Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
File size: 13,681 Bytes
31a153c
d4635b4
 
 
 
2122f7b
7fec6c9
2122f7b
1948c75
d4635b4
 
 
 
 
 
 
 
 
 
 
64c8020
3d1d4a0
e8103d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1d4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8103d5
 
 
 
3d1d4a0
 
 
 
 
 
e8103d5
 
 
 
 
 
 
 
 
 
 
 
3d1d4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
e8103d5
 
3d1d4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64c8020
 
3d1d4a0
 
e8103d5
3d1d4a0
e8103d5
 
 
 
 
 
 
 
 
 
 
 
 
31a153c
 
d4635b4
31a153c
 
 
 
f2e4bed
31a153c
 
 
 
f2e4bed
31a153c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0defb13
31a153c
 
efe2c92
 
31a153c
4680ede
 
 
31a153c
0defb13
31a153c
 
 
 
 
 
 
f2e4bed
31a153c
efe2c92
31a153c
0defb13
31a153c
efe2c92
31a153c
0defb13
31a153c
0defb13
31a153c
4680ede
 
 
31a153c
efe2c92
31a153c
efe2c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a153c
 
0defb13
31a153c
 
 
 
 
efe2c92
 
 
 
 
 
 
 
 
 
 
 
 
31a153c
 
 
 
efe2c92
 
 
 
 
 
 
 
 
31a153c
 
 
 
 
 
 
 
f2e4bed
31a153c
d4635b4
 
 
 
31a153c
0defb13
31a153c
0defb13
31a153c
 
 
0defb13
31a153c
f2e4bed
 
 
 
 
 
31a153c
 
0defb13
31a153c
f2e4bed
 
 
 
 
 
31a153c
 
0defb13
31a153c
 
 
0defb13
31a153c
0defb13
31a153c
 
 
0defb13
31a153c
 
 
0defb13
31a153c
 
 
0defb13
31a153c
0defb13
31a153c
 
 
0defb13
31a153c
d4635b4
31a153c
0defb13
31a153c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1d4a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: natural-questions
pretty_name: Natural Questions
dataset_info:
- config_name: default
  features:
  - name: id
    dtype: string
  - name: document
    struct:
    - name: html
      dtype: string
    - name: title
      dtype: string
    - name: tokens
      sequence:
      - name: end_byte
        dtype: int64
      - name: is_html
        dtype: bool
      - name: start_byte
        dtype: int64
      - name: token
        dtype: string
    - name: url
      dtype: string
  - name: question
    struct:
    - name: text
      dtype: string
    - name: tokens
      sequence: string
  - name: long_answer_candidates
    sequence:
    - name: end_byte
      dtype: int64
    - name: end_token
      dtype: int64
    - name: start_byte
      dtype: int64
    - name: start_token
      dtype: int64
    - name: top_level
      dtype: bool
  - name: annotations
    sequence:
    - name: id
      dtype: string
    - name: long_answer
      struct:
      - name: candidate_index
        dtype: int64
      - name: end_byte
        dtype: int64
      - name: end_token
        dtype: int64
      - name: start_byte
        dtype: int64
      - name: start_token
        dtype: int64
    - name: short_answers
      sequence:
      - name: end_byte
        dtype: int64
      - name: end_token
        dtype: int64
      - name: start_byte
        dtype: int64
      - name: start_token
        dtype: int64
      - name: text
        dtype: string
    - name: yes_no_answer
      dtype:
        class_label:
          names:
            '0': 'NO'
            '1': 'YES'
  splits:
  - name: train
    num_bytes: 143039948860
    num_examples: 307373
  - name: validation
    num_bytes: 3451288641
    num_examples: 7830
  download_size: 56843626971
  dataset_size: 146491237501
- config_name: dev
  features:
  - name: id
    dtype: string
  - name: document
    struct:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: html
      dtype: string
    - name: tokens
      sequence:
      - name: token
        dtype: string
      - name: is_html
        dtype: bool
      - name: start_byte
        dtype: int64
      - name: end_byte
        dtype: int64
  - name: question
    struct:
    - name: text
      dtype: string
    - name: tokens
      sequence: string
  - name: long_answer_candidates
    sequence:
    - name: start_token
      dtype: int64
    - name: end_token
      dtype: int64
    - name: start_byte
      dtype: int64
    - name: end_byte
      dtype: int64
    - name: top_level
      dtype: bool
  - name: annotations
    sequence:
    - name: id
      dtype: string
    - name: long_answer
      struct:
      - name: start_token
        dtype: int64
      - name: end_token
        dtype: int64
      - name: start_byte
        dtype: int64
      - name: end_byte
        dtype: int64
      - name: candidate_index
        dtype: int64
    - name: short_answers
      sequence:
      - name: start_token
        dtype: int64
      - name: end_token
        dtype: int64
      - name: start_byte
        dtype: int64
      - name: end_byte
        dtype: int64
      - name: text
        dtype: string
    - name: yes_no_answer
      dtype:
        class_label:
          names:
            '0': 'NO'
            '1': 'YES'
  splits:
  - name: validation
    num_bytes: 3451288639
    num_examples: 7830
  download_size: 1337126358
  dataset_size: 3451288639
configs:
- config_name: default
  data_files:
  - split: train
    path: default/train-*
  - split: validation
    path: default/validation-*
- config_name: dev
  data_files:
  - split: validation
    path: dev/validation-*
---

# Dataset Card for Natural Questions

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://ai.google.com/research/NaturalQuestions/dataset](https://ai.google.com/research/NaturalQuestions/dataset)
- **Repository:** [https://github.com/google-research-datasets/natural-questions](https://github.com/google-research-datasets/natural-questions)
- **Paper:** [https://research.google/pubs/pub47761/](https://research.google/pubs/pub47761/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 45.07 GB
- **Size of the generated dataset:** 99.80 GB
- **Total amount of disk used:** 144.87 GB

### Dataset Summary

The NQ corpus contains questions from real users, and it requires QA systems to
read and comprehend an entire Wikipedia article that may or may not contain the
answer to the question. The inclusion of real user questions, and the
requirement that solutions should read an entire page to find the answer, cause
NQ to be a more realistic and challenging task than prior QA datasets.

### Supported Tasks and Leaderboards

[https://ai.google.com/research/NaturalQuestions](https://ai.google.com/research/NaturalQuestions)

### Languages

en

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 45.07 GB
- **Size of the generated dataset:** 99.80 GB
- **Total amount of disk used:** 144.87 GB

An example of 'train' looks as follows. This is a toy example.
```
{
  "id": "797803103760793766",
  "document": {
    "title": "Google",
    "url": "http://www.wikipedia.org/Google",
    "html": "<html><body><h1>Google Inc.</h1><p>Google was founded in 1998 By:<ul><li>Larry</li><li>Sergey</li></ul></p></body></html>",
    "tokens":[
      {"token": "<h1>", "start_byte": 12, "end_byte": 16, "is_html": True},
      {"token": "Google", "start_byte": 16, "end_byte": 22, "is_html": False},
      {"token": "inc", "start_byte": 23, "end_byte": 26, "is_html": False},
      {"token": ".", "start_byte": 26, "end_byte": 27, "is_html": False},
      {"token": "</h1>", "start_byte": 27, "end_byte": 32, "is_html": True},
      {"token": "<p>", "start_byte": 32, "end_byte": 35, "is_html": True},
      {"token": "Google", "start_byte": 35, "end_byte": 41, "is_html": False},
      {"token": "was", "start_byte": 42, "end_byte": 45, "is_html": False},
      {"token": "founded", "start_byte": 46, "end_byte": 53, "is_html": False},
      {"token": "in", "start_byte": 54, "end_byte": 56, "is_html": False},
      {"token": "1998", "start_byte": 57, "end_byte": 61, "is_html": False},
      {"token": "by", "start_byte": 62, "end_byte": 64, "is_html": False},
      {"token": ":", "start_byte": 64, "end_byte": 65, "is_html": False},
      {"token": "<ul>", "start_byte": 65, "end_byte": 69, "is_html": True},
      {"token": "<li>", "start_byte": 69, "end_byte": 73, "is_html": True},
      {"token": "Larry", "start_byte": 73, "end_byte": 78, "is_html": False},
      {"token": "</li>", "start_byte": 78, "end_byte": 83, "is_html": True},
      {"token": "<li>", "start_byte": 83, "end_byte": 87, "is_html": True},
      {"token": "Sergey", "start_byte": 87, "end_byte": 92, "is_html": False},
      {"token": "</li>", "start_byte": 92, "end_byte": 97, "is_html": True},
      {"token": "</ul>", "start_byte": 97, "end_byte": 102, "is_html": True},
      {"token": "</p>", "start_byte": 102, "end_byte": 106, "is_html": True}
    ],
  },
  "question" :{
    "text": "who founded google",
    "tokens": ["who", "founded", "google"]
  },
  "long_answer_candidates": [
    {"start_byte": 32, "end_byte": 106, "start_token": 5, "end_token": 22, "top_level": True},
    {"start_byte": 65, "end_byte": 102, "start_token": 13, "end_token": 21, "top_level": False},
    {"start_byte": 69, "end_byte": 83, "start_token": 14, "end_token": 17, "top_level": False},
    {"start_byte": 83, "end_byte": 92, "start_token": 17, "end_token": 20 , "top_level": False}
  ],
  "annotations": [{
    "id": "6782080525527814293",
    "long_answer": {"start_byte": 32, "end_byte": 106, "start_token": 5, "end_token": 22, "candidate_index": 0},
    "short_answers": [
      {"start_byte": 73, "end_byte": 78, "start_token": 15, "end_token": 16, "text": "Larry"},
      {"start_byte": 87, "end_byte": 92, "start_token": 18, "end_token": 19, "text": "Sergey"}
    ],
    "yes_no_answer": -1
  }]
}
```

### Data Fields

The data fields are the same among all splits.

#### default
- `id`: a `string` feature.
- `document` a dictionary feature containing:
  - `title`: a `string` feature.
  - `url`: a `string` feature.
  - `html`: a `string` feature.
  - `tokens`: a dictionary feature containing:
    - `token`: a `string` feature.
    - `is_html`: a `bool` feature.
    - `start_byte`: a `int64` feature.
    - `end_byte`: a `int64` feature.
- `question`: a dictionary feature containing:
  - `text`: a `string` feature.
  - `tokens`: a `list` of `string` features.
- `long_answer_candidates`: a dictionary feature containing:
  - `start_token`: a `int64` feature.
  - `end_token`: a `int64` feature.
  - `start_byte`: a `int64` feature.
  - `end_byte`: a `int64` feature.
  - `top_level`: a `bool` feature.
- `annotations`: a dictionary feature containing:
  - `id`: a `string` feature.
  - `long_answers`: a dictionary feature containing:
    - `start_token`: a `int64` feature.
    - `end_token`: a `int64` feature.
    - `start_byte`: a `int64` feature.
    - `end_byte`: a `int64` feature.
    - `candidate_index`: a `int64` feature.
  - `short_answers`: a dictionary feature containing:
    - `start_token`: a `int64` feature.
    - `end_token`: a `int64` feature.
    - `start_byte`: a `int64` feature.
    - `end_byte`: a `int64` feature.
    - `text`: a `string` feature.
  - `yes_no_answer`: a classification label, with possible values including `NO` (0), `YES` (1).

### Data Splits

| name    |  train | validation |
|---------|-------:|-----------:|
| default | 307373 |       7830 |
| dev     |    N/A |       7830 |

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[Creative Commons Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/).

### Citation Information

```

@article{47761,
title	= {Natural Questions: a Benchmark for Question Answering Research},
author	= {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year	= {2019},
journal	= {Transactions of the Association of Computational Linguistics}
}

```


### Contributions

Thanks to [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq) for adding this dataset.