Datasets:
File size: 2,995 Bytes
7d24521 2f0ffd5 8aa98e6 7d24521 1386d21 2f0ffd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: mit
task_categories:
- graph-ml
---
# Dataset Card for MNIST
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [External Use](#external-use)
- [PyGeometric](#pygeometric)
- [Dataset Structure](#dataset-structure)
- [Data Properties](#data-properties)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **[Homepage](https://github.com/graphdeeplearning/benchmarking-gnns)**
- **Paper:**: (see citation)
### Dataset Summary
The `MNIST` dataset consists of 55000 images in 10 classes, represented as graphs. It comes from a computer vision dataset.
### Supported Tasks and Leaderboards
`MNIST` should be used for multiclass graph classification.
## External Use
### PyGeometric
To load in PyGeometric, do the following:
```python
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
dataset_hf = load_dataset("graphs-datasets/<mydataset>")
# For the train set (replace by valid or test as needed)
dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
dataset_pg = DataLoader(dataset_pg_list)
```
## Dataset Structure
### Data Properties
| property | value |
|---|---|
| #graphs | 55,000 |
| average #nodes | 70.6 |
| average #edges | 564.5 |
### Data Fields
Each row of a given file is a graph, with:
- `node_feat` (list: #nodes x #node-features): nodes
- `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
- `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
- `y` (list: #labels): contains the number of labels available to predict
- `num_nodes` (int): number of nodes of the graph
- `pos` (list: 2 x #node): positional information of each node
### Data Splits
This data is split. It comes from the PyGeometric version of the dataset.
## Additional Information
### Licensing Information
The dataset has been released under MIT license.
### Citation Information
```
@article{DBLP:journals/corr/abs-2003-00982,
author = {Vijay Prakash Dwivedi and
Chaitanya K. Joshi and
Thomas Laurent and
Yoshua Bengio and
Xavier Bresson},
title = {Benchmarking Graph Neural Networks},
journal = {CoRR},
volume = {abs/2003.00982},
year = {2020},
url = {https://arxiv.org/abs/2003.00982},
eprinttype = {arXiv},
eprint = {2003.00982},
timestamp = {Sat, 23 Jan 2021 01:14:30 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2003-00982.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |