Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
adamnarozniak commited on
Commit
2d738f5
1 Parent(s): 6c14bd4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +275 -114
README.md CHANGED
@@ -1,114 +1,275 @@
1
- ---
2
- license: other
3
- license_name: celeba-dataset-release-agreement
4
- license_link: LICENSE
5
- dataset_info:
6
- config_name: img_align+identity+attr
7
- features:
8
- - name: image
9
- dtype: image
10
- - name: celeb_id
11
- dtype: int64
12
- - name: 5_o_Clock_Shadow
13
- dtype: bool
14
- - name: Arched_Eyebrows
15
- dtype: bool
16
- - name: Attractive
17
- dtype: bool
18
- - name: Bags_Under_Eyes
19
- dtype: bool
20
- - name: Bald
21
- dtype: bool
22
- - name: Bangs
23
- dtype: bool
24
- - name: Big_Lips
25
- dtype: bool
26
- - name: Big_Nose
27
- dtype: bool
28
- - name: Black_Hair
29
- dtype: bool
30
- - name: Blond_Hair
31
- dtype: bool
32
- - name: Blurry
33
- dtype: bool
34
- - name: Brown_Hair
35
- dtype: bool
36
- - name: Bushy_Eyebrows
37
- dtype: bool
38
- - name: Chubby
39
- dtype: bool
40
- - name: Double_Chin
41
- dtype: bool
42
- - name: Eyeglasses
43
- dtype: bool
44
- - name: Goatee
45
- dtype: bool
46
- - name: Gray_Hair
47
- dtype: bool
48
- - name: Heavy_Makeup
49
- dtype: bool
50
- - name: High_Cheekbones
51
- dtype: bool
52
- - name: Male
53
- dtype: bool
54
- - name: Mouth_Slightly_Open
55
- dtype: bool
56
- - name: Mustache
57
- dtype: bool
58
- - name: Narrow_Eyes
59
- dtype: bool
60
- - name: No_Beard
61
- dtype: bool
62
- - name: Oval_Face
63
- dtype: bool
64
- - name: Pale_Skin
65
- dtype: bool
66
- - name: Pointy_Nose
67
- dtype: bool
68
- - name: Receding_Hairline
69
- dtype: bool
70
- - name: Rosy_Cheeks
71
- dtype: bool
72
- - name: Sideburns
73
- dtype: bool
74
- - name: Smiling
75
- dtype: bool
76
- - name: Straight_Hair
77
- dtype: bool
78
- - name: Wavy_Hair
79
- dtype: bool
80
- - name: Wearing_Earrings
81
- dtype: bool
82
- - name: Wearing_Hat
83
- dtype: bool
84
- - name: Wearing_Lipstick
85
- dtype: bool
86
- - name: Wearing_Necklace
87
- dtype: bool
88
- - name: Wearing_Necktie
89
- dtype: bool
90
- - name: Young
91
- dtype: bool
92
- splits:
93
- - name: train
94
- num_bytes: 9333552813.19
95
- num_examples: 162770
96
- - name: valid
97
- num_bytes: 1138445362.203
98
- num_examples: 19867
99
- - name: test
100
- num_bytes: 1204311503.112
101
- num_examples: 19962
102
- download_size: 11734694689
103
- dataset_size: 11676309678.505001
104
- configs:
105
- - config_name: img_align+identity+attr
106
- data_files:
107
- - split: train
108
- path: img_align+identity+attr/train-*
109
- - split: valid
110
- path: img_align+identity+attr/valid-*
111
- - split: test
112
- path: img_align+identity+attr/test-*
113
- default: true
114
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: celeba-dataset-release-agreement
4
+ license_link: LICENSE
5
+ dataset_info:
6
+ config_name: img_align+identity+attr
7
+ features:
8
+ - name: image
9
+ dtype: image
10
+ - name: celeb_id
11
+ dtype: int64
12
+ - name: 5_o_Clock_Shadow
13
+ dtype: bool
14
+ - name: Arched_Eyebrows
15
+ dtype: bool
16
+ - name: Attractive
17
+ dtype: bool
18
+ - name: Bags_Under_Eyes
19
+ dtype: bool
20
+ - name: Bald
21
+ dtype: bool
22
+ - name: Bangs
23
+ dtype: bool
24
+ - name: Big_Lips
25
+ dtype: bool
26
+ - name: Big_Nose
27
+ dtype: bool
28
+ - name: Black_Hair
29
+ dtype: bool
30
+ - name: Blond_Hair
31
+ dtype: bool
32
+ - name: Blurry
33
+ dtype: bool
34
+ - name: Brown_Hair
35
+ dtype: bool
36
+ - name: Bushy_Eyebrows
37
+ dtype: bool
38
+ - name: Chubby
39
+ dtype: bool
40
+ - name: Double_Chin
41
+ dtype: bool
42
+ - name: Eyeglasses
43
+ dtype: bool
44
+ - name: Goatee
45
+ dtype: bool
46
+ - name: Gray_Hair
47
+ dtype: bool
48
+ - name: Heavy_Makeup
49
+ dtype: bool
50
+ - name: High_Cheekbones
51
+ dtype: bool
52
+ - name: Male
53
+ dtype: bool
54
+ - name: Mouth_Slightly_Open
55
+ dtype: bool
56
+ - name: Mustache
57
+ dtype: bool
58
+ - name: Narrow_Eyes
59
+ dtype: bool
60
+ - name: No_Beard
61
+ dtype: bool
62
+ - name: Oval_Face
63
+ dtype: bool
64
+ - name: Pale_Skin
65
+ dtype: bool
66
+ - name: Pointy_Nose
67
+ dtype: bool
68
+ - name: Receding_Hairline
69
+ dtype: bool
70
+ - name: Rosy_Cheeks
71
+ dtype: bool
72
+ - name: Sideburns
73
+ dtype: bool
74
+ - name: Smiling
75
+ dtype: bool
76
+ - name: Straight_Hair
77
+ dtype: bool
78
+ - name: Wavy_Hair
79
+ dtype: bool
80
+ - name: Wearing_Earrings
81
+ dtype: bool
82
+ - name: Wearing_Hat
83
+ dtype: bool
84
+ - name: Wearing_Lipstick
85
+ dtype: bool
86
+ - name: Wearing_Necklace
87
+ dtype: bool
88
+ - name: Wearing_Necktie
89
+ dtype: bool
90
+ - name: Young
91
+ dtype: bool
92
+ splits:
93
+ - name: train
94
+ num_bytes: 9333552813.19
95
+ num_examples: 162770
96
+ - name: valid
97
+ num_bytes: 1138445362.203
98
+ num_examples: 19867
99
+ - name: test
100
+ num_bytes: 1204311503.112
101
+ num_examples: 19962
102
+ download_size: 11734694689
103
+ dataset_size: 11676309678.505001
104
+ configs:
105
+ - config_name: img_align+identity+attr
106
+ data_files:
107
+ - split: train
108
+ path: img_align+identity+attr/train-*
109
+ - split: valid
110
+ path: img_align+identity+attr/valid-*
111
+ - split: test
112
+ path: img_align+identity+attr/test-*
113
+ default: true
114
+ ---
115
+
116
+ # Dataset Card for Dataset Name
117
+
118
+ CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations.
119
+ The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including:
120
+
121
+ * 10,177 number of identities,
122
+
123
+ * 202,599 number of face images, and
124
+
125
+ * 5 landmark locations, 40 binary attributes annotations per image.
126
+
127
+ The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face recognition, face detection, landmark (or facial part) localization, and face editing & synthesis.
128
+
129
+ This dataset is used in Federated Learning research because of the possibility of dividing it according to the identities of the celebrities.
130
+ This repository enables us to use it in this context due to the existence of celebrity id (`celeb_id`) beside the images and attributes.
131
+
132
+ ## Dataset Details
133
+ This dataset was created using the following data (all of which came from the original source of the dataset):
134
+ * aligned and cropped images (in PNG format),
135
+ * celebrities annotations,
136
+ * list attributes.
137
+
138
+ The dataset was divided according to the split specified by the authors (note the celebrities do not overlap between the splits).
139
+
140
+
141
+ ### Dataset Sources
142
+
143
+ - **Website:** https://liuziwei7.github.io/projects/FaceAttributes.html and https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
144
+ - **Paper:** [Deep Learning Face Attributes in the Wild](https://arxiv.org/abs/1411.7766)
145
+
146
+ ## Uses
147
+
148
+ In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
149
+
150
+ To partition the dataset, do the following.
151
+ 1. Install the package.
152
+ ```bash
153
+ pip install flwr-datasets[vision]
154
+ ```
155
+ 2. Use the HF Dataset under the hood in Flower Datasets.
156
+ ```python
157
+ from flwr_datasets import FederatedDataset
158
+ from flwr_datasets.partitioner import NaturalIdPartitioner
159
+
160
+ fds = FederatedDataset(
161
+ dataset="flwrlabs/celeba",
162
+ partitioners={"train": NaturalIdPartitioner(partition_by="celeb_id")}
163
+ )
164
+ partition = fds.load_partition(partition_id=0)
165
+ ```
166
+
167
+ E.g., if you are following the LEAF paper, the target is the `Smiling` column.
168
+
169
+
170
+ ## Dataset Structure
171
+ ### Data Instances
172
+ The first instance of the train split is presented below:
173
+ ```
174
+ {'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=178x218>,
175
+ 'celeb_id': 1,
176
+ '5_o_Clock_Shadow': True,
177
+ 'Arched_Eyebrows': False,
178
+ 'Attractive': False,
179
+ 'Bags_Under_Eyes': True,
180
+ 'Bald': False,
181
+ 'Bangs': False,
182
+ 'Big_Lips': False,
183
+ 'Big_Nose': False,
184
+ 'Black_Hair': False,
185
+ 'Blond_Hair': True,
186
+ 'Blurry': False,
187
+ 'Brown_Hair': True,
188
+ 'Bushy_Eyebrows': False,
189
+ 'Chubby': False,
190
+ 'Double_Chin': False,
191
+ 'Eyeglasses': False,
192
+ 'Goatee': False,
193
+ 'Gray_Hair': False,
194
+ 'Heavy_Makeup': False,
195
+ 'High_Cheekbones': True,
196
+ 'Male': True,
197
+ 'Mouth_Slightly_Open': True,
198
+ 'Mustache': False,
199
+ 'Narrow_Eyes': True,
200
+ 'No_Beard': True,
201
+ 'Oval_Face': False,
202
+ 'Pale_Skin': False,
203
+ 'Pointy_Nose': True,
204
+ 'Receding_Hairline': False,
205
+ 'Rosy_Cheeks': False,
206
+ 'Sideburns': False,
207
+ 'Smiling': True,
208
+ 'Straight_Hair': False,
209
+ 'Wavy_Hair': False,
210
+ 'Wearing_Earrings': False,
211
+ 'Wearing_Hat': False,
212
+ 'Wearing_Lipstick': False,
213
+ 'Wearing_Necklace': False,
214
+ 'Wearing_Necktie': False,
215
+ 'Young': False}
216
+ ```
217
+
218
+ ### Data Splits
219
+
220
+ ```DatasetDict({
221
+ train: Dataset({
222
+ features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
223
+ num_rows: 162770
224
+ })
225
+ valid: Dataset({
226
+ features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
227
+ num_rows: 19867
228
+ })
229
+ test: Dataset({
230
+ features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
231
+ num_rows: 19962
232
+ })
233
+ })
234
+ ```
235
+
236
+ ## Citation
237
+ When working with the CelebA dataset, please cite the original paper.
238
+ If you're using this dataset with Flower Datasets and Flower, you can cite Flower.
239
+
240
+ **BibTeX:**
241
+ ```
242
+ @inproceedings{liu2015faceattributes,
243
+ title = {Deep Learning Face Attributes in the Wild},
244
+ author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
245
+ booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
246
+ month = {December},
247
+ year = {2015}
248
+ }
249
+ ```
250
+ ```
251
+ @article{DBLP:journals/corr/abs-2007-14390,
252
+ author = {Daniel J. Beutel and
253
+ Taner Topal and
254
+ Akhil Mathur and
255
+ Xinchi Qiu and
256
+ Titouan Parcollet and
257
+ Nicholas D. Lane},
258
+ title = {Flower: {A} Friendly Federated Learning Research Framework},
259
+ journal = {CoRR},
260
+ volume = {abs/2007.14390},
261
+ year = {2020},
262
+ url = {https://arxiv.org/abs/2007.14390},
263
+ eprinttype = {arXiv},
264
+ eprint = {2007.14390},
265
+ timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
266
+ biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
267
+ bibsource = {dblp computer science bibliography, https://dblp.org}
268
+ }
269
+ ```
270
+
271
+
272
+ ## Dataset Card Contact
273
+
274
+ For questions about the dataset, please contact Ziwei Liu and Ping Luo.
275
+ In case of any doubts about the dataset preparation, please contact [Flower Labs](https://flower.ai/).