File size: 8,223 Bytes
1e012a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import json
import os
import pandas as pd
import plotly.graph_objects as go
from typing import Dict, List
def get_model_names() -> List[str]:
"""从evaluation_results文件夹获取所有模型名称"""
model_names = []
for item in os.listdir('.'):
if item.startswith('evaluation_results.') and os.path.isdir(item):
model_name = item.replace('evaluation_results.', '')
model_names.append(model_name)
return sorted(model_names) # 排序以保持顺序一致
def load_report(model_name: str) -> Dict:
"""加载模型的评测报告"""
report_path = f"evaluation_results.{model_name}/evaluation_report.json"
with open(report_path, 'r', encoding='utf-8') as f:
return json.load(f)
def create_comparison_tables() -> Dict[str, pd.DataFrame]:
"""创建不同维度的对比表格"""
# 动态获取所有模型名称
models = get_model_names()
# 加载所有报告
reports = {model: load_report(model) for model in models}
# 1. 整体表现
overall_data = []
for model, report in reports.items():
overall = report['overall']
overall_data.append({
'模型': model,
'总题数': overall['total'],
'正确数': overall['correct'],
'准确率': f"{overall['accuracy']*100:.2f}%"
})
overall_df = pd.DataFrame(overall_data)
# 2. 按题型分类
type_data = []
for model, report in reports.items():
for q_type, metrics in report['by_type'].items():
type_data.append({
'模型': model,
'题型': q_type,
'总题数': metrics['total'],
'正确数': metrics['correct'],
'准确率': f"{metrics['accuracy']*100:.2f}%"
})
type_df = pd.DataFrame(type_data)
# 3. 按难度分类
difficulty_data = []
difficulty_order = ['easy', 'medium', 'hard'] # 预定义难度顺序
for model, report in reports.items():
for diff in difficulty_order:
if diff in report['by_difficulty']:
metrics = report['by_difficulty'][diff]
difficulty_data.append({
'模型': model,
'难度': diff,
'总题数': metrics['total'],
'正确数': metrics['correct'],
'准确率': f"{metrics['accuracy']*100:.2f}%"
})
difficulty_df = pd.DataFrame(difficulty_data)
# 4. 按朝代分类
dynasty_data = []
for model, report in reports.items():
for dynasty, metrics in report['by_dynasty'].items():
dynasty_data.append({
'模型': model,
'朝代': dynasty if dynasty else "未知",
'总题数': metrics['total'],
'正确数': metrics['correct'],
'准确率': f"{metrics['accuracy']*100:.2f}%"
})
dynasty_df = pd.DataFrame(dynasty_data)
return {
'overall': overall_df,
'by_type': type_df,
'by_difficulty': difficulty_df,
'by_dynasty': dynasty_df
}
def plot_accuracy_comparison(dfs: Dict[str, pd.DataFrame]):
"""绘制准确率对比图"""
# 1. 整体准确率对比
fig = go.Figure(data=[
go.Bar(
name='整体准确率',
x=dfs['overall']['模型'],
y=[float(x.strip('%')) for x in dfs['overall']['准确率']],
text=dfs['overall']['准确率'],
textposition='auto',
)
])
fig.update_layout(
title='各模型整体准确率对比',
yaxis_title='准确率 (%)',
yaxis_range=[0, 100],
template='plotly_white'
)
fig.write_html('accuracy_comparison.html')
# 2. 按题型的准确率对比
type_pivot = pd.pivot_table(
dfs['by_type'],
values='准确率',
index='题型',
columns='模型',
aggfunc=lambda x: x
)
fig = go.Figure(data=[
go.Bar(
name=model,
x=type_pivot.index,
y=[float(x.strip('%')) for x in type_pivot[model]],
text=type_pivot[model],
textposition='auto',
) for model in type_pivot.columns
])
fig.update_layout(
title='各模型在不同题型上的准确率对比',
yaxis_title='准确率 (%)',
yaxis_range=[0, 100],
barmode='group',
template='plotly_white',
height=600 # 增加图表高度
)
fig.write_html('accuracy_by_type.html')
# 3. 按难度的准确率对比
difficulty_pivot = pd.pivot_table(
dfs['by_difficulty'],
values='准确率',
index='难度',
columns='模型',
aggfunc=lambda x: x
)
# 确保难度顺序正确
difficulty_order = ['easy', 'medium', 'hard']
difficulty_pivot = difficulty_pivot.reindex(difficulty_order)
fig = go.Figure(data=[
go.Bar(
name=model,
x=difficulty_pivot.index,
y=[float(x.strip('%')) for x in difficulty_pivot[model]],
text=difficulty_pivot[model],
textposition='auto',
) for model in difficulty_pivot.columns
])
fig.update_layout(
title='各模型在不同难度上的准确率对比',
yaxis_title='准确率 (%)',
yaxis_range=[0, 100],
barmode='group',
template='plotly_white'
)
fig.write_html('accuracy_by_difficulty.html')
# 4. 按朝代的准确率对比
dynasty_pivot = pd.pivot_table(
dfs['by_dynasty'],
values='准确率',
index='朝代',
columns='模型',
aggfunc=lambda x: x
)
fig = go.Figure(data=[
go.Bar(
name=model,
x=dynasty_pivot.index,
y=[float(x.strip('%')) for x in dynasty_pivot[model]],
text=dynasty_pivot[model],
textposition='auto',
) for model in dynasty_pivot.columns
])
fig.update_layout(
title='各模型在不同朝代诗词上的准确率对比',
yaxis_title='准确率 (%)',
yaxis_range=[0, 100],
barmode='group',
template='plotly_white',
height=800 # 增加图表高度以适应更多朝代
)
fig.write_html('accuracy_by_dynasty.html')
# 5. 雷达图对比
categories = ['整体'] + list(type_pivot.index)
fig = go.Figure()
for model in dfs['overall']['模型']:
values = [float(dfs['overall'][dfs['overall']['模型']==model]['准确率'].iloc[0].strip('%'))]
for q_type in type_pivot.index:
values.append(float(type_pivot[model][q_type].strip('%')))
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
name=model,
fill='toself'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100]
)),
showlegend=True,
title='各模型在不同维度的表现对比(雷达图)',
template='plotly_white'
)
fig.write_html('radar_comparison.html')
def main():
# 创建对比表格
dfs = create_comparison_tables()
# 保存为Excel文件
with pd.ExcelWriter('model_comparison.xlsx') as writer:
dfs['overall'].to_excel(writer, sheet_name='整体表现', index=False)
dfs['by_type'].to_excel(writer, sheet_name='按题型分类', index=False)
dfs['by_difficulty'].to_excel(writer, sheet_name='按难度分类', index=False)
dfs['by_dynasty'].to_excel(writer, sheet_name='按朝代分类', index=False)
# 打印表格
print("\n整体表现:")
print(dfs['overall'].to_string(index=False))
print("\n按题型分类:")
print(dfs['by_type'].to_string(index=False))
print("\n按难度分类:")
print(dfs['by_difficulty'].to_string(index=False))
print("\n按朝代分类:")
print(dfs['by_dynasty'].to_string(index=False))
# 绘制对比图
plot_accuracy_comparison(dfs)
if __name__ == '__main__':
main() |