id_nergrit_corpus / id_nergrit_corpus.py
system's picture
system HF staff
Update files from the datasets library (from 1.16.0)
1da39cb
raw
history blame
7.36 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Nergrit Corpus"""
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{id_nergrit_corpus,
author = {Gria Inovasi Teknologi},
title = {NERGRIT CORPUS},
year = {2019},
url = {https://github.com/grit-id/nergrit-corpus},
}
"""
_DESCRIPTION = """\
Nergrit Corpus is a dataset collection for Indonesian Named Entity Recognition, Statement Extraction, and Sentiment
Analysis. id_nergrit_corpus is the Named Entity Recognition of this dataset collection which contains 18 entities as
follow:
'CRD': Cardinal
'DAT': Date
'EVT': Event
'FAC': Facility
'GPE': Geopolitical Entity
'LAW': Law Entity (such as Undang-Undang)
'LOC': Location
'MON': Money
'NOR': Political Organization
'ORD': Ordinal
'ORG': Organization
'PER': Person
'PRC': Percent
'PRD': Product
'QTY': Quantity
'REG': Religion
'TIM': Time
'WOA': Work of Art
'LAN': Language
"""
_HOMEPAGE = "https://github.com/grit-id/nergrit-corpus"
_LICENSE = ""
_URLs = [
"https://github.com/cahya-wirawan/indonesian-language-models/raw/master/data/nergrit-corpus_20190726_corrected.tgz",
"https://cloud.uncool.ai/index.php/s/2QEcMrgwkjMAo4o/download",
]
class IdNergritCorpusConfig(datasets.BuilderConfig):
"""BuilderConfig for IdNergritCorpus"""
def __init__(self, label_classes=None, **kwargs):
"""BuilderConfig for IdNergritCorpus.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IdNergritCorpusConfig, self).__init__(**kwargs)
self.label_classes = label_classes
class IdNergritCorpus(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
IdNergritCorpusConfig(
name="ner",
version=VERSION,
description="Named Entity Recognition dataset of Nergrit Corpus",
label_classes=[
"B-CRD",
"B-DAT",
"B-EVT",
"B-FAC",
"B-GPE",
"B-LAN",
"B-LAW",
"B-LOC",
"B-MON",
"B-NOR",
"B-ORD",
"B-ORG",
"B-PER",
"B-PRC",
"B-PRD",
"B-QTY",
"B-REG",
"B-TIM",
"B-WOA",
"I-CRD",
"I-DAT",
"I-EVT",
"I-FAC",
"I-GPE",
"I-LAN",
"I-LAW",
"I-LOC",
"I-MON",
"I-NOR",
"I-ORD",
"I-ORG",
"I-PER",
"I-PRC",
"I-PRD",
"I-QTY",
"I-REG",
"I-TIM",
"I-WOA",
"O",
],
),
IdNergritCorpusConfig(
name="sentiment",
version=VERSION,
description="Sentiment Analysis dataset of Nergrit Corpus",
label_classes=[
"B-NEG",
"B-NET",
"B-POS",
"I-NEG",
"I-NET",
"I-POS",
"O",
],
),
IdNergritCorpusConfig(
name="statement",
version=VERSION,
description="Statement Extraction dataset of Nergrit Corpus",
label_classes=[
"B-BREL",
"B-FREL",
"B-STAT",
"B-WHO",
"I-BREL",
"I-FREL",
"I-STAT",
"I-WHO",
"O",
],
),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.config.label_classes)),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
my_urls = _URLs[0]
archive = dl_manager.download(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": f"nergrit-corpus/{self.config.name}/data/train_corrected.txt",
"split": "train",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": f"nergrit-corpus/{self.config.name}/data/test_corrected.txt",
"split": "test",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": f"nergrit-corpus/{self.config.name}/data/valid_corrected.txt",
"split": "dev",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, filepath, split, files):
for path, f in files:
if path == filepath:
guid = 0
tokens = []
ner_tags = []
for line in f:
splits = line.decode("utf-8").strip().split()
if len(splits) != 2:
if tokens:
assert len(tokens) == len(ner_tags), "word len doesn't match label length"
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
break