Loader script
Browse files- swahili-safi.py +71 -0
swahili-safi.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Cleaned dataset for Swahili Language Modeling"""
|
2 |
+
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
|
7 |
+
_CITATION = """\
|
8 |
+
@InProceedings{huggingface:flax-community,
|
9 |
+
title = Cleaned dataset for Swahili Language Modeling,
|
10 |
+
authors={Fitsum, Alok, Patrick},
|
11 |
+
year={2021},
|
12 |
+
link = https://huggingface.co/datasets/flax-community/swahili-safi
|
13 |
+
}
|
14 |
+
"""
|
15 |
+
|
16 |
+
_DESCRIPTION = """Cleaned dataset for Swahili Language Modeling"""
|
17 |
+
_HOMEPAGE = "https://huggingface.co/datasets/flax-community/swahili-safi"
|
18 |
+
_LICENSE = "Attribution 4.0 International"
|
19 |
+
_REPO_URL = "https://huggingface.co/datasets/flax-community/swahili-safi/resolve/main/"
|
20 |
+
_TRAIN= [_REPO_URL + file_name for file_name in [
|
21 |
+
"data/train.txt",
|
22 |
+
]]
|
23 |
+
|
24 |
+
|
25 |
+
class SwahiliSafi(datasets.GeneratorBasedBuilder):
|
26 |
+
"""The Swahili dataset for language modeling"""
|
27 |
+
|
28 |
+
VERSION = datasets.Version("1.0.0")
|
29 |
+
BUILDER_CONFIGS = [
|
30 |
+
datasets.BuilderConfig(
|
31 |
+
name="swahili-safi",
|
32 |
+
version=VERSION,
|
33 |
+
description="Language modeling dataset for Swahili"
|
34 |
+
),
|
35 |
+
]
|
36 |
+
|
37 |
+
def _info(self):
|
38 |
+
return datasets.DatasetInfo(
|
39 |
+
description=_DESCRIPTION,
|
40 |
+
features=datasets.Features(
|
41 |
+
{
|
42 |
+
"text": datasets.Value("string"),
|
43 |
+
}
|
44 |
+
),
|
45 |
+
supervised_keys=None,
|
46 |
+
homepage=_HOMEPAGE,
|
47 |
+
license=_LICENSE,
|
48 |
+
citation=_CITATION,
|
49 |
+
)
|
50 |
+
|
51 |
+
def _split_generators(self, dl_manager):
|
52 |
+
"""Returns SplitGenerators."""
|
53 |
+
train_files = dl_manager.download(_TRAIN)
|
54 |
+
return [
|
55 |
+
datasets.SplitGenerator(
|
56 |
+
name=datasets.Split.TRAIN,
|
57 |
+
gen_kwargs={
|
58 |
+
"data_files": train_files,
|
59 |
+
"split": "train",
|
60 |
+
},
|
61 |
+
)
|
62 |
+
]
|
63 |
+
|
64 |
+
def _generate_examples(self, data_files):
|
65 |
+
"""Yields examples."""
|
66 |
+
_id = 0
|
67 |
+
for filepath in data_files:
|
68 |
+
with open(filepath, mode="r", encoding="utf-8") as f:
|
69 |
+
for line in f:
|
70 |
+
yield _id, {"text": line.strip()},
|
71 |
+
_id += 1
|