File size: 4,690 Bytes
e5a7eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95effc3
e5a7eba
 
 
 
 
95effc3
e5a7eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b11d780
95effc3
e5a7eba
 
 
 
 
 
 
 
 
95effc3
 
e5a7eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A dataset of 10K filings from SEC EDGAR system."""


import json
import datasets

_DESCRIPTION = """
The dataset contains annual filings (10K) of all publicly traded firms from 1993-2020. The table data is stripped but all text is retained.
This dataset allows easy access to the EDGAR-CORPUS dataset based on the paper EDGAR-CORPUS: Billions of Tokens Make The World Go Round (See References in README.md for details).
"""

_LICENSE = "apache-2.0"

_VERSION = "1.0.0"

_FEATURES = [
    "filename",
    "cik",
    "year",
    "section_1",
    "section_1A",
    "section_1B",
    "section_2",
    "section_3",
    "section_4",
    "section_5",
    "section_6",
    "section_7",
    "section_7A",
    "section_8",
    "section_9",
    "section_9A",
    "section_9B",
    "section_10",
    "section_11",
    "section_12",
    "section_13",
    "section_14",
    "section_15",
]

_URLS = {"full":"", **{"year_"+str(year):str(year)+"/" for year in range(1993,1994,1)}}

class EdgarCorpus(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        *[datasets.BuilderConfig(name="full", version=datasets.Version(_VERSION), description="The full dataset from 1993-2020")],
        *[datasets.BuilderConfig(name="year_"+str(year), version=datasets.Version(_VERSION), description="The dataset containg only the year "+str(year)) for year in range(1993, 1994, 1)]        
    ]

    DEFAULT_CONFIG_NAME = "full"

    def _info(self):
        features = datasets.Features({item: datasets.Value("string") for item in _FEATURES})
        
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            license=_LICENSE
        )

    def _split_generators(self, dl_manager):
        # Define splits based on the config
        exclude_keys = ['full']
        if self.config.name == "full":
            urls = {key: value for key, value in _URLS.items() if key not in exclude_keys}
        else:
            urls = {self.config.name: _URLS[self.config.name]}
                
        # Add test/train/validate files to url bases
        urls = {k+'_'+item: v+item+'.jsonl' for item in ['train', 'test', 'validate'] for k, v in urls.items()}

        print(urls)
        # We have the unzipped files by directory.
        data_dir = dl_manager.download_and_extract(urls)
        
        # Create the full path to the extracted files as it can be one or multiple
        filepaths = {
            "test": {k: v for k, v in data_dir.items() if 'test' in k},
            "train": {k: v for k, v in data_dir.items() if 'train' in k},
            "validate": {k: v for k, v in data_dir.items() if 'validate' in k},
        }

        print(filepaths)
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepaths["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepaths["validate"],
                    "split": "validate",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepaths["test"],
                    "split": "test"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):      
        for _, path in filepath.items():            
            with open(path, encoding="utf-8") as f:
                for row in f:
                    data = json.loads(row)
                    yield data["filename"], {item: data[item] for item in _FEATURES}