Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1M - 10M
ArXiv:
License:
Commit
•
7a396a7
1
Parent(s):
f302f60
Delete loading script
Browse files- amazon_polarity.py +0 -126
amazon_polarity.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""The amazon polarity dataset for text classification."""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@inproceedings{mcauley2013hidden,
|
25 |
-
title={Hidden factors and hidden topics: understanding rating dimensions with review text},
|
26 |
-
author={McAuley, Julian and Leskovec, Jure},
|
27 |
-
booktitle={Proceedings of the 7th ACM conference on Recommender systems},
|
28 |
-
pages={165--172},
|
29 |
-
year={2013}
|
30 |
-
}
|
31 |
-
"""
|
32 |
-
|
33 |
-
_DESCRIPTION = """\
|
34 |
-
The Amazon reviews dataset consists of reviews from amazon.
|
35 |
-
The data span a period of 18 years, including ~35 million reviews up to March 2013.
|
36 |
-
Reviews include product and user information, ratings, and a plaintext review.
|
37 |
-
"""
|
38 |
-
|
39 |
-
_HOMEPAGE = "https://registry.opendata.aws/"
|
40 |
-
|
41 |
-
_LICENSE = "Apache License 2.0"
|
42 |
-
|
43 |
-
_URLs = {
|
44 |
-
"amazon_polarity": "https://s3.amazonaws.com/fast-ai-nlp/amazon_review_polarity_csv.tgz",
|
45 |
-
}
|
46 |
-
|
47 |
-
|
48 |
-
class AmazonPolarityConfig(datasets.BuilderConfig):
|
49 |
-
"""BuilderConfig for AmazonPolarity."""
|
50 |
-
|
51 |
-
def __init__(self, **kwargs):
|
52 |
-
"""BuilderConfig for AmazonPolarity.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
**kwargs: keyword arguments forwarded to super.
|
56 |
-
"""
|
57 |
-
super(AmazonPolarityConfig, self).__init__(**kwargs)
|
58 |
-
|
59 |
-
|
60 |
-
class AmazonPolarity(datasets.GeneratorBasedBuilder):
|
61 |
-
"""Amazon Polarity Classification Dataset."""
|
62 |
-
|
63 |
-
VERSION = datasets.Version("3.0.0")
|
64 |
-
|
65 |
-
BUILDER_CONFIGS = [
|
66 |
-
AmazonPolarityConfig(
|
67 |
-
name="amazon_polarity", version=VERSION, description="Amazon Polarity Classification Dataset."
|
68 |
-
),
|
69 |
-
]
|
70 |
-
|
71 |
-
def _info(self):
|
72 |
-
features = datasets.Features(
|
73 |
-
{
|
74 |
-
"label": datasets.features.ClassLabel(
|
75 |
-
names=[
|
76 |
-
"negative",
|
77 |
-
"positive",
|
78 |
-
]
|
79 |
-
),
|
80 |
-
"title": datasets.Value("string"),
|
81 |
-
"content": datasets.Value("string"),
|
82 |
-
}
|
83 |
-
)
|
84 |
-
return datasets.DatasetInfo(
|
85 |
-
description=_DESCRIPTION,
|
86 |
-
features=features,
|
87 |
-
supervised_keys=None,
|
88 |
-
homepage=_HOMEPAGE,
|
89 |
-
license=_LICENSE,
|
90 |
-
citation=_CITATION,
|
91 |
-
)
|
92 |
-
|
93 |
-
def _split_generators(self, dl_manager):
|
94 |
-
"""Returns SplitGenerators."""
|
95 |
-
my_urls = _URLs[self.config.name]
|
96 |
-
archive = dl_manager.download(my_urls)
|
97 |
-
return [
|
98 |
-
datasets.SplitGenerator(
|
99 |
-
name=datasets.Split.TRAIN,
|
100 |
-
gen_kwargs={
|
101 |
-
"filepath": "/".join(["amazon_review_polarity_csv", "train.csv"]),
|
102 |
-
"files": dl_manager.iter_archive(archive),
|
103 |
-
},
|
104 |
-
),
|
105 |
-
datasets.SplitGenerator(
|
106 |
-
name=datasets.Split.TEST,
|
107 |
-
gen_kwargs={
|
108 |
-
"filepath": "/".join(["amazon_review_polarity_csv", "test.csv"]),
|
109 |
-
"files": dl_manager.iter_archive(archive),
|
110 |
-
},
|
111 |
-
),
|
112 |
-
]
|
113 |
-
|
114 |
-
def _generate_examples(self, filepath, files):
|
115 |
-
"""Yields examples."""
|
116 |
-
for path, f in files:
|
117 |
-
if path == filepath:
|
118 |
-
lines = (line.decode("utf-8") for line in f)
|
119 |
-
data = csv.reader(lines, delimiter=",", quoting=csv.QUOTE_ALL)
|
120 |
-
for id_, row in enumerate(data):
|
121 |
-
yield id_, {
|
122 |
-
"title": row[1],
|
123 |
-
"content": row[2],
|
124 |
-
"label": int(row[0]) - 1,
|
125 |
-
}
|
126 |
-
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|