Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Indonesian
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Nergrit Corpus""" | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{id_nergrit_corpus, | |
author = {Gria Inovasi Teknologi}, | |
title = {NERGRIT CORPUS}, | |
year = {2019}, | |
url = {https://github.com/grit-id/nergrit-corpus}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
Nergrit Corpus is a dataset collection for Indonesian Named Entity Recognition, Statement Extraction, and Sentiment | |
Analysis. id_nergrit_corpus is the Named Entity Recognition of this dataset collection which contains 18 entities as | |
follow: | |
'CRD': Cardinal | |
'DAT': Date | |
'EVT': Event | |
'FAC': Facility | |
'GPE': Geopolitical Entity | |
'LAW': Law Entity (such as Undang-Undang) | |
'LOC': Location | |
'MON': Money | |
'NOR': Political Organization | |
'ORD': Ordinal | |
'ORG': Organization | |
'PER': Person | |
'PRC': Percent | |
'PRD': Product | |
'QTY': Quantity | |
'REG': Religion | |
'TIM': Time | |
'WOA': Work of Art | |
'LAN': Language | |
""" | |
_HOMEPAGE = "https://github.com/grit-id/nergrit-corpus" | |
_LICENSE = "" | |
_URLs = [ | |
"https://github.com/cahya-wirawan/indonesian-language-models/raw/master/data/nergrit-corpus_20190726_corrected.tgz", | |
"https://cloud.uncool.ai/index.php/s/2QEcMrgwkjMAo4o/download", | |
] | |
class IdNergritCorpusConfig(datasets.BuilderConfig): | |
"""BuilderConfig for IdNergritCorpus""" | |
def __init__(self, label_classes=None, **kwargs): | |
"""BuilderConfig for IdNergritCorpus. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(IdNergritCorpusConfig, self).__init__(**kwargs) | |
self.label_classes = label_classes | |
class IdNergritCorpus(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
IdNergritCorpusConfig( | |
name="ner", | |
version=VERSION, | |
description="Named Entity Recognition dataset of Nergrit Corpus", | |
label_classes=[ | |
"B-CRD", | |
"B-DAT", | |
"B-EVT", | |
"B-FAC", | |
"B-GPE", | |
"B-LAN", | |
"B-LAW", | |
"B-LOC", | |
"B-MON", | |
"B-NOR", | |
"B-ORD", | |
"B-ORG", | |
"B-PER", | |
"B-PRC", | |
"B-PRD", | |
"B-QTY", | |
"B-REG", | |
"B-TIM", | |
"B-WOA", | |
"I-CRD", | |
"I-DAT", | |
"I-EVT", | |
"I-FAC", | |
"I-GPE", | |
"I-LAN", | |
"I-LAW", | |
"I-LOC", | |
"I-MON", | |
"I-NOR", | |
"I-ORD", | |
"I-ORG", | |
"I-PER", | |
"I-PRC", | |
"I-PRD", | |
"I-QTY", | |
"I-REG", | |
"I-TIM", | |
"I-WOA", | |
"O", | |
], | |
), | |
IdNergritCorpusConfig( | |
name="sentiment", | |
version=VERSION, | |
description="Sentiment Analysis dataset of Nergrit Corpus", | |
label_classes=[ | |
"B-NEG", | |
"B-NET", | |
"B-POS", | |
"I-NEG", | |
"I-NET", | |
"I-POS", | |
"O", | |
], | |
), | |
IdNergritCorpusConfig( | |
name="statement", | |
version=VERSION, | |
description="Statement Extraction dataset of Nergrit Corpus", | |
label_classes=[ | |
"B-BREL", | |
"B-FREL", | |
"B-STAT", | |
"B-WHO", | |
"I-BREL", | |
"I-FREL", | |
"I-STAT", | |
"I-WHO", | |
"O", | |
], | |
), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.config.label_classes)), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
my_urls = _URLs[0] | |
archive = dl_manager.download(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": f"nergrit-corpus/{self.config.name}/data/train_corrected.txt", | |
"split": "train", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": f"nergrit-corpus/{self.config.name}/data/test_corrected.txt", | |
"split": "test", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": f"nergrit-corpus/{self.config.name}/data/valid_corrected.txt", | |
"split": "dev", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split, files): | |
for path, f in files: | |
if path == filepath: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
splits = line.decode("utf-8").strip().split() | |
if len(splits) != 2: | |
if tokens: | |
assert len(tokens) == len(ner_tags), "word len doesn't match label length" | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
tokens.append(splits[0]) | |
ner_tags.append(splits[1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
break | |