File size: 4,739 Bytes
2e83e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
from datasets import DatasetDict, Audio
import pandas as pd
from datasets.table import embed_table_storage
import argparse


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    
    
    parser.add_argument("main_folder_path", type=str, help="Path of the base mls folder")
    parser.add_argument("configuration", type=str, help="Dataset configuration to use, if necessary. Here corresponds to the language name.")
    parser.add_argument("output_dir", type=str, help="Save the dataset on disk with this path.")

    parser.add_argument("--cpu_num_workers", default=1, type=int, help="Number of CPU workers.")
    parser.add_argument("--csv_folder_path", default=None, type=str, help="Path where to save intermediate csv, by default will be main_foldr_path")
    parser.add_argument("--repo_id", default="facebook/multilingual_librispeech", type=str, help="Push the dataset to the hub.")


    args = parser.parse_args()

    main_folder_path = args.main_folder_path
    csv_folder_path = args.csv_folder_path if args.csv_folder_path is not None else main_folder_path
    if not os.path.exists(csv_folder_path):
        os.makedirs(csv_folder_path)

    splits = ["dev", "test", "train"]

    # total_length_per_split = 10_000 * 60 * 60 # in sec -> 10k hours

    csv_dict = {}
    for split in splits:
        segment_path = os.path.join(main_folder_path, split, "segments.txt")
        transcript_path = os.path.join(main_folder_path, split, "transcripts.txt")

        segments = pd.read_csv(segment_path, sep='\t', names=["audio", "original_path", "begin_time", "end_time"],
                            index_col="audio")
        transcripts = pd.read_csv(transcript_path, sep='\t', names=["audio", "transcript"], index_col="audio")

        df = pd.concat([segments, transcripts], axis=1, join="inner")
        print(
            f"Segments and transcripts of {split} has been joined: new length {len(df)}, old lengths {(len(segments), len(transcripts))}")

        # add audio duration
        df["audio_duration"] = df["end_time"] - df["begin_time"]
        df["split"] = split

        print(f"len df {len(df)}")

        df.to_csv(os.path.join(csv_folder_path, f"{split}.csv"))
        csv_dict[split] = os.path.join(csv_folder_path, f"{split}.csv")
        
        # take care of /limited_supervision
        if split == "train":
            nine_hours_segment_path = os.path.join(main_folder_path, "train/limited_supervision/9hr/handles.txt")
            nine_hours_segment = pd.read_csv(nine_hours_segment_path, sep='\t', names=["audio"], index_col="audio").index
            nine_hours_df = df.filter(items=nine_hours_segment, axis=0)
            nine_hours_df.to_csv(os.path.join(csv_folder_path, f"9_hours.csv"))
            csv_dict["9_hours"] = os.path.join(csv_folder_path, f"9_hours.csv")
            
            one_hours_segments = [ os.path.join(f.path, "handles.txt") for f in os.scandir( os.path.join(main_folder_path, "train/limited_supervision/1hr")) if f.is_dir()]
            one_hours_segments = pd.concat([pd.read_csv(one, sep='\t', names=["audio"], index_col="audio") for one in one_hours_segments], axis=0).index
            one_hours_df = df.filter(items=one_hours_segments, axis=0)
            one_hours_df.to_csv(os.path.join(csv_folder_path, f"1_hours.csv"))
            csv_dict["1_hours"] = os.path.join(csv_folder_path, f"1_hours.csv")

            
            

    dataset = DatasetDict.from_csv(csv_dict)

    def extract_speaker_id_and_format_path(audio, split):
        speaker_id = audio.split("_")[0]
        chapter_id = audio.split("_")[1]
        file = f"{audio}.opus"

        path = os.path.join(main_folder_path, split, "audio", speaker_id, chapter_id, file)
        return {"audio": path, "speaker_id": speaker_id, "chapter_id": chapter_id, "file": file, "id": audio}

    # correct audio path
    dataset = dataset.map(extract_speaker_id_and_format_path, input_columns=["audio", "split"], num_proc=args.cpu_num_workers, remove_columns=["split"])
    dataset = dataset.cast_column("audio", Audio())

    print(dataset)
    print(dataset["dev"][0])

    print("Embed table storage")

    # load_dataset(...)
    format = dataset["train"].format
    dataset = dataset.with_format("arrow")
    dataset = dataset.map(embed_table_storage, batched=True, num_proc=args.cpu_num_workers)
    dataset = dataset.with_format(**format)

    
    dataset.save_to_disk(args.output_dir, num_proc=args.cpu_num_workers)

    if args.repo_id:
        pushed = False
        while not pushed:
            try:
                dataset.push_to_hub(args.repo_id, args.configuration, revision="refs/pr/15")
                pushed = True
            except:
                pass