File size: 4,861 Bytes
6b37eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fa2041
6b37eca
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import csv
import sys

import datasets
from typing import List

csv.field_size_limit(sys.maxsize)


_CITATION = """\
@inproceedings{trotta-etal-2021-itacola,
    author = {Trotta, Daniela and Guarasci, Raffaele and Leonardelli, Elisa and Tonelli, Sara},
    title = {Monolingual and Cross-Lingual Acceptability Judgments with the Italian {CoLA} corpus},
    journal = {Arxiv preprint},
    year = {2021},
}
"""

_DESCRIPTION = """\
The Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from 
linguistic literature with a binary annotation made by the original authors themselves. 
The work is inspired by the English Corpus of Linguistic Acceptability (CoLA) by Warstadt et al.
Part of the dataset has been manually annotated to highlight 9 linguistic phenomena.
"""

_HOMEPAGE = "https://github.com/dhfbk/ItaCoLA-dataset"

_LICENSE = "None"

_SPLITS = ["train", "test"]


class ItaColaConfig(datasets.BuilderConfig):
    """BuilderConfig for ItaCoLA."""

    def __init__(
        self,
        features,
        data_url,
        **kwargs,
    ):
        """
        Args:
        features: `list[string]`, list of the features that will appear in the
            feature dict. Should not include "label".
        data_url: `string`, url to download the zip file from.
        **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url
        self.features = features


class ItaCola(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        ItaColaConfig(
            name="scores",
            features=["unique_id", "source", "acceptability", "sentence"],
            data_url="https://raw.githubusercontent.com/dhfbk/ItaCoLA-dataset/main/ItaCoLA_dataset.tsv"
        ),
        ItaColaConfig(
            name="phenomena",
            features=[
                "unique_id",
                "source",
                "acceptability",
                "sentence",
                "cleft_construction",
                "copular_construction",
                "subject_verb_agreement",
                "wh_islands_violations",
                "simple",
                "question",
                "auxiliary",
                "bind",
                "indefinite_pronouns",
            ],
            data_url="https://github.com/dhfbk/ItaCoLA-dataset/raw/main/ItaCoLA_dataset_phenomenon.tsv"
        ),
    ]

    DEFAULT_CONFIG_NAME = "scores"

    def _info(self):
        features = {feature: datasets.Value("int32") for feature in self.config.features}
        features["source"] = datasets.Value("string")
        features["sentence"] = datasets.Value("string")
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_file = dl_manager.download_and_extract(self.config.data_url)
        if self.config.name == "scores":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": data_file,
                        "split": "train",
                        "features": self.config.features,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": data_file,
                        "split": "test",
                        "features": self.config.features,
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": data_file,
                        "split": "train",
                        "features": self.config.features,
                    },
                ),
            ]
    
    def _generate_examples(self, filepath: str, split: str, features: List[str]):
        """Yields examples as (key, example) tuples."""
        with open(filepath, encoding="utf8") as f:
            for id_, row in enumerate(f):
                if id_ == 0:
                    continue
                ex_split = None
                fields = row.strip().split("\t")
                if len(fields) > 5:
                    fields, ex_split = fields[:-1], fields[-1]
                    if ex_split.strip() != split:
                        continue
                yield id_, {
                    k:v.strip() for k,v in zip(features, fields)
                }