Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Indonesian
Size:
10K<n<100K
License:
File size: 7,411 Bytes
43d4da7 8702f40 43d4da7 8702f40 43d4da7 65689be 43d4da7 9e139aa 5a4737b 7e9828c 5a4737b 7e9828c e78a9e7 7e9828c 5a4737b 7e9828c e78a9e7 7e9828c 5a4737b 7e9828c e78a9e7 7e9828c 43d4da7 9e139aa 43d4da7 9e139aa 43d4da7 2dad6fa 43d4da7 2dad6fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- id
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: nergrit-corpus
pretty_name: Nergrit Corpus
dataset_info:
- config_name: ner
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-CRD
'1': B-DAT
'2': B-EVT
'3': B-FAC
'4': B-GPE
'5': B-LAN
'6': B-LAW
'7': B-LOC
'8': B-MON
'9': B-NOR
'10': B-ORD
'11': B-ORG
'12': B-PER
'13': B-PRC
'14': B-PRD
'15': B-QTY
'16': B-REG
'17': B-TIM
'18': B-WOA
'19': I-CRD
'20': I-DAT
'21': I-EVT
'22': I-FAC
'23': I-GPE
'24': I-LAN
'25': I-LAW
'26': I-LOC
'27': I-MON
'28': I-NOR
'29': I-ORD
'30': I-ORG
'31': I-PER
'32': I-PRC
'33': I-PRD
'34': I-QTY
'35': I-REG
'36': I-TIM
'37': I-WOA
'38': O
splits:
- name: train
num_bytes: 5428411
num_examples: 12532
- name: test
num_bytes: 1135577
num_examples: 2399
- name: validation
num_bytes: 1086437
num_examples: 2521
download_size: 14988232
dataset_size: 7650425
- config_name: sentiment
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-NEG
'1': B-NET
'2': B-POS
'3': I-NEG
'4': I-NET
'5': I-POS
'6': O
splits:
- name: train
num_bytes: 3167972
num_examples: 7485
- name: test
num_bytes: 1097517
num_examples: 2317
- name: validation
num_bytes: 337679
num_examples: 782
download_size: 14988232
dataset_size: 4603168
- config_name: statement
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-BREL
'1': B-FREL
'2': B-STAT
'3': B-WHO
'4': I-BREL
'5': I-FREL
'6': I-STAT
'7': I-WHO
'8': O
splits:
- name: train
num_bytes: 1469081
num_examples: 2405
- name: test
num_bytes: 182553
num_examples: 335
- name: validation
num_bytes: 105119
num_examples: 176
download_size: 14988232
dataset_size: 1756753
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [PT Gria Inovasi Teknologi](https://grit.id/)
- **Repository:** [Nergrit Corpus](https://github.com/grit-id/nergrit-corpus)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Taufiqur Rohman](mailto:taufiq@grit.id)
### Dataset Summary
Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition, Statement Extraction,
and Sentiment Analysis developed by [PT Gria Inovasi Teknologi (GRIT)](https://grit.id/).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Indonesian
## Dataset Structure
A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.
```
{'id': '0',
'tokens': ['Gubernur', 'Bank', 'Indonesia', 'menggelar', 'konferensi', 'pers'],
'ner_tags': [9, 28, 28, 38, 38, 38],
}
```
### Data Instances
[More Information Needed]
### Data Fields
- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token
#### Named Entity Recognition
The ner_tags correspond to this list:
```
"B-CRD", "B-DAT", "B-EVT", "B-FAC", "B-GPE", "B-LAN", "B-LAW", "B-LOC", "B-MON", "B-NOR",
"B-ORD", "B-ORG", "B-PER", "B-PRC", "B-PRD", "B-QTY", "B-REG", "B-TIM", "B-WOA",
"I-CRD", "I-DAT", "I-EVT", "I-FAC", "I-GPE", "I-LAN", "I-LAW", "I-LOC", "I-MON", "I-NOR",
"I-ORD", "I-ORG", "I-PER", "I-PRC", "I-PRD", "I-QTY", "I-REG", "I-TIM", "I-WOA", "O",
```
The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any
non-initial word. The dataset contains 19 following entities
```
'CRD': Cardinal
'DAT': Date
'EVT': Event
'FAC': Facility
'GPE': Geopolitical Entity
'LAW': Law Entity (such as Undang-Undang)
'LOC': Location
'MON': Money
'NOR': Political Organization
'ORD': Ordinal
'ORG': Organization
'PER': Person
'PRC': Percent
'PRD': Product
'QTY': Quantity
'REG': Religion
'TIM': Time
'WOA': Work of Art
'LAN': Language
```
#### Sentiment Analysis
The ner_tags correspond to this list:
```
"B-NEG", "B-NET", "B-POS",
"I-NEG", "I-NET", "I-POS",
"O",
```
#### Statement Extraction
The ner_tags correspond to this list:
```
"B-BREL", "B-FREL", "B-STAT", "B-WHO",
"I-BREL", "I-FREL", "I-STAT", "I-WHO",
"O"
```
The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any
non-initial word.
### Data Splits
The dataset is splitted in to train, validation and test sets.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
The annotators are listed in the
[Nergrit Corpus repository](https://github.com/grit-id/nergrit-corpus)
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@cahya-wirawan](https://github.com/cahya-wirawan) for adding this dataset. |