of Licensors is prohibited. Research
|
60 |
+
users explicitly acknowledge having received from Licensors all information
|
61 |
+
allowing to appreciate the adequacy between of the *Software* and their needs and
|
62 |
+
to undertake all necessary precautions for its execution and use.
|
63 |
+
|
64 |
+
**4.4** The *Software* is provided both as a compiled library file and as source
|
65 |
+
code. In case of using the *Software* for a publication or other results obtained
|
66 |
+
through the use of the *Software*, users are strongly encouraged to cite the
|
67 |
+
corresponding publications as explained in the documentation of the *Software*.
|
68 |
+
|
69 |
+
## 5. Disclaimer
|
70 |
+
|
71 |
+
THE USER CANNOT USE, EXPLOIT OR DISTRIBUTE THE *SOFTWARE* FOR COMMERCIAL PURPOSES
|
72 |
+
WITHOUT PRIOR AND EXPLICIT CONSENT OF LICENSORS. YOU MUST CONTACT INRIA FOR ANY
|
73 |
+
UNAUTHORIZED USE: stip-sophia.transfert@inria.fr . ANY SUCH ACTION WILL
|
74 |
+
CONSTITUTE A FORGERY. THIS *SOFTWARE* IS PROVIDED "AS IS" WITHOUT ANY WARRANTIES
|
75 |
+
OF ANY NATURE AND ANY EXPRESS OR IMPLIED WARRANTIES, WITH REGARDS TO COMMERCIAL
|
76 |
+
USE, PROFESSIONNAL USE, LEGAL OR NOT, OR OTHER, OR COMMERCIALISATION OR
|
77 |
+
ADAPTATION. UNLESS EXPLICITLY PROVIDED BY LAW, IN NO EVENT, SHALL INRIA OR THE
|
78 |
+
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
79 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
80 |
+
GOODS OR SERVICES, LOSS OF USE, DATA, OR PROFITS OR BUSINESS INTERRUPTION)
|
81 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
82 |
+
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING FROM, OUT OF OR
|
83 |
+
IN CONNECTION WITH THE *SOFTWARE* OR THE USE OR OTHER DEALINGS IN THE *SOFTWARE*.
|
dtu.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4caf0a4523494dea748c514f718cd3d187956e3ccb511703829e25caa9846da7
|
3 |
+
size 3561809006
|
dtu_results/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
dtu_results/mesh/scan105.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b75c868c3b0d41f039855e7d67768f5e7edd184942db3e1a54d9a1de09eeb804
|
3 |
+
size 5945211
|
dtu_results/mesh/scan106.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c4ac08899eeedae1da6c25141d04a1594c8cef37df33446336bcf0311462e32
|
3 |
+
size 6466761
|
dtu_results/mesh/scan110.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4f70861339f38b7d1e59d717e022c6d6fc6f803e22515485ad258bafc6e8b40
|
3 |
+
size 4840368
|
dtu_results/mesh/scan114.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dac7f6ff3f799534d9a1d929d9af06a22726a0535bdaeebc0eb4650508cea2a4
|
3 |
+
size 3780667
|
dtu_results/mesh/scan118.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ed9e578ac04d8b5adca51b62a8074fa2c2840cf7d2c588e785a97f95bba8f1e
|
3 |
+
size 5759764
|
dtu_results/mesh/scan122.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3254a5c678e16154cc6f931a3e8e207823aac55c68404e34ffc650a7afb1802a
|
3 |
+
size 5703021
|
dtu_results/mesh/scan24.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7269dac27860efc610d33cfd23b27f0eff3a3c441c54fceff63f8c5e831a791f
|
3 |
+
size 10548798
|
dtu_results/mesh/scan37.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deca83c23fcb3f8885138e6d7189690f3f3f4d5965649727e86a411abc5b7246
|
3 |
+
size 13370975
|
dtu_results/mesh/scan40.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d70f35437d16054f4be4a5147c08d356a541bce9716a09941200ecda631819c
|
3 |
+
size 9288623
|
dtu_results/mesh/scan55.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:505c626094e3ac5217a233a7caca44f427d1133b25ddb670c6f1bb957577bc1a
|
3 |
+
size 7592924
|
dtu_results/mesh/scan63.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d07d00caa8eab3aadbdba0abb92f288e1f00669c1df02e6cded797e69501361
|
3 |
+
size 7510769
|
dtu_results/mesh/scan65.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c0815d074fb98f7b9b922775a8d5dcca0cebd8b4e9b4fdea88586fb1cd93386
|
3 |
+
size 10142310
|
dtu_results/mesh/scan69.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecf0eceb175285a5aa6eeaa0d39b25ad08d993a65312e0c18398f5b95a669812
|
3 |
+
size 8369756
|
dtu_results/mesh/scan83.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3da9869c2e36b48b48ce65bd21824abfbf15fab3ff99d59b42741e681abaab46
|
3 |
+
size 5809035
|
dtu_results/mesh/scan97.ply
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7e703cfc1ef8fc9bd454942285af547673d0e9be98868ad680dfbeeec21b8a4
|
3 |
+
size 5216954
|
eval_dtu/eval.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adapted from https://github.com/jzhangbs/DTUeval-python
|
2 |
+
import numpy as np
|
3 |
+
import open3d as o3d
|
4 |
+
import sklearn.neighbors as skln
|
5 |
+
from tqdm import tqdm
|
6 |
+
from scipy.io import loadmat
|
7 |
+
import multiprocessing as mp
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
def sample_single_tri(input_):
|
11 |
+
n1, n2, v1, v2, tri_vert = input_
|
12 |
+
c = np.mgrid[:n1+1, :n2+1]
|
13 |
+
c += 0.5
|
14 |
+
c[0] /= max(n1, 1e-7)
|
15 |
+
c[1] /= max(n2, 1e-7)
|
16 |
+
c = np.transpose(c, (1,2,0))
|
17 |
+
k = c[c.sum(axis=-1) < 1] # m2
|
18 |
+
q = v1 * k[:,:1] + v2 * k[:,1:] + tri_vert
|
19 |
+
return q
|
20 |
+
|
21 |
+
def write_vis_pcd(file, points, colors):
|
22 |
+
pcd = o3d.geometry.PointCloud()
|
23 |
+
pcd.points = o3d.utility.Vector3dVector(points)
|
24 |
+
pcd.colors = o3d.utility.Vector3dVector(colors)
|
25 |
+
o3d.io.write_point_cloud(file, pcd)
|
26 |
+
|
27 |
+
if __name__ == '__main__':
|
28 |
+
mp.freeze_support()
|
29 |
+
|
30 |
+
parser = argparse.ArgumentParser()
|
31 |
+
parser.add_argument('--data', type=str, default='data_in.ply')
|
32 |
+
parser.add_argument('--scan', type=int, default=1)
|
33 |
+
parser.add_argument('--mode', type=str, default='mesh', choices=['mesh', 'pcd'])
|
34 |
+
parser.add_argument('--dataset_dir', type=str, default='.')
|
35 |
+
parser.add_argument('--vis_out_dir', type=str, default='.')
|
36 |
+
parser.add_argument('--downsample_density', type=float, default=0.2)
|
37 |
+
parser.add_argument('--patch_size', type=float, default=60)
|
38 |
+
parser.add_argument('--max_dist', type=float, default=20)
|
39 |
+
parser.add_argument('--visualize_threshold', type=float, default=10)
|
40 |
+
args = parser.parse_args()
|
41 |
+
|
42 |
+
thresh = args.downsample_density
|
43 |
+
if args.mode == 'mesh':
|
44 |
+
pbar = tqdm(total=9)
|
45 |
+
pbar.set_description('read data mesh')
|
46 |
+
data_mesh = o3d.io.read_triangle_mesh(args.data)
|
47 |
+
|
48 |
+
vertices = np.asarray(data_mesh.vertices)
|
49 |
+
triangles = np.asarray(data_mesh.triangles)
|
50 |
+
tri_vert = vertices[triangles]
|
51 |
+
|
52 |
+
pbar.update(1)
|
53 |
+
pbar.set_description('sample pcd from mesh')
|
54 |
+
v1 = tri_vert[:,1] - tri_vert[:,0]
|
55 |
+
v2 = tri_vert[:,2] - tri_vert[:,0]
|
56 |
+
l1 = np.linalg.norm(v1, axis=-1, keepdims=True)
|
57 |
+
l2 = np.linalg.norm(v2, axis=-1, keepdims=True)
|
58 |
+
area2 = np.linalg.norm(np.cross(v1, v2), axis=-1, keepdims=True)
|
59 |
+
non_zero_area = (area2 > 0)[:,0]
|
60 |
+
l1, l2, area2, v1, v2, tri_vert = [
|
61 |
+
arr[non_zero_area] for arr in [l1, l2, area2, v1, v2, tri_vert]
|
62 |
+
]
|
63 |
+
thr = thresh * np.sqrt(l1 * l2 / area2)
|
64 |
+
n1 = np.floor(l1 / thr)
|
65 |
+
n2 = np.floor(l2 / thr)
|
66 |
+
|
67 |
+
with mp.Pool() as mp_pool:
|
68 |
+
new_pts = mp_pool.map(sample_single_tri, ((n1[i,0], n2[i,0], v1[i:i+1], v2[i:i+1], tri_vert[i:i+1,0]) for i in range(len(n1))), chunksize=1024)
|
69 |
+
|
70 |
+
new_pts = np.concatenate(new_pts, axis=0)
|
71 |
+
data_pcd = np.concatenate([vertices, new_pts], axis=0)
|
72 |
+
|
73 |
+
elif args.mode == 'pcd':
|
74 |
+
pbar = tqdm(total=8)
|
75 |
+
pbar.set_description('read data pcd')
|
76 |
+
data_pcd_o3d = o3d.io.read_point_cloud(args.data)
|
77 |
+
data_pcd = np.asarray(data_pcd_o3d.points)
|
78 |
+
|
79 |
+
pbar.update(1)
|
80 |
+
pbar.set_description('random shuffle pcd index')
|
81 |
+
shuffle_rng = np.random.default_rng()
|
82 |
+
shuffle_rng.shuffle(data_pcd, axis=0)
|
83 |
+
|
84 |
+
pbar.update(1)
|
85 |
+
pbar.set_description('downsample pcd')
|
86 |
+
nn_engine = skln.NearestNeighbors(n_neighbors=1, radius=thresh, algorithm='kd_tree', n_jobs=-1)
|
87 |
+
nn_engine.fit(data_pcd)
|
88 |
+
rnn_idxs = nn_engine.radius_neighbors(data_pcd, radius=thresh, return_distance=False)
|
89 |
+
mask = np.ones(data_pcd.shape[0], dtype=np.bool_)
|
90 |
+
for curr, idxs in enumerate(rnn_idxs):
|
91 |
+
if mask[curr]:
|
92 |
+
mask[idxs] = 0
|
93 |
+
mask[curr] = 1
|
94 |
+
data_down = data_pcd[mask]
|
95 |
+
|
96 |
+
pbar.update(1)
|
97 |
+
pbar.set_description('masking data pcd')
|
98 |
+
obs_mask_file = loadmat(f'{args.dataset_dir}/ObsMask/ObsMask{args.scan}_10.mat')
|
99 |
+
ObsMask, BB, Res = [obs_mask_file[attr] for attr in ['ObsMask', 'BB', 'Res']]
|
100 |
+
BB = BB.astype(np.float32)
|
101 |
+
|
102 |
+
patch = args.patch_size
|
103 |
+
inbound = ((data_down >= BB[:1]-patch) & (data_down < BB[1:]+patch*2)).sum(axis=-1) ==3
|
104 |
+
data_in = data_down[inbound]
|
105 |
+
|
106 |
+
data_grid = np.around((data_in - BB[:1]) / Res).astype(np.int32)
|
107 |
+
grid_inbound = ((data_grid >= 0) & (data_grid < np.expand_dims(ObsMask.shape, 0))).sum(axis=-1) ==3
|
108 |
+
data_grid_in = data_grid[grid_inbound]
|
109 |
+
in_obs = ObsMask[data_grid_in[:,0], data_grid_in[:,1], data_grid_in[:,2]].astype(np.bool_)
|
110 |
+
data_in_obs = data_in[grid_inbound][in_obs]
|
111 |
+
|
112 |
+
pbar.update(1)
|
113 |
+
pbar.set_description('read STL pcd')
|
114 |
+
stl_pcd = o3d.io.read_point_cloud(f'{args.dataset_dir}/Points/stl/stl{args.scan:03}_total.ply')
|
115 |
+
stl = np.asarray(stl_pcd.points)
|
116 |
+
|
117 |
+
pbar.update(1)
|
118 |
+
pbar.set_description('compute data2stl')
|
119 |
+
nn_engine.fit(stl)
|
120 |
+
dist_d2s, idx_d2s = nn_engine.kneighbors(data_in_obs, n_neighbors=1, return_distance=True)
|
121 |
+
max_dist = args.max_dist
|
122 |
+
mean_d2s = dist_d2s[dist_d2s < max_dist].mean()
|
123 |
+
|
124 |
+
pbar.update(1)
|
125 |
+
pbar.set_description('compute stl2data')
|
126 |
+
ground_plane = loadmat(f'{args.dataset_dir}/ObsMask/Plane{args.scan}.mat')['P']
|
127 |
+
|
128 |
+
stl_hom = np.concatenate([stl, np.ones_like(stl[:,:1])], -1)
|
129 |
+
above = (ground_plane.reshape((1,4)) * stl_hom).sum(-1) > 0
|
130 |
+
stl_above = stl[above]
|
131 |
+
|
132 |
+
nn_engine.fit(data_in)
|
133 |
+
dist_s2d, idx_s2d = nn_engine.kneighbors(stl_above, n_neighbors=1, return_distance=True)
|
134 |
+
mean_s2d = dist_s2d[dist_s2d < max_dist].mean()
|
135 |
+
|
136 |
+
pbar.update(1)
|
137 |
+
pbar.set_description('visualize error')
|
138 |
+
vis_dist = args.visualize_threshold
|
139 |
+
R = np.array([[1,0,0]], dtype=np.float64)
|
140 |
+
G = np.array([[0,1,0]], dtype=np.float64)
|
141 |
+
B = np.array([[0,0,1]], dtype=np.float64)
|
142 |
+
W = np.array([[1,1,1]], dtype=np.float64)
|
143 |
+
data_color = np.tile(B, (data_down.shape[0], 1))
|
144 |
+
data_alpha = dist_d2s.clip(max=vis_dist) / vis_dist
|
145 |
+
data_color[ np.where(inbound)[0][grid_inbound][in_obs] ] = R * data_alpha + W * (1-data_alpha)
|
146 |
+
data_color[ np.where(inbound)[0][grid_inbound][in_obs][dist_d2s[:,0] >= max_dist] ] = G
|
147 |
+
write_vis_pcd(f'{args.vis_out_dir}/vis_{args.scan:03}_d2s.ply', data_down, data_color)
|
148 |
+
stl_color = np.tile(B, (stl.shape[0], 1))
|
149 |
+
stl_alpha = dist_s2d.clip(max=vis_dist) / vis_dist
|
150 |
+
stl_color[ np.where(above)[0] ] = R * stl_alpha + W * (1-stl_alpha)
|
151 |
+
stl_color[ np.where(above)[0][dist_s2d[:,0] >= max_dist] ] = G
|
152 |
+
write_vis_pcd(f'{args.vis_out_dir}/vis_{args.scan:03}_s2d.ply', stl, stl_color)
|
153 |
+
|
154 |
+
pbar.update(1)
|
155 |
+
pbar.set_description('done')
|
156 |
+
pbar.close()
|
157 |
+
over_all = (mean_d2s + mean_s2d) / 2
|
158 |
+
print(mean_d2s, mean_s2d, over_all)
|
159 |
+
|
160 |
+
import json
|
161 |
+
with open(f'{args.vis_out_dir}/results.json', 'w') as fp:
|
162 |
+
json.dump({
|
163 |
+
'mean_d2s': mean_d2s,
|
164 |
+
'mean_s2d': mean_s2d,
|
165 |
+
'overall': over_all,
|
166 |
+
}, fp, indent=True)
|
eval_dtu/evaluate.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from logging import root
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
import glob
|
9 |
+
from skimage.morphology import binary_dilation, disk
|
10 |
+
import argparse
|
11 |
+
import trimesh
|
12 |
+
from pathlib import Path
|
13 |
+
import subprocess
|
14 |
+
|
15 |
+
from evaluate_single_scene import cull_scan
|
16 |
+
|
17 |
+
|
18 |
+
# Ground truth DTU point cloud path
|
19 |
+
Offical_DTU_Dataset = "./Offical_DTU_Dataset"
|
20 |
+
scans = [24, 37, 40, 55, 63, 65, 69, 83, 97, 105, 106, 110, 114, 118, 122]
|
21 |
+
|
22 |
+
out_dir_prefix = "evaluation/"
|
23 |
+
Path(out_dir_prefix).mkdir(parents=True, exist_ok=True)
|
24 |
+
|
25 |
+
# output file to save quantitative results
|
26 |
+
evaluation_txt_file = "evaluation/DTU.csv"
|
27 |
+
evaluation_txt_file = open(evaluation_txt_file, 'w')
|
28 |
+
|
29 |
+
root_dir = '../exps/'
|
30 |
+
exp_names =["dtu_3views"]
|
31 |
+
|
32 |
+
for exp in exp_names:
|
33 |
+
for scan in scans:
|
34 |
+
out_dir = os.path.join(out_dir_prefix, str(scan))
|
35 |
+
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
36 |
+
vis_out_dir = os.path.join(out_dir_prefix, exp)
|
37 |
+
Path(vis_out_dir).mkdir(parents=True, exist_ok=True)
|
38 |
+
|
39 |
+
cur_root = os.path.join(root_dir, f"{exp}_{scan}")
|
40 |
+
|
41 |
+
files = list(filter(os.path.isfile, glob.glob(os.path.join(cur_root, "*/plots/*.ply"))))
|
42 |
+
files.sort(key=lambda x:os.path.getmtime(x))
|
43 |
+
|
44 |
+
for ply_file in files[-1:]:
|
45 |
+
iter_num = Path(ply_file).stem
|
46 |
+
cur_vis_out_dir = os.path.join(out_dir_prefix, exp)
|
47 |
+
Path(cur_vis_out_dir).mkdir(parents=True, exist_ok=True)
|
48 |
+
|
49 |
+
print(ply_file)
|
50 |
+
|
51 |
+
# delete mesh by mask
|
52 |
+
result_mesh_file = os.path.join(out_dir, f"{exp}_{iter_num}.ply")
|
53 |
+
cull_scan(scan, ply_file, result_mesh_file)
|
54 |
+
|
55 |
+
cmd = f"python eval.py --data {result_mesh_file} --scan {scan} --mode mesh --dataset_dir {Offical_DTU_Dataset} --vis_out_dir {cur_vis_out_dir}"
|
56 |
+
print(cmd)
|
57 |
+
#acc, comp, overall
|
58 |
+
output = subprocess.check_output(cmd, shell=True).decode("utf-8")
|
59 |
+
output = output.replace(" ", ",")
|
60 |
+
|
61 |
+
evaluation_txt_file.write(f"{exp},{scan},{iter_num},{output}")
|
62 |
+
evaluation_txt_file.flush()
|
eval_dtu/evaluate_single_scene.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
from skimage.morphology import binary_dilation, disk
|
9 |
+
import argparse
|
10 |
+
|
11 |
+
import trimesh
|
12 |
+
from pathlib import Path
|
13 |
+
import subprocess
|
14 |
+
|
15 |
+
import sys
|
16 |
+
sys.path.append("../code")
|
17 |
+
import render_utils as rend_util
|
18 |
+
|
19 |
+
|
20 |
+
def cull_scan(scan, mesh_path, result_mesh_file):
|
21 |
+
|
22 |
+
# load poses
|
23 |
+
instance_dir = os.path.join('/p300/wangchy/huangbb/anti-alising-gaussian-splatting/data/DTU_dense', 'scan{0}'.format(scan))
|
24 |
+
image_dir = '{0}/images'.format(instance_dir)
|
25 |
+
image_paths = sorted(glob.glob(os.path.join(image_dir, "*.png")))
|
26 |
+
n_images = len(image_paths)
|
27 |
+
cam_file = '{0}/cameras.npz'.format(instance_dir)
|
28 |
+
camera_dict = np.load(cam_file)
|
29 |
+
scale_mats = [camera_dict['scale_mat_%d' % idx].astype(np.float32) for idx in range(n_images)]
|
30 |
+
world_mats = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in range(n_images)]
|
31 |
+
|
32 |
+
intrinsics_all = []
|
33 |
+
pose_all = []
|
34 |
+
for scale_mat, world_mat in zip(scale_mats, world_mats):
|
35 |
+
P = world_mat @ scale_mat
|
36 |
+
P = P[:3, :4]
|
37 |
+
intrinsics, pose = rend_util.load_K_Rt_from_P(None, P)
|
38 |
+
intrinsics_all.append(torch.from_numpy(intrinsics).float())
|
39 |
+
pose_all.append(torch.from_numpy(pose).float())
|
40 |
+
|
41 |
+
# load mask
|
42 |
+
mask_dir = '{0}/mask'.format(instance_dir)
|
43 |
+
mask_paths = sorted(glob.glob(os.path.join(mask_dir, "*.png")))
|
44 |
+
masks = []
|
45 |
+
for p in mask_paths:
|
46 |
+
mask = cv2.imread(p)
|
47 |
+
masks.append(mask)
|
48 |
+
|
49 |
+
# hard-coded image shape
|
50 |
+
W, H = 1600, 1200
|
51 |
+
|
52 |
+
# load mesh
|
53 |
+
mesh = trimesh.load(mesh_path)
|
54 |
+
|
55 |
+
# load transformation matrix
|
56 |
+
|
57 |
+
vertices = mesh.vertices
|
58 |
+
|
59 |
+
# project and filter
|
60 |
+
vertices = torch.from_numpy(vertices).cuda()
|
61 |
+
vertices = torch.cat((vertices, torch.ones_like(vertices[:, :1])), dim=-1)
|
62 |
+
vertices = vertices.permute(1, 0)
|
63 |
+
vertices = vertices.float()
|
64 |
+
|
65 |
+
sampled_masks = []
|
66 |
+
for i in range(n_images):
|
67 |
+
pose = pose_all[i]
|
68 |
+
w2c = torch.inverse(pose).cuda()
|
69 |
+
intrinsic = intrinsics_all[i].cuda()
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
# transform and project
|
73 |
+
cam_points = intrinsic @ w2c @ vertices
|
74 |
+
pix_coords = cam_points[:2, :] / (cam_points[2, :].unsqueeze(0) + 1e-6)
|
75 |
+
pix_coords = pix_coords.permute(1, 0)
|
76 |
+
pix_coords[..., 0] /= W - 1
|
77 |
+
pix_coords[..., 1] /= H - 1
|
78 |
+
pix_coords = (pix_coords - 0.5) * 2
|
79 |
+
valid = ((pix_coords > -1. ) & (pix_coords < 1.)).all(dim=-1).float()
|
80 |
+
|
81 |
+
# dialate mask similar to unisurf
|
82 |
+
maski = masks[i][:, :, 0].astype(np.float32) / 256.
|
83 |
+
maski = torch.from_numpy(binary_dilation(maski, disk(24))).float()[None, None].cuda()
|
84 |
+
|
85 |
+
# # if scan == '83':
|
86 |
+
# import matplotlib.pyplot as plt
|
87 |
+
# plt.imshow(maski.cpu().numpy()[0,0])
|
88 |
+
# points = (cam_points[:2, :] / (cam_points[2, :].unsqueeze(0) + 1e-6)).permute(1,0)[valid==1].cpu().numpy()
|
89 |
+
# scatters = points[np.random.permutation(len(points))[:10000]]
|
90 |
+
# plt.scatter(scatters[:,0], scatters[:,1], color='r')
|
91 |
+
# plt.savefig(f'test{i}')
|
92 |
+
# plt.clf()
|
93 |
+
# plt.close()
|
94 |
+
|
95 |
+
sampled_mask = F.grid_sample(maski, pix_coords[None, None], mode='nearest', padding_mode='zeros', align_corners=True)[0, -1, 0]
|
96 |
+
# print(f'culling {i}')
|
97 |
+
sampled_mask = sampled_mask + (1. - valid)
|
98 |
+
sampled_masks.append(sampled_mask)
|
99 |
+
|
100 |
+
sampled_masks = torch.stack(sampled_masks, -1)
|
101 |
+
# filter
|
102 |
+
|
103 |
+
mask = (sampled_masks > 0.).all(dim=-1).cpu().numpy()
|
104 |
+
face_mask = mask[mesh.faces].all(axis=1)
|
105 |
+
|
106 |
+
mesh.update_vertices(mask)
|
107 |
+
mesh.update_faces(face_mask)
|
108 |
+
|
109 |
+
# with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
110 |
+
# triangle_clusters, cluster_n_triangles, cluster_area = (mesh.cluster_connected_triangles())
|
111 |
+
# triangle_clusters = np.asarray(triangle_clusters)
|
112 |
+
# cluster_n_triangles = np.asarray(cluster_n_triangles)
|
113 |
+
# cluster_area = np.asarray(cluster_area)
|
114 |
+
# largest_cluster_idx = cluster_n_triangles.argmax()
|
115 |
+
# triangles_to_remove = (triangle_clusters != largest_cluster_idx)
|
116 |
+
|
117 |
+
# transform vertices to world
|
118 |
+
scale_mat = scale_mats[0]
|
119 |
+
mesh.vertices = mesh.vertices * scale_mat[0, 0] + scale_mat[:3, 3][None]
|
120 |
+
mesh.export(result_mesh_file)
|
121 |
+
del mesh
|
122 |
+
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
|
126 |
+
parser = argparse.ArgumentParser(
|
127 |
+
description='Arguments to evaluate the mesh.'
|
128 |
+
)
|
129 |
+
|
130 |
+
parser.add_argument('--input_mesh', type=str, help='path to the mesh to be evaluated')
|
131 |
+
parser.add_argument('--scan_id', type=str, help='scan id of the input mesh')
|
132 |
+
parser.add_argument('--output_dir', type=str, default='evaluation_results_single', help='path to the output folder')
|
133 |
+
parser.add_argument('--DTU', type=str, default='Offical_DTU_Dataset', help='path to the GT DTU point clouds')
|
134 |
+
args = parser.parse_args()
|
135 |
+
|
136 |
+
|
137 |
+
Offical_DTU_Dataset = args.DTU
|
138 |
+
out_dir = args.output_dir
|
139 |
+
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
140 |
+
|
141 |
+
scan = args.scan_id
|
142 |
+
ply_file = args.input_mesh
|
143 |
+
|
144 |
+
result_mesh_file = os.path.join(out_dir, "culled_mesh.ply")
|
145 |
+
cull_scan(scan, ply_file, result_mesh_file)
|
146 |
+
|
147 |
+
cmd = f"python eval.py --data {result_mesh_file} --scan {scan} --mode mesh --dataset_dir {Offical_DTU_Dataset} --vis_out_dir {out_dir}"
|
148 |
+
os.system(cmd)
|
eval_dtu/render_utils.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import imageio
|
3 |
+
import skimage
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def get_psnr(img1, img2, normalize_rgb=False):
|
10 |
+
if normalize_rgb: # [-1,1] --> [0,1]
|
11 |
+
img1 = (img1 + 1.) / 2.
|
12 |
+
img2 = (img2 + 1. ) / 2.
|
13 |
+
|
14 |
+
mse = torch.mean((img1 - img2) ** 2)
|
15 |
+
psnr = -10. * torch.log(mse) / torch.log(torch.Tensor([10.]).cuda())
|
16 |
+
|
17 |
+
return psnr
|
18 |
+
|
19 |
+
|
20 |
+
def load_rgb(path, normalize_rgb = False):
|
21 |
+
img = imageio.imread(path)
|
22 |
+
img = skimage.img_as_float32(img)
|
23 |
+
|
24 |
+
if normalize_rgb: # [-1,1] --> [0,1]
|
25 |
+
img -= 0.5
|
26 |
+
img *= 2.
|
27 |
+
img = img.transpose(2, 0, 1)
|
28 |
+
return img
|
29 |
+
|
30 |
+
|
31 |
+
def load_K_Rt_from_P(filename, P=None):
|
32 |
+
if P is None:
|
33 |
+
lines = open(filename).read().splitlines()
|
34 |
+
if len(lines) == 4:
|
35 |
+
lines = lines[1:]
|
36 |
+
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
|
37 |
+
P = np.asarray(lines).astype(np.float32).squeeze()
|
38 |
+
|
39 |
+
out = cv2.decomposeProjectionMatrix(P)
|
40 |
+
K = out[0]
|
41 |
+
R = out[1]
|
42 |
+
t = out[2]
|
43 |
+
|
44 |
+
K = K/K[2,2]
|
45 |
+
intrinsics = np.eye(4)
|
46 |
+
intrinsics[:3, :3] = K
|
47 |
+
|
48 |
+
pose = np.eye(4, dtype=np.float32)
|
49 |
+
pose[:3, :3] = R.transpose()
|
50 |
+
pose[:3,3] = (t[:3] / t[3])[:,0]
|
51 |
+
|
52 |
+
return intrinsics, pose
|
53 |
+
|
54 |
+
|
55 |
+
def get_camera_params(uv, pose, intrinsics):
|
56 |
+
if pose.shape[1] == 7: #In case of quaternion vector representation
|
57 |
+
cam_loc = pose[:, 4:]
|
58 |
+
R = quat_to_rot(pose[:,:4])
|
59 |
+
p = torch.eye(4).repeat(pose.shape[0],1,1).cuda().float()
|
60 |
+
p[:, :3, :3] = R
|
61 |
+
p[:, :3, 3] = cam_loc
|
62 |
+
else: # In case of pose matrix representation
|
63 |
+
cam_loc = pose[:, :3, 3]
|
64 |
+
p = pose
|
65 |
+
|
66 |
+
batch_size, num_samples, _ = uv.shape
|
67 |
+
|
68 |
+
depth = torch.ones((batch_size, num_samples)).cuda()
|
69 |
+
x_cam = uv[:, :, 0].view(batch_size, -1)
|
70 |
+
y_cam = uv[:, :, 1].view(batch_size, -1)
|
71 |
+
z_cam = depth.view(batch_size, -1)
|
72 |
+
|
73 |
+
pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics)
|
74 |
+
|
75 |
+
# permute for batch matrix product
|
76 |
+
pixel_points_cam = pixel_points_cam.permute(0, 2, 1)
|
77 |
+
|
78 |
+
world_coords = torch.bmm(p, pixel_points_cam).permute(0, 2, 1)[:, :, :3]
|
79 |
+
ray_dirs = world_coords - cam_loc[:, None, :]
|
80 |
+
ray_dirs = F.normalize(ray_dirs, dim=2)
|
81 |
+
|
82 |
+
return ray_dirs, cam_loc
|
83 |
+
|
84 |
+
|
85 |
+
def get_camera_for_plot(pose):
|
86 |
+
if pose.shape[1] == 7: #In case of quaternion vector representation
|
87 |
+
cam_loc = pose[:, 4:].detach()
|
88 |
+
R = quat_to_rot(pose[:,:4].detach())
|
89 |
+
else: # In case of pose matrix representation
|
90 |
+
cam_loc = pose[:, :3, 3]
|
91 |
+
R = pose[:, :3, :3]
|
92 |
+
cam_dir = R[:, :3, 2]
|
93 |
+
return cam_loc, cam_dir
|
94 |
+
|
95 |
+
|
96 |
+
def lift(x, y, z, intrinsics):
|
97 |
+
# parse intrinsics
|
98 |
+
intrinsics = intrinsics.cuda()
|
99 |
+
fx = intrinsics[:, 0, 0]
|
100 |
+
fy = intrinsics[:, 1, 1]
|
101 |
+
cx = intrinsics[:, 0, 2]
|
102 |
+
cy = intrinsics[:, 1, 2]
|
103 |
+
sk = intrinsics[:, 0, 1]
|
104 |
+
|
105 |
+
x_lift = (x - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z
|
106 |
+
y_lift = (y - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z
|
107 |
+
|
108 |
+
# homogeneous
|
109 |
+
return torch.stack((x_lift, y_lift, z, torch.ones_like(z).cuda()), dim=-1)
|
110 |
+
|
111 |
+
|
112 |
+
def quat_to_rot(q):
|
113 |
+
batch_size, _ = q.shape
|
114 |
+
q = F.normalize(q, dim=1)
|
115 |
+
R = torch.ones((batch_size, 3,3)).cuda()
|
116 |
+
qr=q[:,0]
|
117 |
+
qi = q[:, 1]
|
118 |
+
qj = q[:, 2]
|
119 |
+
qk = q[:, 3]
|
120 |
+
R[:, 0, 0]=1-2 * (qj**2 + qk**2)
|
121 |
+
R[:, 0, 1] = 2 * (qj *qi -qk*qr)
|
122 |
+
R[:, 0, 2] = 2 * (qi * qk + qr * qj)
|
123 |
+
R[:, 1, 0] = 2 * (qj * qi + qk * qr)
|
124 |
+
R[:, 1, 1] = 1-2 * (qi**2 + qk**2)
|
125 |
+
R[:, 1, 2] = 2*(qj*qk - qi*qr)
|
126 |
+
R[:, 2, 0] = 2 * (qk * qi-qj * qr)
|
127 |
+
R[:, 2, 1] = 2 * (qj*qk + qi*qr)
|
128 |
+
R[:, 2, 2] = 1-2 * (qi**2 + qj**2)
|
129 |
+
return R
|
130 |
+
|
131 |
+
|
132 |
+
def rot_to_quat(R):
|
133 |
+
batch_size, _,_ = R.shape
|
134 |
+
q = torch.ones((batch_size, 4)).cuda()
|
135 |
+
|
136 |
+
R00 = R[:, 0,0]
|
137 |
+
R01 = R[:, 0, 1]
|
138 |
+
R02 = R[:, 0, 2]
|
139 |
+
R10 = R[:, 1, 0]
|
140 |
+
R11 = R[:, 1, 1]
|
141 |
+
R12 = R[:, 1, 2]
|
142 |
+
R20 = R[:, 2, 0]
|
143 |
+
R21 = R[:, 2, 1]
|
144 |
+
R22 = R[:, 2, 2]
|
145 |
+
|
146 |
+
q[:,0]=torch.sqrt(1.0+R00+R11+R22)/2
|
147 |
+
q[:, 1]=(R21-R12)/(4*q[:,0])
|
148 |
+
q[:, 2] = (R02 - R20) / (4 * q[:, 0])
|
149 |
+
q[:, 3] = (R10 - R01) / (4 * q[:, 0])
|
150 |
+
return q
|
151 |
+
|
152 |
+
|
153 |
+
def get_sphere_intersections(cam_loc, ray_directions, r = 1.0):
|
154 |
+
# Input: n_rays x 3 ; n_rays x 3
|
155 |
+
# Output: n_rays x 1, n_rays x 1 (close and far)
|
156 |
+
|
157 |
+
ray_cam_dot = torch.bmm(ray_directions.view(-1, 1, 3),
|
158 |
+
cam_loc.view(-1, 3, 1)).squeeze(-1)
|
159 |
+
under_sqrt = ray_cam_dot ** 2 - (cam_loc.norm(2, 1, keepdim=True) ** 2 - r ** 2)
|
160 |
+
|
161 |
+
# sanity check
|
162 |
+
if (under_sqrt <= 0).sum() > 0:
|
163 |
+
print('BOUNDING SPHERE PROBLEM!')
|
164 |
+
exit()
|
165 |
+
|
166 |
+
sphere_intersections = torch.sqrt(under_sqrt) * torch.Tensor([-1, 1]).cuda().float() - ray_cam_dot
|
167 |
+
sphere_intersections = sphere_intersections.clamp_min(0.0)
|
168 |
+
|
169 |
+
return sphere_intersections
|