system HF staff commited on
Commit
3e83a76
·
0 Parent(s):

Update files from the datasets library (from 1.8.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.8.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - found
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - code
8
+ licenses:
9
+ - other-C-UDA
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1M<n<10M
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - semantic-similarity-classification
20
+ ---
21
+ # Dataset Card for "code_x_glue_cc_clone_detection_big_clone_bench"
22
+
23
+ ## Table of Contents
24
+ - [Dataset Description](#dataset-description)
25
+ - [Dataset Summary](#dataset-summary)
26
+ - [Supported Tasks and Leaderboards](#supported-tasks)
27
+ - [Languages](#languages)
28
+ - [Dataset Structure](#dataset-structure)
29
+ - [Data Instances](#data-instances)
30
+ - [Data Fields](#data-fields)
31
+ - [Data Splits](#data-splits-sample-size)
32
+ - [Dataset Creation](#dataset-creation)
33
+ - [Curation Rationale](#curation-rationale)
34
+ - [Source Data](#source-data)
35
+ - [Annotations](#annotations)
36
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
37
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
38
+ - [Social Impact of Dataset](#social-impact-of-dataset)
39
+ - [Discussion of Biases](#discussion-of-biases)
40
+ - [Other Known Limitations](#other-known-limitations)
41
+ - [Additional Information](#additional-information)
42
+ - [Dataset Curators](#dataset-curators)
43
+ - [Licensing Information](#licensing-information)
44
+ - [Citation Information](#citation-information)
45
+ - [Contributions](#contributions)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench
50
+
51
+ ### Dataset Summary
52
+
53
+ CodeXGLUE Clone-detection-BigCloneBench dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench
54
+
55
+ Given two codes as the input, the task is to do binary classification (0/1), where 1 stands for semantic equivalence and 0 for others. Models are evaluated by F1 score.
56
+ The dataset we use is BigCloneBench and filtered following the paper Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree.
57
+
58
+ ### Supported Tasks and Leaderboards
59
+
60
+ - `semantic-similarity-classification`: The dataset can be used to train a model for classifying if two given java methods are cloens of each other.
61
+
62
+ ### Languages
63
+
64
+ - Java **programming** language
65
+
66
+ ## Dataset Structure
67
+
68
+ ### Data Instances
69
+
70
+ An example of 'test' looks as follows.
71
+ ```
72
+ {
73
+ "func1": " @Test(expected = GadgetException.class)\n public void malformedGadgetSpecIsCachedAndThrows() throws Exception {\n HttpRequest request = createCacheableRequest();\n expect(pipeline.execute(request)).andReturn(new HttpResponse(\"malformed junk\")).once();\n replay(pipeline);\n try {\n specFactory.getGadgetSpec(createContext(SPEC_URL, false));\n fail(\"No exception thrown on bad parse\");\n } catch (GadgetException e) {\n }\n specFactory.getGadgetSpec(createContext(SPEC_URL, false));\n }\n",
74
+ "func2": " public InputStream getInputStream() throws TGBrowserException {\n try {\n if (!this.isFolder()) {\n URL url = new URL(this.url);\n InputStream stream = url.openStream();\n return stream;\n }\n } catch (Throwable throwable) {\n throw new TGBrowserException(throwable);\n }\n return null;\n }\n",
75
+ "id": 0,
76
+ "id1": 2381663,
77
+ "id2": 4458076,
78
+ "label": false
79
+ }
80
+ ```
81
+
82
+ ### Data Fields
83
+
84
+ In the following each data field in go is explained for each config. The data fields are the same among all splits.
85
+
86
+ #### default
87
+
88
+ |field name| type | description |
89
+ |----------|------|---------------------------------------------------|
90
+ |id |int32 | Index of the sample |
91
+ |id1 |int32 | The first function id |
92
+ |id2 |int32 | The second function id |
93
+ |func1 |string| The full text of the first function |
94
+ |func2 |string| The full text of the second function |
95
+ |label |bool | 1 is the functions are not equivalent, 0 otherwise|
96
+
97
+ ### Data Splits
98
+
99
+ | name |train |validation| test |
100
+ |-------|-----:|---------:|-----:|
101
+ |default|901028| 415416|415416|
102
+
103
+ ## Dataset Creation
104
+
105
+ ### Curation Rationale
106
+
107
+ [More Information Needed]
108
+
109
+ ### Source Data
110
+
111
+ #### Initial Data Collection and Normalization
112
+
113
+ Data was mined from the IJaDataset 2.0 dataset.
114
+ [More Information Needed]
115
+
116
+ #### Who are the source language producers?
117
+
118
+ [More Information Needed]
119
+
120
+ ### Annotations
121
+
122
+ #### Annotation process
123
+
124
+ Data was manually labeled by three judges by automatically identifying potential clones using search heuristics.
125
+ [More Information Needed]
126
+
127
+ #### Who are the annotators?
128
+
129
+ [More Information Needed]
130
+
131
+ ### Personal and Sensitive Information
132
+
133
+ [More Information Needed]
134
+
135
+ ## Considerations for Using the Data
136
+
137
+ ### Social Impact of Dataset
138
+
139
+ [More Information Needed]
140
+
141
+ ### Discussion of Biases
142
+
143
+ Most of the clones are type 1 and 2 with type 3 and especially type 4 being rare.
144
+
145
+ [More Information Needed]
146
+
147
+ ### Other Known Limitations
148
+
149
+ [More Information Needed]
150
+
151
+ ## Additional Information
152
+
153
+ ### Dataset Curators
154
+
155
+ https://github.com/microsoft, https://github.com/madlag
156
+
157
+ ### Licensing Information
158
+
159
+ Computational Use of Data Agreement (C-UDA) License.
160
+
161
+ ### Citation Information
162
+
163
+ ```
164
+ @inproceedings{svajlenko2014towards,
165
+ title={Towards a big data curated benchmark of inter-project code clones},
166
+ author={Svajlenko, Jeffrey and Islam, Judith F and Keivanloo, Iman and Roy, Chanchal K and Mia, Mohammad Mamun},
167
+ booktitle={2014 IEEE International Conference on Software Maintenance and Evolution},
168
+ pages={476--480},
169
+ year={2014},
170
+ organization={IEEE}
171
+ }
172
+
173
+ @inproceedings{wang2020detecting,
174
+ title={Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree},
175
+ author={Wang, Wenhan and Li, Ge and Ma, Bo and Xia, Xin and Jin, Zhi},
176
+ booktitle={2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER)},
177
+ pages={261--271},
178
+ year={2020},
179
+ organization={IEEE}
180
+ }
181
+ ```
182
+
183
+ ### Contributions
184
+
185
+ Thanks to @madlag (and partly also @ncoop57) for adding this dataset.
code_x_glue_cc_clone_detection_big_clone_bench.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import datasets
4
+
5
+ from .common import TrainValidTestChild
6
+ from .generated_definitions import DEFINITIONS
7
+
8
+
9
+ _DESCRIPTION = """Given two codes as the input, the task is to do binary classification (0/1), where 1 stands for semantic equivalence and 0 for others. Models are evaluated by F1 score.
10
+ The dataset we use is BigCloneBench and filtered following the paper Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree."""
11
+
12
+ _CITATION = """@inproceedings{svajlenko2014towards,
13
+ title={Towards a big data curated benchmark of inter-project code clones},
14
+ author={Svajlenko, Jeffrey and Islam, Judith F and Keivanloo, Iman and Roy, Chanchal K and Mia, Mohammad Mamun},
15
+ booktitle={2014 IEEE International Conference on Software Maintenance and Evolution},
16
+ pages={476--480},
17
+ year={2014},
18
+ organization={IEEE}
19
+ }
20
+
21
+ @inproceedings{wang2020detecting,
22
+ title={Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree},
23
+ author={Wang, Wenhan and Li, Ge and Ma, Bo and Xia, Xin and Jin, Zhi},
24
+ booktitle={2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER)},
25
+ pages={261--271},
26
+ year={2020},
27
+ organization={IEEE}
28
+ }"""
29
+
30
+
31
+ class CodeXGlueCcCloneDetectionBigCloneBenchImpl(TrainValidTestChild):
32
+ _DESCRIPTION = _DESCRIPTION
33
+ _CITATION = _CITATION
34
+
35
+ _FEATURES = {
36
+ "id": datasets.Value("int32"), # Index of the sample
37
+ "id1": datasets.Value("int32"), # The first function id
38
+ "id2": datasets.Value("int32"), # The second function id
39
+ "func1": datasets.Value("string"), # The full text of the first function
40
+ "func2": datasets.Value("string"), # The full text of the second function
41
+ "label": datasets.Value("bool"), # 1 is the functions are not equivalent, 0 otherwise
42
+ }
43
+
44
+ _SUPERVISED_KEYS = ["label"]
45
+
46
+ def generate_urls(self, split_name):
47
+ yield "index", f"{split_name}.txt"
48
+ yield "data", "data.jsonl"
49
+
50
+ def _generate_examples(self, split_name, file_paths):
51
+ import json
52
+
53
+ js_all = {}
54
+
55
+ with open(file_paths["data"], encoding="utf-8") as f:
56
+ for idx, line in enumerate(f):
57
+ entry = json.loads(line)
58
+ js_all[int(entry["idx"])] = entry["func"]
59
+
60
+ with open(file_paths["index"], encoding="utf-8") as f:
61
+ for idx, line in enumerate(f):
62
+ line = line.strip()
63
+ idx1, idx2, label = [int(i) for i in line.split("\t")]
64
+ func1 = js_all[idx1]
65
+ func2 = js_all[idx2]
66
+
67
+ yield idx, dict(id=idx, id1=idx1, id2=idx2, func1=func1, func2=func2, label=(label == 1))
68
+
69
+
70
+ CLASS_MAPPING = {
71
+ "CodeXGlueCcCloneDetectionBigCloneBench": CodeXGlueCcCloneDetectionBigCloneBenchImpl,
72
+ }
73
+
74
+
75
+ class CodeXGlueCcCloneDetectionBigCloneBench(datasets.GeneratorBasedBuilder):
76
+ BUILDER_CONFIG_CLASS = datasets.BuilderConfig
77
+ BUILDER_CONFIGS = [
78
+ datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
79
+ ]
80
+
81
+ def _info(self):
82
+ name = self.config.name
83
+ info = DEFINITIONS[name]
84
+ if info["class_name"] in CLASS_MAPPING:
85
+ self.child = CLASS_MAPPING[info["class_name"]](info)
86
+ else:
87
+ raise RuntimeError(f"Unknown python class for dataset configuration {name}")
88
+ ret = self.child._info()
89
+ return ret
90
+
91
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
92
+ return self.child._split_generators(dl_manager=dl_manager)
93
+
94
+ def _generate_examples(self, split_name, file_paths):
95
+ return self.child._generate_examples(split_name, file_paths)
common.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import datasets
4
+
5
+
6
+ # Citation, taken from https://github.com/microsoft/CodeXGLUE
7
+ _DEFAULT_CITATION = """@article{CodeXGLUE,
8
+ title={CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence},
9
+ year={2020},}"""
10
+
11
+
12
+ class Child:
13
+ _DESCRIPTION = None
14
+ _FEATURES = None
15
+ _CITATION = None
16
+ SPLITS = {"train": datasets.Split.TRAIN}
17
+ _SUPERVISED_KEYS = None
18
+
19
+ def __init__(self, info):
20
+ self.info = info
21
+
22
+ def homepage(self):
23
+ return self.info["project_url"]
24
+
25
+ def _info(self):
26
+ # This is the description that will appear on the datasets page.
27
+ return datasets.DatasetInfo(
28
+ description=self.info["description"] + "\n\n" + self._DESCRIPTION,
29
+ features=datasets.Features(self._FEATURES),
30
+ homepage=self.homepage(),
31
+ citation=self._CITATION or _DEFAULT_CITATION,
32
+ supervised_keys=self._SUPERVISED_KEYS,
33
+ )
34
+
35
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
36
+ SPLITS = self.SPLITS
37
+ _URL = self.info["raw_url"]
38
+ urls_to_download = {}
39
+ for split in SPLITS:
40
+ if split not in urls_to_download:
41
+ urls_to_download[split] = {}
42
+
43
+ for key, url in self.generate_urls(split):
44
+ if not url.startswith("http"):
45
+ url = _URL + "/" + url
46
+ urls_to_download[split][key] = url
47
+
48
+ downloaded_files = {}
49
+ for k, v in urls_to_download.items():
50
+ downloaded_files[k] = dl_manager.download_and_extract(v)
51
+
52
+ return [
53
+ datasets.SplitGenerator(
54
+ name=SPLITS[k],
55
+ gen_kwargs={"split_name": k, "file_paths": downloaded_files[k]},
56
+ )
57
+ for k in SPLITS
58
+ ]
59
+
60
+ def check_empty(self, entries):
61
+ all_empty = all([v == "" for v in entries.values()])
62
+ all_non_empty = all([v != "" for v in entries.values()])
63
+
64
+ if not all_non_empty and not all_empty:
65
+ raise RuntimeError("Parallel data files should have the same number of lines.")
66
+
67
+ return all_empty
68
+
69
+
70
+ class TrainValidTestChild(Child):
71
+ SPLITS = {
72
+ "train": datasets.Split.TRAIN,
73
+ "valid": datasets.Split.VALIDATION,
74
+ "test": datasets.Split.TEST,
75
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "CodeXGLUE Clone-detection-BigCloneBench dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench\n\nGiven two codes as the input, the task is to do binary classification (0/1), where 1 stands for semantic equivalence and 0 for others. Models are evaluated by F1 score.\nThe dataset we use is BigCloneBench and filtered following the paper Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree.", "citation": "@inproceedings{svajlenko2014towards,\ntitle={Towards a big data curated benchmark of inter-project code clones},\nauthor={Svajlenko, Jeffrey and Islam, Judith F and Keivanloo, Iman and Roy, Chanchal K and Mia, Mohammad Mamun},\nbooktitle={2014 IEEE International Conference on Software Maintenance and Evolution},\npages={476--480},\nyear={2014},\norganization={IEEE}\n}\n\n@inproceedings{wang2020detecting,\ntitle={Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree},\nauthor={Wang, Wenhan and Li, Ge and Ma, Bo and Xia, Xin and Jin, Zhi},\nbooktitle={2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER)},\npages={261--271},\nyear={2020},\norganization={IEEE}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "id1": {"dtype": "int32", "id": null, "_type": "Value"}, "id2": {"dtype": "int32", "id": null, "_type": "Value"}, "func1": {"dtype": "string", "id": null, "_type": "Value"}, "func2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "bool", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "label", "output": ""}, "task_templates": null, "builder_name": "code_x_glue_cc_clone_detection_big_clone_bench", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2888035757, "num_examples": 901028, "dataset_name": "code_x_glue_cc_clone_detection_big_clone_bench"}, "validation": {"name": "validation", "num_bytes": 1371399694, "num_examples": 415416, "dataset_name": "code_x_glue_cc_clone_detection_big_clone_bench"}, "test": {"name": "test", "num_bytes": 1220662901, "num_examples": 415416, "dataset_name": "code_x_glue_cc_clone_detection_big_clone_bench"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-BigCloneBench/dataset/train.txt": {"num_bytes": 17043552, "checksum": "29119bfa94673374249c3424809fbe6baaa1f0e87a13e3c727bbd6cdf1224b77"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-BigCloneBench/dataset/data.jsonl": {"num_bytes": 15174797, "checksum": "d8bc51e62deddcc45bd26c5b57f5add2a2cf377f13b9f6c2fb656fbc8fca4dd2"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-BigCloneBench/dataset/valid.txt": {"num_bytes": 7861019, "checksum": "e59e8c1321df59b6ab0143165cb603030c55800c00e2d782e06810517b8de1e4"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-BigCloneBench/dataset/test.txt": {"num_bytes": 7876506, "checksum": "a6c0cf79be34e582fdc64007aa894ed094e4f9ff2e5395a8d2b5c39eeef2737a"}}, "download_size": 47955874, "post_processing_size": null, "dataset_size": 5480098352, "size_in_bytes": 5528054226}}
dummy/default/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:618fadbd4a6486cd2952107df903c66c3745aa145e527a00549e45b20b263fcf
3
+ size 4093
generated_definitions.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DEFINITIONS = {
2
+ "default": {
3
+ "class_name": "CodeXGlueCcCloneDetectionBigCloneBench",
4
+ "dataset_type": "Code-Code",
5
+ "description": "CodeXGLUE Clone-detection-BigCloneBench dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench",
6
+ "dir_name": "Clone-detection-BigCloneBench",
7
+ "name": "default",
8
+ "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench",
9
+ "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-BigCloneBench/dataset",
10
+ "sizes": {"test": 415416, "train": 901028, "validation": 415416},
11
+ }
12
+ }