# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Set5 dataset: An evaluation dataset for the image super resolution task""" import datasets from pathlib import Path _CITATION = """ @article{bevilacqua2012low, title={Low-complexity single-image super-resolution based on nonnegative neighbor embedding}, author={Bevilacqua, Marco and Roumy, Aline and Guillemot, Christine and Alberi-Morel, Marie Line}, year={2012}, publisher={BMVA press} } """ _DESCRIPTION = """ Set5 is a evaluation dataset with 5 RGB images for the image super resolution task. """ _HOMEPAGE = "http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html" _LICENSE = "UNK" _DL_URL = "https://huggingface.co/datasets/eugenesiow/Set5/resolve/main/data/" _DEFAULT_CONFIG = "bicubic_x2" _DATA_OPTIONS = { "bicubic_x2": { "hr": _DL_URL + "Set5_HR.tar.gz", "lr": _DL_URL + "Set5_LR_x2.tar.gz", }, "bicubic_x3": { "hr": _DL_URL + "Set5_HR.tar.gz", "lr": _DL_URL + "Set5_LR_x3.tar.gz", }, "bicubic_x4": { "hr": _DL_URL + "Set5_HR.tar.gz", "lr": _DL_URL + "Set5_LR_x4.tar.gz", } } class Set5Config(datasets.BuilderConfig): """BuilderConfig for Set5.""" def __init__( self, name, hr_url, lr_url, **kwargs, ): if name not in _DATA_OPTIONS: raise ValueError("data must be one of %s" % _DATA_OPTIONS) super(Set5Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.hr_url = hr_url self.lr_url = lr_url class Set5(datasets.GeneratorBasedBuilder): """Set5 dataset for single image super resolution evaluation.""" BUILDER_CONFIGS = [ Set5Config( name=option, hr_url=values['hr'], lr_url=values['lr'] ) for option, values in _DATA_OPTIONS.items() ] DEFAULT_CONFIG_NAME = _DEFAULT_CONFIG def _info(self): features = datasets.Features( { "hr": datasets.Value("string"), "lr": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" hr_data_dir = dl_manager.download_and_extract(self.config.hr_url) lr_data_dir = dl_manager.download_and_extract(self.config.lr_url) return [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "lr_path": lr_data_dir, "hr_path": hr_data_dir }, ) ] def _generate_examples( self, hr_path, lr_path ): """ Yields examples as (key, example) tuples. """ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is here for legacy reason (tfds) and is not important in itself. extensions = {'.jpg', '.jpeg', '.png'} for file_path in sorted(Path(hr_path).glob(".")): if file_path.suffix in extensions: file_path_str = str(file_path.as_posix()) yield file_path_str, { 'hr': file_path_str, 'lr': str((Path(lr_path) / file_path.name).as_posix()) }