Datasets:
Tasks:
Text Classification
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Languages:
code
Size:
1M - 10M
License:
Commit
•
55824d8
1
Parent(s):
07ecd48
Delete loading script
Browse files
code_x_glue_cc_clone_detection_big_clone_bench.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
from .common import TrainValidTestChild
|
6 |
-
from .generated_definitions import DEFINITIONS
|
7 |
-
|
8 |
-
|
9 |
-
_DESCRIPTION = """Given two codes as the input, the task is to do binary classification (0/1), where 1 stands for semantic equivalence and 0 for others. Models are evaluated by F1 score.
|
10 |
-
The dataset we use is BigCloneBench and filtered following the paper Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree."""
|
11 |
-
|
12 |
-
_CITATION = """@inproceedings{svajlenko2014towards,
|
13 |
-
title={Towards a big data curated benchmark of inter-project code clones},
|
14 |
-
author={Svajlenko, Jeffrey and Islam, Judith F and Keivanloo, Iman and Roy, Chanchal K and Mia, Mohammad Mamun},
|
15 |
-
booktitle={2014 IEEE International Conference on Software Maintenance and Evolution},
|
16 |
-
pages={476--480},
|
17 |
-
year={2014},
|
18 |
-
organization={IEEE}
|
19 |
-
}
|
20 |
-
|
21 |
-
@inproceedings{wang2020detecting,
|
22 |
-
title={Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree},
|
23 |
-
author={Wang, Wenhan and Li, Ge and Ma, Bo and Xia, Xin and Jin, Zhi},
|
24 |
-
booktitle={2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER)},
|
25 |
-
pages={261--271},
|
26 |
-
year={2020},
|
27 |
-
organization={IEEE}
|
28 |
-
}"""
|
29 |
-
|
30 |
-
|
31 |
-
class CodeXGlueCcCloneDetectionBigCloneBenchImpl(TrainValidTestChild):
|
32 |
-
_DESCRIPTION = _DESCRIPTION
|
33 |
-
_CITATION = _CITATION
|
34 |
-
|
35 |
-
_FEATURES = {
|
36 |
-
"id": datasets.Value("int32"), # Index of the sample
|
37 |
-
"id1": datasets.Value("int32"), # The first function id
|
38 |
-
"id2": datasets.Value("int32"), # The second function id
|
39 |
-
"func1": datasets.Value("string"), # The full text of the first function
|
40 |
-
"func2": datasets.Value("string"), # The full text of the second function
|
41 |
-
"label": datasets.Value("bool"), # 1 is the functions are not equivalent, 0 otherwise
|
42 |
-
}
|
43 |
-
|
44 |
-
_SUPERVISED_KEYS = ["label"]
|
45 |
-
|
46 |
-
def generate_urls(self, split_name):
|
47 |
-
yield "index", f"{split_name}.txt"
|
48 |
-
yield "data", "data.jsonl"
|
49 |
-
|
50 |
-
def _generate_examples(self, split_name, file_paths):
|
51 |
-
import json
|
52 |
-
|
53 |
-
js_all = {}
|
54 |
-
|
55 |
-
with open(file_paths["data"], encoding="utf-8") as f:
|
56 |
-
for idx, line in enumerate(f):
|
57 |
-
entry = json.loads(line)
|
58 |
-
js_all[int(entry["idx"])] = entry["func"]
|
59 |
-
|
60 |
-
with open(file_paths["index"], encoding="utf-8") as f:
|
61 |
-
for idx, line in enumerate(f):
|
62 |
-
line = line.strip()
|
63 |
-
idx1, idx2, label = [int(i) for i in line.split("\t")]
|
64 |
-
func1 = js_all[idx1]
|
65 |
-
func2 = js_all[idx2]
|
66 |
-
|
67 |
-
yield idx, dict(id=idx, id1=idx1, id2=idx2, func1=func1, func2=func2, label=(label == 1))
|
68 |
-
|
69 |
-
|
70 |
-
CLASS_MAPPING = {
|
71 |
-
"CodeXGlueCcCloneDetectionBigCloneBench": CodeXGlueCcCloneDetectionBigCloneBenchImpl,
|
72 |
-
}
|
73 |
-
|
74 |
-
|
75 |
-
class CodeXGlueCcCloneDetectionBigCloneBench(datasets.GeneratorBasedBuilder):
|
76 |
-
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
|
77 |
-
BUILDER_CONFIGS = [
|
78 |
-
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
|
79 |
-
]
|
80 |
-
|
81 |
-
def _info(self):
|
82 |
-
name = self.config.name
|
83 |
-
info = DEFINITIONS[name]
|
84 |
-
if info["class_name"] in CLASS_MAPPING:
|
85 |
-
self.child = CLASS_MAPPING[info["class_name"]](info)
|
86 |
-
else:
|
87 |
-
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
|
88 |
-
ret = self.child._info()
|
89 |
-
return ret
|
90 |
-
|
91 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
92 |
-
return self.child._split_generators(dl_manager=dl_manager)
|
93 |
-
|
94 |
-
def _generate_examples(self, split_name, file_paths):
|
95 |
-
return self.child._generate_examples(split_name, file_paths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|