system HF staff commited on
Commit
2aace14
1 Parent(s): e726c87

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

README.md CHANGED
@@ -1,4 +1,253 @@
1
- # Loading the KILT knowledge source and task data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  The original KILT [release](https://github.com/facebookresearch/KILT) only provides question IDs for the TriviaQA task. Using the full dataset requires mapping those back to the TriviaQA questions, which can be done as follows:
4
 
@@ -9,7 +258,7 @@ from datasets import load_dataset
9
  kilt_wiki = load_dataset("kilt_wikipedia")
10
 
11
  # Get the KILT task datasets
12
- kilt_tasks = load_dataset("kilt_tasks")
13
 
14
  # Most tasks in KILT already have all required data, but KILT-TriviaQA
15
  # only provides the question IDs, not the questions themselves.
@@ -20,6 +269,197 @@ trivia_qa = load_dataset('trivia_qa', 'unfiltered.nocontext')
20
  triviaqa_map = {}
21
  for k in ['train', 'validation', 'test']:
22
  triviaqa_map = dict([(q_id, i) for i, q_id in enumerate(trivia_qa[k]['question_id'])])
23
- kilt_tasks[k + '_triviaqa'] = kilt_tasks[k + '_triviaqa'].filter(lambda x: x['id'] in triviaqa_map)
24
- kilt_tasks[k + '_triviaqa'] = kilt_tasks[k + '_triviaqa'].map(lambda x: {'input': trivia_qa[k][triviaqa_map[x['id']]]['question']})
25
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ aidayago2:
4
+ - crowdsourced
5
+ - found
6
+ - machine-generated
7
+ cweb:
8
+ - crowdsourced
9
+ - found
10
+ - machine-generated
11
+ eli5:
12
+ - crowdsourced
13
+ - found
14
+ fever:
15
+ - crowdsourced
16
+ - found
17
+ - machine-generated
18
+ hotpotqa:
19
+ - crowdsourced
20
+ - found
21
+ - machine-generated
22
+ nq:
23
+ - crowdsourced
24
+ - found
25
+ - machine-generated
26
+ structured_zeroshot:
27
+ - crowdsourced
28
+ - found
29
+ - machine-generated
30
+ trex:
31
+ - crowdsourced
32
+ - found
33
+ - machine-generated
34
+ triviaqa_support_only:
35
+ - crowdsourced
36
+ - found
37
+ - machine-generated
38
+ wned:
39
+ - crowdsourced
40
+ - found
41
+ - machine-generated
42
+ wow:
43
+ - crowdsourced
44
+ - found
45
+ - machine-generated
46
+ language_creators:
47
+ aidayago2:
48
+ - crowdsourced
49
+ cweb:
50
+ - crowdsourced
51
+ eli5:
52
+ - found
53
+ fever:
54
+ - crowdsourced
55
+ hotpotqa:
56
+ - crowdsourced
57
+ - found
58
+ nq:
59
+ - found
60
+ structured_zeroshot:
61
+ - crowdsourced
62
+ trex:
63
+ - crowdsourced
64
+ triviaqa_support_only:
65
+ - found
66
+ wned:
67
+ - crowdsourced
68
+ wow:
69
+ - crowdsourced
70
+ languages:
71
+ - en
72
+ licenses:
73
+ - mit
74
+ multilinguality:
75
+ - monolingual
76
+ size_categories:
77
+ aidayago2:
78
+ - 10K<n<100K
79
+ cweb:
80
+ - 10K<n<100K
81
+ eli5:
82
+ - 100K<n<1M
83
+ fever:
84
+ - 100K<n<1M
85
+ hotpotqa:
86
+ - 100K<n<1M
87
+ nq:
88
+ - 10K<n<100K
89
+ structured_zeroshot:
90
+ - 100K<n<1M
91
+ trex:
92
+ - n>1M
93
+ triviaqa_support_only:
94
+ - 10K<n<100K
95
+ wned:
96
+ - 1K<n<10K
97
+ wow:
98
+ - 100K<n<1M
99
+ source_datasets:
100
+ aidayago2:
101
+ - extended|other-aidayago
102
+ - original
103
+ cweb:
104
+ - extended|other-wned-cweb
105
+ - original
106
+ eli5:
107
+ - extended|other-hotpotqa
108
+ - original
109
+ fever:
110
+ - extended|other-fever
111
+ - original
112
+ hotpotqa:
113
+ - extended|other-hotpotqa
114
+ - original
115
+ nq:
116
+ - extended|natural_questions
117
+ - original
118
+ structured_zeroshot:
119
+ - extended|other-zero-shot-re
120
+ - original
121
+ trex:
122
+ - extended|other-trex
123
+ - original
124
+ triviaqa_support_only:
125
+ - extended|other-triviaqa
126
+ - original
127
+ wned:
128
+ - extended|other-wned-wiki
129
+ - original
130
+ wow:
131
+ - extended|other-wizardsofwikipedia
132
+ - original
133
+ task_categories:
134
+ aidayago2:
135
+ - text-retrieval
136
+ cweb:
137
+ - text-retrieval
138
+ eli5:
139
+ - question-answering
140
+ - text-retrieval
141
+ fever:
142
+ - text-classification
143
+ - text-retrieval
144
+ hotpotqa:
145
+ - question-answering
146
+ - text-retrieval
147
+ nq:
148
+ - question-answering
149
+ - text-retrieval
150
+ structured_zeroshot:
151
+ - sequence-modeling
152
+ - text-retrieval
153
+ trex:
154
+ - sequence-modeling
155
+ - text-retrieval
156
+ triviaqa_support_only:
157
+ - question-answering
158
+ - text-retrieval
159
+ wned:
160
+ - text-retrieval
161
+ wow:
162
+ - sequence-modeling
163
+ - text-retrieval
164
+ task_ids:
165
+ aidayago2:
166
+ - document-retrieval
167
+ - entity-linking-retrieval
168
+ cweb:
169
+ - document-retrieval
170
+ - entity-linking-retrieval
171
+ eli5:
172
+ - abstractive-qa
173
+ - document-retrieval
174
+ - open-domain-qa
175
+ fever:
176
+ - document-retrieval
177
+ - fact-checking
178
+ - fact-checking-retrieval
179
+ hotpotqa:
180
+ - document-retrieval
181
+ - extractive-qa
182
+ - open-domain-qa
183
+ nq:
184
+ - document-retrieval
185
+ - extractive-qa
186
+ - open-domain-qa
187
+ structured_zeroshot:
188
+ - document-retrieval
189
+ - slot-filling
190
+ trex:
191
+ - document-retrieval
192
+ - slot-filling
193
+ triviaqa_support_only:
194
+ - document-retrieval
195
+ - extractive-qa
196
+ - open-domain-qa
197
+ wned:
198
+ - document-retrieval
199
+ - entity-linking-retrieval
200
+ wow:
201
+ - dialogue-modeling
202
+ - document-retrieval
203
+ ---
204
+
205
+ # Dataset Card for KILT
206
+
207
+ ## Table of Contents
208
+ - [Dataset Description](#dataset-description)
209
+ - [Dataset Summary](#dataset-summary)
210
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
211
+ - [Languages](#languages)
212
+ - [Dataset Structure](#dataset-structure)
213
+ - [Data Instances](#data-instances)
214
+ - [Data Fields](#data-instances)
215
+ - [Data Splits](#data-instances)
216
+ - [Dataset Creation](#dataset-creation)
217
+ - [Curation Rationale](#curation-rationale)
218
+ - [Source Data](#source-data)
219
+ - [Annotations](#annotations)
220
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
221
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
222
+ - [Social Impact of Dataset](#social-impact-of-dataset)
223
+ - [Discussion of Biases](#discussion-of-biases)
224
+ - [Other Known Limitations](#other-known-limitations)
225
+ - [Additional Information](#additional-information)
226
+ - [Dataset Curators](#dataset-curators)
227
+ - [Licensing Information](#licensing-information)
228
+ - [Citation Information](#citation-information)
229
+
230
+ ## Dataset Description
231
+
232
+ - **Homepage:** https://ai.facebook.com/tools/kilt/
233
+ - **Repository:** https://github.com/facebookresearch/KILT
234
+ - **Paper:** https://arxiv.org/abs/2009.02252
235
+ - **Leaderboard:** https://eval.ai/web/challenges/challenge-page/689/leaderboard/
236
+ - **Point of Contact:** [Needs More Information]
237
+
238
+ ### Dataset Summary
239
+
240
+ KILT has been built from 11 datasets representing 5 types of tasks:
241
+
242
+ - Fact-checking
243
+ - Entity linking
244
+ - Slot filling
245
+ - Open domain QA
246
+ - Dialog generation
247
+
248
+ All these datasets have been grounded in a single pre-processed Wikipedia dump, allowing for fairer and more consistent evaluation as well as enabling new task setups such as multitask and transfer learning with minimal effort. KILT also provides tools to analyze and understand the predictions made by models, as well as the evidence they provide for their predictions.
249
+
250
+ #### Loading the KILT knowledge source and task data
251
 
252
  The original KILT [release](https://github.com/facebookresearch/KILT) only provides question IDs for the TriviaQA task. Using the full dataset requires mapping those back to the TriviaQA questions, which can be done as follows:
253
 
 
258
  kilt_wiki = load_dataset("kilt_wikipedia")
259
 
260
  # Get the KILT task datasets
261
+ kilt_triviaqa = load_dataset("kilt_tasks", name="triviaqa_support_only")
262
 
263
  # Most tasks in KILT already have all required data, but KILT-TriviaQA
264
  # only provides the question IDs, not the questions themselves.
 
269
  triviaqa_map = {}
270
  for k in ['train', 'validation', 'test']:
271
  triviaqa_map = dict([(q_id, i) for i, q_id in enumerate(trivia_qa[k]['question_id'])])
272
+ kilt_triviaqa[k] = kilt_triviaqa[k].filter(lambda x: x['id'] in triviaqa_map)
273
+ kilt_triviaqa[k] = kilt_triviaqa[k].map(lambda x: {'input': trivia_qa[k][triviaqa_map[x['id']]]['question']})
274
  ```
275
+
276
+ ### Supported Tasks and Leaderboards
277
+
278
+ The dataset supports a leaderboard that evaluates models against task-specific metrics such as F1 or EM, as well as their ability to retrieve supporting information from Wikipedia.
279
+
280
+ The current best performing models can be found [here](https://eval.ai/web/challenges/challenge-page/689/leaderboard/).
281
+
282
+ ### Languages
283
+
284
+ All tasks are in English (`en`).
285
+
286
+ ## Dataset Structure
287
+
288
+ ### Data Instances
289
+
290
+ An example of open-domain QA from the Natural Questions `nq` configuration looks as follows:
291
+ ```
292
+ {'id': '-5004457603684974952',
293
+ 'input': 'who is playing the halftime show at super bowl 2016',
294
+ 'meta': {'left_context': '',
295
+ 'mention': '',
296
+ 'obj_surface': [],
297
+ 'partial_evidence': [],
298
+ 'right_context': '',
299
+ 'sub_surface': [],
300
+ 'subj_aliases': [],
301
+ 'template_questions': []},
302
+ 'output': [{'answer': 'Coldplay',
303
+ 'meta': {'score': 0},
304
+ 'provenance': [{'bleu_score': 1.0,
305
+ 'end_character': 186,
306
+ 'end_paragraph_id': 1,
307
+ 'meta': {'annotation_id': '-1',
308
+ 'evidence_span': [],
309
+ 'fever_page_id': '',
310
+ 'fever_sentence_id': -1,
311
+ 'yes_no_answer': ''},
312
+ 'section': 'Section::::Abstract.',
313
+ 'start_character': 178,
314
+ 'start_paragraph_id': 1,
315
+ 'title': 'Super Bowl 50 halftime show',
316
+ 'wikipedia_id': '45267196'}]},
317
+ {'answer': 'Beyoncé',
318
+ 'meta': {'score': 0},
319
+ 'provenance': [{'bleu_score': 1.0,
320
+ 'end_character': 224,
321
+ 'end_paragraph_id': 1,
322
+ 'meta': {'annotation_id': '-1',
323
+ 'evidence_span': [],
324
+ 'fever_page_id': '',
325
+ 'fever_sentence_id': -1,
326
+ 'yes_no_answer': ''},
327
+ 'section': 'Section::::Abstract.',
328
+ 'start_character': 217,
329
+ 'start_paragraph_id': 1,
330
+ 'title': 'Super Bowl 50 halftime show',
331
+ 'wikipedia_id': '45267196'}]},
332
+ {'answer': 'Bruno Mars',
333
+ 'meta': {'score': 0},
334
+ 'provenance': [{'bleu_score': 1.0,
335
+ 'end_character': 239,
336
+ 'end_paragraph_id': 1,
337
+ 'meta': {'annotation_id': '-1',
338
+ 'evidence_span': [],
339
+ 'fever_page_id': '',
340
+ 'fever_sentence_id': -1,
341
+ 'yes_no_answer': ''},
342
+ 'section': 'Section::::Abstract.',
343
+ 'start_character': 229,
344
+ 'start_paragraph_id': 1,
345
+ 'title': 'Super Bowl 50 halftime show',
346
+ 'wikipedia_id': '45267196'}]},
347
+ {'answer': 'Coldplay with special guest performers Beyoncé and Bruno Mars',
348
+ 'meta': {'score': 0},
349
+ 'provenance': []},
350
+ {'answer': 'British rock group Coldplay with special guest performers Beyoncé and Bruno Mars',
351
+ 'meta': {'score': 0},
352
+ 'provenance': []},
353
+ {'answer': '',
354
+ 'meta': {'score': 0},
355
+ 'provenance': [{'bleu_score': 0.9657992720603943,
356
+ 'end_character': 341,
357
+ 'end_paragraph_id': 1,
358
+ 'meta': {'annotation_id': '2430977867500315580',
359
+ 'evidence_span': [],
360
+ 'fever_page_id': '',
361
+ 'fever_sentence_id': -1,
362
+ 'yes_no_answer': 'NONE'},
363
+ 'section': 'Section::::Abstract.',
364
+ 'start_character': 0,
365
+ 'start_paragraph_id': 1,
366
+ 'title': 'Super Bowl 50 halftime show',
367
+ 'wikipedia_id': '45267196'}]},
368
+ {'answer': '',
369
+ 'meta': {'score': 0},
370
+ 'provenance': [{'bleu_score': -1.0,
371
+ 'end_character': -1,
372
+ 'end_paragraph_id': 1,
373
+ 'meta': {'annotation_id': '-1',
374
+ 'evidence_span': ['It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars',
375
+ 'It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars, who previously had headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows, respectively.',
376
+ "The Super Bowl 50 Halftime Show took place on February 7, 2016, at Levi's Stadium in Santa Clara, California as part of Super Bowl 50. It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars",
377
+ "The Super Bowl 50 Halftime Show took place on February 7, 2016, at Levi's Stadium in Santa Clara, California as part of Super Bowl 50. It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars,"],
378
+ 'fever_page_id': '',
379
+ 'fever_sentence_id': -1,
380
+ 'yes_no_answer': ''},
381
+ 'section': 'Section::::Abstract.',
382
+ 'start_character': -1,
383
+ 'start_paragraph_id': 1,
384
+ 'title': 'Super Bowl 50 halftime show',
385
+ 'wikipedia_id': '45267196'}]}]}
386
+ ```
387
+
388
+ ### Data Fields
389
+
390
+ Examples from all configurations have the following features:
391
+
392
+ - `input`: a `string` feature representing the query.
393
+ - `output`: a `list` of features each containing information for an answer, made up of:
394
+ - `answer`: a `string` feature representing a possible answer.
395
+ - `provenance`: a `list` of features representing Wikipedia passages that support the `answer`, denoted by:
396
+ - `title`: a `string` feature, the title of the Wikipedia article the passage was retrieved from.
397
+ - `section`: a `string` feature, the title of the section in Wikipedia article.
398
+ - `wikipedia_id`: a `string` feature, a unique identifier for the Wikipedia article.
399
+ - `start_character`: a `int32` feature.
400
+ - `start_paragraph_id`: a `int32` feature.
401
+ - `end_character`: a `int32` feature.
402
+ - `end_paragraph_id`: a `int32` feature.
403
+
404
+
405
+ ### Data Splits
406
+
407
+ [Needs More Information]
408
+
409
+ ## Dataset Creation
410
+
411
+ ### Curation Rationale
412
+
413
+ [Needs More Information]
414
+
415
+ ### Source Data
416
+
417
+ #### Initial Data Collection and Normalization
418
+
419
+ [Needs More Information]
420
+
421
+ #### Who are the source language producers?
422
+
423
+ [Needs More Information]
424
+
425
+ ### Annotations
426
+
427
+ #### Annotation process
428
+
429
+ [Needs More Information]
430
+
431
+ #### Who are the annotators?
432
+
433
+ [Needs More Information]
434
+
435
+ ### Personal and Sensitive Information
436
+
437
+ [Needs More Information]
438
+
439
+ ## Considerations for Using the Data
440
+
441
+ ### Social Impact of Dataset
442
+
443
+ [Needs More Information]
444
+
445
+ ### Discussion of Biases
446
+
447
+ [Needs More Information]
448
+
449
+ ### Other Known Limitations
450
+
451
+ [Needs More Information]
452
+
453
+ ## Additional Information
454
+
455
+ ### Dataset Curators
456
+
457
+ [Needs More Information]
458
+
459
+ ### Licensing Information
460
+
461
+ [Needs More Information]
462
+
463
+ ### Citation Information
464
+
465
+ [Needs More Information]
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"all_tasks": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": {"feature": {"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"feature": {"evidence_span": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "obj_surface": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "sub_surface": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "subj_aliases": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "template_questions": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "output": {"feature": {"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": {"feature": {"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": {"features": null, "resources_checksums": {"train_fever": {}, "validation_fever": {}, "test_fever": {}, "train_nq": {}, "validation_nq": {}, "test_nq": {}, "train_hotpotqa": {}, "validation_hotpotqa": {}, "test_hotpotqa": {}, "train_triviaqa": {}, "validation_triviaqa": {}, "test_triviaqa": {}, "train_eli5": {}, "validation_eli5": {}, "test_eli5": {}, "train_trex": {}, "validation_trex": {}, "test_trex": {}, "train_structured_zeroshot": {}, "validation_structured_zeroshot": {}, "test_structured_zeroshot": {}, "train_aidayago2": {}, "validation_aidayago2": {}, "test_aidayago2": {}, "validation_wned": {}, "test_wned": {}, "validation_cweb": {}, "test_cweb": {}, "train_wow": {}, "validation_wow": {}, "test_wow": {}}}, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "all_tasks", "version": {"version_str": "1.0.0", "description": "KILT tasks training and evaluation data", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train_fever": {"name": "train_fever", "num_bytes": 27423152, "num_examples": 104966, "dataset_name": "kilt_tasks"}, "validation_fever": {"name": "validation_fever", "num_bytes": 3945700, "num_examples": 10444, "dataset_name": "kilt_tasks"}, "test_fever": {"name": "test_fever", "num_bytes": 1357227, "num_examples": 10100, "dataset_name": "kilt_tasks"}, "train_aidayago2": {"name": "train_aidayago2", "num_bytes": 69671936, "num_examples": 18395, "dataset_name": "kilt_tasks"}, "validation_aidayago2": {"name": "validation_aidayago2", "num_bytes": 20932848, "num_examples": 4784, "dataset_name": "kilt_tasks"}, "test_aidayago2": {"name": "test_aidayago2", "num_bytes": 14350869, "num_examples": 4463, "dataset_name": "kilt_tasks"}, "validation_wned": {"name": "validation_wned", "num_bytes": 12794390, "num_examples": 3396, "dataset_name": "kilt_tasks"}, "test_wned": {"name": "test_wned", "num_bytes": 13187270, "num_examples": 3376, "dataset_name": "kilt_tasks"}, "validation_cweb": {"name": "validation_cweb", "num_bytes": 90041126, "num_examples": 5599, "dataset_name": "kilt_tasks"}, "test_cweb": {"name": "test_cweb", "num_bytes": 99382290, "num_examples": 5543, "dataset_name": "kilt_tasks"}, "train_trex": {"name": "train_trex", "num_bytes": 1213971546, "num_examples": 2284168, "dataset_name": "kilt_tasks"}, "validation_trex": {"name": "validation_trex", "num_bytes": 2630523, "num_examples": 5000, "dataset_name": "kilt_tasks"}, "test_trex": {"name": "test_trex", "num_bytes": 915477, "num_examples": 5000, "dataset_name": "kilt_tasks"}, "train_structured_zeroshot": {"name": "train_structured_zeroshot", "num_bytes": 55988052, "num_examples": 147909, "dataset_name": "kilt_tasks"}, "validation_structured_zeroshot": {"name": "validation_structured_zeroshot", "num_bytes": 1848289, "num_examples": 3724, "dataset_name": "kilt_tasks"}, "test_structured_zeroshot": {"name": "test_structured_zeroshot", "num_bytes": 1297614, "num_examples": 4966, "dataset_name": "kilt_tasks"}, "train_nq": {"name": "train_nq", "num_bytes": 35533981, "num_examples": 87372, "dataset_name": "kilt_tasks"}, "validation_nq": {"name": "validation_nq", "num_bytes": 6587478, "num_examples": 2837, "dataset_name": "kilt_tasks"}, "test_nq": {"name": "test_nq", "num_bytes": 379518, "num_examples": 1444, "dataset_name": "kilt_tasks"}, "train_hotpotqa": {"name": "train_hotpotqa", "num_bytes": 34838943, "num_examples": 88869, "dataset_name": "kilt_tasks"}, "validation_hotpotqa": {"name": "validation_hotpotqa", "num_bytes": 2428954, "num_examples": 5600, "dataset_name": "kilt_tasks"}, "test_hotpotqa": {"name": "test_hotpotqa", "num_bytes": 1061929, "num_examples": 5569, "dataset_name": "kilt_tasks"}, "train_triviaqa": {"name": "train_triviaqa", "num_bytes": 62374231, "num_examples": 61844, "dataset_name": "kilt_tasks"}, "validation_triviaqa": {"name": "validation_triviaqa", "num_bytes": 5962201, "num_examples": 5359, "dataset_name": "kilt_tasks"}, "test_triviaqa": {"name": "test_triviaqa", "num_bytes": 547068, "num_examples": 6586, "dataset_name": "kilt_tasks"}, "train_eli5": {"name": "train_eli5", "num_bytes": 531158920, "num_examples": 272634, "dataset_name": "kilt_tasks"}, "validation_eli5": {"name": "validation_eli5", "num_bytes": 13833241, "num_examples": 1507, "dataset_name": "kilt_tasks"}, "test_eli5": {"name": "test_eli5", "num_bytes": 126907, "num_examples": 600, "dataset_name": "kilt_tasks"}, "train_wow": {"name": "train_wow", "num_bytes": 64964362, "num_examples": 94577, "dataset_name": "kilt_tasks"}, "validation_wow": {"name": "validation_wow", "num_bytes": 2142799, "num_examples": 3058, "dataset_name": "kilt_tasks"}, "test_wow": {"name": "test_wow", "num_bytes": 1432546, "num_examples": 2944, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/fever-train-kilt.jsonl": {"num_bytes": 38941824, "checksum": "a42b948957680b3d316bbc9c24f3e499f0e93a3b0a8b94ca9d972d5da5758c6a"}, "http://dl.fbaipublicfiles.com/KILT/fever-dev-kilt.jsonl": {"num_bytes": 6174139, "checksum": "0132fb971e4206c8bd9da3916f0f46a30ee6610394aee1738ce6cf6644592739"}, "http://dl.fbaipublicfiles.com/KILT/fever-test_without_answers-kilt.jsonl": {"num_bytes": 838585, "checksum": "d95e0a7086c1d5687984460aa9d5b82b3afb58972132c8cc04a75dfd23cb1a86"}, "http://dl.fbaipublicfiles.com/KILT/aidayago2-train-kilt.jsonl": {"num_bytes": 70139831, "checksum": "398231ec4ee9fd5616456d049875e51b1e0709f00ac2d74398dd4480ae5647b2"}, "http://dl.fbaipublicfiles.com/KILT/aidayago2-dev-kilt.jsonl": {"num_bytes": 21061554, "checksum": "3f5e23e1af46c8671c9870e13ced13fd517029da4963ad9ff4b834c4b42deb52"}, "http://dl.fbaipublicfiles.com/KILT/aidayago2-test_without_answers-kilt.jsonl": {"num_bytes": 14436143, "checksum": "2ba0836d3f8c70126022a83fd78da0bf7c910fa7813996dd2afee5e38de63648"}, "http://dl.fbaipublicfiles.com/KILT/wned-dev-kilt.jsonl": {"num_bytes": 12868348, "checksum": "e8e91d120abcb3433c952541aebd8dbf0c6abe3c378bdd64cd6d2186738cfbaf"}, "http://dl.fbaipublicfiles.com/KILT/wned-test_without_answers-kilt.jsonl": {"num_bytes": 13295124, "checksum": "f7b220d404d474f617b00c4a030a87024835b72aff131016716b84feca4d95ee"}, "http://dl.fbaipublicfiles.com/KILT/cweb-dev-kilt.jsonl": {"num_bytes": 90228527, "checksum": "c98b2301818b53df2025b09801be095152244dbbe7242efbfffd018929bfb4bf"}, "http://dl.fbaipublicfiles.com/KILT/cweb-test_without_answers-kilt.jsonl": {"num_bytes": 100216209, "checksum": "18b078340bde25e42c7136c5bc80c2e3557803e40137b40230af5834e74b6c0d"}, "http://dl.fbaipublicfiles.com/KILT/trex-train-kilt.jsonl": {"num_bytes": 1752330104, "checksum": "724a8a0fd1f99fe9b15cf6309d7ce63dcb7cd31f33aea717ff26e6d6b6fbdd97"}, "http://dl.fbaipublicfiles.com/KILT/trex-dev-kilt.jsonl": {"num_bytes": 3803558, "checksum": "7ee1a2cd351d928d01ede1763ae8d6ae442a00b07deef80e347852f20a029e5f"}, "http://dl.fbaipublicfiles.com/KILT/trex-test_without_answers-kilt.jsonl": {"num_bytes": 895854, "checksum": "0a2c6a31ebea567e7a8b31c44bf2fb59dab601c8da6de7f3a53419c7710bdc43"}, "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-train-kilt.jsonl": {"num_bytes": 71444475, "checksum": "f666359fa2b23e75d700bd1f25efd12d3bf981b1be70d8ad2d268d67e9bb3a5d"}, "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-dev-kilt.jsonl": {"num_bytes": 2266707, "checksum": "dd120ba5b62c6499f4e79bf5bf5a908eb96b583ba9bf8c76a4535ac21c5dac8d"}, "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-test_without_answers-kilt.jsonl": {"num_bytes": 1216038, "checksum": "3353137527c6fe9e48910e2c4d94d3ac01352c52e90a618beaaa807968fd39da"}, "http://dl.fbaipublicfiles.com/KILT/nq-train-kilt.jsonl": {"num_bytes": 51895886, "checksum": "13629ef9f0c4bb7b7b237ce08fae2334acb32a2c1bf69db2350021cad46188a4"}, "http://dl.fbaipublicfiles.com/KILT/nq-dev-kilt.jsonl": {"num_bytes": 7936566, "checksum": "1bcdb150fb10504bd80b915730cde1b384c21647bcf14a4592e4e5df42cc6dfb"}, "http://dl.fbaipublicfiles.com/KILT/nq-test_without_answers-kilt.jsonl": {"num_bytes": 334047, "checksum": "1232f95e7d008669930c441444aa470d54678d886335175e2227455716309e15"}, "http://dl.fbaipublicfiles.com/KILT/hotpotqa-train-kilt.jsonl": {"num_bytes": 52767068, "checksum": "7ba73ede642336703d1235c63ecb4c20ae90c7eb19d36302bffa7eb1ec7f9153"}, "http://dl.fbaipublicfiles.com/KILT/hotpotqa-dev-kilt.jsonl": {"num_bytes": 3971321, "checksum": "7f2efbc22c462eb5710e5ecd99447702e7f48203eecd4489bf32a332389d70b6"}, "http://dl.fbaipublicfiles.com/KILT/hotpotqa-test_without_answers-kilt.jsonl": {"num_bytes": 778249, "checksum": "656d51f53796e3ea2a1f808a22160e7363a24a05f1ac7dd094d25659d963ef51"}, "http://dl.fbaipublicfiles.com/KILT/triviaqa-train_id-kilt.jsonl": {"num_bytes": 101613288, "checksum": "509e627a5e606d3b8018c04cd99415d7dca90d7b9a9f491ba0cf2db8c7e999ad"}, "http://dl.fbaipublicfiles.com/KILT/triviaqa-dev_id-kilt.jsonl": {"num_bytes": 9809706, "checksum": "bb505d8437100589de72256bf0d106a4a72da01df5a977fbc778688b8621d5a6"}, "http://dl.fbaipublicfiles.com/KILT/triviaqa-test_id_without_answers-kilt.jsonl": {"num_bytes": 123354, "checksum": "a6904eeb81a269cc675152c72b31c5b3361b40bf277a2973f2836670c7de4a19"}, "http://dl.fbaipublicfiles.com/KILT/eli5-train-kilt.jsonl": {"num_bytes": 548249898, "checksum": "66f19183bda5f5185fe98a5fe84925f6802d9b53a5bb12728ded760fd80ef0a0"}, "http://dl.fbaipublicfiles.com/KILT/eli5-dev-kilt.jsonl": {"num_bytes": 14149811, "checksum": "10387a08e3277d3e5722305cef8e739279c83de0218e7b3db76b301949822303"}, "http://dl.fbaipublicfiles.com/KILT/eli5-test_without_answers-kilt.jsonl": {"num_bytes": 98951, "checksum": "43f82439f15f3141d115c06fb0dc0697a2a6313705dbdec6668eaefe9925a2c3"}, "http://dl.fbaipublicfiles.com/KILT/wow-train-kilt.jsonl": {"num_bytes": 71861702, "checksum": "91e04200a31daadbc9178382b724dac9be88ea9e76cd7a668e7a9430fe67713a"}, "http://dl.fbaipublicfiles.com/KILT/wow-dev-kilt.jsonl": {"num_bytes": 2418241, "checksum": "3202148ecaf41e77d44a2dec2453452c1ff8b3d646727e2c55ae6d9024e8e6b6"}, "http://dl.fbaipublicfiles.com/KILT/wow-test_without_answers-kilt.jsonl": {"num_bytes": 1292018, "checksum": "f3303ec5d7def4cf178552a8ed17bd01cb23bfeccc3abde147bebfa4bade6d8b"}}, "download_size": 3067457126, "post_processing_size": 0, "dataset_size": 2393111387, "size_in_bytes": 5460568513}}
 
1
+ {"triviaqa_support_only": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "triviaqa_support_only", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 72024147, "num_examples": 61844, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 6824774, "num_examples": 5359, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 341964, "num_examples": 6586, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/triviaqa-train_id-kilt.jsonl": {"num_bytes": 101613288, "checksum": "509e627a5e606d3b8018c04cd99415d7dca90d7b9a9f491ba0cf2db8c7e999ad"}, "http://dl.fbaipublicfiles.com/KILT/triviaqa-dev_id-kilt.jsonl": {"num_bytes": 9809706, "checksum": "bb505d8437100589de72256bf0d106a4a72da01df5a977fbc778688b8621d5a6"}, "http://dl.fbaipublicfiles.com/KILT/triviaqa-test_id_without_answers-kilt.jsonl": {"num_bytes": 123354, "checksum": "a6904eeb81a269cc675152c72b31c5b3361b40bf277a2973f2836670c7de4a19"}}, "download_size": 111546348, "post_processing_size": null, "dataset_size": 79190885, "size_in_bytes": 190737233}, "fever": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "fever", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23941622, "num_examples": 104966, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 3168503, "num_examples": 10444, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 1042660, "num_examples": 10100, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/fever-train-kilt.jsonl": {"num_bytes": 38941824, "checksum": "a42b948957680b3d316bbc9c24f3e499f0e93a3b0a8b94ca9d972d5da5758c6a"}, "http://dl.fbaipublicfiles.com/KILT/fever-dev-kilt.jsonl": {"num_bytes": 6174139, "checksum": "0132fb971e4206c8bd9da3916f0f46a30ee6610394aee1738ce6cf6644592739"}, "http://dl.fbaipublicfiles.com/KILT/fever-test_without_answers-kilt.jsonl": {"num_bytes": 838585, "checksum": "d95e0a7086c1d5687984460aa9d5b82b3afb58972132c8cc04a75dfd23cb1a86"}}, "download_size": 45954548, "post_processing_size": null, "dataset_size": 28152785, "size_in_bytes": 74107333}, "aidayago2": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "aidayago2", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 68944642, "num_examples": 18395, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 20743548, "num_examples": 4784, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 14211859, "num_examples": 4463, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/aidayago2-train-kilt.jsonl": {"num_bytes": 70139831, "checksum": "398231ec4ee9fd5616456d049875e51b1e0709f00ac2d74398dd4480ae5647b2"}, "http://dl.fbaipublicfiles.com/KILT/aidayago2-dev-kilt.jsonl": {"num_bytes": 21061554, "checksum": "3f5e23e1af46c8671c9870e13ced13fd517029da4963ad9ff4b834c4b42deb52"}, "http://dl.fbaipublicfiles.com/KILT/aidayago2-test_without_answers-kilt.jsonl": {"num_bytes": 14436143, "checksum": "2ba0836d3f8c70126022a83fd78da0bf7c910fa7813996dd2afee5e38de63648"}}, "download_size": 105637528, "post_processing_size": null, "dataset_size": 103900049, "size_in_bytes": 209537577}, "wned": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "wned", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 12659894, "num_examples": 3396, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 13082096, "num_examples": 3376, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/wned-dev-kilt.jsonl": {"num_bytes": 12868348, "checksum": "e8e91d120abcb3433c952541aebd8dbf0c6abe3c378bdd64cd6d2186738cfbaf"}, "http://dl.fbaipublicfiles.com/KILT/wned-test_without_answers-kilt.jsonl": {"num_bytes": 13295124, "checksum": "f7b220d404d474f617b00c4a030a87024835b72aff131016716b84feca4d95ee"}}, "download_size": 26163472, "post_processing_size": null, "dataset_size": 25741990, "size_in_bytes": 51905462}, "cweb": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "cweb", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 89819628, "num_examples": 5599, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 99209665, "num_examples": 5543, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/cweb-dev-kilt.jsonl": {"num_bytes": 90228527, "checksum": "c98b2301818b53df2025b09801be095152244dbbe7242efbfffd018929bfb4bf"}, "http://dl.fbaipublicfiles.com/KILT/cweb-test_without_answers-kilt.jsonl": {"num_bytes": 100216209, "checksum": "18b078340bde25e42c7136c5bc80c2e3557803e40137b40230af5834e74b6c0d"}}, "download_size": 190444736, "post_processing_size": null, "dataset_size": 189029293, "size_in_bytes": 379474029}, "trex": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "trex", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1190269126, "num_examples": 2284168, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 2573820, "num_examples": 5000, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 758742, "num_examples": 5000, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/trex-train-kilt.jsonl": {"num_bytes": 1752330104, "checksum": "724a8a0fd1f99fe9b15cf6309d7ce63dcb7cd31f33aea717ff26e6d6b6fbdd97"}, "http://dl.fbaipublicfiles.com/KILT/trex-dev-kilt.jsonl": {"num_bytes": 3803558, "checksum": "7ee1a2cd351d928d01ede1763ae8d6ae442a00b07deef80e347852f20a029e5f"}, "http://dl.fbaipublicfiles.com/KILT/trex-test_without_answers-kilt.jsonl": {"num_bytes": 895854, "checksum": "0a2c6a31ebea567e7a8b31c44bf2fb59dab601c8da6de7f3a53419c7710bdc43"}}, "download_size": 1757029516, "post_processing_size": null, "dataset_size": 1193601688, "size_in_bytes": 2950631204}, "structured_zeroshot": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "structured_zeroshot", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 47171201, "num_examples": 147909, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 1612499, "num_examples": 3724, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 1141537, "num_examples": 4966, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-train-kilt.jsonl": {"num_bytes": 71444475, "checksum": "f666359fa2b23e75d700bd1f25efd12d3bf981b1be70d8ad2d268d67e9bb3a5d"}, "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-dev-kilt.jsonl": {"num_bytes": 2266707, "checksum": "dd120ba5b62c6499f4e79bf5bf5a908eb96b583ba9bf8c76a4535ac21c5dac8d"}, "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-test_without_answers-kilt.jsonl": {"num_bytes": 1216038, "checksum": "3353137527c6fe9e48910e2c4d94d3ac01352c52e90a618beaaa807968fd39da"}}, "download_size": 74927220, "post_processing_size": null, "dataset_size": 49925237, "size_in_bytes": 124852457}, "nq": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "nq", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 30388752, "num_examples": 87372, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 6190493, "num_examples": 2837, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 334178, "num_examples": 1444, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/nq-train-kilt.jsonl": {"num_bytes": 51895886, "checksum": "13629ef9f0c4bb7b7b237ce08fae2334acb32a2c1bf69db2350021cad46188a4"}, "http://dl.fbaipublicfiles.com/KILT/nq-dev-kilt.jsonl": {"num_bytes": 7936566, "checksum": "1bcdb150fb10504bd80b915730cde1b384c21647bcf14a4592e4e5df42cc6dfb"}, "http://dl.fbaipublicfiles.com/KILT/nq-test_without_answers-kilt.jsonl": {"num_bytes": 334047, "checksum": "1232f95e7d008669930c441444aa470d54678d886335175e2227455716309e15"}}, "download_size": 60166499, "post_processing_size": null, "dataset_size": 36913423, "size_in_bytes": 97079922}, "hotpotqa": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "hotpotqa", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 33598679, "num_examples": 88869, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 2371638, "num_examples": 5600, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 888476, "num_examples": 5569, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/hotpotqa-train-kilt.jsonl": {"num_bytes": 52767068, "checksum": "7ba73ede642336703d1235c63ecb4c20ae90c7eb19d36302bffa7eb1ec7f9153"}, "http://dl.fbaipublicfiles.com/KILT/hotpotqa-dev-kilt.jsonl": {"num_bytes": 3971321, "checksum": "7f2efbc22c462eb5710e5ecd99447702e7f48203eecd4489bf32a332389d70b6"}, "http://dl.fbaipublicfiles.com/KILT/hotpotqa-test_without_answers-kilt.jsonl": {"num_bytes": 778249, "checksum": "656d51f53796e3ea2a1f808a22160e7363a24a05f1ac7dd094d25659d963ef51"}}, "download_size": 57516638, "post_processing_size": null, "dataset_size": 36858793, "size_in_bytes": 94375431}, "eli5": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "eli5", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 525586490, "num_examples": 272634, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 13860153, "num_examples": 1507, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 108108, "num_examples": 600, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/eli5-train-kilt.jsonl": {"num_bytes": 548249898, "checksum": "66f19183bda5f5185fe98a5fe84925f6802d9b53a5bb12728ded760fd80ef0a0"}, "http://dl.fbaipublicfiles.com/KILT/eli5-dev-kilt.jsonl": {"num_bytes": 14149811, "checksum": "10387a08e3277d3e5722305cef8e739279c83de0218e7b3db76b301949822303"}, "http://dl.fbaipublicfiles.com/KILT/eli5-test_without_answers-kilt.jsonl": {"num_bytes": 98951, "checksum": "43f82439f15f3141d115c06fb0dc0697a2a6313705dbdec6668eaefe9925a2c3"}}, "download_size": 562498660, "post_processing_size": null, "dataset_size": 539554751, "size_in_bytes": 1102053411}, "wow": {"description": "KILT tasks training and evaluation data.\n- [FEVER](https://fever.ai) | Fact Checking | fever\n- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2\n- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned\n- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb\n- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex\n- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot\n- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq\n- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa\n- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa\n- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5\n- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow\n\nTo finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).\n", "citation": "@inproceedings{fb_kilt,\n author = {Fabio Petroni and\n Aleksandra Piktus and\n Angela Fan and\n Patrick Lewis and\n Majid Yazdani and\n Nicola De Cao and\n James Thorne and\n Yacine Jernite and\n Vassilis Plachouras and\n Tim Rockt\"aschel and\n Sebastian Riedel},\n title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},\n journal = {CoRR},\n archivePrefix = {arXiv},\n year = {2020},\n", "homepage": "https://github.com/facebookresearch/KILT", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"left_context": {"dtype": "string", "id": null, "_type": "Value"}, "mention": {"dtype": "string", "id": null, "_type": "Value"}, "right_context": {"dtype": "string", "id": null, "_type": "Value"}, "partial_evidence": [{"start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}}], "obj_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "sub_surface": [{"dtype": "string", "id": null, "_type": "Value"}], "subj_aliases": [{"dtype": "string", "id": null, "_type": "Value"}], "template_questions": [{"dtype": "string", "id": null, "_type": "Value"}]}, "output": [{"answer": {"dtype": "string", "id": null, "_type": "Value"}, "meta": {"score": {"dtype": "int32", "id": null, "_type": "Value"}}, "provenance": [{"bleu_score": {"dtype": "float32", "id": null, "_type": "Value"}, "start_character": {"dtype": "int32", "id": null, "_type": "Value"}, "start_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "end_character": {"dtype": "int32", "id": null, "_type": "Value"}, "end_paragraph_id": {"dtype": "int32", "id": null, "_type": "Value"}, "meta": {"fever_page_id": {"dtype": "string", "id": null, "_type": "Value"}, "fever_sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "annotation_id": {"dtype": "string", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_span": [{"dtype": "string", "id": null, "_type": "Value"}]}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "wikipedia_id": {"dtype": "string", "id": null, "_type": "Value"}}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "kilt_tasks", "config_name": "wow", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 61461470, "num_examples": 94577, "dataset_name": "kilt_tasks"}, "validation": {"name": "validation", "num_bytes": 2021643, "num_examples": 3058, "dataset_name": "kilt_tasks"}, "test": {"name": "test", "num_bytes": 1340818, "num_examples": 2944, "dataset_name": "kilt_tasks"}}, "download_checksums": {"http://dl.fbaipublicfiles.com/KILT/wow-train-kilt.jsonl": {"num_bytes": 71861702, "checksum": "91e04200a31daadbc9178382b724dac9be88ea9e76cd7a668e7a9430fe67713a"}, "http://dl.fbaipublicfiles.com/KILT/wow-dev-kilt.jsonl": {"num_bytes": 2418241, "checksum": "3202148ecaf41e77d44a2dec2453452c1ff8b3d646727e2c55ae6d9024e8e6b6"}, "http://dl.fbaipublicfiles.com/KILT/wow-test_without_answers-kilt.jsonl": {"num_bytes": 1292018, "checksum": "f3303ec5d7def4cf178552a8ed17bd01cb23bfeccc3abde147bebfa4bade6d8b"}}, "download_size": 75571961, "post_processing_size": null, "dataset_size": 64823931, "size_in_bytes": 140395892}}
dummy/{all_tasks → aidayago2}/1.0.0/dummy_data.zip RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8b4bfcd2a9dd13fca2f9d53da29271ff8346de131e554080bb57d753bc963a02
3
- size 8382
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc579e73c8ac3d128cb736c26f299051c2a296577a0a82534eaf767b5fe34a1
3
+ size 6423
dummy/cweb/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9ed99e9f6625f2ef5750f6d6b40d4c48560a2c6ad53967a8e8670e082c7a1ae
3
+ size 8660
dummy/eli5/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f96d108dca111b881af92de18bc34a8159eef24ed7c59180dfb2f8476d75079
3
+ size 10389
dummy/fever/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3678da20a90e113090e1b3b25ba8c68f3f817364cae5034f5171240564cec410
3
+ size 2130
dummy/hotpotqa/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:730cb44315d5714bf2b6c47f01ba8633af3bc54ab08649671678d897e1d14e2d
3
+ size 2719
dummy/nq/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e35fc4ef6f98d4c39f588a34484c1e7506372350ce6c43b986abfab3c94b1f62
3
+ size 4612
dummy/structured_zeroshot/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efda6d31d27c4cfa37b449b7378abdd40b44985184280492a410a269ccaf6e34
3
+ size 2822
dummy/trex/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:852a053640eb90301eee1befabe83b01b038f601ec9b8f4e394a4e704b0d133f
3
+ size 2948
dummy/triviaqa_support_only/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36fad45e83ca3a64a053bb62dccd90f9617673b1473157fafa5cdb695cc01b59
3
+ size 2970
dummy/wned/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9296fdb086ba290424db7d698a3e06c5aec48539949cf7403f1c326c1bcda545
3
+ size 2452
dummy/wow/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e74e00c973d912aba86c71030588247406023680b041c6727c1a7f727ffe51
3
+ size 3857
kilt_tasks.py CHANGED
@@ -100,7 +100,7 @@ _DATA_URLS = {
100
  "validation": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-dev-kilt.jsonl",
101
  "test": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-test_without_answers-kilt.jsonl",
102
  },
103
- "triviaqa": {
104
  "train": "http://dl.fbaipublicfiles.com/KILT/triviaqa-train_id-kilt.jsonl",
105
  "validation": "http://dl.fbaipublicfiles.com/KILT/triviaqa-dev_id-kilt.jsonl",
106
  "test": "http://dl.fbaipublicfiles.com/KILT/triviaqa-test_id_without_answers-kilt.jsonl",
@@ -118,31 +118,24 @@ _DATA_URLS = {
118
  }
119
 
120
 
121
- class KILTTasksConfig(datasets.BuilderConfig):
122
- """BuilderConfig for KILTTasks."""
123
-
124
- def __init__(self, **kwargs):
125
- """BuilderConfig for KILTTasks.
126
-
127
- Args:
128
- .
129
- **kwargs: keyword arguments forwarded to super.
130
- """
131
- super(KILTTasksConfig, self).__init__(
132
- version=datasets.Version("1.0.0", "KILT tasks training and evaluation data"), **kwargs
133
- )
134
-
135
-
136
- class KILTTasks(datasets.GeneratorBasedBuilder):
137
- """WikipediaKILT: Wikipedia pre-processed for KILT. Version 1.0."""
138
 
139
  BUILDER_CONFIGS = [
140
- KILTTasksConfig(
141
- name="all_tasks",
142
- description="All KILT tasks traiing and evaluation data",
143
- ),
 
 
 
 
 
 
 
144
  ]
145
 
 
 
146
  def _info(self):
147
  return datasets.DatasetInfo(
148
  description=_DESCRIPTION,
@@ -150,89 +143,65 @@ class KILTTasks(datasets.GeneratorBasedBuilder):
150
  {
151
  "id": datasets.Value("string"),
152
  "input": datasets.Value("string"),
153
- "meta": datasets.Features(
154
- {
155
- "left_context": datasets.Value("string"),
156
- "mention": datasets.Value("string"),
157
- "right_context": datasets.Value("string"),
158
- "partial_evidence": datasets.features.Sequence(
159
- {
160
- "start_paragraph_id": datasets.Value("int32"),
161
- "end_paragraph_id": datasets.Value("int32"),
162
- "title": datasets.Value("string"),
163
- "section": datasets.Value("string"),
164
- "wikipedia_id": datasets.Value("string"),
165
- "meta": datasets.features.Sequence(
166
- {
167
- "evidence_span": datasets.Value("string"),
168
- }
169
- ),
170
- }
171
- ),
172
- "obj_surface": datasets.features.Sequence({"text": datasets.Value("string")}),
173
- "sub_surface": datasets.features.Sequence({"text": datasets.Value("string")}),
174
- "subj_aliases": datasets.features.Sequence({"text": datasets.Value("string")}),
175
- "template_questions": datasets.features.Sequence({"text": datasets.Value("string")}),
176
- }
177
- ),
178
- "output": datasets.features.Sequence(
179
  {
180
  "answer": datasets.Value("string"),
181
- "meta": datasets.Features({"score": datasets.Value("int32")}),
182
- "provenance": datasets.features.Sequence(
183
  {
184
  "bleu_score": datasets.Value("float32"),
185
  "start_character": datasets.Value("int32"),
186
  "start_paragraph_id": datasets.Value("int32"),
187
  "end_character": datasets.Value("int32"),
188
  "end_paragraph_id": datasets.Value("int32"),
189
- "meta": datasets.Features(
190
- {
191
- "fever_page_id": datasets.Value("string"),
192
- "fever_sentence_id": datasets.Value("int32"),
193
- "annotation_id": datasets.Value("string"), # int runs into overflow issues
194
- "yes_no_answer": datasets.Value("string"),
195
- "evidence_span": datasets.features.Sequence(
196
- {"text": datasets.Value("string")}
197
- ),
198
- }
199
- ),
200
  "section": datasets.Value("string"),
201
  "title": datasets.Value("string"),
202
  "wikipedia_id": datasets.Value("string"),
203
  }
204
- ),
205
  }
206
- ),
207
  }
208
  ),
209
- # No default supervised_keys (as we have to pass both premise
210
- # and hypothesis as input).
211
  supervised_keys=None,
212
  homepage="https://github.com/facebookresearch/KILT",
213
  citation=_CITATION,
214
  )
215
 
216
  def _split_generators(self, dl_manager):
217
- file_paths = {}
218
- for task_name, task_urls in _DATA_URLS.items():
219
- file_paths[task_name] = dl_manager.download_and_extract(task_urls)
220
-
221
  return [
222
- datasets.SplitGenerator(name=split + "_" + task, gen_kwargs={"filepath": downloaded_path})
223
- for task, split_paths in file_paths.items()
224
- for split, downloaded_path in split_paths.items()
225
  ]
226
 
227
  def _generate_examples(self, filepath):
228
- """Generate Wikipedia articles for KILT.
229
-
230
- Args:
231
- filepath: a string
232
-
233
- Yields:
234
- dictionaries representing article data and metadata
235
- """
236
  logging.info("generating examples from = %s", filepath)
237
  with open(filepath, encoding="utf-8") as f:
238
  for idx, line in enumerate(f):
@@ -243,49 +212,47 @@ class KILTTasks(datasets.GeneratorBasedBuilder):
243
  for k in ["left_context", "mention", "right_context"]:
244
  article["meta"][k] = article["meta"].get(k, "")
245
  for k in ["obj_surface", "sub_surface", "subj_aliases", "template_questions"]:
246
- article["meta"][k] = {"text": article["meta"].get(k, [])}
247
- article["meta"]["partial_evidence"] = article["meta"].get("partial_evidence", [])
248
- if "partial_evidence" in article["meta"]:
249
- dct_list = {}
250
- for k in ["start_paragraph_id", "end_paragraph_id"]:
251
- dct_list[k] = [dct.get(k, -1) for dct in article["meta"]["partial_evidence"]]
252
- for k in ["title", "section", "wikipedia_id"]:
253
- dct_list[k] = [dct.get(k, "") for dct in article["meta"]["partial_evidence"]]
254
- if any(["meta" in dct for dct in article["meta"]["partial_evidence"]]):
255
- dct_list["meta"] = [dct.get("meta", {}) for dct in article["meta"]["partial_evidence"]]
256
- for meta in dct_list["meta"]:
257
- meta["evidence_span"] = meta.get("evidence_span", [])
258
- else:
259
- dct_list["meta"] = []
260
- article["meta"]["partial_evidence"] = dct_list
261
  # output
262
- article["output"] = article.get("output", [])
263
- dct_list = {}
264
- dct_list["answer"] = [dct.get("answer", "") for dct in article["output"]]
265
- if any(["meta" in dct for dct in article["output"]]):
266
- dct_list["meta"] = [dct.get("meta", {"score": 0}) for dct in article["output"]]
267
- else:
268
- dct_list["meta"] = []
269
- dct_list["provenance"] = []
270
- for dct in article["output"]:
271
- if "provenance" in dct:
272
- prov_list = dct["provenance"]
273
- prov_dct_list = {}
274
- prov_dct_list["bleu_score"] = [prov.get("bleu_score", 0.0) for prov in prov_list]
275
- if any(["meta" in prov for prov in prov_list]):
276
- prov_dct_list["meta"] = [prov.get("meta", {}) for prov in prov_list]
277
- for meta_dct in prov_dct_list["meta"]:
278
- meta_dct["fever_page_id"] = meta_dct.get("fever_page_id", "")
279
- meta_dct["fever_sentence_id"] = meta_dct.get("fever_sentence_id", -1)
280
- meta_dct["yes_no_answer"] = meta_dct.get("yes_no_answer", "")
281
- meta_dct["annotation_id"] = str(meta_dct.get("annotation_id", -1))
282
- meta_dct["evidence_span"] = {"text": meta_dct.get("evidence_span", [])}
283
- else:
284
- prov_dct_list["meta"] = []
285
- for k in ["start_character", "start_paragraph_id", "end_character", "end_paragraph_id"]:
286
- prov_dct_list[k] = [prov.get(k, -1) for prov in prov_list]
287
- for k in ["section", "title", "wikipedia_id"]:
288
- prov_dct_list[k] = [prov.get(k, "") for prov in prov_list]
289
- dct_list["provenance"] += [prov_dct_list]
290
- article["output"] = dct_list
291
  yield idx, article
 
100
  "validation": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-dev-kilt.jsonl",
101
  "test": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-test_without_answers-kilt.jsonl",
102
  },
103
+ "triviaqa_support_only": {
104
  "train": "http://dl.fbaipublicfiles.com/KILT/triviaqa-train_id-kilt.jsonl",
105
  "validation": "http://dl.fbaipublicfiles.com/KILT/triviaqa-dev_id-kilt.jsonl",
106
  "test": "http://dl.fbaipublicfiles.com/KILT/triviaqa-test_id_without_answers-kilt.jsonl",
 
118
  }
119
 
120
 
121
+ class KiltTasks(datasets.GeneratorBasedBuilder):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  BUILDER_CONFIGS = [
124
+ datasets.BuilderConfig(
125
+ name="triviaqa_support_only",
126
+ version=datasets.Version("1.0.0"),
127
+ description="Supporting paragraphs information for the TriviaQA task",
128
+ )
129
+ ] + [
130
+ datasets.BuilderConfig(
131
+ name=k, version=datasets.Version("1.0.0"), description=f"Task data and supporting paragraphs for {k}"
132
+ )
133
+ for k in _DATA_URLS
134
+ if k != "triviaqa_support_only"
135
  ]
136
 
137
+ DEFAULT_CONFIG_NAME = "nq"
138
+
139
  def _info(self):
140
  return datasets.DatasetInfo(
141
  description=_DESCRIPTION,
 
143
  {
144
  "id": datasets.Value("string"),
145
  "input": datasets.Value("string"),
146
+ "meta": {
147
+ "left_context": datasets.Value("string"),
148
+ "mention": datasets.Value("string"),
149
+ "right_context": datasets.Value("string"),
150
+ "partial_evidence": [
151
+ {
152
+ "start_paragraph_id": datasets.Value("int32"),
153
+ "end_paragraph_id": datasets.Value("int32"),
154
+ "title": datasets.Value("string"),
155
+ "section": datasets.Value("string"),
156
+ "wikipedia_id": datasets.Value("string"),
157
+ "meta": {"evidence_span": [datasets.Value("string")]},
158
+ }
159
+ ],
160
+ "obj_surface": [datasets.Value("string")],
161
+ "sub_surface": [datasets.Value("string")],
162
+ "subj_aliases": [datasets.Value("string")],
163
+ "template_questions": [datasets.Value("string")],
164
+ },
165
+ "output": [
 
 
 
 
 
 
166
  {
167
  "answer": datasets.Value("string"),
168
+ "meta": {"score": datasets.Value("int32")},
169
+ "provenance": [
170
  {
171
  "bleu_score": datasets.Value("float32"),
172
  "start_character": datasets.Value("int32"),
173
  "start_paragraph_id": datasets.Value("int32"),
174
  "end_character": datasets.Value("int32"),
175
  "end_paragraph_id": datasets.Value("int32"),
176
+ "meta": {
177
+ "fever_page_id": datasets.Value("string"),
178
+ "fever_sentence_id": datasets.Value("int32"),
179
+ "annotation_id": datasets.Value("string"), # int runs into overflow issues
180
+ "yes_no_answer": datasets.Value("string"),
181
+ "evidence_span": [datasets.Value("string")],
182
+ },
 
 
 
 
183
  "section": datasets.Value("string"),
184
  "title": datasets.Value("string"),
185
  "wikipedia_id": datasets.Value("string"),
186
  }
187
+ ],
188
  }
189
+ ],
190
  }
191
  ),
 
 
192
  supervised_keys=None,
193
  homepage="https://github.com/facebookresearch/KILT",
194
  citation=_CITATION,
195
  )
196
 
197
  def _split_generators(self, dl_manager):
198
+ file_paths = dl_manager.download_and_extract(_DATA_URLS[self.config.name])
 
 
 
199
  return [
200
+ datasets.SplitGenerator(name=split, gen_kwargs={"filepath": downloaded_path})
201
+ for split, downloaded_path in file_paths.items()
 
202
  ]
203
 
204
  def _generate_examples(self, filepath):
 
 
 
 
 
 
 
 
205
  logging.info("generating examples from = %s", filepath)
206
  with open(filepath, encoding="utf-8") as f:
207
  for idx, line in enumerate(f):
 
212
  for k in ["left_context", "mention", "right_context"]:
213
  article["meta"][k] = article["meta"].get(k, "")
214
  for k in ["obj_surface", "sub_surface", "subj_aliases", "template_questions"]:
215
+ article["meta"][k] = article["meta"].get(k, [])
216
+ # partial evidence
217
+ article["meta"]["partial_evidence"] = [
218
+ {
219
+ "start_paragraph_id": partial.get("start_paragraph_id", -1),
220
+ "end_paragraph_id": partial.get("end_paragraph_id", -1),
221
+ "title": partial.get("title", ""),
222
+ "section": partial.get("section", ""),
223
+ "wikipedia_id": partial.get("wikipedia_id", ""),
224
+ "meta": {"evidence_span": partial.get("meta", {}).get("evidence_span", [])},
225
+ }
226
+ for partial in article["meta"].get("partial_evidence", [])
227
+ ]
 
 
228
  # output
229
+ article["output"] = [
230
+ {
231
+ "answer": output.get("answer", ""),
232
+ "meta": output.get("meta", {"score": -1}),
233
+ "provenance": [
234
+ {
235
+ "bleu_score": provenance.get("bleu_score", -1.0),
236
+ "start_character": provenance.get("start_character", -1),
237
+ "start_paragraph_id": provenance.get("start_paragraph_id", -1),
238
+ "end_character": provenance.get("end_character", -1),
239
+ "end_paragraph_id": provenance.get("end_paragraph_id", -1),
240
+ "meta": {
241
+ "fever_page_id": provenance.get("meta", {}).get("fever_page_id", ""),
242
+ "fever_sentence_id": provenance.get("meta", {}).get("fever_sentence_id", -1),
243
+ "annotation_id": str(
244
+ provenance.get("meta", {}).get("annotation_id", -1)
245
+ ), # int runs into overflow issues
246
+ "yes_no_answer": provenance.get("meta", {}).get("yes_no_answer", ""),
247
+ "evidence_span": provenance.get("meta", {}).get("evidence_span", []),
248
+ },
249
+ "section": provenance.get("section", ""),
250
+ "title": provenance.get("title", ""),
251
+ "wikipedia_id": provenance.get("wikipedia_id", ""),
252
+ }
253
+ for provenance in output.get("provenance", [])
254
+ ],
255
+ }
256
+ for output in article.get("output", [])
257
+ ]
258
  yield idx, article