|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PIRM dataset: An validation and test dataset for the image super resolution task""" |
|
|
|
|
|
import datasets |
|
from pathlib import Path |
|
|
|
|
|
_CITATION = """ |
|
@misc{shoeiby2019pirm2018, |
|
title={PIRM2018 Challenge on Spectral Image Super-Resolution: Dataset and Study}, |
|
author={Mehrdad Shoeiby and Antonio Robles-Kelly and Ran Wei and Radu Timofte}, |
|
year={2019}, |
|
eprint={1904.00540}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The PIRM dataset consists of 200 images, which are divided into two equal sets for validation and testing. |
|
These images cover diverse contents, including people, objects, environments, flora, natural scenery, etc. |
|
Images vary in size, and are typically ~300K pixels in resolution. |
|
|
|
This dataset was first used for evaluating the perceptual quality of super-resolution algorithms in The 2018 PIRM |
|
challenge on Perceptual Super-resolution, in conjunction with ECCV 2018. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/roimehrez/PIRM2018" |
|
|
|
_LICENSE = "cc-by-nc-sa-4.0" |
|
|
|
_DL_URL = "https://huggingface.co/datasets/eugenesiow/PIRM/resolve/main/data/" |
|
|
|
_DEFAULT_CONFIG = "bicubic_x2" |
|
|
|
_DATA_OPTIONS = { |
|
"bicubic_x2": { |
|
"hr_test": _DL_URL + "PIRM_test_HR.tar.gz", |
|
"lr_test": _DL_URL + "PIRM_test_LR_x2.tar.gz", |
|
"hr_valid": _DL_URL + "PIRM_valid_HR.tar.gz", |
|
"lr_valid": _DL_URL + "PIRM_valid_LR_x2.tar.gz", |
|
}, |
|
"bicubic_x3": { |
|
"hr_test": _DL_URL + "PIRM_test_HR.tar.gz", |
|
"lr_test": _DL_URL + "PIRM_test_LR_x3.tar.gz", |
|
"hr_valid": _DL_URL + "PIRM_valid_HR.tar.gz", |
|
"lr_valid": _DL_URL + "PIRM_valid_LR_x3.tar.gz", |
|
}, |
|
"bicubic_x4": { |
|
"hr_test": _DL_URL + "PIRM_test_HR.tar.gz", |
|
"lr_test": _DL_URL + "PIRM_test_LR_x4.tar.gz", |
|
"hr_valid": _DL_URL + "PIRM_valid_HR.tar.gz", |
|
"lr_valid": _DL_URL + "PIRM_valid_LR_x4.tar.gz", |
|
}, |
|
"unknown_x4": { |
|
"hr_test": _DL_URL + "PIRM_test_HR.tar.gz", |
|
"lr_test": _DL_URL + "PIRM_test_LR_unknown_x4.tar.gz", |
|
"hr_valid": _DL_URL + "PIRM_valid_HR.tar.gz", |
|
"lr_valid": _DL_URL + "PIRM_valid_LR_unknown_x4.tar.gz", |
|
} |
|
} |
|
|
|
|
|
class PirmConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PIRM.""" |
|
|
|
def __init__( |
|
self, |
|
name, |
|
download_urls, |
|
**kwargs, |
|
): |
|
if name not in _DATA_OPTIONS: |
|
raise ValueError("data must be one of %s" % _DATA_OPTIONS) |
|
super(PirmConfig, self).__init__(name=name, version=datasets.Version("1.0.0"), **kwargs) |
|
self.download_urls = download_urls |
|
|
|
|
|
class Pirm(datasets.GeneratorBasedBuilder): |
|
"""PIRM dataset for single image super resolution test and validation.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
PirmConfig( |
|
name=key, |
|
download_urls=values, |
|
) for key, values in _DATA_OPTIONS.items() |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = _DEFAULT_CONFIG |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"hr": datasets.Value("string"), |
|
"lr": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
extracted_paths = dl_manager.download_and_extract( |
|
self.config.download_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"lr_path": extracted_paths["lr_valid"], |
|
"hr_path": str(Path(extracted_paths["hr_valid"]) / 'PIRM_valid_HR') |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"lr_path": extracted_paths["lr_test"], |
|
"hr_path": str(Path(extracted_paths["hr_test"]) / 'PIRM_test_HR') |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples( |
|
self, hr_path, lr_path |
|
): |
|
""" Yields examples as (key, example) tuples. """ |
|
|
|
|
|
extensions = {'.png'} |
|
for file_path in sorted(Path(lr_path).glob("**/*")): |
|
if file_path.suffix in extensions: |
|
file_path_str = str(file_path.as_posix()) |
|
yield file_path_str, { |
|
'lr': file_path_str, |
|
'hr': str((Path(hr_path) / file_path.name).as_posix()) |
|
} |
|
|