from logging import root import torch import torch.nn as nn import torch.nn.functional as F import cv2 import numpy as np import os import glob from skimage.morphology import binary_dilation, disk import argparse import trimesh from pathlib import Path import subprocess from evaluate_single_scene import cull_scan # Ground truth DTU point cloud path Offical_DTU_Dataset = "./Offical_DTU_Dataset" scans = [24, 37, 40, 55, 63, 65, 69, 83, 97, 105, 106, 110, 114, 118, 122] out_dir_prefix = "evaluation/" Path(out_dir_prefix).mkdir(parents=True, exist_ok=True) # output file to save quantitative results evaluation_txt_file = "evaluation/DTU.csv" evaluation_txt_file = open(evaluation_txt_file, 'w') root_dir = '../exps/' exp_names =["dtu_3views"] for exp in exp_names: for scan in scans: out_dir = os.path.join(out_dir_prefix, str(scan)) Path(out_dir).mkdir(parents=True, exist_ok=True) vis_out_dir = os.path.join(out_dir_prefix, exp) Path(vis_out_dir).mkdir(parents=True, exist_ok=True) cur_root = os.path.join(root_dir, f"{exp}_{scan}") files = list(filter(os.path.isfile, glob.glob(os.path.join(cur_root, "*/plots/*.ply")))) files.sort(key=lambda x:os.path.getmtime(x)) for ply_file in files[-1:]: iter_num = Path(ply_file).stem cur_vis_out_dir = os.path.join(out_dir_prefix, exp) Path(cur_vis_out_dir).mkdir(parents=True, exist_ok=True) print(ply_file) # delete mesh by mask result_mesh_file = os.path.join(out_dir, f"{exp}_{iter_num}.ply") cull_scan(scan, ply_file, result_mesh_file) cmd = f"python eval.py --data {result_mesh_file} --scan {scan} --mode mesh --dataset_dir {Offical_DTU_Dataset} --vis_out_dir {cur_vis_out_dir}" print(cmd) #acc, comp, overall output = subprocess.check_output(cmd, shell=True).decode("utf-8") output = output.replace(" ", ",") evaluation_txt_file.write(f"{exp},{scan},{iter_num},{output}") evaluation_txt_file.flush()