File size: 4,359 Bytes
f04fd82 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c 8a9f753 4fa376c f04fd82 8a9f753 3512f04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
configs:
- config_name: default
data_files:
- split: train
path: "dataset/backpack/*.jpg"
- config_name: backpack
data_files:
- split: train
path: "dataset/backpack/*.jpg"
- config_name: backpack_dog
data_files:
- split: train
path: "dataset/backpack_dog/*.jpg"
- config_name: bear_plushie
data_files:
- split: train
path: "dataset/bear_plushie/*.jpg"
- config_name: berry_bowl
data_files:
- split: train
path: "dataset/berry_bowl/*.jpg"
- config_name: can
data_files:
- split: train
path: "dataset/can/*.jpg"
- config_name: candle
data_files:
- split: train
path: "dataset/candle/*.jpg"
- config_name: cat
data_files:
- split: train
path: "dataset/cat/*.jpg"
- config_name: cat2
data_files:
- split: train
path: "dataset/cat2/*.jpg"
- config_name: clock
data_files:
- split: train
path: "dataset/clock/*.jpg"
- config_name: colorful_sneaker
data_files:
- split: train
path: "dataset/colorful_sneaker/*.jpg"
- config_name: dog
data_files:
- split: train
path: "dataset/dog/*.jpg"
- config_name: dog2
data_files:
- split: train
path: "dataset/dog2/*.jpg"
- config_name: dog3
data_files:
- split: train
path: "dataset/dog3/*.jpg"
- config_name: dog5
data_files:
- split: train
path: "dataset/dog5/*.jpg"
- config_name: dog6
data_files:
- split: train
path: "dataset/dog6/*.jpg"
- config_name: dog7
data_files:
- split: train
path: "dataset/dog7/*.jpg"
- config_name: dog8
data_files:
- split: train
path: "dataset/dog8/*.jpg"
- config_name: duck_toy
data_files:
- split: train
path: "dataset/duck_toy/*.jpg"
- config_name: fancy_boot
data_files:
- split: train
path: "dataset/fancy_boot/*.jpg"
- config_name: grey_sloth_plushie
data_files:
- split: train
path: "dataset/grey_sloth_plushie/*.jpg"
- config_name: monster_toy
data_files:
- split: train
path: "dataset/monster_toy/*.jpg"
- config_name: pink_sunglasses
data_files:
- split: train
path: "dataset/pink_sunglasses/*.jpg"
- config_name: poop_emoji
data_files:
- split: train
path: "dataset/poop_emoji/*.jpg"
- config_name: rc_car
data_files:
- split: train
path: "dataset/rc_car/*.jpg"
- config_name: red_cartoon
data_files:
- split: train
path: "dataset/red_cartoon/*.jpg"
- config_name: robot_toy
data_files:
- split: train
path: "dataset/robot_toy/*.jpg"
- config_name: shiny_sneaker
data_files:
- split: train
path: "dataset/shiny_sneaker/*.jpg"
- config_name: teapot
data_files:
- split: train
path: "dataset/teapot/*.jpg"
- config_name: vase
data_files:
- split: train
path: "dataset/vase/*.jpg"
- config_name: wolf_plushie
data_files:
- split: train
path: "dataset/wolf_plushie/*.jpg"
license: cc-by-4.0
---
# Dataset Card for "dreambooth"
## Dataset of the Google paper DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
The dataset includes 30 subjects of 15 different classes. 9 out of these subjects are live subjects (dogs and cats) and 21 are objects. The dataset contains a variable number of images per subject (4-6). Images of the subjects are usually captured in different conditions, environments and under different angles.
We include a file dataset/prompts\_and\_classes.txt which contains all of the prompts used in the paper for live subjects and objects, as well as the class name used for the subjects.
The images have either been captured by the paper authors, or sourced from www.unsplash.com
The dataset/references\_and\_licenses.txt file contains a list of all the reference links to the images in www.unsplash.com - and attribution to the photographer, along with the license of the image.
### [project page](https://dreambooth.github.io/) | [arxiv](https://arxiv.org/abs/2208.12242)
## Academic Citation
If you use this work please cite:
```
@inproceedings{ruiz2023dreambooth,
title={Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation},
author={Ruiz, Nataniel and Li, Yuanzhen and Jampani, Varun and Pritch, Yael and Rubinstein, Michael and Aberman, Kfir},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2023}
}
```
## Disclaimer
This is not an officially supported Google product. |