File size: 4,690 Bytes
e5a7eba 95effc3 e5a7eba 95effc3 e5a7eba b11d780 95effc3 e5a7eba 95effc3 e5a7eba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A dataset of 10K filings from SEC EDGAR system."""
import json
import datasets
_DESCRIPTION = """
The dataset contains annual filings (10K) of all publicly traded firms from 1993-2020. The table data is stripped but all text is retained.
This dataset allows easy access to the EDGAR-CORPUS dataset based on the paper EDGAR-CORPUS: Billions of Tokens Make The World Go Round (See References in README.md for details).
"""
_LICENSE = "apache-2.0"
_VERSION = "1.0.0"
_FEATURES = [
"filename",
"cik",
"year",
"section_1",
"section_1A",
"section_1B",
"section_2",
"section_3",
"section_4",
"section_5",
"section_6",
"section_7",
"section_7A",
"section_8",
"section_9",
"section_9A",
"section_9B",
"section_10",
"section_11",
"section_12",
"section_13",
"section_14",
"section_15",
]
_URLS = {"full":"", **{"year_"+str(year):str(year)+"/" for year in range(1993,1994,1)}}
class EdgarCorpus(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
*[datasets.BuilderConfig(name="full", version=datasets.Version(_VERSION), description="The full dataset from 1993-2020")],
*[datasets.BuilderConfig(name="year_"+str(year), version=datasets.Version(_VERSION), description="The dataset containg only the year "+str(year)) for year in range(1993, 1994, 1)]
]
DEFAULT_CONFIG_NAME = "full"
def _info(self):
features = datasets.Features({item: datasets.Value("string") for item in _FEATURES})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
license=_LICENSE
)
def _split_generators(self, dl_manager):
# Define splits based on the config
exclude_keys = ['full']
if self.config.name == "full":
urls = {key: value for key, value in _URLS.items() if key not in exclude_keys}
else:
urls = {self.config.name: _URLS[self.config.name]}
# Add test/train/validate files to url bases
urls = {k+'_'+item: v+item+'.jsonl' for item in ['train', 'test', 'validate'] for k, v in urls.items()}
print(urls)
# We have the unzipped files by directory.
data_dir = dl_manager.download_and_extract(urls)
# Create the full path to the extracted files as it can be one or multiple
filepaths = {
"test": {k: v for k, v in data_dir.items() if 'test' in k},
"train": {k: v for k, v in data_dir.items() if 'train' in k},
"validate": {k: v for k, v in data_dir.items() if 'validate' in k},
}
print(filepaths)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepaths["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepaths["validate"],
"split": "validate",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepaths["test"],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
for _, path in filepath.items():
with open(path, encoding="utf-8") as f:
for row in f:
data = json.loads(row)
yield data["filename"], {item: data[item] for item in _FEATURES} |