cloneofsimo commited on
Commit
1c6ea99
1 Parent(s): 74c3939

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -3
README.md CHANGED
@@ -1,3 +1,84 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ size_categories:
3
+ - 1M<n<10M
4
+ viewer: false
5
+ license: apache-2.0
6
+ ---
7
+
8
+
9
+ # Tiny Cosmos-Tokenized Imagenet
10
+
11
+
12
+ <p align="center">
13
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6311151c64939fabc00c8436/2Wrz6bzvwIHVATbtYAujs.png" alt="small" width="800">
14
+ </p>
15
+
16
+ Similar fashion to [Simo's Imagenet.int8](https://github.com/cloneofsimo/imagenet.int8), here we provide [Cosmos-tokenized](https://github.com/NVIDIA/Cosmos-Tokenizer) imagenet for rapid prototyping.
17
+ Noticeably, the discrete tokenizer is able to compress entire imagenet into **shocking 2.45 GB of data!**
18
+
19
+ # How to use
20
+
21
+ This time, we dumped it all on simple pytorch safetensor format.
22
+
23
+ ```python
24
+ import torch
25
+ import torch.nn as nn
26
+ from safetensors.torch import safe_open
27
+
28
+ # for continuous tokenizer
29
+ with safe_open("tokenize_dataset/imagenet_ci8x8.safetensors", framework="pt") as f:
30
+ data = f.get_tensor("latents") * 16.0 / 255.0
31
+ labels = f.get_tensor("labels")
32
+
33
+ print(data.shape) # 1281167, 16, 32, 32
34
+ print(labels.shape) # 1281167
35
+ ```
36
+
37
+ To decode, you would need to install cosmos tokenizer.
38
+
39
+ ```bash
40
+ git clone https://github.com/NVIDIA/Cosmos-Tokenizer.git
41
+ cd Cosmos-Tokenizer
42
+ apt-get install -y ffmpeg
43
+ pip install -e .
44
+ ```
45
+
46
+ And decode using either `"Cosmos-Tokenizer-CI8x8"` or `"Cosmos-Tokenizer-DI8x8"`
47
+
48
+
49
+ **IMPORTANT**
50
+ * For continuous token, we've quantized & normalized to int8 format. Thus, you need to multiply 16.0 / 255.0
51
+ * For discrete token, saved format is int16. To use it properly just do uint16. Example below:
52
+
53
+
54
+ ```python
55
+
56
+ model_name = "Cosmos-Tokenizer-CI8x8" if is_continuous else "Cosmos-Tokenizer-DI8x8"
57
+ decoder = ImageTokenizer(
58
+ checkpoint_dec=f"pretrained_ckpts/{model_name}/decoder.jit"
59
+ ).to(device)
60
+
61
+ with safe_open("imagenet_ci8x8.safetensors", framework="pt") as f:
62
+ if tokenizer_type == "continuous":
63
+ data = f.get_tensor("latents").to(torch.bfloat16) * 16.0 / 255.0
64
+ else:
65
+ data = f.get_tensor("indices").to(torch.uint16)
66
+ labels = f.get_tensor("labels")
67
+
68
+ data = data[:1]
69
+
70
+ if is_continuous:
71
+ data = data.reshape(1, 16, 32, 32).to(device)
72
+ else:
73
+ # For discrete tokenizer, reshape to [1, 32, 32]
74
+ data = data.reshape(1, 32, 32).to(device).long()
75
+ # Decode the image
76
+ with torch.no_grad():
77
+ reconstructed = decoder.decode(data)
78
+
79
+ img = (
80
+ ((reconstructed[0].cpu().float() + 1) * 127.5).clamp(0, 255).to(torch.uint8)
81
+ )
82
+ img = img.permute(1, 2, 0).numpy()
83
+ img = Image.fromarray(img)
84
+ ```