Datasets:
File size: 8,438 Bytes
29fac8c 7ffe9b1 29fac8c 7ffe9b1 29fac8c 7ffe9b1 29fac8c 58040f3 29fac8c 58040f3 29fac8c 58040f3 29fac8c 58040f3 29fac8c 58040f3 29fac8c 58040f3 29fac8c 58040f3 29fac8c 58040f3 29fac8c 58040f3 29fac8c 7ffe9b1 29fac8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
"""TODO(mlqa): Add a description here."""
import json
import os
import datasets
# TODO(mlqa): BibTeX citation
_CITATION = """\
@article{lewis2019mlqa,
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
journal={arXiv preprint arXiv:1910.07475},
year={2019}
}
"""
# TODO(mlqa):
_DESCRIPTION = """\
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
"""
_URL = "https://dl.fbaipublicfiles.com/MLQA/"
_DEV_TEST_URL = "MLQA_V1.zip"
_TRANSLATE_TEST_URL = "mlqa-translate-test.tar.gz"
_TRANSLATE_TRAIN_URL = "mlqa-translate-train.tar.gz"
_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi"]
_TRANSLATE_LANG = ["ar", "de", "vi", "zh", "es", "hi"]
class MlqaConfig(datasets.BuilderConfig):
def __init__(self, data_url, **kwargs):
"""BuilderConfig for MLQA
Args:
data_url: `string`, url to the dataset
**kwargs: keyword arguments forwarded to super.
"""
super(MlqaConfig, self).__init__(
version=datasets.Version(
"1.0.0",
),
**kwargs,
)
self.data_url = data_url
class Mlqa(datasets.GeneratorBasedBuilder):
"""TODO(mlqa): Short description of my dataset."""
# TODO(mlqa): Set up version.
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = (
[
MlqaConfig(
name="mlqa-translate-train." + lang,
data_url=_URL + _TRANSLATE_TRAIN_URL,
description="Machine-translated data for Translate-train (SQuAD Train and Dev sets machine-translated into "
"Arabic, German, Hindi, Vietnamese, Simplified Chinese and Spanish)",
)
for lang in _LANG
if lang != "en"
]
+ [
MlqaConfig(
name="mlqa-translate-test." + lang,
data_url=_URL + _TRANSLATE_TEST_URL,
description="Machine-translated data for Translate-Test (MLQA-test set machine-translated into English) ",
)
for lang in _LANG
if lang != "en"
]
+ [
MlqaConfig(
name="mlqa." + lang1 + "." + lang2,
data_url=_URL + _DEV_TEST_URL,
description="development and test splits",
)
for lang1 in _LANG
for lang2 in _LANG
]
)
def _info(self):
# TODO(mlqa): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{"answer_start": datasets.Value("int32"), "text": datasets.Value("string")}
),
"id": datasets.Value("string"),
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/facebookresearch/MLQA",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(mlqa): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
if self.config.name.startswith("mlqa-translate-train"):
archive = dl_manager.download(self.config.data_url)
lang = self.config.name.split(".")[-1]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": f"mlqa-translate-train/{lang}_squad-translate-train-train-v1.1.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": f"mlqa-translate-train/{lang}_squad-translate-train-dev-v1.1.json",
"files": dl_manager.iter_archive(archive),
},
),
]
else:
if self.config.name.startswith("mlqa."):
dl_file = dl_manager.download_and_extract(self.config.data_url)
name = self.config.name.split(".")
l1, l2 = name[1:]
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(dl_file, "MLQA_V1/test"),
f"test-context-{l1}-question-{l2}.json",
)
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(dl_file, "MLQA_V1/dev"), f"dev-context-{l1}-question-{l2}.json"
)
},
),
]
else:
if self.config.name.startswith("mlqa-translate-test"):
archive = dl_manager.download(self.config.data_url)
lang = self.config.name.split(".")[-1]
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": f"mlqa-translate-test/translate-test-context-{lang}-question-{lang}.json",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, filepath, files=None):
"""Yields examples."""
if self.config.name.startswith("mlqa-translate"):
for path, f in files:
if path == filepath:
data = json.loads(f.read().decode("utf-8"))
break
else:
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for examples in data["data"]:
for example in examples["paragraphs"]:
context = example["context"]
for qa in example["qas"]:
question = qa["question"]
id_ = qa["id"]
answers = qa["answers"]
answers_start = [answer["answer_start"] for answer in answers]
answers_text = [answer["text"] for answer in answers]
yield id_, {
"context": context,
"question": question,
"answers": {"answer_start": answers_start, "text": answers_text},
"id": id_,
}
|