|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SGD: The Schema Guided Dialogue dataet""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{aaai/RastogiZSGK20, |
|
author = {Abhinav Rastogi and |
|
Xiaoxue Zang and |
|
Srinivas Sunkara and |
|
Raghav Gupta and |
|
Pranav Khaitan}, |
|
title = {Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided |
|
Dialogue Dataset}, |
|
booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI} |
|
2020, The Thirty-Second Innovative Applications of Artificial Intelligence |
|
Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational |
|
Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA, |
|
February 7-12, 2020}, |
|
pages = {8689--8696}, |
|
publisher = {{AAAI} Press}, |
|
year = {2020}, |
|
url = {https://aaai.org/ojs/index.php/AAAI/article/view/6394} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Schema-Guided Dialogue dataset (SGD) was developed for the Dialogue State Tracking task of the Eights Dialogue Systems Technology Challenge (dstc8). |
|
The SGD dataset consists of over 18k annotated multi-domain, task-oriented conversations between a human and a virtual assistant. |
|
These conversations involve interactions with services and APIs spanning 17 domains, ranging from banks and events to media, calendar, travel, and weather. |
|
For most of these domains, the SGD dataset contains multiple different APIs, many of which have overlapping functionalities but different interfaces, |
|
which reflects common real-world scenarios. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/google-research-datasets/dstc8-schema-guided-dialogue" |
|
|
|
_LICENSE = "CC BY-SA 4.0" |
|
|
|
_URL_LIST = [ |
|
( |
|
"train_schema.json", |
|
"https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/raw/master/train/schema.json", |
|
), |
|
( |
|
"dev_schema.json", |
|
"https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/raw/master/dev/schema.json", |
|
), |
|
( |
|
"test_schema.json", |
|
"https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/raw/master/test/schema.json", |
|
), |
|
] |
|
_URL_LIST += [ |
|
( |
|
f"train_dialogues_{i:03d}.json", |
|
f"https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/raw/master/train/dialogues_{i:03d}.json", |
|
) |
|
for i in range(1, 128) |
|
] |
|
_URL_LIST += [ |
|
( |
|
f"dev_dialogues_{i:03d}.json", |
|
f"https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/raw/master/dev/dialogues_{i:03d}.json", |
|
) |
|
for i in range(1, 21) |
|
] |
|
_URL_LIST += [ |
|
( |
|
f"test_dialogues_{i:03d}.json", |
|
f"https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/raw/master/test/dialogues_{i:03d}.json", |
|
) |
|
for i in range(1, 35) |
|
] |
|
|
|
_URLs = dict(_URL_LIST) |
|
|
|
_USER_ACTS = [ |
|
"INFORM_INTENT", |
|
"NEGATE_INTENT", |
|
"AFFIRM_INTENT", |
|
"INFORM", |
|
"REQUEST", |
|
"AFFIRM", |
|
"NEGATE", |
|
"SELECT", |
|
"REQUEST_ALTS", |
|
"THANK_YOU", |
|
"GOODBYE", |
|
] |
|
|
|
_SYSTEM_ACTS = [ |
|
"INFORM", |
|
"REQUEST", |
|
"CONFIRM", |
|
"OFFER", |
|
"NOTIFY_SUCCESS", |
|
"NOTIFY_FAILURE", |
|
"INFORM_COUNT", |
|
"OFFER_INTENT", |
|
"REQ_MORE", |
|
"GOODBYE", |
|
] |
|
|
|
_ALL_ACTS = sorted(list(set(_USER_ACTS + _SYSTEM_ACTS))) |
|
|
|
|
|
class SchemaGuidedDstc8(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="dialogues", description="The dataset of annotated dialogues."), |
|
datasets.BuilderConfig(name="schema", description="The schemas corresponding to the API calls."), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "dialogues" |
|
|
|
def _info(self): |
|
if self.config.name == "schema": |
|
features = datasets.Features( |
|
{ |
|
"service_name": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"slots": datasets.Sequence( |
|
{ |
|
"name": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"is_categorical": datasets.Value("bool"), |
|
"possible_values": datasets.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
"intents": datasets.Sequence( |
|
{ |
|
"name": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"is_transactional": datasets.Value("bool"), |
|
"required_slots": datasets.Sequence(datasets.Value("string")), |
|
|
|
"optional_slots": datasets.Sequence( |
|
{ |
|
"slot_name": datasets.Value("string"), |
|
"slot_value": datasets.Value("string"), |
|
} |
|
), |
|
"result_slots": datasets.Sequence(datasets.Value("string")), |
|
}, |
|
), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"dialogue_id": datasets.Value("string"), |
|
"services": datasets.Sequence(datasets.Value("string")), |
|
"turns": datasets.Sequence( |
|
{ |
|
"speaker": datasets.ClassLabel(names=["USER", "SYSTEM"]), |
|
"utterance": datasets.Value("string"), |
|
"frames": datasets.Sequence( |
|
{ |
|
"service": datasets.Value("string"), |
|
"slots": datasets.Sequence( |
|
{ |
|
"slot": datasets.Value("string"), |
|
"start": datasets.Value("int32"), |
|
"exclusive_end": datasets.Value("int32"), |
|
} |
|
), |
|
|
|
"state": { |
|
"active_intent": datasets.Value("string"), |
|
"requested_slots": datasets.Sequence(datasets.Value("string")), |
|
|
|
"slot_values": datasets.Sequence( |
|
{ |
|
"slot_name": datasets.Value("string"), |
|
"slot_value_list": datasets.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
}, |
|
"actions": datasets.Sequence( |
|
{ |
|
"act": datasets.ClassLabel(names=_ALL_ACTS), |
|
|
|
"slot": datasets.Value("string"), |
|
|
|
"canonical_values": datasets.Sequence(datasets.Value("string")), |
|
|
|
"values": datasets.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
|
|
"service_results": datasets.Sequence( |
|
|
|
{ |
|
"service_results_list": datasets.Sequence( |
|
|
|
{ |
|
"service_slot_name": datasets.Value("string"), |
|
"service_canonical_value": datasets.Value("string"), |
|
} |
|
) |
|
} |
|
), |
|
|
|
"service_call": { |
|
"method": datasets.Value("string"), |
|
|
|
"parameters": datasets.Sequence( |
|
{ |
|
"parameter_slot_name": datasets.Value("string"), |
|
"parameter_canonical_value": datasets.Value("string"), |
|
} |
|
), |
|
}, |
|
} |
|
), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_files = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=spl_enum, |
|
gen_kwargs={ |
|
"filepaths": data_files, |
|
"split": spl, |
|
}, |
|
) |
|
for spl, spl_enum in [ |
|
("train", datasets.Split.TRAIN), |
|
("dev", datasets.Split.VALIDATION), |
|
("test", datasets.Split.TEST), |
|
] |
|
] |
|
|
|
def _generate_examples(self, filepaths, split): |
|
id_ = -1 |
|
file_list = [fpath for fname, fpath in filepaths.items() if fname.startswith(f"{split}_{self.config.name}")] |
|
for filepath in file_list: |
|
examples = json.load(open(filepath, encoding="utf-8")) |
|
for example in examples: |
|
id_ += 1 |
|
if self.config.name == "schema": |
|
example["intents"] = example.get("intents", []) |
|
for intent in example["intents"]: |
|
optional_slots = intent.get("optional_slots", {}) |
|
intent["optional_slots"] = { |
|
"slot_name": list(optional_slots.keys()), |
|
"slot_value": list(optional_slots.values()), |
|
} |
|
else: |
|
for turn in example["turns"]: |
|
for frame in turn["frames"]: |
|
|
|
frame["state"] = frame.get( |
|
"state", |
|
{ |
|
"active_intent": "", |
|
"requested_slots": [], |
|
"slot_values": {}, |
|
}, |
|
) |
|
|
|
slot_values_dict = frame["state"].get("slot_values", {}) |
|
frame["state"]["slot_values"] = { |
|
"slot_name": list(slot_values_dict.keys()), |
|
"slot_value_list": list(slot_values_dict.values()), |
|
} |
|
|
|
for action in frame["actions"]: |
|
action["slot"] = action.get("slot", "") |
|
action["canonical_values"] = action.get("canonical_values", []) |
|
action["values"] = action.get("values", []) |
|
|
|
service_results = [] |
|
for result in frame.get("service_results", []): |
|
service_results += [ |
|
{ |
|
"service_slot_name": list(result.keys()), |
|
"service_canonical_value": list(result.values()), |
|
} |
|
] |
|
frame["service_results"] = { |
|
"service_results_list": service_results, |
|
} |
|
|
|
frame["service_call"] = frame.get( |
|
"service_call", |
|
{ |
|
"method": "", |
|
"parameters": {}, |
|
}, |
|
) |
|
parameters_dict = frame["service_call"].get("parameters", {}) |
|
frame["service_call"]["parameters"] = { |
|
"parameter_slot_name": list(parameters_dict.keys()), |
|
"parameter_canonical_value": list(parameters_dict.values()), |
|
} |
|
yield id_, example |
|
|