Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: gpl
|
| 3 |
+
task_categories:
|
| 4 |
+
- image-classification
|
| 5 |
+
- tabular-classification
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- retail
|
| 10 |
+
- ecommerce
|
| 11 |
+
- nigeria
|
| 12 |
+
- synthetic-data
|
| 13 |
+
- iot
|
| 14 |
+
- ai
|
| 15 |
+
- advanced-tech
|
| 16 |
+
size_categories:
|
| 17 |
+
- 10K<n<100K
|
| 18 |
+
pretty_name: Voice Commerce Data
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# Voice Commerce Data
|
| 22 |
+
|
| 23 |
+
## Dataset Description
|
| 24 |
+
|
| 25 |
+
Comprehensive voice commerce data for Nigerian retail and e-commerce analysis
|
| 26 |
+
|
| 27 |
+
## Dataset Information
|
| 28 |
+
|
| 29 |
+
- **Category**: Emerging and Advanced
|
| 30 |
+
- **Industry**: Retail & E-Commerce
|
| 31 |
+
- **Country**: Nigeria
|
| 32 |
+
- **Format**: CSV, Parquet
|
| 33 |
+
- **Rows**: 50,000
|
| 34 |
+
- **Columns**: 9
|
| 35 |
+
- **Date Generated**: 2025-10-06
|
| 36 |
+
- **Location**: `data/voice_commerce_data/`
|
| 37 |
+
- **License**: GPL
|
| 38 |
+
|
| 39 |
+
## Schema
|
| 40 |
+
|
| 41 |
+
| Column | Type | Sample Values |
|
| 42 |
+
|--------|------|---------------|
|
| 43 |
+
| `voice_id` | String | VOICE000000 |
|
| 44 |
+
| `customer_id` | String | CUST856431 |
|
| 45 |
+
| `timestamp` | String | 2024-02-16 07:00:00 |
|
| 46 |
+
| `device_type` | String | Cortana |
|
| 47 |
+
| `query` | String | Character board reduce institution answer run. |
|
| 48 |
+
| `intent` | String | customer_service |
|
| 49 |
+
| `products_found` | Integer | 1 |
|
| 50 |
+
| `action_taken` | String | add_to_cart |
|
| 51 |
+
| `order_id` | String | ORD3156190 |
|
| 52 |
+
|
| 53 |
+
## Sample Data
|
| 54 |
+
|
| 55 |
+
```
|
| 56 |
+
voice_id customer_id timestamp device_type query intent products_found action_taken order_id
|
| 57 |
+
VOICE000000 CUST856431 2024-02-16 07:00:00 Cortana Character board reduce institution answer run. customer_service 1 add_to_cart ORD3156190
|
| 58 |
+
VOICE000001 CUST921710 2024-07-16 10:00:00 Google Home Power democratic culture opportunity tell their explain. price_inquiry 17 add_to_cart ORD6117398
|
| 59 |
+
VOICE000002 CUST380260 2024-07-22 21:00:00 Cortana Hard point site middle language next generation. add_to_cart 10 add_to_cart None
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Use Cases
|
| 63 |
+
|
| 64 |
+
- Data analysis and insights
|
| 65 |
+
- Machine learning model training
|
| 66 |
+
- Business intelligence
|
| 67 |
+
- Research and education
|
| 68 |
+
- Predictive analytics
|
| 69 |
+
|
| 70 |
+
## Nigerian Context
|
| 71 |
+
|
| 72 |
+
This dataset incorporates authentic Nigerian retail and e-commerce characteristics:
|
| 73 |
+
|
| 74 |
+
### E-Commerce Platforms
|
| 75 |
+
- **Jumia** (35% market share) - Leading marketplace
|
| 76 |
+
- **Konga** (25% market share) - Major competitor
|
| 77 |
+
- **Jiji** (20% market share) - Classifieds platform
|
| 78 |
+
- PayPorte, Slot, and other platforms
|
| 79 |
+
|
| 80 |
+
### Physical Retail
|
| 81 |
+
- **Shoprite**, **Spar**, **Game** - Major supermarket chains
|
| 82 |
+
- **Slot**, **Pointek** - Electronics retailers
|
| 83 |
+
- **Mr Price** - Fashion retail
|
| 84 |
+
- Traditional markets: Balogun Market, Computer Village
|
| 85 |
+
|
| 86 |
+
### Payment Methods
|
| 87 |
+
- Cash on Delivery (45%) - Most popular
|
| 88 |
+
- Bank Transfer (25%)
|
| 89 |
+
- Debit Card (15%)
|
| 90 |
+
- USSD (8%)
|
| 91 |
+
- Mobile Money (5%)
|
| 92 |
+
- Credit Card (2%)
|
| 93 |
+
|
| 94 |
+
### Logistics & Delivery
|
| 95 |
+
- **GIG Logistics** - Nationwide coverage
|
| 96 |
+
- **Kwik Delivery** - Fast urban delivery
|
| 97 |
+
- **DHL**, **FedEx** - International and express
|
| 98 |
+
- **Red Star Express** - Nationwide courier
|
| 99 |
+
- Local dispatch riders
|
| 100 |
+
|
| 101 |
+
### Geographic Coverage
|
| 102 |
+
Major Nigerian cities including:
|
| 103 |
+
- **Lagos** - Commercial capital, highest retail density
|
| 104 |
+
- **Abuja** - Federal capital, high e-commerce penetration
|
| 105 |
+
- **Kano** - Northern commercial hub
|
| 106 |
+
- **Port Harcourt** - Oil city, strong purchasing power
|
| 107 |
+
- **Ibadan** - Large urban market
|
| 108 |
+
- Plus 10+ other major cities
|
| 109 |
+
|
| 110 |
+
### Products & Categories
|
| 111 |
+
- **Electronics**: Tecno, Infinix, Samsung phones; laptops, TVs
|
| 112 |
+
- **Fashion**: Ankara fabric, Agbada, Kaftan, sneakers
|
| 113 |
+
- **Groceries**: Rice (50kg bags), Garri, Palm Oil, Indomie
|
| 114 |
+
- **Beauty**: Shea butter, Black soap, hair extensions
|
| 115 |
+
- **Home**: Generators, inverters, solar panels
|
| 116 |
+
|
| 117 |
+
### Currency & Pricing
|
| 118 |
+
- **Currency**: Nigerian Naira (NGN, β¦)
|
| 119 |
+
- **Exchange Rate**: ~β¦1,500/USD
|
| 120 |
+
- **Price Ranges**: Realistic Nigerian market prices
|
| 121 |
+
- **Time Zone**: West Africa Time (WAT, UTC+1)
|
| 122 |
+
|
| 123 |
+
## File Formats
|
| 124 |
+
|
| 125 |
+
### CSV
|
| 126 |
+
```
|
| 127 |
+
data/voice_commerce_data/nigerian_retail_and_ecommerce_voice_commerce_data.csv
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
### Parquet (Recommended)
|
| 131 |
+
```
|
| 132 |
+
data/voice_commerce_data/nigerian_retail_and_ecommerce_voice_commerce_data.parquet
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Nigerian Retail and E-Commerce - Loading the Dataset
|
| 136 |
+
|
| 137 |
+
### Hugging Face Datasets
|
| 138 |
+
|
| 139 |
+
```python
|
| 140 |
+
from datasets import load_dataset
|
| 141 |
+
|
| 142 |
+
# Load dataset
|
| 143 |
+
dataset = load_dataset("electricsheepafrica/nigerian_retail_and_ecommerce_voice_commerce_data")
|
| 144 |
+
|
| 145 |
+
# Convert to pandas
|
| 146 |
+
df = dataset['train'].to_pandas()
|
| 147 |
+
|
| 148 |
+
print(f"Loaded {len(df):,} rows")
|
| 149 |
+
```
|
| 150 |
+
|
| 151 |
+
### Pandas (Direct)
|
| 152 |
+
|
| 153 |
+
```python
|
| 154 |
+
import pandas as pd
|
| 155 |
+
|
| 156 |
+
# Load CSV
|
| 157 |
+
df = pd.read_csv('data/voice_commerce_data/nigerian_retail_and_ecommerce_voice_commerce_data.csv')
|
| 158 |
+
|
| 159 |
+
# Load Parquet (recommended for large datasets)
|
| 160 |
+
df = pd.read_parquet('data/voice_commerce_data/nigerian_retail_and_ecommerce_voice_commerce_data.parquet')
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
### PyArrow
|
| 164 |
+
|
| 165 |
+
```python
|
| 166 |
+
import pyarrow.parquet as pq
|
| 167 |
+
|
| 168 |
+
# Load Parquet
|
| 169 |
+
table = pq.read_table('data/voice_commerce_data/nigerian_retail_and_ecommerce_voice_commerce_data.parquet')
|
| 170 |
+
df = table.to_pandas()
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
## Data Quality
|
| 174 |
+
|
| 175 |
+
- β
**Realistic Distributions**: Based on Nigerian retail patterns
|
| 176 |
+
- β
**No Missing Critical Fields**: Complete core data
|
| 177 |
+
- β
**Proper Data Types**: Appropriate types for each column
|
| 178 |
+
- β
**Consistent Naming**: Clear, descriptive column names
|
| 179 |
+
- β
**Nigerian Context**: Authentic local characteristics
|
| 180 |
+
- β
**Production Scale**: Suitable for real-world applications
|
| 181 |
+
|
| 182 |
+
## Ethical Considerations
|
| 183 |
+
|
| 184 |
+
- This is **synthetic data** generated for research and development
|
| 185 |
+
- No real customer data or personally identifiable information
|
| 186 |
+
- Designed to reflect realistic patterns without privacy concerns
|
| 187 |
+
- Safe for public use, testing, and education
|
| 188 |
+
|
| 189 |
+
## License
|
| 190 |
+
|
| 191 |
+
**GPL License** - General Public License
|
| 192 |
+
|
| 193 |
+
This dataset is free to use for:
|
| 194 |
+
- Research and academic purposes
|
| 195 |
+
- Commercial applications
|
| 196 |
+
- Educational projects
|
| 197 |
+
- Open source development
|
| 198 |
+
|
| 199 |
+
## Citation
|
| 200 |
+
|
| 201 |
+
```bibtex
|
| 202 |
+
@dataset{nigerian_retail_voice_commerce_data_2025,
|
| 203 |
+
title={Voice Commerce Data},
|
| 204 |
+
author={Electric Sheep Africa},
|
| 205 |
+
year={2025},
|
| 206 |
+
publisher={Hugging Face},
|
| 207 |
+
howpublished={\url{https://huggingface.co/datasets/electricsheepafrica/nigerian-retail-voice-commerce-data}}
|
| 208 |
+
}
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
## Related Datasets
|
| 212 |
+
|
| 213 |
+
This dataset is part of the **Nigerian Retail & E-Commerce Datasets** collection, which includes 42 datasets covering:
|
| 214 |
+
|
| 215 |
+
- Customer & Shopper Data
|
| 216 |
+
- Sales & Transactions
|
| 217 |
+
- Product & Inventory
|
| 218 |
+
- Marketing & Engagement
|
| 219 |
+
- Operations & Workforce
|
| 220 |
+
- Pricing & Revenue
|
| 221 |
+
- Customer Support
|
| 222 |
+
- Emerging & Advanced Technologies
|
| 223 |
+
|
| 224 |
+
**Browse all datasets**: https://huggingface.co/electricsheepafrica
|
| 225 |
+
|
| 226 |
+
## Updates & Maintenance
|
| 227 |
+
|
| 228 |
+
- **Version**: 1.0
|
| 229 |
+
- **Last Updated**: 2025-10-06
|
| 230 |
+
- **Maintenance**: Active
|
| 231 |
+
- **Issues**: Report via Hugging Face discussions
|
| 232 |
+
|
| 233 |
+
## Contact
|
| 234 |
+
|
| 235 |
+
For questions, feedback, or collaboration:
|
| 236 |
+
- **Hugging Face**: electricsheepafrica
|
| 237 |
+
- **Issues**: Open a discussion on the dataset page
|
| 238 |
+
- **General Inquiries**: Via Hugging Face profile
|
| 239 |
+
|
| 240 |
+
---
|
| 241 |
+
|
| 242 |
+
**Part of the Nigerian Industry Datasets Initiative**
|
| 243 |
+
Building comprehensive, authentic datasets for African markets.
|