--- license: mit task_categories: - visual-question-answering language: - en tags: - medical pretty_name: PathVQA paperswithcode_id: pathvqa size_categories: - 10K **Repository:** [PathVQA Official GitHub Repository](https://github.com/UCSD-AI4H/PathVQA)
**Paper:** [PathVQA: 30000+ Questions for Medical Visual Question Answering](https://arxiv.org/abs/2003.10286)
**Leaderboard:** [Papers with Code Leaderboard](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa) ### Dataset Summary The dataset was obtained from the updated Google Drive link shared by the authors on Feb 15, 2023, see the [commit](https://github.com/UCSD-AI4H/PathVQA/commit/117e7f4ef88a0e65b0e7f37b98a73d6237a3ceab) in the GitHub repository. This version of the dataset contains a total of 5,004 images and 32,795 question-answer pairs. Out of the 5,004 images, 4,289 images are referenced by a question-answer pair, while 715 images are not used. There are a few image-question-answer triplets which occur more than once in the same split (training, validation, test). After dropping the duplicate image-question-answer triplets, the dataset contains 32,632 question-answer pairs on 4,289 images. #### Supported Tasks and Leaderboards The PathVQA dataset has an active leaderboard on [Papers with Code](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa) where models are ranked based on three metrics: "Yes/No Accuracy", "Free-form accuracy" and "Overall accuracy". "Yes/No Accuracy" is the accuracy of a model's generated answers for the subset of binary "yes/no" questions. "Free-form accuracy" is the accuracy of a model's generated answers for the subset of open-ended questions. "Overall accuracy" is the accuracy of a model's generated answers across all questions. #### Languages The question-answer pairs are in English. ## Dataset Structure ### Data Instances Each instance consists of an image-question-answer triplet. ``` { 'image': , 'question': 'Where are liver stem cells (oval cells) located?', 'answer': 'in the canals of hering' } ``` ### Data Fields - `'image'`: the image referenced by the question-answer pair. - `'question'`: the question about the image. - `'answer'`: the expected answer. ### Data Splits The dataset is randomly split into training, validation and test. The split is provided directly by the authors. | | Training Set | Validation Set | Test Set | |-------------------------|:------------:|:--------------:|:--------:| | QAs |19,654 |6,259 |6,719 | | Images |2,599 |832 |858 | ## Additional Information ### Licensing Information The authors have released the dataset under the [MIT License](https://github.com/UCSD-AI4H/PathVQA/blob/master/LICENSE). ### Citation Information ``` @article{he2020pathvqa, title={PathVQA: 30000+ Questions for Medical Visual Question Answering}, author={He, Xuehai and Zhang, Yichen and Mou, Luntian and Xing, Eric and Xie, Pengtao}, journal={arXiv preprint arXiv:2003.10286}, year={2020} } ```