|
import csv |
|
import os |
|
from typing import Dict, List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import ( |
|
DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, |
|
Tasks, |
|
) |
|
|
|
_DATASETNAME = "su_id_asr" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["sun"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{sodimana18_sltu, |
|
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, |
|
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, |
|
year=2018, |
|
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, |
|
pages={66--70}, |
|
doi={10.21437/SLTU.2018-14} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Sundanese ASR training data set containing ~220K utterances. |
|
This dataset was collected by Google in Indonesia. |
|
""" |
|
|
|
_HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr" |
|
|
|
_LICENSE = "Attribution-ShareAlike 4.0 International." |
|
|
|
_URLs = { |
|
"su_id_asr_train": "https://univindonesia-my.sharepoint.com/personal/patrick_samuel_office_ui_ac_id/_layouts/15/download.aspx?share=ESbYerhrepxPsggILmK8hZwB9ywXeZzLX7fF885Yo9F7JA", |
|
"su_id_asr_dev": "https://univindonesia-my.sharepoint.com/personal/patrick_samuel_office_ui_ac_id/_layouts/15/download.aspx?share=EdmZ2KYglRBJrKacGRklGD4BEcZXqY6txIrEhj2csx3I3g", |
|
"su_id_asr_test": "https://univindonesia-my.sharepoint.com/personal/patrick_samuel_office_ui_ac_id/_layouts/15/download.aspx?share=ET_Yu0vwbk9Mu-2vg68mSnkBJ-CnY1DOBjm8GVjGLKFZxQ", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SuIdASR(datasets.GeneratorBasedBuilder): |
|
"""su_id contains ~220K utterances for Sundanese ASR training data.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="su_id_asr_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="SU_ID_ASR source schema", |
|
schema="source", |
|
subset_id="su_id_asr", |
|
), |
|
SEACrowdConfig( |
|
name="su_id_asr_seacrowd_sptext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="SU_ID_ASR Nusantara schema", |
|
schema="seacrowd_sptext", |
|
subset_id="su_id_asr", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "su_id_asr_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
base_path_train = dl_manager.download_and_extract(_URLs["su_id_asr_train"]) |
|
base_path_validation = dl_manager.download_and_extract(_URLs["su_id_asr_dev"]) |
|
base_path_test = dl_manager.download_and_extract(_URLs["su_id_asr_test"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": base_path_train, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": base_path_validation, "split": "validation"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": base_path_test, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
|
|
tsv_file = os.path.join(filepath, "utt_spk_text.tsv") |
|
|
|
|
|
if not os.path.exists(tsv_file): |
|
raise FileNotFoundError(f"TSV file not found at: {tsv_file}") |
|
|
|
with open(tsv_file, "r") as file: |
|
tsv_reader = csv.reader(file, delimiter="\t") |
|
|
|
for line in tsv_reader: |
|
audio_id, speaker_id, transcription_text = line[0], line[1], line[2] |
|
wav_path = os.path.join(filepath, "{}.flac".format(audio_id)) |
|
|
|
if os.path.exists(wav_path): |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": transcription_text, |
|
} |
|
if self.config.schema == "seacrowd_sptext": |
|
ex["metadata"] = { |
|
"speaker_age": None, |
|
"speaker_gender": None, |
|
} |
|
yield audio_id, ex |
|
|