Datasets:

Languages:
English
ArXiv:
License:
File size: 22,288 Bytes
ff61db4
 
 
 
 
c534cdf
ff61db4
c534cdf
ff61db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
paperswithcode_id: quick-draw-dataset
pretty_name: Quick, Draw!
---

# Dataset Card for Quick, Draw!

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Quick, Draw! homepage](https://quickdraw.withgoogle.com/data)
- **Repository:** [Quick, Draw! repository](https://github.com/googlecreativelab/quickdraw-dataset)
- **Paper:** [A Neural Representation of Sketch Drawings](https://arxiv.org/abs/1704.03477v4)
- **Leaderboard:** [Quick, Draw! Doodle Recognition Challenge](https://www.kaggle.com/competitions/quickdraw-doodle-recognition/leaderboard)
- **Point of Contact:** [Quick, Draw! support](mailto:quickdraw-support@google.com)

### Dataset Summary

The Quick Draw Dataset is a collection of 50 million drawings across 345 categories, contributed by players of the game Quick, Draw!. The drawings were captured as timestamped vectors, tagged with metadata including what the player was asked to draw and in which country the player was located.

### Supported Tasks and Leaderboards

- `image-classification`: The goal of this task is to classify a given sketch into one of 345 classes.
The (closed) leaderboard for this task is available [here](https://www.kaggle.com/competitions/quickdraw-doodle-recognition/leaderboard).

### Languages

English.

## Dataset Structure

### Data Instances

#### `raw`

A data point comprises a drawing and its metadata.

```
{
  'key_id': '5475678961008640',
  'word': 0,
  'recognized': True,
  'timestamp': datetime.datetime(2017, 3, 28, 13, 28, 0, 851730),
  'countrycode': 'MY',
  'drawing': {
    'x': [[379.0, 380.0, 381.0, 381.0, 381.0, 381.0, 382.0], [362.0, 368.0, 375.0, 380.0, 388.0, 393.0, 399.0, 404.0, 409.0, 410.0, 410.0, 405.0, 397.0, 392.0, 384.0, 377.0, 370.0, 363.0, 356.0, 348.0, 342.0, 336.0, 333.0], ..., [477.0, 473.0, 471.0, 469.0, 468.0, 466.0, 464.0, 462.0, 461.0, 469.0, 475.0, 483.0, 491.0, 499.0, 510.0, 521.0, 531.0, 540.0, 548.0, 558.0, 566.0, 576.0, 583.0, 590.0, 595.0, 598.0, 597.0, 596.0, 594.0, 592.0, 590.0, 589.0, 588.0, 586.0]],
    'y': [[1.0, 7.0, 15.0, 21.0, 27.0, 32.0, 32.0], [17.0, 17.0, 17.0, 17.0, 16.0, 16.0, 16.0, 16.0, 18.0, 23.0, 29.0, 32.0, 32.0, 32.0, 29.0, 27.0, 25.0, 23.0, 21.0, 19.0, 17.0, 16.0, 14.0], ..., [151.0, 146.0, 139.0, 131.0, 125.0, 119.0, 113.0, 107.0, 102.0, 99.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 100.0, 102.0, 104.0, 105.0, 110.0, 115.0, 121.0, 126.0, 131.0, 137.0, 142.0, 148.0, 150.0]],
    't': [[0, 84, 100, 116, 132, 148, 260], [573, 636, 652, 660, 676, 684, 701, 724, 796, 838, 860, 956, 973, 979, 989, 995, 1005, 1012, 1020, 1028, 1036, 1053, 1118], ..., [8349, 8446, 8468, 8484, 8500, 8516, 8541, 8557, 8573, 8685, 8693, 8702, 8710, 8718, 8724, 8732, 8741, 8748, 8757, 8764, 8773, 8780, 8788, 8797, 8804, 8965, 8996, 9029, 9045, 9061, 9076, 9092, 9109, 9167]]
  }
}
```

#### `preprocessed_simplified_drawings`

The simplified version of the dataset generated from the `raw` data with the simplified vectors, removed timing information, and the data positioned and scaled into a 256x256 region.
The simplification process was:
    1.Align the drawing to the top-left corner, to have minimum values of 0.
    2.Uniformly scale the drawing, to have a maximum value of 255.
    3.Resample all strokes with a 1 pixel spacing.
    4.Simplify all strokes using the [Ramer-Douglas-Peucker algorithm](https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm) with an epsilon value of 2.0.

```
{
  'key_id': '5475678961008640',
  'word': 0,
  'recognized': True,
  'timestamp': datetime.datetime(2017, 3, 28, 15, 28),
  'countrycode': 'MY',
  'drawing': {
    'x': [[31, 32], [27, 37, 38, 35, 21], [25, 28, 38, 39], [33, 34, 32], [5, 188, 254, 251, 241, 185, 45, 9, 0], [35, 35, 43, 125, 126], [35, 76, 80, 77], [53, 50, 54, 80, 78]],
    'y': [[0, 7], [4, 4, 6, 7, 3], [5, 10, 10, 7], [4, 33, 44], [50, 50, 54, 83, 86, 90, 86, 77, 52], [85, 91, 92, 96, 90], [35, 37, 41, 47], [34, 23, 22, 23, 34]]
  }
}
```

#### `preprocessed_bitmaps` (default configuration)

This configuration contains the 28x28 grayscale bitmap images that were generated from the simplified data, but are aligned to the center of the drawing's bounding box rather than the top-left corner. The code that was used for generation is available [here](https://github.com/googlecreativelab/quickdraw-dataset/issues/19#issuecomment-402247262).

```
{
  'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=28x28 at 0x10B5B102828>,
  'label': 0
}
```

#### `sketch_rnn` and `sketch_rnn_full`

The `sketch_rnn_full` configuration stores the data in the format suitable for inputs into a recurrent neural network and was used for for training the [Sketch-RNN](https://arxiv.org/abs/1704.03477) model. Unlike `sketch_rnn` where the samples have been randomly selected from each category, the `sketch_rnn_full` configuration contains the full data for each category.

```
{
  'word': 0,
  'drawing': [[132, 0, 0], [23, 4, 0], [61, 1, 0], [76, 0, 0], [22, -4, 0], [152, 0, 0], [50, -5, 0], [36, -10, 0], [8, 26, 0], [0, 69, 0], [-2, 11, 0], [-8, 10, 0], [-56, 24, 0], [-23, 14, 0], [-99, 40, 0], [-45, 6, 0], [-21, 6, 0], [-170, 2, 0], [-81, 0, 0], [-29, -9, 0], [-94, -19, 0], [-48, -24, 0], [-6, -16, 0], [2, -36, 0], [7, -29, 0], [23, -45, 0], [13, -6, 0], [41, -8, 0], [42, -2, 1], [392, 38, 0], [2, 19, 0], [11, 33, 0], [13, 0, 0], [24, -9, 0], [26, -27, 0], [0, -14, 0], [-8, -10, 0], [-18, -5, 0], [-14, 1, 0], [-23, 4, 0], [-21, 12, 1], [-152, 18, 0], [10, 46, 0], [26, 6, 0], [38, 0, 0], [31, -2, 0], [7, -2, 0], [4, -6, 0], [-10, -21, 0], [-2, -33, 0], [-6, -11, 0], [-46, 1, 0], [-39, 18, 0], [-19, 4, 1], [-122, 0, 0], [-2, 38, 0], [4, 16, 0], [6, 4, 0], [78, 0, 0], [4, -8, 0], [-8, -36, 0], [0, -22, 0], [-6, -2, 0], [-32, 14, 0], [-58, 13, 1], [-96, -12, 0], [-10, 27, 0], [2, 32, 0], [102, 0, 0], [1, -7, 0], [-27, -17, 0], [-4, -6, 0], [-1, -34, 0], [-64, 8, 1], [129, -138, 0], [-108, 0, 0], [-8, 12, 0], [-1, 15, 0], [12, 15, 0], [20, 5, 0], [61, -3, 0], [24, 6, 0], [19, 0, 0], [5, -4, 0], [2, 14, 1]]
}
```

### Data Fields

#### `raw`

- `key_id`: A unique identifier across all drawings.
- `word`: Category the player was prompted to draw.
- `recognized`: Whether the word was recognized by the game.
- `timestamp`: When the drawing was created.
- `countrycode`: A two letter country code ([ISO 3166-1 alpha-2](https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2)) of where the player was located.
- `drawing`: A dictionary where `x` and `y` are the pixel coordinates, and `t` is the time in milliseconds since the first point. `x` and `y` are real-valued while `t` is an integer. `x`, `y` and `t` match in lenght and are represented as lists of lists where each sublist corresponds to a single stroke. The raw drawings can have vastly different bounding boxes and number of points due to the different devices used for display and input.

#### `preprocessed_simplified_drawings`

- `key_id`: A unique identifier across all drawings.
- `word`: Category the player was prompted to draw.
- `recognized`: Whether the word was recognized by the game.
- `timestamp`: When the drawing was created.
- `countrycode`: A two letter country code ([ISO 3166-1 alpha-2](https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2)) of where the player was located.
- `drawing`: A simplified drawing represented as a dictionary where `x` and `y` are the pixel coordinates. The simplification processed is described in the `Data Instances` section.

#### `preprocessed_bitmaps` (default configuration)

- `image`: A `PIL.Image.Image` object containing the 28x28 grayscale bitmap. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `label`: Category the player was prompted to draw.

<details>
  <summary>
  Click here to see the full class labels mapping:
  </summary>

  |id|class|
  |---|---|
  |0|aircraft carrier|
  |1|airplane|
  |2|alarm clock|
  |3|ambulance|
  |4|angel|
  |5|animal migration|
  |6|ant|
  |7|anvil|
  |8|apple|
  |9|arm|
  |10|asparagus|
  |11|axe|
  |12|backpack|
  |13|banana|
  |14|bandage|
  |15|barn|
  |16|baseball bat|
  |17|baseball|
  |18|basket|
  |19|basketball|
  |20|bat|
  |21|bathtub|
  |22|beach|
  |23|bear|
  |24|beard|
  |25|bed|
  |26|bee|
  |27|belt|
  |28|bench|
  |29|bicycle|
  |30|binoculars|
  |31|bird|
  |32|birthday cake|
  |33|blackberry|
  |34|blueberry|
  |35|book|
  |36|boomerang|
  |37|bottlecap|
  |38|bowtie|
  |39|bracelet|
  |40|brain|
  |41|bread|
  |42|bridge|
  |43|broccoli|
  |44|broom|
  |45|bucket|
  |46|bulldozer|
  |47|bus|
  |48|bush|
  |49|butterfly|
  |50|cactus|
  |51|cake|
  |52|calculator|
  |53|calendar|
  |54|camel|
  |55|camera|
  |56|camouflage|
  |57|campfire|
  |58|candle|
  |59|cannon|
  |60|canoe|
  |61|car|
  |62|carrot|
  |63|castle|
  |64|cat|
  |65|ceiling fan|
  |66|cell phone|
  |67|cello|
  |68|chair|
  |69|chandelier|
  |70|church|
  |71|circle|
  |72|clarinet|
  |73|clock|
  |74|cloud|
  |75|coffee cup|
  |76|compass|
  |77|computer|
  |78|cookie|
  |79|cooler|
  |80|couch|
  |81|cow|
  |82|crab|
  |83|crayon|
  |84|crocodile|
  |85|crown|
  |86|cruise ship|
  |87|cup|
  |88|diamond|
  |89|dishwasher|
  |90|diving board|
  |91|dog|
  |92|dolphin|
  |93|donut|
  |94|door|
  |95|dragon|
  |96|dresser|
  |97|drill|
  |98|drums|
  |99|duck|
  |100|dumbbell|
  |101|ear|
  |102|elbow|
  |103|elephant|
  |104|envelope|
  |105|eraser|
  |106|eye|
  |107|eyeglasses|
  |108|face|
  |109|fan|
  |110|feather|
  |111|fence|
  |112|finger|
  |113|fire hydrant|
  |114|fireplace|
  |115|firetruck|
  |116|fish|
  |117|flamingo|
  |118|flashlight|
  |119|flip flops|
  |120|floor lamp|
  |121|flower|
  |122|flying saucer|
  |123|foot|
  |124|fork|
  |125|frog|
  |126|frying pan|
  |127|garden hose|
  |128|garden|
  |129|giraffe|
  |130|goatee|
  |131|golf club|
  |132|grapes|
  |133|grass|
  |134|guitar|
  |135|hamburger|
  |136|hammer|
  |137|hand|
  |138|harp|
  |139|hat|
  |140|headphones|
  |141|hedgehog|
  |142|helicopter|
  |143|helmet|
  |144|hexagon|
  |145|hockey puck|
  |146|hockey stick|
  |147|horse|
  |148|hospital|
  |149|hot air balloon|
  |150|hot dog|
  |151|hot tub|
  |152|hourglass|
  |153|house plant|
  |154|house|
  |155|hurricane|
  |156|ice cream|
  |157|jacket|
  |158|jail|
  |159|kangaroo|
  |160|key|
  |161|keyboard|
  |162|knee|
  |163|knife|
  |164|ladder|
  |165|lantern|
  |166|laptop|
  |167|leaf|
  |168|leg|
  |169|light bulb|
  |170|lighter|
  |171|lighthouse|
  |172|lightning|
  |173|line|
  |174|lion|
  |175|lipstick|
  |176|lobster|
  |177|lollipop|
  |178|mailbox|
  |179|map|
  |180|marker|
  |181|matches|
  |182|megaphone|
  |183|mermaid|
  |184|microphone|
  |185|microwave|
  |186|monkey|
  |187|moon|
  |188|mosquito|
  |189|motorbike|
  |190|mountain|
  |191|mouse|
  |192|moustache|
  |193|mouth|
  |194|mug|
  |195|mushroom|
  |196|nail|
  |197|necklace|
  |198|nose|
  |199|ocean|
  |200|octagon|
  |201|octopus|
  |202|onion|
  |203|oven|
  |204|owl|
  |205|paint can|
  |206|paintbrush|
  |207|palm tree|
  |208|panda|
  |209|pants|
  |210|paper clip|
  |211|parachute|
  |212|parrot|
  |213|passport|
  |214|peanut|
  |215|pear|
  |216|peas|
  |217|pencil|
  |218|penguin|
  |219|piano|
  |220|pickup truck|
  |221|picture frame|
  |222|pig|
  |223|pillow|
  |224|pineapple|
  |225|pizza|
  |226|pliers|
  |227|police car|
  |228|pond|
  |229|pool|
  |230|popsicle|
  |231|postcard|
  |232|potato|
  |233|power outlet|
  |234|purse|
  |235|rabbit|
  |236|raccoon|
  |237|radio|
  |238|rain|
  |239|rainbow|
  |240|rake|
  |241|remote control|
  |242|rhinoceros|
  |243|rifle|
  |244|river|
  |245|roller coaster|
  |246|rollerskates|
  |247|sailboat|
  |248|sandwich|
  |249|saw|
  |250|saxophone|
  |251|school bus|
  |252|scissors|
  |253|scorpion|
  |254|screwdriver|
  |255|sea turtle|
  |256|see saw|
  |257|shark|
  |258|sheep|
  |259|shoe|
  |260|shorts|
  |261|shovel|
  |262|sink|
  |263|skateboard|
  |264|skull|
  |265|skyscraper|
  |266|sleeping bag|
  |267|smiley face|
  |268|snail|
  |269|snake|
  |270|snorkel|
  |271|snowflake|
  |272|snowman|
  |273|soccer ball|
  |274|sock|
  |275|speedboat|
  |276|spider|
  |277|spoon|
  |278|spreadsheet|
  |279|square|
  |280|squiggle|
  |281|squirrel|
  |282|stairs|
  |283|star|
  |284|steak|
  |285|stereo|
  |286|stethoscope|
  |287|stitches|
  |288|stop sign|
  |289|stove|
  |290|strawberry|
  |291|streetlight|
  |292|string bean|
  |293|submarine|
  |294|suitcase|
  |295|sun|
  |296|swan|
  |297|sweater|
  |298|swing set|
  |299|sword|
  |300|syringe|
  |301|t-shirt|
  |302|table|
  |303|teapot|
  |304|teddy-bear|
  |305|telephone|
  |306|television|
  |307|tennis racquet|
  |308|tent|
  |309|The Eiffel Tower|
  |310|The Great Wall of China|
  |311|The Mona Lisa|
  |312|tiger|
  |313|toaster|
  |314|toe|
  |315|toilet|
  |316|tooth|
  |317|toothbrush|
  |318|toothpaste|
  |319|tornado|
  |320|tractor|
  |321|traffic light|
  |322|train|
  |323|tree|
  |324|triangle|
  |325|trombone|
  |326|truck|
  |327|trumpet|
  |328|umbrella|
  |329|underwear|
  |330|van|
  |331|vase|
  |332|violin|
  |333|washing machine|
  |334|watermelon|
  |335|waterslide|
  |336|whale|
  |337|wheel|
  |338|windmill|
  |339|wine bottle|
  |340|wine glass|
  |341|wristwatch|
  |342|yoga|
  |343|zebra|
  |344|zigzag|

</details>

#### `sketch_rnn` and `sketch_rnn_full`

- `word`: Category the player was prompted to draw.
- `drawing`: An array of strokes. Strokes are represented as 3-tuples consisting of x-offset, y-offset, and a binary variable which is 1 if the pen is lifted between this position and the next, and 0 otherwise.

<details>
  <summary>
  Click here to see the code for visualizing drawings in Jupyter Notebook or Google Colab:
  </summary>

  ```python
  import numpy as np
  import svgwrite  # pip install svgwrite
  from IPython.display import SVG, display

  def draw_strokes(drawing, factor=0.045):
    """Displays vector drawing as SVG.

    Args:
      drawing: a list of strokes represented as 3-tuples
      factor: scaling factor. The smaller the scaling factor, the bigger the SVG picture and vice versa.

    """
    def get_bounds(data, factor):
      """Return bounds of data."""
      min_x = 0
      max_x = 0
      min_y = 0
      max_y = 0

      abs_x = 0
      abs_y = 0
      for i in range(len(data)):
        x = float(data[i, 0]) / factor
        y = float(data[i, 1]) / factor
        abs_x += x
        abs_y += y
        min_x = min(min_x, abs_x)
        min_y = min(min_y, abs_y)
        max_x = max(max_x, abs_x)
        max_y = max(max_y, abs_y)

      return (min_x, max_x, min_y, max_y)

    data = np.array(drawing)
    min_x, max_x, min_y, max_y = get_bounds(data, factor)
    dims = (50 + max_x - min_x, 50 + max_y - min_y)
    dwg = svgwrite.Drawing(size=dims)
    dwg.add(dwg.rect(insert=(0, 0), size=dims,fill='white'))
    lift_pen = 1
    abs_x = 25 - min_x
    abs_y = 25 - min_y
    p = "M%s,%s " % (abs_x, abs_y)
    command = "m"
    for i in range(len(data)):
      if (lift_pen == 1):
        command = "m"
      elif (command != "l"):
        command = "l"
      else:
        command = ""
      x = float(data[i,0])/factor
      y = float(data[i,1])/factor
      lift_pen = data[i, 2]
      p += command+str(x)+","+str(y)+" "
    the_color = "black"
    stroke_width = 1
    dwg.add(dwg.path(p).stroke(the_color,stroke_width).fill("none"))
    display(SVG(dwg.tostring()))
  ```

</details>


> **Note**: Sketch-RNN takes for input strokes represented as 5-tuples with drawings padded to a common maximum length and prefixed by the special start token `[0, 0, 1, 0, 0]`. The 5-tuple representation consists of x-offset, y-offset, and p_1, p_2, p_3, a binary one-hot vector of 3 possible pen states: pen down, pen up, end of sketch. More precisely, the first two elements are the offset distance in the x and y directions of the pen from the previous point. The last 3 elements represents a binary one-hot vector of 3 possible states. The first pen state, p1, indicates that the pen is currently touching the paper, and that a line will be drawn connecting the next point with the current point. The second pen state, p2, indicates that the pen will be lifted from the paper after the current point, and that no line will be drawn next. The final pen state, p3, indicates that the drawing has ended, and subsequent points, including the current point, will not be rendered.
><details>
>  <summary>
>  Click here to see the code for converting drawings to Sketch-RNN input format:
>  </summary>
>
>  ```python
>  def to_sketch_rnn_format(drawing, max_len):
>    """Converts a drawing to Sketch-RNN input format.
>
>    Args:
>      drawing: a list of strokes represented as 3-tuples
>      max_len: maximum common length of all drawings
>
>    Returns:
>      NumPy array
>    """
>    drawing = np.array(drawing)
>    result = np.zeros((max_len, 5), dtype=float)
>    l = len(drawing)
>    assert l <= max_len
>    result[0:l, 0:2] = drawing[:, 0:2]
>    result[0:l, 3] = drawing[:, 2]
>    result[0:l, 2] = 1 - result[0:l, 3]
>    result[l:, 4] = 1
>    # Prepend special start token
>    result = np.vstack([[0, 0, 1, 0, 0], result])
>    return result
>  ```
>
></details>

### Data Splits

In the configurations `raw`, `preprocessed_simplified_drawings` and `preprocessed_bitamps` (default configuration), all the data is contained in the training set, which has 50426266 examples.

`sketch_rnn` and `sketch_rnn_full` have the data split into training, validation and test split. In the `sketch_rnn` configuration, 75K samples (70K Training, 2.5K Validation, 2.5K Test) have been randomly selected from each category. Therefore, the training set contains 24150000 examples, the validation set 862500 examples and the test set 862500 examples. The `sketch_rnn_full` configuration has the full (training) data for each category, which leads to the training set having 43988874 examples, the validation set 862500 and the test set 862500 examples.

## Dataset Creation

### Curation Rationale

From the GitHub repository:

> The Quick Draw Dataset is a collection of 50 million drawings across [345 categories](categories.txt), contributed by players of the game [Quick, Draw!](https://quickdraw.withgoogle.com). The drawings were captured as timestamped vectors, tagged with metadata including what the player was asked to draw and in which country the player was located. You can browse the recognized drawings on [quickdraw.withgoogle.com/data](https://quickdraw.withgoogle.com/data).
>
> We're sharing them here for developers, researchers, and artists to explore, study, and learn from

### Source Data

#### Initial Data Collection and Normalization

This dataset contains vector drawings obtained from [Quick, Draw!](https://quickdraw.withgoogle.com/), an online game where the players are asked to draw objects belonging to a particular object class in less than 20 seconds.

#### Who are the source language producers?

The participants in the [Quick, Draw!](https://quickdraw.withgoogle.com/) game.

### Annotations

#### Annotation process

The annotations are machine-generated and match the category the player was prompted to draw.

#### Who are the annotators?

The annotations are machine-generated.

### Personal and Sensitive Information

Some sketches are known to be problematic (see https://github.com/googlecreativelab/quickdraw-dataset/issues/74 and https://github.com/googlecreativelab/quickdraw-dataset/issues/18).

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

## Additional Information

### Dataset Curators

Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim and Nick Fox-Gieg.

### Licensing Information

The data is made available by Google, Inc. under the [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) license.

### Citation Information

```bibtex
@article{DBLP:journals/corr/HaE17,
  author    = {David Ha and
               Douglas Eck},
  title     = {A Neural Representation of Sketch Drawings},
  journal   = {CoRR},
  volume    = {abs/1704.03477},
  year      = {2017},
  url       = {http://arxiv.org/abs/1704.03477},
  archivePrefix = {arXiv},
  eprint    = {1704.03477},
  timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/HaE17},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

### Contributions

Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.