File size: 7,214 Bytes
95706a2 6ba9650 95706a2 653d03d 95706a2 2b6c3d0 95706a2 6a15745 95706a2 843b172 95706a2 6ba9650 2b6c3d0 6ba9650 2b6c3d0 95706a2 6ba9650 954f79c e816036 95706a2 843b172 2b6c3d0 95706a2 843b172 2b6c3d0 95706a2 843b172 2b6c3d0 95706a2 843b172 5215adb 95706a2 843b172 5215adb 95706a2 843b172 5215adb 95706a2 843b172 5215adb 95706a2 6ba9650 93a59cc 2b6c3d0 93a59cc 2b6c3d0 7507142 2b6c3d0 6ba9650 843b172 6ba9650 6a15745 6ba9650 2b6c3d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
viewer: false
tags:
- deepfakes
- gen-ai
- text-to-video
pretty_name: DeepAction Dataset v1.0
size_categories:
- 1K<n<10K
task_categories:
- video-classification
---
<style>
* {
font-family: Helvetica, sans-serif;
}
code {
font-family: IBM Plex Mono,ui-monospace,SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace !important;
}
a {
color: #FFA500;
}
.container {
display: flex;
justify-content: space-between; /* Ensures even space between items */
align-items: stretch; /* Ensures boxes have the same height */
width: 100%;
margin: 20px auto;
gap: 20px; /* Consistent gap between boxes */
}
.warning-box {
background-color: rgba(255, 200, 100, 0.5); /* Lighter orange with more translucency */
border-radius: 10px;
padding: 20px;
flex: 1;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
font-family: Arial, sans-serif;
color: #333;
display: flex;
flex-direction: column;
justify-content: flex-start; /* Align items to the top */
}
.warning-sign {
font-weight: bold;
font-size: 1em;
margin-bottom: 10px;
}
.warning-text {
font-size: 1em;
}
.button {
display: inline-block;
padding: 10px 20px;
margin: 5px;
background-color: #FFA500;
color: white;
text-decoration: none;
border-radius: 5px;
}
.button span {
margin-right: 10px;
}
.button:hover {
background-color: #E69500;
}
.warning {
background-color: rgba(255, 165, 0, 0.2);
border-left: 5px solid #FFA500;
border-radius: 5px;
padding: 10px;
margin: 10px 0;
color: #000 !important;
}
.warning .title {
color: #FFA500;
font-weight: bold;
display: flex;
align-items: center;
}
.warning .title span {
margin-right: 10px;
}
.warning-banner {
display: flex;
align-items: center;
justify-content: start; /* Adjusted to align content to the start */
background-color: #FFCC80; /* Adjusted to a darker shade of orange for better contrast */
color: #333;
padding: 10px 30px;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); /* Lighter shadow for subtlety */
margin: 20px auto;
width: 95%; /* Adjust width as needed */
font-family: Helvetica, sans-serif;
}
.warning-icon {
font-size: 1.5em;
margin-right: 15px;
color: #E65100; /* Darker orange for the icon */
}
.warning-message {
font-size: 1em;
font-weight: bold;
flex: 1; /* Ensures message uses available space */
}
.warning-link {
color: #0056b3; /* Standard link color for visibility */
text-decoration: none; /* Removes underline */
}
.warning-link:hover {
text-decoration: underline; /* Adds underline on hover for better interaction */
}
</style>
<img src="https://data.matsworld.io/ucbresearch/deepaction.gif" style="width: 100%">
The DeepAction dataset contains over 3,000 videos generated by six text-to-video AI models, along with real videos matched in terms of the action depicted. These videos show people performing ordinary actions such as walking, running, and cooking. The AI models used to generate these videos include, in alphabetic order, AnimateDiff, CogVideoX5B, Pexels, RunwayML, StableDiffusion, Veo (pre-release version), and VideoPoet. Refer to our <a href='https://arxiv.org/abs/2412.00526'>our pre-print</a> for details.
<br>
## Getting Started
To get started, log into Hugging Face in your CLI environment, and run:
```python
from datasets import load_dataset
dataset = load_dataset("faridlab/deepaction_v1", trust_remote_code=True)
```
<br>
## Data
The data is structured into seven folders, with six folders corresponding to text-to-video AI models and one folder for real videos. Each of these folders has 100 subfolders corresponding to human action classes. All videos in a given subfolder were generated using the same prompt (see the list of prompts <a href='https://huggingface.co/datasets/faridlab/deepaction_v1/blob/main/captions.csv'>here</a>).
Included below are example videos generated using the prompt "a person taking a selfie". Note that, since each text-to-video AI model generates videos with different ratios and resolutions, these videos were normalized 512x512.
<table class="video-table">
<tr>
<td style="width: 50%;">
<video src="https://data.matsworld.io/ucbresearch/deepaction/Pexels.mp4" controls></video>
<p style="text-align: center;">Real</p>
</td>
<td style="width: 50%;">
<video src="https://data.matsworld.io/ucbresearch/deepaction/BDAnimateDiffLightning.mp4" controls ></video>
<p style="text-align: center;">AnimateDiff</p>
</td>
</tr>
<tr>
<td style="width: 50%;">
<video src="https://data.matsworld.io/ucbresearch/deepaction/CogVideoX5B.mp4" controls></video>
<p style="text-align: center;">CogVideoX5B</p>
</td>
<td style="width: 50%;">
<video src="https://data.matsworld.io/ucbresearch/deepaction/RunwayML.mp4" controls ></video>
<p style="text-align: center;">RunwayML</p>
</td>
</tr>
<tr>
<td style="width: 50%;">
<video src="https://data.matsworld.io/ucbresearch/deepaction/StableDiffusion.mp4" controls></video>
<p style="text-align: center;">StableDiffusion</p>
</td>
<td style="width: 50%;">
<video src="https://data.matsworld.io/ucbresearch/deepaction/Veo.mp4" controls ></video>
<p style="text-align: center;">Veo (pre-release version)</p>
</td>
</tr>
<tr>
<td style="width: 50%;">
<video src="https://data.matsworld.io/ucbresearch/deepaction/VideoPoet.mp4" controls></video>
<p style="text-align: center;">VideoPoet</p>
</td>
</tr>
</table>
<br>
## Licensing
The AI-generated videos (BDAnimateDiffLightning, CogVideoX5B, RunwayML, StableDiffusion, Veo, and VideoPoet folders) are released under <a href='https://creativecommons.org/licenses/by/4.0/deed.en'>the CC BY 4.0 license</a>. The real videos (Pexels folder) are released under <a href='https://www.pexels.com/license/'>the Pexels license</a>.
<br>
## Misc
Please use the following citation when referring to this dataset:
```bib
@misc{bohacek2024human,
title={Human Action CLIPS: Detecting AI-generated Human Motion},
author={Matyas Bohacek and Hany Farid},
year={2024},
eprint={2412.00526},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.00526},
}
```
This work was done during the first author's (Matyas Bohacek) internship at Google. |