--- license: mit language: - en paperswithcode_id: embedding-data/SPECTER pretty_name: SPECTER --- # Dataset Card for "ESPECTER" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/allenai/specter](https://github.com/allenai/specter) - **Repository:** [More Information Needed](https://github.com/allenai/specter/blob/master/README.md) - **Paper:** [More Information Needed](https://arxiv.org/pdf/2004.07180.pdf) - **Point of Contact:** [@armancohan](https://github.com/armancohan), [@sergeyf](https://github.com/sergeyf), [@haroldrubio](https://github.com/haroldrubio), [@jinamshah](https://github.com/jinamshah) ### Dataset Summary SPECTER: Document-level Representation Learning using Citation-informed Transformers. A new method to generate document-level embedding of scientific documents based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning. Disclaimer: The team releasing SPECTER did not upload the dataset to the Hub and did not write a dataset card. These steps were done by the Hugging Face team. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/allenai/specter) ### Languages [More Information Needed](https://github.com/allenai/specter) ## Dataset Structure Specter requires two main files as input to embed the document. A text file with ids of the documents you want to embed and a json metadata file consisting of the title and abstract information. Sample files are provided in the `data/` directory to get you started. Input data format is according to: metadata.json format: ``` { 'doc_id': {'title': 'representation learning of scientific documents', 'abstract': 'we propose a new model for representing abstracts'}, } ``` ### Curation Rationale [More Information Needed](https://github.com/allenai/specter) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/allenai/specter) #### Who are the source language producers? [More Information Needed](https://github.com/allenai/specter) ### Annotations #### Annotation process [More Information Needed](https://github.com/allenai/specter) #### Who are the annotators? [More Information Needed](https://github.com/allenai/specter) ### Personal and Sensitive Information [More Information Needed](https://github.com/allenai/specter) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/allenai/specter) ### Discussion of Biases [More Information Needed](https://github.com/allenai/specter) ### Other Known Limitations [More Information Needed](https://github.com/allenai/specter) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/allenai/specter) ### Licensing Information [More Information Needed](https://github.com/allenai/specter) ### Citation Information ``` @inproceedings{specter2020cohan, title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, booktitle={ACL}, year={2020} } ``` SciDocs benchmark SciDocs evaluation framework consists of a suite of evaluation tasks designed for document-level tasks. Link to SciDocs: - [https://github.com/allenai/scidocs](https://github.com/allenai/scidocs) ### Contributions Thanks to [@armancohan](https://github.com/armancohan), [@sergeyf](https://github.com/sergeyf), [@haroldrubio](https://github.com/haroldrubio), [@jinamshah](https://github.com/jinamshah)