Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,839 Bytes
d426d82
 
43ee527
 
 
d282209
43ee527
 
 
bdfd116
43ee527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfd116
43ee527
bdfd116
43ee527
 
 
 
bdfd116
43ee527
bdfd116
 
 
 
 
 
 
1ee3bdc
 
 
43ee527
bdfd116
43ee527
bdfd116
43ee527
bdfd116
43ee527
bdfd116
43ee527
bdfd116
 
 
 
 
 
43ee527
 
bdfd116
 
43ee527
 
 
 
bdfd116
43ee527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfd116
43ee527
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
license: mit
language:
- en
paperswithcode_id: embedding-data/SPECTER
pretty_name: SPECTER
---

# Dataset Card for "ESPECTER"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)
  
## Dataset Description

- **Homepage:** [https://github.com/allenai/specter](https://github.com/allenai/specter)
- **Repository:** [More Information Needed](https://github.com/allenai/specter/blob/master/README.md)
- **Paper:** [More Information Needed](https://arxiv.org/pdf/2004.07180.pdf)
- **Point of Contact:** [@armancohan](https://github.com/armancohan), [@sergeyf](https://github.com/sergeyf), [@haroldrubio](https://github.com/haroldrubio), [@jinamshah](https://github.com/jinamshah)

### Dataset Summary

SPECTER: Document-level Representation Learning using Citation-informed Transformers. 
A new method to generate document-level embedding of scientific documents based on
pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. 
Unlike existing pretrained language models, SPECTER can be easily applied to 
downstream applications without task-specific fine-tuning.

Disclaimer: The team releasing SPECTER did not upload the dataset to the Hub and did not write a dataset card. 
These steps were done by the Hugging Face team.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/allenai/specter)

### Languages

[More Information Needed](https://github.com/allenai/specter)

## Dataset Structure
Specter requires two main files as input to embed the document. 
A text file with ids of the documents you want to embed and a json metadata file
consisting of the title and abstract information. 
Sample files are provided in the `data/` directory to get you started.
Input data format is according to:

metadata.json format:

```

{
    'doc_id': {'title': 'representation learning of scientific documents',
               'abstract': 'we propose a new model for representing abstracts'},
}
```

### Curation Rationale

[More Information Needed](https://github.com/allenai/specter)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/allenai/specter)

#### Who are the source language producers?

[More Information Needed](https://github.com/allenai/specter)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/allenai/specter)

#### Who are the annotators?

[More Information Needed](https://github.com/allenai/specter)

### Personal and Sensitive Information

[More Information Needed](https://github.com/allenai/specter)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/allenai/specter)

### Discussion of Biases

[More Information Needed](https://github.com/allenai/specter)

### Other Known Limitations

[More Information Needed](https://github.com/allenai/specter)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/allenai/specter)

### Licensing Information

[More Information Needed](https://github.com/allenai/specter)

### Citation Information

```
@inproceedings{specter2020cohan,
  title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}},
  author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
  booktitle={ACL},
  year={2020}
}

```
SciDocs benchmark

SciDocs evaluation framework consists of a suite of evaluation tasks designed for document-level tasks.

Link to SciDocs:

- [https://github.com/allenai/scidocs](https://github.com/allenai/scidocs)


### Contributions

Thanks to [@armancohan](https://github.com/armancohan), [@sergeyf](https://github.com/sergeyf), [@haroldrubio](https://github.com/haroldrubio), [@jinamshah](https://github.com/jinamshah)