from typing import Optional, Callable, List, Dict, Any, Tuple, Generator from dataclasses import dataclass import itertools import os import datasets from .utils import Sample, list_keyby, parse_tmx, parse_sgm, parse_tsv, cleanup, normalize, dict_map, dict_filter_keys, dict_flatten logger = datasets.logging.get_logger( name=__name__ ) @dataclass(frozen=True) class Candidate: name: str url: str paths: Tuple[str, ...] num_examples: int parser: Callable[ [Tuple[str, ...]], Generator[Sample, None, None] ] def download_paths( self, base_path: str ): return tuple( os.path.join(base_path, path) for path in self.paths ) @dataclass(frozen=True) class Constraint: start: Optional[int] = None stop: Optional[int] = None step: Optional[int] = None _CANDIDATES = [ Candidate( name='europarl_v10', url='https://statmt.org/europarl/v10/training/europarl-v10.de-en.tsv.gz', paths=('.',), num_examples=1828521, parser=lambda filepaths: parse_tsv( filepaths=filepaths, columns={ 'de': 0, 'en': 1 } ) ), Candidate( name='newscommentary_v17', url='https://www.statmt.org/news-commentary/v17/training/news-commentary-v17.de-en.tsv.gz', paths=('.',), num_examples=418621, parser=lambda filepaths: parse_tsv( filepaths=filepaths, columns={ 'de': 0, 'en': 1 } ) ), Candidate( name='wikititles_v3', url='https://object.pouta.csc.fi/OPUS-WikiTitles/v3/tmx/de-en.tmx.gz', paths=('.',), num_examples=1386770, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='ecb_2017', url='https://s3-eu-west-1.amazonaws.com/tilde-model/ecb2017.de-en.tmx.zip', paths=('ecb2017.UNIQUE.de-en.tmx',), num_examples=4147, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='rapid_2019', url='https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.tmx.zip', paths=('RAPID_2019.UNIQUE.de-en.tmx',), num_examples=939808, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='eesc_2017', url='https://s3-eu-west-1.amazonaws.com/tilde-model/EESC2017.de-en.tmx.zip', paths=('EESC.de-en.tmx',), num_examples=2857850, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='ema_2016', url='https://s3-eu-west-1.amazonaws.com/tilde-model/EMA2016.de-en.tmx.zip', paths=('EMEA2016.de-en.tmx',), num_examples=347631, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='europat_v3', url='https://web-language-models.s3.amazonaws.com/europat/release3/de-en.txt.gz', paths=('.',), num_examples=19734742, parser=lambda filepaths: parse_tsv( filepaths=filepaths, columns={ 'de': 0, 'en': 1 } ) ), Candidate( name='books_v1', url='https://object.pouta.csc.fi/OPUS-Books/v1/tmx/de-en.tmx.gz', paths=('.',), num_examples=51106, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='ted2020_v1', url='https://object.pouta.csc.fi/OPUS-TED2020/v1/tmx/de-en.tmx.gz', paths=('.',), num_examples=289374, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='qed_v2', url='https://object.pouta.csc.fi/OPUS-QED/v2.0a/tmx/de-en.tmx.gz', paths=('.',), num_examples=492811, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='eubookshop_v2', url='https://object.pouta.csc.fi/OPUS-EUbookshop/v2/tmx/de-en.tmx.gz', paths=('.',), num_examples=8312724, parser=lambda filepaths: parse_tmx( filepaths=filepaths, attributes={ 'de': 'xml:lang="de"', 'en': 'xml:lang="en"', } ) ), Candidate( name='newstest2018', url='https://data.statmt.org/wmt22/translation-task/dev.tgz', paths=('dev/sgm/newstest2018-deen-src.de.sgm', 'dev/sgm/newstest2018-deen-ref.en.sgm'), num_examples=2998, parser=lambda filepaths: parse_sgm( filepaths=filepaths, files={ 'de': 0, 'en': 1 } ) ), Candidate( name='newstest2019', url='https://data.statmt.org/wmt22/translation-task/dev.tgz', paths=('dev/sgm/newstest2019-deen-src.de.sgm', 'dev/sgm/newstest2019-deen-ref.en.sgm'), num_examples=2000, parser=lambda filepaths: parse_sgm( filepaths=filepaths, files={ 'de': 0, 'en': 1 } ) ) ] _CANDIDATES_BY_NAME = list_keyby( input=_CANDIDATES, key_fn=lambda candidate: candidate.name ) class NordmannConfig( datasets.BuilderConfig ): def __init__( self, splits: Dict[datasets.NamedSplit, List[str]], constraints: Dict[str, Constraint], normalizer: Callable[[Sample], Sample], filter: Callable[[Sample], bool], **kwargs: Any ): assert splits datasets.BuilderConfig.__init__( self, **kwargs ) self.splits = dict_map( input=splits, map_fn=lambda key, value: ( key, dict_filter_keys( input=_CANDIDATES_BY_NAME, keys=value ) ) ) self.constraints = constraints self.normalizer = normalizer self.filter = filter class Nordmann( datasets.GeneratorBasedBuilder ): BUILDER_CONFIG_CLASS = NordmannConfig BUILDER_CONFIGS = [ NordmannConfig( name='balanced', description='NORDMANN 2023 (balanced) translation task dataset.', version=datasets.Version( version_str='0.0.1' ), splits={ datasets.Split.TRAIN: [ 'europarl_v10', 'newscommentary_v17', 'wikititles_v3', 'europat_v3', 'books_v1', 'ted2020_v1', 'qed_v2', 'eubookshop_v2' ], datasets.Split.VALIDATION: [ 'newstest2018' ], datasets.Split.TEST: [ 'newstest2019' ] }, constraints={ 'europat_v3': Constraint(stop=1000000), 'eubookshop_v2': Constraint(stop=2000000) }, normalizer=normalize( strip_whitespaces=True, clean_control_characters=True, enforce_unicode_form='NFC' ), filter=cleanup( length_min=4, length_max=4096, length_ratio_max=1.33, alpha_ratio_min=.5 ) ) ] def _info( self ): features = { 'translation': datasets.features.Translation( languages=['de', 'en'] ) } return datasets.DatasetInfo( description='Translation dataset based on statmt.org', features=datasets.Features(features) ) def _split_generators( self, dl_manager: datasets.DownloadManager ): self.config: NordmannConfig urls = dict_map( input=dict_flatten( input=self.config.splits ), map_fn=lambda key, value: ( key, value.url ) ) base_paths: Dict[str, str] base_paths = dl_manager.download_and_extract( url_or_urls=urls ) generators: List[datasets.SplitGenerator] generators = list() for split, split_candidates in self.config.splits.items(): generators.append( datasets.SplitGenerator( name=str(split), gen_kwargs={ 'candidates': split_candidates, 'base_paths': base_paths } ) ) return generators def _generate_examples( self, candidates: Dict[str, Candidate], base_paths: Dict[str, str] ): self.config: NordmannConfig for name, candidate in candidates.items(): constraint = ( self.config.constraints[name] if name in self.config.constraints else Constraint() ) samples = candidate.parser( candidate.download_paths( base_path=base_paths[name] ) ) for sample_num, sample in enumerate( itertools.islice( samples, constraint.start, constraint.stop, constraint.step ) ): normalized_sample = self.config.normalizer(sample) if not self.config.filter(normalized_sample): continue yield candidate.name + '_' + str(sample_num), normalized_sample samples.close()