Kossisoroyce commited on
Commit
bfcb663
·
verified ·
1 Parent(s): ca33bce

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +253 -0
README.md ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pathology
6
+ - histology
7
+ - tumor-grade
8
+ - histologic-type
9
+ - lymphovascular-invasion
10
+ - necrosis
11
+ - tils
12
+ - breast-cancer
13
+ - sub-saharan-africa
14
+ license: cc-by-nc-4.0
15
+ pretty_name: SSA Breast Pathology & Histology Dataset (Women, Multi-ancestry)
16
+ task_categories:
17
+ - other
18
+ size_categories:
19
+ - 1K<n<10K
20
+ ---
21
+
22
+ # SSA Breast Pathology & Histology Dataset (Women, Multi-ancestry, Synthetic)
23
+
24
+ ## Dataset summary
25
+
26
+ This dataset provides a **synthetic cohort of invasive breast cancers** in women across multiple ancestry groups, with emphasis on **sub-Saharan Africa (SSA)** and comparable reference populations.
27
+
28
+ Pathology features include:
29
+
30
+ - **Tumor grade** (Nottingham-like grades G1–G3).
31
+ - **Histologic type** (NST/ductal, lobular, medullary-like, mucinous, other special types).
32
+ - **Lymphovascular invasion (LVI)**.
33
+ - **Necrosis patterns** (none, focal, extensive).
34
+ - **Tumor-infiltrating lymphocytes (TILs)** category (low, intermediate, high).
35
+
36
+ Distributions are anchored qualitatively to SEER-based histology series, Nottingham grade cohorts, LVI reviews, necrosis descriptions, and TNBC TIL literature, but all tumors are fully synthetic.
37
+
38
+
39
+ ## Cohort design
40
+
41
+ ### Sample size and populations
42
+
43
+ - **Total N**: 10,000 synthetic invasive breast cancers.
44
+ - **Populations**:
45
+ - `SSA_West`: 2,000
46
+ - `SSA_East`: 2,000
47
+ - `SSA_Central`: 1,500
48
+ - `SSA_Southern`: 1,500
49
+ - `AAW` (African American women): 1,500
50
+ - `EUR` (European reference): 1,000
51
+ - `EAS` (East Asian reference): 500
52
+
53
+ - **Sex**:
54
+ - Predominantly `Female`, with a small fraction of male breast cancers (`~1%`).
55
+
56
+ - **Age**:
57
+ - 18–90 years.
58
+ - Older mean age at diagnosis in reference populations (EUR/EAS/AAW) relative to SSA clusters.
59
+
60
+
61
+ ## Pathology variables
62
+
63
+ ### Tumor grade (Nottingham-like)
64
+
65
+ Variable:
66
+
67
+ - `tumor_grade` – one of:
68
+ - `G1` – low grade.
69
+ - `G2` – intermediate grade.
70
+ - `G3` – high grade.
71
+
72
+ Distributions by population approximate published Nottingham histologic grade series:
73
+
74
+ - Typical ranges of **~15–25% G1**, **~40–50% G2**, **~30–40% G3**.
75
+ - SSA and AAW populations have **somewhat higher G3 fractions**, reflecting higher prevalence of aggressive subtypes such as TNBC.
76
+ - EUR/EAS reference groups have relatively higher G1 and lower G3 proportions.
77
+
78
+
79
+ ### Histologic type
80
+
81
+ Variable:
82
+
83
+ - `histologic_type` – one of:
84
+ - `NST_ductal` – invasive carcinoma of no special type (ductal/NST).
85
+ - `Lobular` – invasive lobular carcinoma.
86
+ - `Medullary_like` – medullary or medullary-like carcinomas.
87
+ - `Mucinous` – mucinous/colloid carcinomas.
88
+ - `Other_special` – other special histologic types grouped.
89
+
90
+ Anchored to SEER and WHO-based estimates:
91
+
92
+ - **NST/ductal**: ~75–80% of invasive cases.
93
+ - **Lobular**: ~8–12% (slightly more common in some EUR/EAS cohorts).
94
+ - Remaining **medullary-like, mucinous, and other special types** together account for ~10–15%.
95
+
96
+
97
+ ### Lymphovascular invasion (LVI)
98
+
99
+ Variable:
100
+
101
+ - `lvi_status` – `Absent` or `Present`.
102
+ - Derived flag: `lvi_present` (True if `Present`).
103
+
104
+ Modeled prevalence is based on LVI reviews (typically **15–35%** in invasive breast cancer):
105
+
106
+ - Lower LVI prevalence in **G1** tumors (~5–10%).
107
+ - Intermediate in **G2** (~15–25%).
108
+ - Higher in **G3** (~30–40%), with modest variation by population.
109
+
110
+
111
+ ### Necrosis patterns
112
+
113
+ Variable:
114
+
115
+ - `necrosis_pattern` – one of:
116
+ - `None`
117
+ - `Focal`
118
+ - `Extensive`
119
+ - Derived flag: `necrosis_any` (True if `Focal` or `Extensive`).
120
+
121
+ Patterns align with descriptions of necrosis in high-grade DCIS and invasive tumors:
122
+
123
+ - **G1**: mostly `None` with occasional `Focal` necrosis; `Extensive` rare.
124
+ - **G2**: increased `Focal` and some `Extensive` necrosis.
125
+ - **G3**: highest proportion of `Extensive` necrosis (e.g., comedo/central necrosis), plus substantial `Focal` necrosis.
126
+
127
+
128
+ ### Tumor-infiltrating lymphocytes (TILs)
129
+
130
+ Variable:
131
+
132
+ - `tils_category` – one of:
133
+ - `Low`
134
+ - `Intermediate`
135
+ - `High`
136
+ - Derived flag: `tils_high` (True if `High`).
137
+
138
+ Informed by TIL consensus papers and TNBC cohorts:
139
+
140
+ - **TNBC-enriched populations (e.g., some SSA and AAW groups)** are modeled with **higher fractions of `High` TILs** (~20–24%) and substantial `Intermediate` TILs.
141
+ - **EUR/EAS** cohorts have more `Low` TILs and fewer `High` TILs, reflecting higher ER+/HER2− prevalence and lower immunogenicity.
142
+
143
+
144
+ ## File and schema
145
+
146
+ ### `pathology_histology_data.parquet` / `pathology_histology_data.csv`
147
+
148
+ Each row represents an invasive breast cancer case:
149
+
150
+ - **Demographics**
151
+ - `sample_id`
152
+ - `population`
153
+ - `region`
154
+ - `is_SSA`
155
+ - `is_reference_panel`
156
+ - `sex`
157
+ - `age`
158
+
159
+ - **Primary pathology features**
160
+ - `tumor_grade` (G1, G2, G3)
161
+ - `histologic_type`
162
+ - `lvi_status`
163
+ - `necrosis_pattern`
164
+ - `tils_category`
165
+
166
+ - **Derived indicators**
167
+ - `lvi_present`
168
+ - `necrosis_any`
169
+ - `tils_high`
170
+
171
+
172
+ ## Generation
173
+
174
+ The dataset is generated using:
175
+
176
+ - `pathology_histology/scripts/generate_pathology_histology.py`
177
+
178
+ with configuration in:
179
+
180
+ - `pathology_histology/configs/pathology_histology_config.yaml`
181
+
182
+ and literature inventory in:
183
+
184
+ - `pathology_histology/docs/LITERATURE_INVENTORY.csv`
185
+
186
+ Key steps:
187
+
188
+ 1. **Cohort construction** – multi-ancestry invasive cancer cohort with age and sex distributions by population.
189
+ 2. **Tumor grade assignment** – sample `tumor_grade` by population according to Nottingham-like distributions.
190
+ 3. **Histologic type assignment** – sample `histologic_type` by population, with NST/ductal as the dominant category.
191
+ 4. **LVI and necrosis assignment** – sample `lvi_status` and `necrosis_pattern` conditional on population and `tumor_grade`, with higher LVI and necrosis rates in high-grade tumors.
192
+ 5. **TILs assignment** – sample `tils_category` by population, reflecting higher immunogenicity/high-TIL fractions in some SSA and TNBC-enriched groups.
193
+
194
+
195
+ ## Validation
196
+
197
+ Validation is performed with:
198
+
199
+ - `pathology_histology/scripts/validate_pathology_histology.py`
200
+
201
+ and summarized in:
202
+
203
+ - `pathology_histology/output/validation_report.md`
204
+
205
+ Checks include:
206
+
207
+ - **C01–C02** – Sample size and population counts vs config.
208
+ - **C03** – Tumor grade distributions by population.
209
+ - **C04** – Histologic type distributions by population.
210
+ - **C05** – LVI distributions by population and grade.
211
+ - **C06** – Necrosis pattern distributions by population and grade.
212
+ - **C07** – TIL category distributions by population.
213
+ - **C08** – Missingness in key variables.
214
+
215
+ The released version passes all checks within the configured tolerance, yielding an **overall validation status of `PASS`**.
216
+
217
+
218
+ ## Intended use
219
+
220
+ This dataset is intended for:
221
+
222
+ - **Pathology-centric modeling** of tumor aggressiveness and microenvironment across ancestries.
223
+ - **Integration** with other Electric Sheep Africa synthetic datasets (e.g., genomics, comorbidities, environmental exposures) to build multi-modal cancer models.
224
+ - **Educational use** for understanding relationships between grade, histologic type, LVI, necrosis, and TILs.
225
+
226
+ It is **not suitable** for:
227
+
228
+ - Estimating true prevalence of grades or histologies in any specific registry or country.
229
+ - Direct clinical decision-making or quality benchmarking.
230
+
231
+ All tumors are synthetic and non-identifiable.
232
+
233
+
234
+ ## Ethical considerations
235
+
236
+ - No patient-level data are used; all records are simulated.
237
+ - Population differences in grade, histology, LVI, or TILs are modeled for methodological realism and should not be used to stigmatize groups.
238
+ - Analyses should be contextualized with up-to-date cancer registry and pathology data.
239
+
240
+
241
+ ## License
242
+
243
+ - License: **CC BY-NC 4.0**.
244
+ - Free for non-commercial research, education, and methods development with attribution.
245
+
246
+
247
+ ## Citation
248
+
249
+ If you use this dataset, please cite:
250
+
251
+ > Electric Sheep Africa. "SSA Breast Pathology & Histology Dataset (Women, Multi-ancestry, Synthetic)." Hugging Face Datasets.
252
+
253
+ and, as appropriate, key pathology literature on histologic types, Nottingham grade, LVI, necrosis, and TILs in breast cancer.