Datasets:
Tasks:
Audio Classification
Sub-tasks:
keyword-spotting
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 12,076 Bytes
c68e203 06f287b c68e203 06f287b 0c5898d c68e203 7d817d1 c68e203 eb2b773 c68e203 eb2b773 7d817d1 ffe14e1 7d817d1 ffe14e1 d47455c ffe14e1 7d817d1 ffe14e1 d47455c ffe14e1 e2ba1bc c68e203 86f4a71 c68e203 86f4a71 c68e203 ffe14e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
---
annotations_creators:
- other
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
source_datasets:
- original
task_categories:
- audio-classification
task_ids:
- keyword-spotting
pretty_name: SpeechCommands
dataset_info:
- config_name: v0.01
features:
- name: file
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: label
dtype:
class_label:
names:
'0': 'yes'
'1': 'no'
'2': up
'3': down
'4': left
'5': right
'6': 'on'
'7': 'off'
'8': stop
'9': go
'10': zero
'11': one
'12': two
'13': three
'14': four
'15': five
'16': six
'17': seven
'18': eight
'19': nine
'20': bed
'21': bird
'22': cat
'23': dog
'24': happy
'25': house
'26': marvin
'27': sheila
'28': tree
'29': wow
'30': _silence_
- name: is_unknown
dtype: bool
- name: speaker_id
dtype: string
- name: utterance_id
dtype: int8
splits:
- name: train
num_bytes: 1626283624
num_examples: 51093
- name: validation
num_bytes: 217204539
num_examples: 6799
- name: test
num_bytes: 98979965
num_examples: 3081
download_size: 1454702755
dataset_size: 1942468128
- config_name: v0.02
features:
- name: file
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: label
dtype:
class_label:
names:
'0': 'yes'
'1': 'no'
'2': up
'3': down
'4': left
'5': right
'6': 'on'
'7': 'off'
'8': stop
'9': go
'10': zero
'11': one
'12': two
'13': three
'14': four
'15': five
'16': six
'17': seven
'18': eight
'19': nine
'20': bed
'21': bird
'22': cat
'23': dog
'24': happy
'25': house
'26': marvin
'27': sheila
'28': tree
'29': wow
'30': backward
'31': forward
'32': follow
'33': learn
'34': visual
'35': _silence_
- name: is_unknown
dtype: bool
- name: speaker_id
dtype: string
- name: utterance_id
dtype: int8
splits:
- name: train
num_bytes: 2684381672
num_examples: 84848
- name: validation
num_bytes: 316435178
num_examples: 9982
- name: test
num_bytes: 157096106
num_examples: 4890
download_size: 2285975869
dataset_size: 3157912956
config_names:
- v0.01
- v0.02
---
# Dataset Card for SpeechCommands
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.tensorflow.org/datasets/catalog/speech_commands
- **Repository:** [More Information Needed]
- **Paper:** [Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition](https://arxiv.org/pdf/1804.03209.pdf)
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** Pete Warden, petewarden@google.com
### Dataset Summary
This is a set of one-second .wav audio files, each containing a single spoken
English word or background noise. These words are from a small set of commands, and are spoken by a
variety of different speakers. This data set is designed to help train simple
machine learning models. It is covered in more detail at [https://arxiv.org/abs/1804.03209](https://arxiv.org/abs/1804.03209).
Version 0.01 of the data set (configuration `"v0.01"`) was released on August 3rd 2017 and contains
64,727 audio files.
Version 0.02 of the data set (configuration `"v0.02"`) was released on April 11th 2018 and
contains 105,829 audio files.
### Supported Tasks and Leaderboards
* `keyword-spotting`: the dataset can be used to train and evaluate keyword
spotting systems. The task is to detect preregistered keywords by classifying utterances
into a predefined set of words. The task is usually performed on-device for the
fast response time. Thus, accuracy, model size, and inference time are all crucial.
### Languages
The language data in SpeechCommands is in English (BCP-47 `en`).
## Dataset Structure
### Data Instances
Example of a core word (`"label"` is a word, `"is_unknown"` is `False`):
```python
{
"file": "no/7846fd85_nohash_0.wav",
"audio": {
"path": "no/7846fd85_nohash_0.wav",
"array": array([ -0.00021362, -0.00027466, -0.00036621, ..., 0.00079346,
0.00091553, 0.00079346]),
"sampling_rate": 16000
},
"label": 1, # "no"
"is_unknown": False,
"speaker_id": "7846fd85",
"utterance_id": 0
}
```
Example of an auxiliary word (`"label"` is a word, `"is_unknown"` is `True`)
```python
{
"file": "tree/8b775397_nohash_0.wav",
"audio": {
"path": "tree/8b775397_nohash_0.wav",
"array": array([ -0.00854492, -0.01339722, -0.02026367, ..., 0.00274658,
0.00335693, 0.0005188]),
"sampling_rate": 16000
},
"label": 28, # "tree"
"is_unknown": True,
"speaker_id": "1b88bf70",
"utterance_id": 0
}
```
Example of background noise (`_silence_`) class:
```python
{
"file": "_silence_/doing_the_dishes.wav",
"audio": {
"path": "_silence_/doing_the_dishes.wav",
"array": array([ 0. , 0. , 0. , ..., -0.00592041,
-0.00405884, -0.00253296]),
"sampling_rate": 16000
},
"label": 30, # "_silence_"
"is_unknown": False,
"speaker_id": "None",
"utterance_id": 0 # doesn't make sense here
}
```
### Data Fields
* `file`: relative audio filename inside the original archive.
* `audio`: dictionary containing a relative audio filename,
a decoded audio array, and the sampling rate. Note that when accessing
the audio column: `dataset[0]["audio"]` the audio is automatically decoded
and resampled to `dataset.features["audio"].sampling_rate`.
Decoding and resampling of a large number of audios might take a significant
amount of time. Thus, it is important to first query the sample index before
the `"audio"` column, i.e. `dataset[0]["audio"]` should always be preferred
over `dataset["audio"][0]`.
* `label`: either word pronounced in an audio sample or background noise (`_silence_`) class.
Note that it's an integer value corresponding to the class name.
* `is_unknown`: if a word is auxiliary. Equals to `False` if a word is a core word or `_silence_`,
`True` if a word is an auxiliary word.
* `speaker_id`: unique id of a speaker. Equals to `None` if label is `_silence_`.
* `utterance_id`: incremental id of a word utterance within the same speaker.
### Data Splits
The dataset has two versions (= configurations): `"v0.01"` and `"v0.02"`. `"v0.02"`
contains more words (see section [Source Data](#source-data) for more details).
| | train | validation | test |
|----- |------:|-----------:|-----:|
| v0.01 | 51093 | 6799 | 3081 |
| v0.02 | 84848 | 9982 | 4890 |
Note that in train and validation sets examples of `_silence_` class are longer than 1 second.
You can use the following code to sample 1-second examples from the longer ones:
```python
def sample_noise(example):
# Use this function to extract random 1 sec slices of each _silence_ utterance,
# e.g. inside `torch.utils.data.Dataset.__getitem__()`
from random import randint
if example["label"] == "_silence_":
random_offset = randint(0, len(example["speech"]) - example["sample_rate"] - 1)
example["speech"] = example["speech"][random_offset : random_offset + example["sample_rate"]]
return example
```
## Dataset Creation
### Curation Rationale
The primary goal of the dataset is to provide a way to build and test small
models that can detect a single word from a set of target words and differentiate it
from background noise or unrelated speech with as few false positives as possible.
### Source Data
#### Initial Data Collection and Normalization
The audio files were collected using crowdsourcing, see
[aiyprojects.withgoogle.com/open_speech_recording](https://github.com/petewarden/extract_loudest_section)
for some of the open source audio collection code that was used. The goal was to gather examples of
people speaking single-word commands, rather than conversational sentences, so
they were prompted for individual words over the course of a five minute
session.
In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left",
"Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine",
"Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".
In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".
In both versions, ten of them are used as commands by convention: "Yes", "No", "Up", "Down", "Left",
"Right", "On", "Off", "Stop", "Go". Other words are considered to be auxiliary (in current implementation
it is marked by `True` value of `"is_unknown"` feature). Their function is to teach a model to distinguish core words
from unrecognized ones.
The `_silence_` label contains a set of longer audio clips that are either recordings or
a mathematical simulation of noise.
#### Who are the source language producers?
The audio files were collected using crowdsourcing.
### Annotations
#### Annotation process
Labels are the list of words prepared in advances.
Speakers were prompted for individual words over the course of a five minute
session.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons BY 4.0 License ((CC-BY-4.0)[https://creativecommons.org/licenses/by/4.0/legalcode]).
### Citation Information
```
@article{speechcommandsv2,
author = { {Warden}, P.},
title = "{Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1804.03209},
primaryClass = "cs.CL",
keywords = {Computer Science - Computation and Language, Computer Science - Human-Computer Interaction},
year = 2018,
month = apr,
url = {https://arxiv.org/abs/1804.03209},
}
```
### Contributions
Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset. |