{"text": "JCI Insight. 2019;4(8):e125172. https://doi.org/10.1172/jci.insight.125172Original citation: JCI Insight. 2020;5(24):e146654. https://doi.org/10.1172/jci.insight.146654Citation for this retraction: JCI Insight of data manipulation in this article. In accordance with the institutional recommendation and at the request of the corresponding author, JCI Insight is retracting this article.Newcastle University recently notified"} {"text": "R. Soc. Open Sci.7, 200203 (Published Online 11 March 2020) (doi:10.1098/rsos.200203)tER was used in place of t/R (see below). This has now been updated.This correction refers to an error in equation 2.16, Corrected version"} {"text": "This article has been corrected: During figure processing, identical Western blot images were mistakenly placed in both 7166-7181. https://doi.org/10.18632/oncotarget.3347Original article: Oncotarget. 2015; 6:7166\u20137181."} {"text": "Apis mellifera L. (Hymenoptera: Apidae) and functional characterization of Am_Eglp 1. PLoS ONE 15(9): e0236724. https://doi.org/10.1371/journal.pone.0236724.The first author\u2019s initials appear incorrectly in the citation. The correct citation is: de Souza DLL, Serr\u00e3o JE, Hansen IA (2020) Aquaporin expression in the alimentary canal of the honey bee"} {"text": "JCI Insight. 2018;3(21):e97941. https://doi.org/10.1172/jci.insight.97941Original citation: JCI Insight. 2020;5(23):e145847. https://doi.org/10.1172/jci.insight.145847Citation for this corrigendum: The graph shown in The authors regret the error."} {"text": "R. Soc. open sci.7, 191577. (Published Online 22 January 2020) (doi:10.1098/rsos.191577)This correction refers to an error in the caption for figure 6. The copyright information was missing; this has now been corrected."} {"text": "Retraction Note: Lab Anim Res (2018) 34: 49\u201357https://doi.org/10.5625/lar.2018.34.2.49This article has beenAll authors agreed to this retraction."} {"text": "Correction to:Journal of Exposure Science & Environmental Epidemiology10.1038/s41370-018-0110-5published online 10 January 2019In the original Article, References 34\u201336 listed incorrect URLs. The correct URLs are:https://www.health.state.mn.us/communities/environment/biomonitoring/docs/pfc2015communityreport.pdf34. MDH . East Metro PFC3 biomonitoring project: December 2015. Report to the Community. 2015b. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en35. OECD (Organization for Economic Co-operation and Development). Toward a new comprehensive global database of per and polyfluoroalkyl substances (PFASs): summary report on updating the OECD 2007 list of per- and polyfluoroalkyl substances (PFASs). 2018. https://19january2017snapshot.epa.gov/expobox/exposure-factors-handbook-2011-edition_.html36. USEPA . National Center for Environmental Assessment. Exposure Factors Handbook. Edition. 2011."} {"text": "MC1R gene for coat colour variation in Chinese Tan sheep. PLoS ONE 15(8): e0235426. https://doi.org/10.1371/journal.pone.0235426The fourth author's name is spelled incorrectly. The correct name is: Rabiul Islam. The correct citation is: Gebreselassie G, Liang B, Berihulay H, Islam R, Abied A, Jiang L, et al. (2020) Genomic mapping identifies two genetic variants in the"} {"text": "This article has been corrected: In 7816-7828. https://doi.org/10.18632/oncotarget.6868Original article: Oncotarget. 2016; 7:7816\u20137828."} {"text": "The Pan African Medical Journal. 2016;23:149. doi:10.11604/pamj.2016.23.149.8950.Cet erratum corrige l\u2019article original: Dans la version originale de l\u2019article, l\u2019orthographe du nom de l\u2019auteur correspondant est incorrecte . Cela a"} {"text": "The correct name is: Charline M\u00fcntze-R\u00f6hr. The correct citation is: Valentin D, Presas A, M\u00fcntze-R\u00f6hr C, Mele E, Biehl C, Heiss C, et al. (2021) On the quantification of local power densities in a new vibration bioreactor. PLoS ONE 16(1): e0245768. There are errors in the Author Contributions. The correct contributions are: Conceptualization: DV WAB. Data curation: DV. Formal analysis: AP DV. Funding acquisition: AP CH WAB. Investigation: DV AP. Methodology: AP. Project administration: WAB. Resources: CH. Software: DV, CM-R. Supervision: CB CH. Validation: EM CH WAB. Writing\u2013original draft: DV WAB. Writing\u2013review & editing: WAB."} {"text": "Correction to: Nutr Metabhttps://doi.org/10.1186/s12986-019-0401-4The original version of this article , publish1. Incorrect calculations in Table\u00a02. Correct calculations in Table"} {"text": "In the original article an authoKhue LM, Jarzabek S. Demonstration paper: mood self\u2013assessment on smartphones. In: Proceedings of the conference on wireless health. ACM, New York, NY, USA. 2015. 10.1145/2811780.2811921.should therefore be corrected as follows:Khue LM, Ouh EL, Jarzabek S. Demonstration paper: mood self\u2013assessment on smartphones. In: Proceedings of the conference on wireless health. ACM: New York; 2015. 10.1145/2811780.2811921."} {"text": "This article has been corrected: Due to mistakes during the assembly of 94393-94406. https://doi.org/10.18632/oncotarget.21765Original article: Oncotarget. 2017; 8:94393\u201394406."} {"text": "This article has been corrected: The Grant section information has been updated with the following logos:6494-6508. https://doi.org/10.18632/oncotarget.27303Original article: Oncotarget. 2019; 10:6494\u20136508."} {"text": "Correction to: J Animal Sci Biotechnol 11, 84 (2020)https://doi.org/10.1186/s40104-020-00482-xIn the original publication of this article , the authttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145376\u201d should be \u201chttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145375\u201d.The \u201cThe original publication has been corrected."} {"text": "R. Soc. Open Sci.7, 200327 (Published online 13 May 2020) (doi:10.1098/rsos.200327)This correction refers to an error in reference [12]. It should be replaced by the below:ReferenceCaretta caretta) and green (Chelonia mydas) sea turtle nests in northern Cyprus. J. Nat. Hist.35, 573\u2013581. (doi:10.1080/00222930151098233)12. McGowan A, Broderick AC, Deeming J, Godley BJ, Hancock EG. 2001 Dipteran infestation of loggerhead (This has now been corrected."} {"text": "This corrigendum corrects article \u201cExternal auditory canal haemorrhage as the first sign of internal carotid artery pseudoaneurysm: a rare case\u201d and its publication reference i.e. The Pan African Medical Journal. 2020; 37:163. Access corrected manuscript Pan African Medical Journal. 2020; 37: 163. doi: 10.11604/pamj.2020.37.163.21968. PubMed PMID: 33425196. PubMed Central PMCID: PMC7757232. Epub 2021/01/12. eng. The original version of this article had auth"} {"text": "The fifth author\u2019s name appears incorrectly. The correct name is: P. N. Sylaja. The correct citation is: K. A, Shafeeque CM, Sudhir JB, Banerjee M, Sylaja PN (2020) Ethnic variation and the relevance of homozygous RNF 213 p.R4810.K variant in the phenotype of Indian Moya moya disease. PLoS ONE 15(12): e0243925. https://doi.org/10.1371/journal.pone.0243925The publisher apologizes for the error."} {"text": "This article has been corrected: Due to errors during typesetting, the image for 66989-67003. https://doi.org/10.18632/oncotarget.11888Original article: Oncotarget. 2016; 7:66989\u201367003."} {"text": "It also has an archive list to other posts on chemical feedstocks from microbes.https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-020-01325-0This study focused on using autoclaved municipal waste as a complex feedstock for chemical production, screening different microbes for their ability to transform the mixture.https://www.sciencedirect.com/topics/engineering/feedstocksThis page on feedstocks is a compendium and contains information related to biological and thermo\u2010chemical conversions of biomass.https://www.bio.org/sites/default/files/legacy/bioorg/docs/Synthetic-Biology-and-Everyday-Products-2012.pdfThis site from the Bio manufacturing organization discusses industrial processes for making feedstock chemicals via microbial processes.https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/manufacturing/deloitte-nl-manufacturing-opportunities-for-the-fermentation-based-chemical-industry-2014.pdfThis report focuses on business opportunities for the fermentation\u2010based chemical industries.https://www.genomatica.com/_uploads/pdfs/ISJ_markburke.pdfThis article deals with sustainable manufacture of chemicals with a major focus on Genomatica\u2019s process for converting sucrose to 1,4\u2010propanediol.https://www.riken.jp/en/news_pubs/research_news/rr/20180928_2018fall_FH/index.htmlMaleic acid is an important chemical, used for making surface coatings, resins, lubricants and agricultural products. This article describes a microbial process for producing the chemical.https://www.nature.com/articles/s41929-019-0272-0?draft=marketingWhile there has been much written about using electrochemical processes to drive microbial metabolism, this article looks at the theoretical efficiencies of different processes.https://www.mdpi.com/2227-9717/8/2/199/htmLactic acid is an important chemical feedstock. One output of polylactic acid polymers, and this paper provides a techno\u2010economic assessment.https://www.imedpub.com/articles/exploring-the-microbial-production-of-aromatic-fine-chemicals-to-overcome-the-barriers-of-traditional-methods.pdfde novo synthesis or derived from lignin metabolism.Aromatic compounds may be produced by biological systems, via https://www.pnas.org/content/116/22/10749Escherichia coli and Corynebacterium glutamicum strains.Methyl anthranilate is an important industrial chemical used in foods and cosmetics. This study explored its production in genetically\u2010engineered https://www.aocs.org/stay-informed/inform-magazine/featured-articles/pathways-to-novel-chemicals-february-2014?SSO=TrueThis site discusses the competition between bio\u2010based and new chemical processes for making key industrial specialty chemicals."} {"text": "Correction to: Cardiovasc Ultrasound (2021) 19:6https://doi.org/10.1186/s12947-020-00235-wFollowing publication of the original article , the autThe incorrect author name is:Marcelo L. C. Viera.The correct author name is:Marcelo L. C. Vieira.The original article has been"} {"text": "Article title: Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson\u2019s diseaseAuthors: Manalo, R. V. M., & Medina, P. M. B.Journal:Pharmaceutical BiologyBibliometrics: Volume 58, Number 1, pages 721\u2013731DOI:http://doi.org/10.1080/13880209.2020.1791192Figure 3E was incorrectly replaced by a re-pasted Figure 3D instead of its original intended figure."} {"text": "R. Soc. open sci.6, 191304. (Published 11 December 2019). (doi:10.1098/rsos.191304)y-axis in This correction refers to errors in the labelling of the"} {"text": "Translational PsychiatryCorrection to: 10.1038/tp.2015.136 published online 01 September 2015In the original Article, Figs."} {"text": "This article has been corrected: The corresponding author, Dianshan Ke, requested to change the email. The correct email is given below:Correspondence to: Dianshan Ke; email: kds8810@163.com . https://doi.org/10.18632/aging.103451Original article: Aging. 2020; 13:13488\u201313501."} {"text": "Journal of Clinical and Translational Sciences in 2019. The editors, authors and readers are immensely grateful for their thoughtfulness and expertise that have served our journal well.Stephanie AbbuhlTerry AinsworthMyles AkabasTabia AkintobiBianca AlbersEmily AndersonJoseph E. AndrewsJudith AronsonJane AtkinsonMona AuYoungLorena BaccagliniLaura BalisMakenzie L. BarrMark BauerAna BaumannLiza BehrensMiriam BenderL. Michelle BennettJesse David BermanNazleen BharmalArlene BiermanBeatrice A. BoatengKathleen T. BradyPatrick BrandtDonna BrassilTabetha A. BrockmanChad BrummettCheryl BushnellNancy A. Calvin-NaylorJose CancelasMarjory CharlotMichael CharltonPeggy ChenJames J. CiminoRobert A. ClarkBarry CollerLinda CottlerMara CoyleJennifer CrokerOrianna DamasColin A. DeppMegan DoerrAalap DoshiAnn M. DozierMilton Mickey EderVicki L. EllingrodKolaleh EskandanianEstela EstapeAlecia FairStephanie FreelJanice L. GabriloveRussell E. GlasgowMelody GoodmanMary GorfineShelly GrayAlexandra Greenberg-WorisekMatthew GrossmanKristie B. HaddenHeidi HansonBrett HarnettPaul A. HarrisMatthew HartJ.R. HaywoodWilliam R. HoganMike HogarthLianna IshiharaRebecca D. JacksonJason JohnsonRachel JonesYvonne JoostenFelichism W. KaboAllison KarpynHeidi KeelerMatthew KeenerPhilip KernRoohi KharofaDana KingAgnes KiraggaJackie KnapkeRon KoenigH. Robert KolbRhonda G. KostSunil KripalaniJack KuesDanielle LavalleeColleen E. LawrenceScott P. LayneScott LeischowAaron L. LeppinVivian LewisZ.N. LiMike LinkeKanchan LotaMike LyonsJane MahoneyElizabeth MalcolmCamille Anne MartinaGeorge A. MashourPhoenix A. MatthewsColleen A. MayowskiWayne T. McCormackRachel McGarrigleEmma Anne MeagherTara G. MehtaPaul MeissnerJonathan MerrellFrederick J. MeyersPeter MeyersLloyd MichenerChristopher MillerRachel MoonSean MooneyChristopher MorleyCynthia MorrisGia Mudd\u2013MartinDonald E. NeaseJohn OetzelChristian OhmannJanet M. OkamotoJulie OzierDinesh PalAngela L. Palmer\u2013WackerlyCecilia Patino SuttonSusan M PerkinsSharon PlonByron PowellLori Lyn PriceEnola ProctorJill M. PulleyBoriska RabinJulie RainwaterMarie RapeJennifer ReedRobert L. RhyneSuzanne RiveraBrenda RoblesStephen Joseph RosenfeldKristie RossDoris RubioPatrick RyanMaritza Salazar CampoElias SamuelsElaine SchattnerMichael SchembriCari SchmidtEllie SchoenbaumLinda M. SchollHarry SelkerDana ShafferJackilen ShannonAnantha ShekharGreg SimonChristine SorknessKathleen R. StevensWilliam StratbuckerAlisa SurkisAlan TaitEllen TamborVelma ThompsonJonathan TobinJoel TsevatKatherine R. TuttleJason UmansLaurie Van EgerenMelissa Van DykeBoris VolkovRahma WarsameKevin J. WeatherwaxKaren WeaversFern WebbMary Beth WeberTerrence WittHenry Nolan YoungWe are indebted to the expert referees who have volunteered their time to review submissions for the"} {"text": "This article has been corrected: Due to an error during image processing, frame 6 of tumor #1 (one of the control tumors) in 6269-6282. https://doi.org/10.18632/oncotarget.27268Original article: Oncotarget. 2019; 10:6269\u20136282."} {"text": "This article has been corrected: In 8974-8987. https://doi.org/10.18632/oncotarget.3291Original article: Oncotarget. 2015; 6:8974\u20138987."} {"text": "In Malek and Long , owing thttps://doi.org/10.5061/dryad.00000001t"} {"text": "The first author\u2019s name is spelled incorrectly. The correct name is: Lucia Mart\u00ednez Cuesta.https://doi.org/10.1371/journal.pone.0234939. The publisher apologizes for the error.The first author's surname appears incorrectly in the citation. The correct citation is: Mart\u00ednez Cuesta L, Liron JP, Nieto Farias MV, Dolcini GL, Ceriani MC (2020) Effect of bovine leukemia virus (BLV) infection on bovine mammary epithelial cells RNA-seq transcriptome profile. PLoS ONE 15(6): e0234939."} {"text": "Cirsium sect. Eriolepis are discussed. The accepted names are: Cirsium echinatum, C. eriophorum subsp. eriophorum, C. eriophorum subsp. spathulatum, C. ferox, C. italicum, C. lacaitae, C. lobelii, C. morisianum, C. scabrum, C. tenoreanum, C. vallis-demonii subsp. vallis-demonii, C. vallis-demonii subsp. calabrum comb. nov., and C. vulgare . Four accepted names are typified by specimens preserved at FI (one lectotype), G (one lectotype and one neotype), P (one lectotype), and by illustrations (two lectotypes). Several other heterotypic synonyms of taxa described from Italy are discussed and six of them are typified. A new combination and status are proposed: C. vallis-demonii subsp. calabrum, based on C. eriophorum var. vallis-demonii f. calabrum.The names of the Italian taxa in Cirsium Mill. (Asteraceae Bercht. & J. Presl.: Cardueae Cass.) is a large genus comprising more than 450 species (as many as 491 according to POWO at atEriole himself . TherefoCi. vallis-demonii (which we split into two subspecies). Taxonomical notes are provided within each entry to justify our choice. In the following account, the accepted names are in alphabetical order; within each of them, the treated homotypic synonyms are listed in chronological order.The taxonomic treatment generally follows , with thCirsium echinatum(1) (Desf.) DC., Fl. Franc., ed. 3, 6: 465. 1815 \u2261 Carduus echinatus Desf., Fl. Atlant. 2: 247. 1799 (basion.) \u2261 Cnicus echinatus Willd., Sp. Pl., ed. 4, 3(3): 1668. 1803.\u2014Lectotype .\u2014& Vald\u00e8s (p. 214)Distribution\u2014Species endemic to western Mediterranean le Cirsium echinatum de M. De Candolle , et le Cirsium italicum du m\u00eame botaniste (Cat. Hort. monsp.), appartiennent \u00e0 notre genre ou sous-genre Eriolepis\u201d. Nevertheless, since Cassini . Cassini , who act Cassini (p. 470)sini (in ) did notCirsium eriophorum(2) (L.) Scop., Fl. Carniol., ed. 2, 2: 130. 1771 \u2261 Carduus eriophorus L. (basion.), Sp. Pl. 2: 893. 1753 \u2261 Cnicus eriophorus (L.) Roth, Tent. Fl. Germ.: 345. 1788 \u2261 Eriolepis lanigera Cass. in Cuvier, Dict. Sci. Nat. 41: 331. 1826, nom. illeg. (Art. 11.4).\u2014Lectotype .\u201cCi. eriophorum subsp. eu-eriophorum var. genuinum Gillot\u201d, Rev. Bot. 12: 360. 1894, nom. inval. (Art. 24.3).\u201cCi. eriophorum subsp. vulgare Petr.\u201d, Biblioth. Bot. 78: 15. 1912, nom. inval. (Art. 26.2).Notes on Ci. eriophorum var. vulgare\u2014The final epithet \u201cvulgare\u201d was associated by Naegelius 3: 367. 1904 (sub var. \u201cferox (DC.)\u201d).\u2014Lectotype .Distribution\u2014Species endemic to eastern Spain, southern France and North-western Italy , s.c., s.n. .\u2014=Notes on Ci. italicum\u2014Candolle 3: 367. 1904.\u2014Lectotype (designated here): [illustration] \u201cPhoenix. Leo. Carduus ferox\u201d in L\u2019Obel , August 1905, G. Rigo .\u2014http://mediaphoto.mnhn.fr/media/14413587569952aN3OdAPGgtS3EPg.=Cirsium ferox L. var. lobelii sensu DC.-\u2003 Ci. eriophorum L. subsp. odontolepis (Boiss. ex DC.) Rouy var. aprutianum Rouy\u201d, Bull. Soc. Bot. France 51: 428. 1904, nom. inval. (Art. 38.2 Ex.1).\u201cNotes on Ci. lobelii\u2014The protologue of this name 3: 367. 1904 \u2261 Ci. eriophorum subsp. morisianum (Rchb.f.) Briq. and Cavill. in Burnat Fl. Alp. Marit. 7: 19. 1931.\u2014Lectotype .Lacaita Notes on Ci. morisianum\u2014The protologue of C. morisianum \u201cCarduus gigas acanthoides tomentosus, pycnopolysphaerocephalus\u201d in Cupani , fine di giugno [[A.] Todaro s.n. .\u2014http://147.163.105.223/zoomify/view_img.asp?ic=10462.=Cirsium giganteum var. macrocephalum Lojac., Fl. Sicul. 2(1): 160. 1903.\u2014Lectotype .\u2014http://147.163.105.223/zoomify/view_img.asp?ic=10357).n et al. (p. 522)=Cirsium gigas var. eriophorum Lojac., Fl. Sicul. 2(1): 160. 1903.\u2014Lectotype .\u2014Image of the lectotype available at http://147.163.105.223/zoomify/view_img.asp?ic=10460. et al. Notes on Ca. scaber\u2014Poiret , G. Moretti s.n. .\u2014https://www.ville-ge.ch/musinfo/bd/cjb/chg/adetail.php?id=335721&base=img&lang=fr).\u2014\u201cCi. insubricum Moretti ex Bertol.\u201d, Fl. Ital. [Bertoloni] 9(1): 25. 1853, nom. inval. (Art. 36.1b).Notes on Ci. spathulatum\u2014The name was published after March 1822 . The protologue also includes a description, a reference to Villars et al. , and a taxonomic note, all in Latin. Pertinent material is unfortunately lacking at BOLO, hosting specimens by Moretti , or in other herbaria linked to Moretti ), relying on a specimen sent from Italy by Duby. The name was somewhat inspired by the Linnaean Ca. eriophorus var. spurius cannot be regarded as a basionym; on the other hand, however, it might be reasonable that the validly published Ca. eriophorus var. spurius is acceptable as basionym of the Candollean name under Art. 41.4. Actually, this article cannot be applied in any case, not even disregarding the taxonomic doubt by Candolle, because Ca. eriophorus var. spurius and Ci. eriophorum var. spurium definitely refer to different taxa, i.e., Ci. \u00d7gerhardtii Schultz and Ci. tenoreanum respectively.Candolle publishespurius spurius . As explained by Lacaita 3: 367. 1904 .\u2014Lectotype . et al. Cirsium eriophorum var. involucratum Coss., p. p. subsp. calabrum (Fiori) Del Guacchio, Bernardo, P.Caputo, Domina & Iamonico comb. et stat. nov. \u2261 Ci. eriophorum var. vallis-demonii fo. calabrum Fiori, Fl. Italia 3: 367. 1904.\u2014Lectotype (designated here): Italy, Calabria, s.d., F.V. Zwierlein s.n. , sub Cirsium valdemonense Loj.)\u2014Notes on Ci. eriophorum var. vallis-demonii fo. calabrum\u2014Fiori Lojacono \\ in tutta la Sila ed a Serra San Bruno\u201d. FI053596 (first sheet) includes a flowering branch with three heads and a label identical to the other, but handwritten by Fiori: \u201cCirsium valdemonense Loj.\\Calabria\u201d. The second sheet bears a further flowering branch, without label. The printed date on the sheet and the adoption of the epithet \u201cvaldemonense\u201d, not employed by Fiori later ; the colour is obviously not well observable in dried material, but it was undoubtedly withish in vivo . We choose FI053596 as the lectotype of the Fiori\u2019s name because it is more complete and bears the handwriting of the author.um\u2014Fiori describe). Fiori intended). Fiori . This lai later . This character is taxonomical relevant, because\u2014excluding obvious and sporadical albino individuals\u2014it is constant within each species Bluff & Fingerh. subsp. nebrodensis (Wagenitz and I.M\u00fcll.) Greuter (endemic to Sicily) vs. subsp. macrocephala Dillenb. and Kadereit ; Anthemis cretica L. subsp. messanensis (Brullo) Giardina & Raimondo (endemic to Sicily) vs. subsp. calabrica (Arcang.) R.Fern. ; Aubrieta columnae Guss. subsp. sicula (Strobl) M.A. Koch, D.A. German and R. Karl (endemic to Sicily) vs. subsp. columnae ; Sesleria nitida Ten. subsp. sicula Brullo and Giusso (endemic to Sicily) vs. subsp. nitida ; Thymus praecox Opiz subsp. parvulus (Lojac.) Bartolucci, Peruzzi and Passal. (endemic to Sicily) vs. subsp. polytrichus (A.Kern. ex Borb\u00e1s) Jalas \u201cCarduus spinosissimus\u201d in Gerbi 41: 331. 1826.\u2014Lectotype ) \u2261 Cnicus lanceolatum subsp. rosani (Ten.) Arcang., Comp. Fl. Ital.: 403. 1882 \u2261 Ci. lanceolatum subsp. rosani (Ten.) Arcang., Comp. Fl. Ital., ed. 2: 723. 1894.\u2014Neotype .\u2014 Lacaita (p. 125)=Cirsium crinitum Boiss. ex DC., Prodr. 7(1): 305. 1838 \u2261 Ci. lanceolatum subsp. crinitum (Boiss. ex DC.) Bonnier & Layens, Tabl. Syn. Pl. Vasc. France: 175. 1894 (cf. p. VIII of the same work) \u2261 Ci. vulgare subsp. crinitum (Boiss. ex DC.) Ar\u00e8nes, Bull. Soc. Fran\u00e7. Echange Pl. Vasc. 1: 21. 1948.\u2014Lectotype .\u2014http://www.ville-ge.ch/musinfo/bd/cjb/chg/adetail.php?id=407321&base=img&lang=fr.& Vald\u00e9s (p. 201)=Cirsium misilmerense Ces, Pass. & Gibelli, Comp. Fl. Ital. 2(21): 483. 1878.\u2014Lectotype (designated here): Italy, Sicilia, Sotto Misilmeri, s.d. s.n. (RO!).\u2014For an image of the lectotype, see =Cirsium cardoleonis Lojac., Fl. Sicul. 2(1): 158. 1903\u2014Lectotype .\u2014http://147.163.105.223/herbarium_vdetails_en2.asp?idmode=simple&id=22320.n et al. (p. 521)=Cirsium dubium Lojac., Fl. Sicul. 2(1): 155. 1903.\u2014Lectotype .\u2014http://147.163.105.223/herbarium_vdetails_en2.asp?idmode=simple&id=22476.=Cirsium lanceolatum var. subbipinnatum Lojac., Fl. Sicul. 2(1): 155. 1903.\u2014Lectotype .\u2014http://147.163.105.223/herbarium_vdetails_en2.asp?idmode=simple&id=22387.=Cirsium lanceolatum var. tenuispinum Lojac., Fl. Sicul. 2(1): 155. 1903 (sub \u201ctenuispinus\u201d).\u2014Lectotype .\u2014http://147.163.105.223/herbarium_vdetails_en2.asp?idmode=simple&id=22379.=Cirsium vulgare var. longespinosum Rouy, Fl. France [Rouy & Foucaud] 9: 21. 1905, nom. illeg. (Art. 52.1).\u2014Lectotype (designated here): Italy, Sicily, Palermo sotto la Grazia, Aug , A. Todaro n. 528 .\u2014http://147.163.105.223/herbarium_vdetails_en2.asp?idmode=simple&id=22375.=Ci. lucanicum Lojac., Nat. sicil. 3: 283. 1884\u2014Type:\u2014Not designated .Ci. lanceolatum var. vulgare Naeg.\u201d, Syn. Fl. Germ. Helv., ed. 2, 3: 990. 1845, nom. inval.\u201cCi. vulgare (Savi) Airy-Shaw\u201d, Repert. Spec. Nov. Regni Veg. 43: 304. 1938, isonym .\u201cCi. vulgare (Savi) Petr.\u201d, Sched. Cirsiotheca Univ. 4: n. 33. 1912, nom. prov. (Art. 36.1). By this provisional name, Petrak indicated the taxon correctly named Ci. italicum [\u201citalicum .Notes on Ca. spinosissimus\u2014In a rare booklet, Gerbi Ten., Gerbi taken directly from the protologue of Ca. spinosissimus by Gerbi ([vulgaris as an avowed substitute (nomen novum) for the later homonym Ca. spinosissimus Gerbi. As a consequence, both Savi\u2019s name (Art. 7.4) and obviously its combination in Cirsium [by Savi by Savi by a diy Gerbi Notes on Ci. rosani\u2014Contextually with the name Ci. lobelii, Tenore [Cirsium, dedicating it to his correspondent Francesco Antonio Rosano (1779\u20131843), who first gathered the plant in Basilicata . The protologue includes a Latin description and the provenance . Also in this case, Lacaita [Ci. vulgare, Ci. rosani can be considered a heterotypic synonym. The plate in Flora napolitana [, Tenore (p. 14) Lacaita (p. 125)politana , publishNotes on Ci. misilmerense\u2014This name was published by Cesati et al. [locus classicus (\u201cSotto Misilmeri (Sicilia)\u201d), and of the unpublished name \u201cCnicus misilmerensis Tineo! ined.\u201d. The exclamation mark infers that the new species was described on the basis of a specimen of Tineo\u2019s seen by Cesati. We found this specimen in the Herbarium Cesatianum at RO. It bears a well-preserved plant and the original label by Tineo \u201cCnicus misilmerensis Tin.! ined.|Sotto Misilmeri|leg. Tineo\u201d. Another interesting specimen by Tineo is at PAL (no. 84936), but possibly it was not examined by the authors of the name. Even if regarded, especially in the past, as a distinct [Ci. misilmerense is nowadays mostly included in the variability of Ci. vulgare subsp. crinitum [i et al. , who repdistinct ,87,88 ordistinct ,89, Ci. no. 8493, but poscrinitum .Notes on Ci. lucanicum\u2014Lojacono Pojero [Ci. lucanicum from Ci. italicum and Ci. lobelii sensu Lojacono (=C. tenoreanum). According to modern views [Ci. lucanicum is a synonym of Ci. vulgare subsp. crinitum, which we include in Ci. vulgare. This statement is possibily based also on the taxonomic doubt expressed by Lojacono, who hypothesises that Ci. lucanicum could be Ci. rosani. Nevertheless, according to the protologue, Ci. lucanicum has not decurrent leaves, and this detail would definitely exclude the synonym. In absence of original material and considering this doubt about the synonymization, we refrain to typify this name at present.o Pojero describeo Pojero wrote \u201cio Pojero . Lojacono Pojero did not rn views ,18, Ci. Notes on Ci. vulgare var. longespinosum\u2014Rouy [Flora Sicula Exsiccata n. 528, a synonym by Lamotte, a diagnosis in French , and some localities (at p. 22). Apparently, Rouy himself attributed the name to Todaro. However, as far as we known, this latter author never employed that epithet, not even in his exsiccata. M. Thi\u00e9baut (LY) (in litt.) informed us that Rouy [Ci. lanceolatum var. horridulum Lam., whose epithet ought to have been adopted at varietal rank, its name is definitely superfluous and then illegitimate under Art. 52.1. Nevertheless, citing Flora Sicula Exsiccata n. 528, Rouy [longespinosum\u201d: LY0718280 and LY0718281. These specimens were collected before the protologue and are undoubtedly original material for the name. However, as a further consequence of citing Flora Sicula Exsiccata n. 528, the specimens of this series number are syntypes, which are preferred material for lectotypification (Art. 9.12), also those not seen by the author himself (Art. 9.4). Therefore, we would propose a pertinent specimen at PAL; other syntypes would be preserved in the herbarium cited by Stafleu and Cowan [Ci. lanceolatum All. var. firmum\u201d (see below for Cn. firmus); it includes a flowering stem of Ci. vulgare .sum\u2014Rouy publishehat Rouy only cithat Rouy cited th28, Rouy actually28, Rouy , p. 22) nd Cowan vulgare ,18. HoweTaxonomy\u2014This is a highly variable species. The infraspecific taxa recognized in modern times by several authors Ar\u00e8nes and C. vulgare subsp. silvaticum (Tausch) Ar\u00e8nes, are only preliminarily accepted by Greuter [s e.g., ,19), i.e, i.eTaxo Greuter , Shin an Greuter and are Greuter ,84,95,96Distribution\u2014Widespread and common from the Mediterranean Basin and Europe to Asia, but naturalized worldwide [orldwide ,98.Habitat\u2014Clearings, riparian vegetation, hedges, fields, very often synanthropic , on rich and nitrified soils [ed soils .Cirsium sect. Eriolepis in Italy allowed us to re-evaluate one neglected taxon and to ascertain most synonymies for the correct interpretation of the names. On the other hand, we showed that, in some cases, previous synonymizations were erroneous or very doubtful. In addition, the examination of the original material of names linked to critical taxa suggests that further research should be carried out before accepting taxonomic conclusions. Finally, some overlooked lectotypifications were brought to light.Nomenclatural studies play a central role in systematics and they should be regarded as essential and preliminary for any taxonomic assessment. On one hand, our contribution on"} {"text": "This article has been corrected: The 1st affiliation information was presented incorrectly. The proper affiliation 1 is as follows:1Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, Guangxi, P.R. China34506-34519. https://doi.org/10.18632/oncotarget.26138Original article: Oncotarget. 2018; 9:34506\u201334519."} {"text": "Scientific Reportshttps://doi.org/10.1038/s41598-020-69140-6, published online 17 July 2020Correction to: This Article contains errors in Reference 20 which is incorrectly given as:et al. Come i bambini pensano alla mente del robot. Il ruolo dell\u2019attaccamento e della Teoria della Mente nell\u2019attribuzione di stati mentali ad un agente robotico. Sistemi intelligenti32, 41\u201356. https://doi.org/10.1422/96279 (2020).Cinzia, D. D. The correct Reference 20 appears below:et al. Come i bambini pensano alla mente del robot. Il ruolo dell\u2019attaccamento e della Teoria della Mente nell\u2019attribuzione di stati mentali ad un agente robotico. Sistemi intelligenti32, 41\u201356. https://doi.org/10.1422/96279 (2020).Di Dio, C."} {"text": "Radiologia Brasileira is officially communicating the Retraction for extraction of the following article:The Editorial Board of https://dx.doi.org/10.1590/0100-3984.2019.0097.Lee JC, Teles MS. Prevalence of additional primary malignancies detected incidentally on PET/CT. Radiol Bras. 2020;53(1):69. Radiologia Brasileira:Reason: Duplicate publication of an article published in a previous issue of https://dx.doi.org/10.1590/0100-3984.2019.0097.Lee JC, Teles MS. Prevalence of additional primary malignancies detected incidentally on PET/CT. Radiol Bras. 2019;52(5):342. Prof. Edson MarchioriRadiologia BrasileiraEditor-in-Chief,"} {"text": "This article has been corrected: During image assembly, incorrect data was mistakenly used in 18171-18182. https://doi.org/10.18632/oncotarget.7685Original article: Oncotarget. 2016; 7:18171\u201318182."} {"text": "This article has been corrected: In 35226-35240. https://doi.org/10.18632/oncotarget.26215Original article: Oncotarget. 2018; 9:35226\u201335240."} {"text": "Trypanosoma brucei . It . It M. o"} {"text": "This article has been corrected: Due to errors in image processing, in the top panel of 87638-87646. https://doi.org/10.18632/oncotarget.20936Original article: Oncotarget. 2017; 8:87638\u201387646."} {"text": "Essays Biochem.https://doi.org/10.1042/EBC20200013Grundy, G.J. and Parsons, J.L. (2020) Base excision repair and its implications to cancer therapy. During the production process errors were introduced into"} {"text": "Molecular Psychiatry (2017) 22:856\u2013873Retraction to: 10.1038/mp.2016.139 published online 30 August 2016The Editor-in-Chief and publisher have retracted this article after anA. Caccamo, C. Branca and S Oddo agree with this retraction. E. Ferreira has not responded to correspondence related to this retraction."} {"text": "The COVID-19 pandemic has caused us to operate differently with respect to logistics, but fortunately our reviewers have been willing and able to help our authors by providing fair, thoughtful reviews. For doing this while dealing with all the stresses that the pandemic has rained upon us, this year you have my extra special gratitude and that of our senior editors and editors.Each year at this time, it has been my tradition to provide a brief summary of our progress and to thank those of you who have reviewed manuscripts during the year for your service to mSphere carries with it. I therefore thank all of you who have submitted manuscripts in 2020 for that vote of confidence.Despite the pandemic, our submission numbers have greatly increased . Our team interprets this as meaning that you, our authors, have trust in our process and the quality that the name At the beginning of the pandemic, I offered some tips that I thought would help us support each other and the public whom we serve as scientists . It is mAs the end of the year approaches, I hope that you all have a chance to take some time off to enjoy with your family and friends .mSphere family. Let\u2019s look forward together to 2021.Peter AabyZachary AanderudAmr Mahmoud Abd El-GawadAkio AbeLisa Abernathy-CloseWolf-Rainer AbrahamMark AchtmanFelise G. AdamsMark D. AdamsJoshua N. AdkinsPhilippe V. AfonsoAmeeta K. AgarwalAlain Bernardin AgnememelHector C. AguilarPanblo AguilarNacho AguiloDanielle AhnShimpei AikawaVishukumar AimaniandaGillian M. AirMatthew AkersMustafa AkkoyunluFadhl AlakwaaAshfaqul AlamAna Alastruey-IzquierdoJohn F. AlcornHowbeer Muhamad AliAlexandre AlmeidaUri AlonFrancis AlonzoDavid AlsteensCarmen AmaroJorge AmichKarthik AnantharamanCheryl P. AndamChristopher AndersonMatthew Zack AndersonDan I. AnderssonRaul AndinoDiego O. AndreyElliot J. AndrophyEsther R. AngertJuan AnguitaVijay C. AntharamAlberto AntonelliJoseph AntonyYoshichika ArakawaZachary ArdernAngela Arenas-GamboaSilvia ArgimonJos\u00e9 M. Arg\u00fcelloDavid M. AronoffJyoti AroraGustavo ArrizabalagaMichel ArthurSassan AsgariIna Atr\u00e9eAhmed Sherif AttiaWalter J. AtwoodJennifer M. AuchtungSarit AvraniGordon A. AwandareM. Andrea Azcarate-PerilBrian D. BadgleyVictor M. Baizabal-AguirreLauren O. BakaletzSteven BakerSusan C. BakerMegan Tierney BaldridgeCynthia BaldwinCarl J. BalibarJimmy D. BallardElizabeth BallouLudmila BaltazarDavid A. BaltrusRobert BambaraConnor Gavin George BamfordGert BangeJames D. BangsEdel Figueiredo Barbosa-StancioliAntonio BarraganChristopher F. BaslerChristine Marie BassisPhilippe BastinFlorian F. BauerSal BaxamusaNavid BazghalehBernard W. BeallMarco BecherelliJosh R. BeckStephan BeckerSebastian BehrensDeborah Bell-PedersenGeorge A. BelovSarah Ben MaamarRichard J. BennettTeresa M. BergholzAles BerlecBrent BerwinCharles L. BevinsSinem BeyhanAmin Talebi Bezmin AbadiPurnima BhanotJordan E. BisanzS. BishajitRaphael BisinottoJessica Mary Alice BlairSteven R. BlankeMark R. BleackleyRegina B. BledsoeBradley J. BlitvichPatricia Pringle BloomAntje BlumenthalKasun H. BodawattaJason M. BodilyPatrick BoerlinGregory BokinskyNicholas Andrew BokulichAdrianus C. BoonRay BorrowValeria BortolaiaThomas C. G. BoschAnna BothElsa N. Bou GhanemPhilippe BoulocSebastien BoutinAnna BowmanEric BoydEthna Fidelma BoydTess Elizabeth BrewerShaun R. BrinsmadeJeremy S. BrownJessica C. S. BrownMichael G. BrownJohn H. BrumellJames BrustArielle M. BryanWolfgang BuckelMichelle Monique Conni BucknerCarlos BuenoTucker BurchLindsey R. BurchamCara C. BurnsPhilip Brandon BusbeeSarah N. BussMark J. ButtnerJerry M. BuysseMariana X. ByndlossLauren Byrd-LeotisDavid J. BzikMatthew CabeenKen CadwellLaty A. CahoonRichard A. CalderoneMichael Worth CalfeeCarlos Henrique CamargoAndrew CapaldiAlessandra CarattoliRyan B. CarnegieGiovanna CarpiLaura M. CarrollRonan K. CarrollVern B. CarruthersJosep Casades\u00fasSantiago Castillo-Ram\u00edrezClayton C. CaswellLindsay J. CaverlyRodrigo Cay\u00f4Jiri CernyBaofeng ChaiYunrong ChaiDebopam ChakrabartyC. ChakrabortyDouglas L. ChalkerGary C. ChanJosephine R. ChandlerMichael ChandlerYanjie (Jay) ChaoDominique ChaputSujata S. ChaudhariNeeraj ChauhanDamien ChaussabelFeng ChenTingting ChenXinhua ChenGong ChengJackie K. CheungMichaelle ChojnackiVincent T. K. ChowJoseph A. Christie-OlezaGeorge K. ChristophidesKonstantin ChumakovRichard B. ClarkChristine ClaytonAnna R. CliffeElaine Cloutman-GreenPhillip S. CoburnAdam S. CockrellCarolina CoelhoAlexander M. ColeJ\u00e9r\u00f4me CollemareJames CollinsSean CollomsTeresa M. CoquePierre CornelisBruno CorreiaAlfred Cort\u00e9sTh\u00e9r\u00e8se CoudercVictoria H. CowlingRobert A. CramerJohn K. CraneMax CravenerNicholas CrosslandSean CrossonLiwang CuiPaul J. CullenGordon Fritz CusterWeijun DaiRoss Edgar DalbeyMaura DandriDavid J. DavidoDana A. DavisScott C. DawsonElizabeth N. De GaspariJohn P. DekkerNicholas R. De LayFrank R. DeLeoEmma L. DenhamCharlotte De RudderLalitagauri DeshpandeRik L. de SwartAdam M. DeutschbauerAnthony DeVicoSantosh DhakalVijaykrishna DhanasekaranPatricia I. DiazRobert P. DicksonVincenzo Di PilatoEunsoo DoUlrich DobrindtTobias DoerrYohei DoiMaria Dominguez-BelloJustin J. DonatoTao G. DongAnna Dongari-BagtzoglouLaurent DortetFernanda Fernandes dos SantosZhicheng DouBeno\u00eet DoubletCharles M. DozoisJan Felix DrexlerMarc DroletMilton T. DrottKirk DrueyAnamika DubeyBreck A. DuerkopGary M. DunnyEdison Luiz DurigonShanta DuttaJeffrey D. DvorinMichelle DziejmanAndrew EdwardsKathryn M. EdwardsGarth D. EhrlichDaniel EllederJeremy R. EllermeierSamantha Emma Elizabeth EllisMoamen M. ElmassryIuliana V. EneMelinda Anne EngevikSeong Kug EoJoachim F. ErnstAlice L. ErwinOlivier EspeliMehrbod EstakiPrahathees J. EswaraChristina S. FahertyJohn M. FairbrotherWenxia FangSeamus FanningAmir FarnoudRubaiyea FarrukeeLena FaustMichael J. FederleNa FeiHeinz FeldmannYouzhi FengRachel C. FernandezIsabel Fern\u00e1ndez EscapaAstrid FerrerKenneth A. FieldsAgnes Marie Sa FigueiredoScott G. FillerStefan FinkeSteven E. FinkelDouglas K. FischerReinhard FischerDavid A. FitzpatrickDaniel P. FlahertySheri FlogeKevin J. ForsbergJennifer Foulke-AbelElizabeth M. FozoPilar FrancinoKristi L. FrankPhilipp FrankenDavid N. FredricksMegan FreemanTeresa FrisanRyan FrischFriedrich FrischknechtGeorg FritzChristopher Fr\u00f6hlichSimon FrostYoichi FuruyaIwona GabrielAttila GacserNaren Gajenthra KumarFeng GaoRobert GarceaSarahi L. GarciaRodolfo Garcia-ContrerasGenevieve GarrissBeth A. GarvyBaoxue GeAngie GelliNadezhda GermanRohit GhaiMahmoud A. GhannoumNicole GilbertSabine GilchSteven R. GillPeter GilliganRobert D. GilmoreJanet R. GilsdorfNicolas GischLaura GlenndinningErin S. GloagMatthew Robert GoddardRichard GoeringGustavo H. GoldmanStephen GoldsteinJonathan Louis GolobMaria G\u00f3mez Brand\u00f3nNardhy Gomez-LopezBen-Qiang GongChengliang GongJesus Gonzalo-AsensioUri GophnaIsabel GordoClaire L. GorrieRia GoswamiYonatan H. GradIan GraingeLisa GralinskiDaniel A. GreenStefan J. GreenChris GreeningTrudy H. GrossmanVesna GrujcicMarc-Jan GubbelsClaudia GuldimannOzan GundogduArthur G\u00fcnzlXiaofeng GuoTed HackstadtLubomir HadjiskiMarisa HaenniMartin W. HahnConstantine HaidarisAnders P. HakanssonRebecca Jane HallRuth M. HallLuanne Hall-StoodleyRichard HamelinNeal D. HammerKirsten K. HansonNancy D. HansonClare HardingJ. Marie HardwickChristopher HarmerEva HarrisJason B. HarrisErin HarveyCynthia Y. HeMichael HeckerNagendra R. HegdeJacob Heilmann-ClausenBernd HeimrichJon HeinrichsJohannes HelderRichard F. HelmYosra A. HelmyEls HenckaertsVincent Herv\u00e9Mark C. HerzbergMatthias HessSteven HigginsPenelope HiggsJulian F. HillyerPhilip HinchliffeB. Joseph HinnebuschFlorian HladikRichard L. HodinkaSabine Hofmann-ThielJeffrey HollomonCorey C. HoltKathryn Elizabeth HoltYoshikazu Honda-OkuboPeiying HongDavid C. HooperTomoyuki HoriBranka HorvatGuy HouillonKai HuQinxue HuSarah HuAndrew D. HuangLaibin HuangLili HuangWeishan HuangDiego HuetWilhelmina HustonTu Anh N. HuynhJennifer HydeFlorenzo IannoneKensuke IgarashiMolly A. IngersollHanne IngmerRonald M. IorioDaniel IrimiaSuzanne Lynn IshaqWataru IwasakiAngelo IzzoMary Ann Jabra-RizkWilliam R. JacobsKaty JeannotVicki JeffersMatthew L. JeniorVeronica JimenezDong-Yan JinRongsheng JinChristian JobinSophia JohlerJeremiah G. JohnsonPatricia J. JohnsonTimothy J. JohnsonBradley D. JonesJennifer JonesHoward S. JudelsonSandra JunglenCatherine JusteVladimir R. KaberdinDavid KadoshBj\u00f6rn F. C. KafsackPeter C. KahnMarkus KainulainenMaria KalamvokiLindsay KalanMarkus KalkumSaid KamelRobert W. KaminskiBeate KampmannShyam KandelManabu KannoStefan KappeNabil KarahPetros C. KarakousisHazma Umut KarakurtLisa KarstensYuichiro KashiyamaTsutomu KatayamaSophia KathariouSouichiro KatoCarol A. KauffmanGhazi KayaliHangjun KeBrendan KellyEllen KenchingtonLinda J. KenneySuliman KhanSahil KhannaMegan R. KiedrowskiNicolas KiefferHye Kwon KimJae-Ouk KimLee KimbellJanine KimpelGary M. KingSamantha Jane KingJoseph A. KirkLea-Ann S. KirkhamLaura A. KirkmanTodd KittenHiroshi KiyonoMichiel KleerebezemBruce S. KleinAndreas KlosLaura J. KnollDennis C. KoWolfgang KoesterMichael H. KogutAlain KohlAbimbola KolawoleNicholas KomarHeidi KongJames B. KonopkaEugene V. KooninIngo K\u00f6perMilena KordalewskaOmry KorenNicole Marie KoropatkinNatalia KorotkovaAnita A. KoshyTakahiko KoyamaLukasz KozubowskiFlorian KrammerLaurent KremerEric S. KrukonisMichael D. KruppaJason KubinakKengo KubotaAndreas KuhnJens H. KuhnEric KuhnertAnuj KumarBeate Mareike K\u00fcmmererHarry D. KurtzHiroyuki KusadaJoseph L. KutiSebla Bulent KutluayJennie H. KwonMonique LafonEric R. LafontaineRenee M. LairdLaura LambTilman LamparterStephanie LangelMary L. Lap\u00e9-NixonMarilynn A. LarsonChristian LauberAdam S. LauringCatherine LavazecAllen LeeSamuel A. LeeSoo Chan LeeVincent T. LeeYong-Hwan LeeMcKenzie K. LehmanBenfang LeiJ\u00f8rgen J. LeisnerChristopher W. LennonDion LeppJhansi L. LeslieJohan LeveauSteve LeverCeline M. LevesqueZachary A. LewisBin LiLin-Xi LiMin LiPeng LiZiyin LiXiao-Ping LiaoShen Jean LimDominique H. LimoliAndrew H. LimperJonathan Y. LinMichael LinNilton LincopanJodi A. LindsayZhuoren LingJacqueline Callihan LinnesMartin LinsterPeter N. LipkeTingli LiuZhixia LiuMar\u00eda A. LlamasKaren G. LloydMichael K. LoNaeemah LoganSarah LondriganAllison LopatkinJose L. Lopez-RibotAlessio LorussoSebastian LouridoShirley LuckhartRuth Ann LunaXin M. LuoKalpana LuthraJoseph LutkenhausHinh LyMichael LyuBing MaLi-Jun MaMilton MacielErich R. MackowCalman A. MacLennanEric MaiMichael H. MalamyVera ManageiroMelissa ManusJennifer A. ManuzakRichard T. MarconiRachel Leah MarineKevin MaringerSara MartiEmily Toth MartinJavier MartinLuis R. MartinezJose-Luis Martinez-GonzalezThorsten MascherS\u00e9bastien MatamorosCyrille MathieuJyl S. MatsonJelle MatthijnssensJoseph McBrideShonna M. McBrideBruce A. McClaneAndrea McCollumJohn K. McCormickClaire E. McCoyJohn T. McCroneLarry S. McDanielDiane McDougaldAnita K. McElroyNoel G. McElvaneyQuinn S. McFrederickPatrick McGannMartin J. McGavinJames B. McKinlayRobert J. McLeanDavid N. McMurrayRyan Philip McNamaraGareth M. McVickerAnita F. MeierOlivier MeilhacAsuncion MejiasRoberto G. MelanoJay MelliesEsther MenendezPaola E. MeraTod J. MerkelCraig MeyersMatthew MikoleitLaura MilazzoAndrew MillardYves MillemannAaron W. MillerAlita A. MillerChad MireYoshiyuki MishimaBibhuti MishraNagendra N. MishraSatoshi MitaraiEliane Namie MiyajiKazufumi MochizukiLuke A. MoeAndrew MoellerJeffrey MoffitMaria F. MojicaIstvan MolnarJonathan MonkDavid P. MooreRobert J. MooreNathaniel John MoormanLu\u00eds Fernando de Sousa MoraesTiago Facury MoreiraHiroshi MoriJoachim Morschh\u00e4userMary MotylQu\u00e9zia MouraPaula J. MouserAhmed M. MoustafaW. Scott Moye-RowleyMonica MugnierVasant MuralidharanIsabel Muro-PastorEain A. MurphyTimothy F. MurphyMustapha M. MustaphaTin Tin MyaingThierry NaasAnusha NaganathanMoon H. NahmRyosuke NakaiCindy H. NakatsuKoji NakayamaFranz NarberhausFarooq NasarLu\u00eds Cl\u00e1udio Nascimento da SilvaSonia Navas-MartinErin M. NawrockiDavid M. NeedhamCassandra E. NelsonUjjwal NeogiJeniel E. NettBenjamin W. NeumanFelipe Piedade Gon\u00e7alves NevesStephanie L. NevilleDuane W. NewtonIrene L. G. NewtonCheryl A. NickersonMarisa Fabiana Nicol\u00e1sAngela M. NiliusAngela Helen NobbsPeter A. NobleCarolina Silva NodariMarc Noguera-JulianRomolo NonnoPatrice NordmannSteven J. NorrisJeanette M. NortonDominik N\u00f6rz\u00c2ngela NovaisMairi C. NoverrTomoyoshi NozakiTakuro NunouraBrian B. OakleyJoshua ObarShelby L. O\u2019ConnorDavid O\u2019DwyerPeter OelschlaegerJames P. O\u2019GaraNaoya OharaShigefumi OkamotoYusuke OkazakiFaten OkdaAndrew J. OliveMichael OlsonTeresa O\u2019MearaTroy O\u2019NeilEng Eong OoiAndres Opazo-CapurroWilliam D. OrsiEric OswaldGeorge O\u2019TooleC. Mark OttElizabeth A. OttesenMarc OuelletteMark S. PagetTanapat PalagaRaghavan U. PalaniappanMitchell PallettSatheshkumar PanayampalliJohn C. PanepintoCostas C. PapagiannitsisDaniel Paredes-SabjaJoanna L. ParishDan Mcfarland ParkHee-Soo ParkJason ParkDane ParkerDonovan H. ParksColin R. ParrishChristopher M. ParrySally R. PartridgeErica PasiniDavid PatersonTimothy C. PaulitzMatthew PaulyJovan PavlovicHelene M. M. PaxtonAndrew PekoszXinxia PengJose Christian PerezBenjamin PerinAndreas PeschelBrian PetersFelicitas PfeiferMrudula PhadkeBirgit PiechullaAndrzej PiekarowiczShmuel PietrokovskiTatiana C. A. PintoJohann PitoutGregory V. PlanoRandall PlattDaniel PletzerCarolina H. PohlLaurent PoirelChristopher Robert PolageShawn W. PolsonFrederic PolyMar\u00eda Teresa Ponce-NoyolaDavid L. PophamErin P. PriceSean T. PriggeHarry E. PrincePeter M. PryciakMichael J. PucciAlexandra E. PurdyNicole E. PutnamDohun PyeonLizeng QinJianming QiuPilar QuintanaRobert G. QuiveyBrent RaceGovindarajan RajagopalanMichael RakSrinivasan RamakrishnanKumaran S. RamamurthiChristophe Rami\u00e8reMaria Soledad RamirezCayo RamosChad A. RappleyeDavid RaskoAdam J. RatnerR. S. RedmanPeter ReevesBarbara RehermannAaron ReinkeLina ReslanPeter ReutherMatthew R. ReynoldsTodd B. ReynoldsJonathan RichardsBert K. RimaMarilyn C. RobertsDerrick R. RobinsonMarcio L. RodriguesEstefania RodriguezGeraint B. RogersRobin Rebecca RohwerMohsen RokniSandra Romero-SteinerR. Martin RoopAlexandre Soares RosadoJason W. RoschJean-Pierre RoutyEmeline RouxCraig R. RoyNicole RoyPolly RoyAlex RubinsteynChristian J. RudolphCristian RuizOlena RzhepishevskaWilmara Salgado-Pab\u00f3nAmali SamarasingheLinus SandegrenFelipe H. Santiago-TiradoEzequiel SantillanClarissa Santos RochaToyotaka SatoCharles A. ScangaJoy ScariaJeffrey W. SchertzerPatrick D. SchlossEric SchmidtJennifer Elise SchmidtThomas Mitchell SchmidtVolker SchmidtMirco SchmolkeTony SchountzMichael SchuitChristian SchwerkJarrod J. ScottAmin SedokaniAnna Maria SeekatzJulie A. SegreKate L. SeibH. Steven SeifertRangaraj SelvaranganHidenobu SenpukuKeun Seok SeoAswin Sai Narain SeshasayeeWilliam M. ShaferDilip ShahPriya S. ShahShiraz A. ShahKathy Ho Yen ShairDipali SharmaJessica R. SheldonAimee ShenBang ShenMang ShiShinsuke ShigetoShin-Ru ShihTeppei ShimiasakiDaisuke ShiomiNahum Y. ShpigelJoshua D. ShroutShahid SiddiqueAnita SilRoberto SilvaLynn L. SilverMonique SimierAnthony P. SinaiSteven M. SingerUpinder SinghAlbert SiryapornJerod A. SkybergRenata Dezengrini SlhessarenkoMonika S\u0142omi\u0144ska-Wojew\u00f3dzkaCarolyn M. SlupskyMark S. SmeltzerDarian SmercinaDarci SmithJames Leif SmithJoseph D. SmithWiep Klaas SmitsTeemu SmuraEvan S. SnitkinJonathan W. SnowMilena SokolowskaEvgeni SokurenkoDavid R. SollHarini SooryanarainJoseph A. SorgDaniel StadlbauerRenske D. M. SteenbergenLisa Y. SteinEike SteinmannDavid Cole StevensDennis StevensBrian StevensonDavid B. StewartScott StibitzAshley L. St. JohnGregory G. StoneDaniel StraumeFrank StubenrauchKarina StuckenJorg StulkeCarlos S. SubausteDavid SuePaul M. SullamJie SunShan SunMaarit SuomalainenIvan SurovtsevMichael SurretteJoyce SutcliffeMehul S. SutharTroy C. SuttonElena SuvorovaStaffan G. Sv\u00e4rdMaxim S. SvetlovJoel SwansonW. Edward SwordsFrancois-Etienne SylvainRita TamayoMing TanBenjamin TangYuyang TangArnaud TatonMiguel Cacho TeixeiraAkihiko TeradaBenno Herman Ter KuileKen TeterRajani ThanisseryKevin R. TheisCasey M. TheriotGavin H. ThomasElizabeth ThrallThomas ThurnheerAndrea TicinesiRafal TokarzAndrew TomarasSteven Y. C. TongOlivera Topalovi\u0107Tadashi ToyamaStephen TristramNicolas TromasFran\u00e7ois TrotteinTakafumi TsuboiClaire Elizabeth TurnerKenneth L. TylerGregory TyrrellJuan Esteban UgaldeDavid UlaetoImran UllahGottfried UndenPriya UppuluriSyun-Ichi UrayamaOlivier VallonMiguel A. ValvanoChris Van BenedenKurt Jason VandegriftDan VanderpoolAdrianus W. M. van der VeldenPatrick Van DijckMark W. J. van PasselDebby van RielVicky L. van SantenBrian D. VanScoyDaria Van TyneArvind VarsaniJoel Vega-Rodr\u00edguezLonneke VerveldeAlejandro J. VilaVladimir VinnikJoerg VogelChantal B. VogelsRobin Voigt-ZuwalaPetr VolfVeronika von MesslingJay VornhagenDaniel E. VothJo-Marie VreulinkJatin M. VyasJoseph Thomas WadeRezwanul WahidMatthew K. WaldorSeth T. WalkLouise A. WalkerMark J. WalkerDaniel WallNicholas A. WallaceJudd WalsonJens WalterHui WangJincheng WangJoyce WangJue D. WangXiaoxue WangYan WangYang WangJonathan Mark WarawaMatthew J. WargoChristopher M. WatersNadeeka Kumari WawegamaKeith E. WeaverRichard J. WebbyXin WeiBrian C. WeinrickLouis M. WeissEric WenzlerDawn WetzelNicole WheelerStephen C. WhissonGregory WhitakerJason K. WhitmireGottfried WilharmJulia WillettEmma H. WilsonRichard A. WilsonSteven S. WitkinChristiane E. WobusAlan J. WolfeMichael H. WoodworthKaren WozniakRachel A. F. WozniakGerard D. WrightNicholas C. WuWilliam H. WunnerSusan WyllieKelly Leanne WyresHan XiaHang XieJin-Rong XuXiyuan XuYuquan XuChaoyang XueTimothy L. YahrS. Steve YanHee-Jeong YangYang YangYe YangZhaomin YangCatherine YoshidaYang YuYunsong YuMin YueJoseph P. ZackularRahat ZaheerKamarul ZarkasiRaffaele ZarrilliMichael ZasloffAnna C. ZemkeGabriel E. ZentnerBing ZhaiYuanchao ZhanCheng-Cai ZhangChiyu ZhangRui ZhangJiangchao ZhaoBeiwen ZhengHao ZhengGuangming ZhongXiaohui ZhouRan ZichelLisa ZieglerSeth ZostAbdelrahman ZueterAgain, my sincere thanks to all of you for being part of the"} {"text": "The Aberdare Ranges Forest, located in the Central highlands of Kenya, is an isolated volcanic mountain in the East African Rift Valley with unique flora. Despite its refugial importance to rare and endemic plant species, the diversity of plants in the Aberdare Ranges Forest remains poorly understood. The checklist presented here is a collation of data obtained from multiple floristic surveys and from herbarium specimen collections from the forest. A total of 1260 vascular plants taxa representing 136 families, 613 genera, 67 subspecies and 63 varieties are documented. The ferns comprised 84 species, lycophytes seven, gymnosperms six and angiosperms were 1163 taxa. This represents 17.9% of the Kenyan taxa, 1.7% of the African taxa and 0.3% of all the vascular plants known in the world. A total of 18 taxa were endemic and 14 taxa were found to be threatened globally. The life form, voucher specimen(s), habitat and distribution range of each taxon and a brief analysis of taxa diversity is presented in this checklist. This is the first comprehensive inventory of vascular plants in the entire Aberdare Ranges, providing a solid basis for more sustainable management and improved conservation of this montane forest. The checklist is also an important contribution to the world checklist of plants required by the Global Strategy for Plant Conservation. EABH) is amongst the eight known hotspots in Africa with globally significant diversity and endemism , through the Global Strategy for Plant Conservation (GSPC), has over the past two decades advocated for intense exploration and documentation of plants species with the aim of achieving a complete world checklist of flora in the near future Forest, previous floristic studies have either focused on a single or a few selected taxa document the vascular plants of the entire AR Forest, (ii) document the endemic and threatened vascular plants in the AR Forest and (iii) document the life forms and habitats of all the vascular plants in the AR Forest.The goal of this study was to provide a broad checklist of vascular plants in the entire AR, together with Mount Kenya, constitute the Central Highlands of Kenya. It extends approximately 120 km southwards from the equator through Nyeri, Nyandarua, Muranga and Kiambu Counties to the Kikuyu escarpment, between 36\u00b030'E, 0\u00b005'S and 36\u00b055'E, 0\u00b045'S AR, togetlevation . The AR f 565 km .AR is diverse and comprises numerous undulating hills formed through volcanism and faulting of the earth\u2019s surface from the early Tertiary to the Pleistocene periods , which manages the Aberdare National Park with an area of ca. 76,700 ha and the Kenya Forest Service (KFS) which governs the Aberdare Forest Reserve measuring ca. 139,500 ha. The National Park encompasses the summit of the AR above 3000 m a.s.l. and a narrow salient extending to the east to 1900 m a.s.l. and Sino-Africa Joint Research Center (SAJOREC) carried out field investigations from 2016 to 2019. Floristic surveys were done during both wet and dry seasons to capture a wide range of phenological cycles of taxa, especially flowering and fruiting. General walk-over surveys were used in specimen collection and habitat characterisation (East African herbarium (EA). Standard botanical references were used in identification of specimens, i.e. Flora of Tropical East Africa in China. Herbarium acronyms follow Thiers (2020 onward: http://sweetgum.nybg.org/science/ih/).A botanical team from the t Africa , BlundelAR and deposited in the EA, were compiled with our collections to develop a checklist of vascular plants. Habitat(s) and relative distribution range for each taxon were determined using our collections, herbarium specimens in the EA and published bibliographies. The broadest altitude ranges, that is between the minimum and maximum altitude a taxon is known to occur, were searched and recorded. Thence, the distribution ranges of plants\u2019 taxa were not restricted to the AR as some taxa had wide distribution ranges extending to the sea level. Life forms of taxa collected were categorised as herbs , shrubs (plants between 50 cm to 5 m high with woody stems branching at or near the ground), climbers (plants with twining herbaceous or woody stems) and trees (GBIF) (https://www.gbif.org). Moreover, the conservation status of all the vascular plants recorded were assessed in the IUCN Red List of Threatened Species (https://www.iucnredlist.org) and categorised as Critically Endangered (CR), Endangered (EN), Vulnerable (VU) and Near Threatened (NT). The current taxonomic circumscription of each taxon recorded was checked in the Tropicos database (http://www.tropicos.org/), African Plant Database (http://www.ville-ge.ch/musinfo/bd/cjb/africa/recherche.php?langue=an) and the Catalogue of Life, 2019 Annual Checklist . Finally, the recorded plants\u2019 taxa were grouped into their respective classes and families and presented alphabetically.Vascular plants specimens, previously collected for varied purposes from the n trunk) . Standarn trunk) , BlundelAR. Ferns and fern-allies were 91 in total, with 1169 taxa of seed plants. The most diverse class was Magnoliopsida , followed by Liliopsida (19.4%), then Polypodiopsida (6.6%), Lycopodiopsida (0.6%) and the least diverse was Pinopsida (0.5%) of the total taxa recorded , Poaceae (8.2%), Fabaceae (6.6%) and Lamiaceae (3.9%) of the total vascular plants recorded (Table Cyperus (20), Helichrysum (19), Senecio (17), Asplenium (17), Crotalaria (15) and Solanum (15), while other genera had less than 14 taxa and Apiaceae (three) and Cyperaceae (three taxa). The majority of the threatened taxa were herbs (nine), then trees (three) and the remaining were shrubs (two taxa).A total of 13 taxa were found to be threatened or near-threatened globally in the Appendix . The taxAR Forest is a significant regional centre of plant diversity. With a total of 1,260 taxa recorded, it represents 17.9% of the total 7,004 vascular plants in Kenya, 10.2% of the 12,317 vascular plants in East Africa, 1.7% of the estimated 74,000 taxa in Africa and 0.3% of the estimated world flora of 422,127 taxa Kalkm and others, are traditionally utilised by the local community as remedies for various illnesses Kalkm and Crotonalienus Pax are faced with logging and charcoal burning threats, thus, they should also be prioritised in conservation planning are endemic while those with (*) are exotic and/or naturalised in the AR Forest. For each taxon recorded, full authority is given, life form, brief notes on habitat and distribution range, voucher specimen number and the herbarium where it was deposited. The broadest altitude range of each taxon is indicated in metres (m) which mostly extends beyond the elevation of the AR Forest. EA refers to the East African herbarium in Nairobi, Kenya, while HIB refers to Wuhan Botanical Garden herbarium in Wuhan, China. The collectors are abbreviated as follows: SK means Solomon Kipkoech, SAJIT refers to Sino-Africa Joint Investigation Team, FOKP means Flora of Kenya Project, KEFRI refers to Kenya Forestry Research Institute and EANHS stands for East Africa Natural History Society.An annotated checklist of the vascular plants of the I system , Pinopsi6 system . Taxa prLycopodiaceaeF1. Austrolycopodiumaberdaricum (Chiov.) Holub \u2013 Life form: Herb. Habitat: Upper parts of montane forest, 3000 m. Voucher: Balbo 475 (EA).Lycopodiumclavatum L. \u2013 Life form: Herb. Habitat: Moist montane forest, 1500\u20133050 m. Vouchers: Mutangah 2 (EA), SK 0148 .Phlegmariurusdacrydioides (Baker) A.R.Field & Bostock \u2013 Life form: Herb. Habitat: Woodland and riverine forest, 1550\u20132700 m. Voucher: Faden 69/1113 (EA).Phlegmariurussaururus (Lam.) B.\u00d8llg. \u2013 Life form: Herb. Habitat: Near streams and damp sites in moorland, 2200\u20134400 m. Voucher: Hedberg 1627 (EA).Phlegmariurusverticillatus (L.f.) A.R.Field & Testo \u2013 Life form: Herb. Habitat: Moist woodland and wet forest, 950\u20132300 m. Vouchers: Someren s.n., Balbo 819 (EA).SelaginellaceaeF2. Selaginellagoudotianavar.abyssinica (Spring) Bizzarri \u2013 Life form: Herb. Habitat: Near waterfalls and riverbanks in evergreen forest, 750\u20132450 m. Vouchers: Ng\u2019weno 15129, Kuchar 12753 (EA).Selaginellakraussiana (Kunze) A.Braun \u2013 Life form: Herb. Habitat: Moist forest, 1100\u20133350 m. Voucher: Lind and Agnew 5013 (EA).AspleniaceaeF3. Aspleniumabyssinicum F\u00e9e \u2013 Life form: Herb. Habitat: often epiphytic in moist forest and damp sites in moorland, 1350\u20133150 m. Voucher: Kamau 364 (EA).Aspleniumactiniopteroides Peter \u2013 Life form: Herb. Habitat: Rocky sites in upland forest, 2500\u20134250 m. Voucher: Someren 1054 (EA).Aspleniumadamsii Alston \u2013 Life form: Herb. Habitat: Wet rocky sites in moorland and heath zone, 2400\u20133400 m. Voucher: Polhill 12026 (EA).Aspleniumaethiopicum (Burm.f.) Bech. \u2013 Life form: Herb. Habitat: Epiphytic in moist forest and wooded grassland, 1150\u20133700 m. Voucher: Mutanga 13 (EA).Aspleniumboltonii Hook. ex Schelpe \u2013 Life form: Herb. Habitat: Epiphytic in moist forest, 1200\u20132750 m. Voucher: Robertson et al. 3895 (EA).Aspleniumbugoiense Hieron. \u2013 Life form: Herb. Habitat: Upland moist forest and along streams, 1650\u20132700 m. Voucher: Faden et al. 74/1346 (EA).Aspleniumelliottii C.H.Wright \u2013 Life form: Herb. Habitat: Moist montane forest, 1050\u20133000 m. Voucher: Kuchar 12407 (EA).Aspleniumerectum Bory ex Willd. \u2013 Life form: Herb. Habitat: Epiphytic in upland forest floors, 1300\u20132750 m. Voucher: Faden 69/004 (EA).Aspleniumfriesiorum C.Chr. \u2013 Life form: Herb. Habitat: Epiphytic in moist forest, swamps and along streams, 1100\u20133000 m. Voucher: Mutanga 10 (EA).Aspleniumlinckii Kuhn \u2013 Life form: Herb. Habitat: Shady places in moist forest, 1600\u20132700 m. Voucher: Faden 74/1317 (EA).Aspleniumloxoscaphoides Baker \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest and Hagenia woodlands, 1850\u20133650 m. Voucher: Kuchar 5218 (EA).Aspleniummonanthes L. \u2013 Life form: Herb. Habitat: Moist forest and bamboo thickets, 1950\u20133400 m. Voucher: Kamau 366 (EA).Aspleniumpraegracile Rosenst. \u2013 Life form: Herb. Habitat: Moist montane forest and bamboo zone, 2400\u20133100 m. Voucher: Faden et al. 71/880 (EA).Aspleniumrutifolium (P.J.Bergius) Kunze \u2013 Life form: Herb. Habitat: Epiphytic in moist forest and riverine forest, 750\u20132300 m. Voucher: Faden 69/2075 (EA).Aspleniumsandersonii Hook. \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest and forest margins, 680\u20133100 m. Voucher: Faden 69/012 (EA).Aspleniumtheciferum (Kunth) Mett. \u2013 Life form: Herb. Habitat: Epiphytic in moist forest and bush thickets, 850\u20132900 m. Voucher: Kibui 50 (EA).Aspleniumuhligii Hieron. \u2013 Life form: Herb. Habitat: Epiphytic in upland woodland, 2400\u20134200 m. Voucher: Kuchar 13077 (EA).AthyriaceaeF4. Athyriumnewtonii Baker \u2013 Life form: Herb. Habitat: Upland rocky forest margins, 1150\u20133500 m. Voucher: Tweedie 1882 (EA).Athyriumscandicinum (Willd.) C.Presl \u2013 Life form: Herb. Habitat: Moist forest and bamboo zone, 1150\u20133500 m. Voucher: Faden 70/63 (EA).Depariaboryana (Willd.) M.Kato \u2013 Life form: Herb. Habitat: Upland moist forest, 1460\u20132550 m. Voucher: FOKP 1983 .BlechnaceaeF5. Blechnumaustrale L. \u2013 Life form: Herb. Habitat: Mixed bamboo forest and wet grassland, 1500\u20132500 m. Vouchers: Cameron 18, Gilbert 6315 (EA).Blechnumtabulare (Thunb.) Kuhn \u2013 Life form: Herb. Habitat: Mixed bamboo forest and wet grassland, 1600\u20132600 m. Voucher: Gilbert 6337 (EA).CyatheaceaeF6. Cyatheamanniana Hook. \u2013 Life form: Tree. Habitat: Moist forest and along streams, 1500\u20132500 m. Voucher: Napper 721 (EA).CystopteridaceaeF7. Cystopterisfragilis (L.) Bernh. \u2013 Life form: Herb. Habitat: Damp rocky sites in evergreen forest, 1700\u20133600 m. Voucher: Fries & Fries 762 (EA).DennstaedtiaceaeF8. Blotiellaglabra (Bory) R.M.Tryon \u2013 Life form: Herb. Habitat: Moist forest, 1350\u20133000 m. Voucher: Faden 71/202 (EA).Hypolepisgoetzei Reimers Life form: \u2013 Herb. Habitat: Moist forest, 2100\u20133050 m. Voucher: Faden 71/886 (EA).Hypolepissparsisora (Schrad.) Kuhn \u2013 Life form: Herb. Habitat: Moist forest, 900\u20132800 m. Voucher: Verdcourt 3989 (EA).Pteridiumaquilinum (L.) Kuhn \u2013 Life form: Herb. Habitat: Wooded grassland and forest margins, 2640\u20132850 m. Vouchers: Otieno 12609, Kuchar 7827 (EA).DryopteridaceaeF9. Arachniodeswebbianavar.foliosa (C.Chr.) Gibby, Rasbach, Reichst., Wid\u00e9n & Viane \u2013 Life form: Herb. Habitat: Moist forest and streams banks, 1380\u20132600 m. Vouchers: Gardner 967, Kamau 471 (EA).Dryopterisantarctica (Baker) C.Chr. \u2013 Life form: Herb. Habitat: Montane grassland and moorland, 2500\u20133320 m. Voucher: Faden 69/803 (EA).Dryopterisfadenii Pic.Serm. \u2013 Life form: Herb. Habitat: Moist forest and riverine forest, 1700\u20132500 m. Voucher: Faden et al. 69/900 (EA).Dryopterislewalleana Pic.Serm. \u2013 Life form: Herb. Habitat: Moist forest and riverine forest, 1400\u20132300 m. Voucher: Faden 70/55 (EA).Dryopterismanniana (Hook.) C.Chr. \u2013 Life form: Herb. Habitat: Moist forest, 1450\u20132250 m. Voucher: Faden et al. 69/289 (EA).Elaphoglossumangulatum (Blume) T.Moore \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest, 2470\u20132750 m. Voucher: Faden 71/201 (EA).Elaphoglossumaubertii (Desv.) T.Moore \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest, 1400\u20132800 m. Voucher: Someren 387 (EA).Elaphoglossumconforme (Sw.) Schott \u2013 Life form: Herb. Habitat: Moist montane forest, 2100\u20133000 m. Voucher: Balbo 769 (EA).Elaphoglossumdeckenii (Kuhn) C.Chr. \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest, 2100\u20133500 m. Voucher: Hedberg 1635 (EA).Elaphoglossumhybridum (Bory) Brack. \u2013 Life form: Herb. Habitat: Moist forest and damp places in the moorland, 1800\u20133600 m. Voucher: Faden et al. 74/1340 (EA).Elaphoglossumlastii (Baker) C.Chr. \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest, 1500\u20132600 m. Voucher: Faden et al. 74/1324 (EA).Elaphoglossumpiloselloides (C.Presl) T.Moore \u2013 Life form: Exotic herb. Habitat: Moist montane forest, 900\u20132450 m. Voucher: Peter 41097 (EA).*Elaphoglossumspatulatumvar.uluguruense (Reimers) Schelpe \u2013 Life form: Herb. Habitat: Moist forest and along streams, 900\u20132450 m. Voucher: Faden et al. 71/74 (EA).Elaphoglossumsubcinnamomeum (Christ) Hieron. \u2013 Life form: Herb. Habitat: Upper parts of wet montane forest, 2800\u20133600 m. Voucher: Kenya Exploration Society 157 (EA).Megalastrumlanuginosa (Willd. ex Kaulf.) Holttum \u2013 Life form: Herb. Habitat: Moist forest near streams, 1400\u20132400 m. Voucher: Faden et al. 71/282 (EA).Nothoperanemasquamisetum (Hook.) Ching \u2013 Life form: Herb. Habitat: Moist forest, 1850\u20132950 m. Voucher: Molesworth Allen 3638 (EA).Polystichumsinense (Christ) Christ \u2013 Life form: Herb. Habitat: Upland moist forest, 1920\u20134100 m. Voucher: Mwangangi 987 (EA).Polystichumtransvaalense N.C.Anthony \u2013 Life form: Herb. Habitat: Moist forest, 1350\u20132700 m. Voucher: Andrew 4461 (EA).Polystichumvolkensii (Hieron.) C.Chr. \u2013 Life form: Herb. Habitat: Moist montane forest and Hagenia forest, 2800\u20133600 m. Voucher: Rabb et al. 7 (EA).Polystichumwilsonii Christ \u2013 Life form: Herb. Habitat: Shaded grounds in moist forest, 2320\u20133650 m. Voucher: Someren 1053 (EA).EquisetaceaeF10. Equisetumramosissimum Desf. \u2013 Life form: Herb. Habitat: Along streams and rivers, 150\u20132100 m. Voucher: Greenway 13100 (EA).HymenophyllaceaeF11. Crepidomanesmelanotrichum (Schltdl.) J.P.Roux \u2013 Life form: Herb. Habitat: Shades in moist forest, 750\u20132650 m. Voucher: Beentje 2950 (EA).Crepidomanesramitrichum (Faden) Beentje \u2013 Life form: Herb. Habitat: Upland moist forest and rocky waterfalls, 2300\u20132600 m. Voucher: Faden & Grumbley 72/338 (EA).Didymoglossumerosum (Willd.) J.P.Roux \u2013 Life form: Herb. Habitat: Shady sites in moist forest, 0\u20132400 m. Voucher: Faden et al. 74/1336 (EA).Hymenophyllumcapillarevar.alternialatum (Pic.Serm.) Faden \u2013 Life form: herb. Habitat: Epiphytic in moist montane forest, 1650\u20133480 m. Voucher: Agnew et al. 5620 (EA).Hymenophyllumpolyanthosvar.kuhnii (C.Chr.) Schelpe \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest, 1400\u20133000 m. Voucher: Faden et al. 71/199 (EA).Hymenophyllumtunbrigense (L.) Sm. \u2013 Life form: Herb. Habitat: Epiphytic in upland moist forest, 1900\u20132700 m. Voucher: Faden et at. 74/1338 (EA).Polyphlebiumborbonicum (Bosch) Ebihara & Dubuisson \u2013 Life form: Herb. Habitat: Moist forest and stream banks, 1400\u20132600 m. Voucher: Faden et al. 71/196 (EA).MarsileaceaeF12. Marsileaminuta L. \u2013 Life form: Herb. Habitat: Aquatic in shallow water pools, edges of streams and seasonal swampy grassland, 0\u20131950 m. Voucher: Perkins 11502 (EA).OphioglossaceaeF13. Ophioglossumvulgatumsubsp.africanum Pocock ex J.E.Burrows \u2013 Life form: Herb. Habitat: Montane grassland, 1000\u20133250 m. Vouchers: Dale 1321, Faden & Faden 71/890 (EA).PolypodiaceaeF14. Drynariavolkensii Hieron. \u2013 Life form: Herb. Habitat: Riverine forest and woodland, 1600\u20132300 m. Voucher: Kerfoot 2767 (EA).Grammitiscryptophlebia (Baker) Copel. \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest, 1900\u20132150 m. Voucher: Faden 71/280 (EA).Lepisorusexcavatus (Bory ex Willd.) Ching \u2013 Life form: Herb. Habitat: Montane forest, 1150\u20133490 m. Voucher: Kamau 373 (EA).Lepisorusschraderi (Mett.) Ching \u2013 Life form: Herb. Habitat: Upland forest, 1200\u20132450 m. Voucher: Faden 74/904 (EA).Loxogrammeabyssinica (Baker) M.G.Price \u2013 Life form: Herb. Habitat: Epiphytic in moist forest, 900\u20132900 m. Voucher: Kirika et al. 70 (EA).Melpomeneflabelliformis (Poir.) A.R.Sm. & R.C.Moran \u2013 Life form: Herb. Habitat: Epiphytic in bushland, upland forest and bamboo zone, 1000\u20134200 m. Voucher: Fries 1325 (EA).Pleopeltismacrocarpa (Bory ex Willd.) Kaulf. \u2013 Life form: Herb. Habitat: Upper parts of montane forest, 1000\u20133600 m. Voucher: Vorontsova 55 (EA).PteridaceaeF15. Adiantumpoiretii Wikstr. \u2013 Life form: Herb. Habitat: Montane forest, 1000\u20132700 m. Voucher: Luke 1106 (EA).Adiantumraddianum C.Presl \u2013 Life form: Herb. Habitat: Wet rocky sites in montane forest, 1000\u20132700 m. Vouchers: Faden 68/765 & 68/849 (EA).Aleuritopterisfarinosa (Forsk.) F\u00e9e \u2013 Life form: Herb. Habitat: Swampy places in montane forest, 1460\u20133600 m. Voucher: Kamau 531 (EA).Cheilanthesbergiana Schltdl. \u2013 Life form: Herb. Habitat: Moist forest, 1300\u20132300 m. Voucher: Kamau 101 (EA).Cheilanthesquadripinnata (Forssk) Kuhn \u2013 Life form: Herb. Habitat: Rocky grounds in moist forest, 1275\u20132750 m. Voucher: Maas Geesteranus 5043 (EA).Coniogrammeafricana Hieron. \u2013 Life form: Herb. Habitat: Moist forest and along streams, 1000\u20132250 m. Voucher: Bytebier 3229 (EA).Oeosporangiumviride (Forssk.) Fraser-Jenk. & Pariyar \u2013 Life form: Herb. Habitat: Moist montane forest and shades in bushlands, 650\u20132250 m. Voucher: Faden 012/2003 (EA).Pteriscatoptera Kunze \u2013 Life form: Herb. Habitat: Wet or dry forest, 1000\u20133050 m. Voucher: Zogg 2547 (EA).Pterisdentata Forssk. \u2013 Life form: Herb. Habitat: Wet or dry forest, 1000\u20133000 m. Voucher: Kuchar 5203 (EA).TectariaceaeF16. Arthropterismonocarpa (Cordem.) C.Chr. \u2013 Life form: Herb. Habitat: Epiphytic in moist forest and riverine forest, 1250\u20132450 m. Voucher: Gillett and Holttum 20096 (EA).Tectariagemmifera (F\u00e9e) Alston \u2013 Life form: Herb. Habitat: Moist forest, 600\u20132550 m. Voucher: Strange 117 (EA).ThelypteridaceaeF17. Amauropeltaoppositiformis (C.Chr.) Holttum \u2013 Life form: Herb. Habitat: Wet or swampy sites in evergreen forest, 1200\u20133000 m. Voucher: Bytebier 222 (EA).Christelladentata (Forssk.) Brownsey & Jermy \u2013 Life form: Herb. Habitat: Along streams and damp places in forest, 45\u20132200 m. Voucher: Luke 148 (EA).Pneumatopterisunita (Kunze) Holttum \u2013 Life form: Herb. Habitat: Moist montane forest and bamboo thicket, 1450\u20132500 m. Voucher: Kamau 466 (EA).Pseudocyclosoruspulcher (Bory ex Willd.) Holttum \u2013 Life form: Herb. Habitat: Riverine forest and swampy sites in forest, 750\u20132250 m. Voucher: Faden 68/988 (EA).Phegopteriscruciata (Willd.) Mett. ex Kuhn \u2013 Life form: Herb. Habitat: Moist evergreen forest and stream banks, 1450\u20132350 m. Voucher: Faden & Evans 69/891 (EA).Stegnogrammapozoivar.petiolata (Ching) Sledge \u2013 Life form: Herb. Habitat: Wet montane forest, 2050\u20133350 m. Vouchers: Bytebier et al. 48, Faden & Faden 69/898 (EA).CupressaceaeF18. Cupressuslusitanica Mill. \u2013 Life form: Exotic tree. Habitat: Cultivated, 2600\u20132640 m. Voucher: Dyson 526 (EA).*Juniperusprocera Hochst. ex Endl. \u2013 Life form: Tree. Habitat: Upland dry evergreen forest, 1050\u20133250 m. Voucher: SK 0106 .PinaceaeF19. Pinuspatula Schiede ex Schltdl & Cham. \u2013 Life form: Exotic tree. Habitat: Cultivated, common in moist or dry forest, 1700\u20133000 m. Voucher: Althof s.n. (EA).*Pinusradiata D.Don \u2013 Life form: Tree. Habitat: Moist or dry forest, 1700\u20133000 m. Voucher: Dillon 4 (EA).PodocarpaceaeF20. Afrocarpusfalcatus (Thunb.) C.N.Page \u2013 Life form: Tree. Habitat: Dry evergreen forest, 1250\u20132700 m. Voucher: SK 0123 .Podocarpuslatifolius (Thunb.) R.Br. ex Mirb. \u2013 Life form: Tree. Habitat: Dry evergreen forest, 1500\u20133350 m. Voucher: SK 0102 .AlismataceaeF21. Alismaplantago-aquatica L. \u2013 Life form: Herb. Habitat: Marshes and stream banks, 900\u20132340 m. Voucher: Lubai 14 (EA).AmaryllidaceaeF22. Scadoxusmultiflorus (Martyn) Raf. \u2013 Life form: Herb. Habitat: Moist montane forest, 0\u20132700 m. Voucher: Mungai 1/83 (EA).AraceaeF23. Arisaemamildbraedii Engl. \u2013 Life form: Herb. Habitat: Wet and shaded places in montane forest, 1400\u20132620 m. Voucher: SK 0219 .Culcasiafalcifolia Engl. \u2013 Life form: Herbaceous climber. Habitat: Moist forest, 500\u20132100 m. Voucher: Luke 14154 (EA).Lemnaminor L. \u2013 Life form: Herb. Habitat: Surface of water pools and slow running streams, 0\u20131800 m. Voucher: Verdcourt 718b (EA).Zantedeschiapentlandii (R.Whyte ex W.Watson) Wittm. \u2013 Life form: Herb. Habitat: Along streams and swamps, 1400\u20131800 m. Voucher: SK 0255 .ArecaceaeF24. Phoenixreclinata Jacq. \u2013 Life form: Tree. Habitat: Open rocky slopes in rainforest, 0\u20133000 m. Voucher: Napier 5377 (EA).AsparagaceaeF25. Anthericumangustifolium Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland, 1800\u20132850 m. Voucher: Leaky 8547 (EA).Asparagusafricanus Lam. \u2013 Life form: Woody climber. Habitat: Forest margins and wooded grassland, 0\u20133500 m. Voucher: SK 0191.Asparagusaridicola Sebsebe \u2013 Life form: Woody climber. Habitat: Wooded grassland and bush thickets, 10\u20132750 m. Voucher: Luke 10850 (EA).Asparagusasparagoides (L.) Druce \u2013 Life form: Herbaceous climber. Habitat: Moist forest and forest margins, 1100\u20133000 m. Voucher: Someren 1156 (EA).Asparagusfalcatus L. \u2013 Life form: Herbaceous climber. Habitat: Bush thickets and forest margins, 10\u20132750 m. Voucher: Zogg et al. 10/255 (EA).Asparagusnatalensis (Baker) J.-P.Lebrun & Stork \u2013 Life form: Woody climber. Habitat: Dry forest and forest margins, 900\u20132700 m. Voucher: Luke 18171 (EA).Asparagusracemosus Willd. \u2013 Life form: Woody climber. Habitat: Forest margins and wooded grassland, 1160\u20132900 m. Voucher: SK 0215 .Asparagussetaceus (Kunth) Jessop \u2013 Life form: Woody climber. Habitat: Forest margins, 1740\u20132300 m. Voucher: Verdcourt 3628 (EA).Chlorophytumcomosum (Thunb.) Jacques \u2013 Life form: Herb. Habitat: Undergrowth in rainforest, 20\u20132450 m. Voucher: SK 0168 .Chlorophytumpolystachys Baker \u2013 Life form: Herb. Habitat: Open woodland, 150\u20132900 m. Voucher: Hooper and Townsend 1651 (EA).Dracaenaafromontana Mildbr. \u2013 Life form: Tree. Habitat: Upland moist forest, 1600\u20132700 m. Voucher: SK 0143 .Dracaenaellenbeckiana Engl. \u2013 Life form: Tree. Habitat: Rocky slopes in moist forest, 1050\u20132100 m. Voucher: Perdue and Kibuwa 8259 (EA).Dracaenasteudneri Engl. \u2013 Life form: Tree. Habitat: Moist forest margins, 850\u20132300 m. Voucher: Perdue and Kibuwa 8023 (EA).Ornithogalumgracillimum R.E.Fr. \u2013 Life form: Herb. Habitat: Wet grounds in grassland and swamps, 1800\u20132700 m. Voucher: Polhill 406 (EA).Sansevieriaparva N.E.Br. \u2013 Life form: Herb. Habitat: Dry forest and rocky sites in bushland, 1600\u20132200 m. Voucher: Hansen 770 (EA).Sansevieria Perrotii Warb. \u2013 Life form: Herb. Habitat: Wooded grassland, 550\u20131950 m. Voucher: Someren 8505 (EA).ColchicaceaeF26. Androcymbiumstriatum Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland and bushland, 1500\u20133400 m. Voucher: Rayner 66 (EA).Wurmbeatenuissubsp.hamiltonii (Wendelbo) B.Nord. \u2013 Life form: Herb. Habitat: Upland grassland, 2130\u20132750 m. Vouchers: Chandler 2415, Rayner 66 (EA).CommelinaceaeF27. Aneilemaleiocaule K.Schum. \u2013 Life form: Herb. Habitat: Moist forest mostly in shades, 1000\u20132740 m. Voucher: Dyson 570 (EA).Commelinaafricana L. \u2013 Life form: Herb. Habitat: Grassland and woodland, 300\u20132980 m. Voucher: Kerfoot 619 (EA).Commelinaimberbis Ehrenb. ex Hassk. \u2013 Life form: Herb. Habitat: Grassland and bushland, 1000\u20132910 m. Voucher: SK 0166 .Commelinalatifolia Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland, 1250\u20132270 m. Voucher: Kenya Forest excursion 26 (EA).Commelinareptans Brenan \u2013 Life form: Herb. Habitat: Moist grassland, 1200\u20132550 m. Voucher: Faden 71/889 (EA).Floscopaglomerata (Willd. ex Schult. & Schult.f.) Hassk. \u2013 Life form: Herb. Habitat: Swampy grassland and along streams, 900\u20132200 m. Voucher: Bally 13225 (EA).Murdanniaclarkeana Brenan \u2013 Life form: Herb. Habitat: Swampy grassland, 1500\u20131850 m. Voucher: Hooper et al. 1695 (EA).Murdanniasimplex (Vahl) Brenan \u2013 Life form: Herb. Habitat: Grassland and bushland, 30\u20132200 m. Voucher: Verdcourt 561 (EA).CyperaceaeF28. Bulbostylisglaberrima K\u00fck. \u2013 Life form: Herb. Habitat: Damp sites in moorland, 3000\u20133600 m. Voucher: Fries and Fries 2394 (EA).Carexbequaertii De Wild. \u2013 Life form: Herb. Habitat: Moist montane forest and bamboo thickets, 1950\u20133800 m. Voucher: Verdcourt 1769 (EA).Carexchlorosaccus C.B.Clarke \u2013 Life form: Herb. Habitat: Moist forest and riparian forest, 1300\u20133300 m. Voucher: Napper 715 (EA).Carexconferta Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland moist forest and moorland, 2200\u20133650 m. Voucher: Robertson 7373(EA).Carexelgonensis Nelmes \u2013 Life form: Herb. Habitat: Bamboo thicket margins and afro-alpine stream banks, 2400\u20133650 m. Voucher: Hedberg 854 (EA).Carexjohnstonii Boeckeler \u2013 Life form: Herb. Habitat: Upper parts of montane forest and bamboo zone, 2200\u20133300 m. Voucher: Musili et al. 422 (EA).Carexlycurus K.Schum. \u2013 Life form: Herb. Habitat: Stream banks in grassland and woodland, 1500\u20133350 m. Voucher: Verdcourt 1770 (EA).Carexmonostachya A.Rich. \u2013 Life form: Herb. Habitat: Upper regions of bamboo zone and moorland, 2700\u20134500 m. Voucher: Musili et al 439 (EA).Carexperegrina Link \u2013 Life form: Herb. Habitat: Moist montane forest, 2300\u20133440 m. Voucher: Muasya et al. 050 (EA).Carexphragmitoides K\u00fck. \u2013 Life form: Herb. Habitat: Bogs and marshes in montane forest, 2500\u20133100 m. Voucher: Taylor 1354 (EA).ECarexrunssoroensisvar.aberdarensis K\u00fck. \u2013 Life form: Herb. Habitat: Rocky grounds in moorland, 3000\u20134400 m. Vouchers: Hedberg 4327, Muasya et al. 048 (EA).Carexsimensis Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Swampy places in upland grassland and moorland, 1850\u20133900 m. Voucher: Brich 61/13 (EA).Carexvallis-rosetto K.Schum. \u2013 Life form: Herb. Habitat: Moist sites in forest and forest edges, 1000\u20133300 m. Voucher: Luke 15347 (EA).Cyperusafroalpinus Lye \u2013 Life form: Herb. Habitat: Open sites in montane forest and bamboo thickets, 1000\u20133000 m. Voucher: Haines 1969 (EA).Cyperusajax C.B.Clarke \u2013 Life form: Herb. Habitat: Roadsides in upland forest and bush thickets, 950\u20132600 m. Voucher: Napper 1826 (EA).Cyperusaterrimus Hochst. ex Steud. \u2013 Life form: Herb. Habitat: Damp sites in upland montane forest, 1000\u20133350 m. Voucher: Brown 358 (EA).Cyperuscyperoides (L.) Kuntze \u2013 Life form: Herb. Habitat: Roadsides and forest clearings, 600\u20132400 m. Voucher: Kibui 43 (EA).Cyperusdenudatus L.f. \u2013 Life form: Herb. Habitat: Damp grassland and riversides, 0\u20132000 m. Voucher: Kuchar 7820 (EA).Cyperusdereilema Steud. \u2013 Life form: Herb. Habitat: Moist montane forest and bamboo zone, 2100\u20133050 m. Voucher: Luke 15351 (EA).Cyperusdichroostachyus Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Moist forest, 1200\u20132750 m. Voucher: Robertson 7372 (EA).Cyperusesculentus L. \u2013 Life form: Herb. Habitat: Swamps and wet grassland, 0\u20132200 m. Voucher: Faden 68/854 (EA).Cyperuskarisimbiensis (Cherm.) K\u00fck. \u2013 Life form: Herb. Habitat: Woodland, 1850\u20133000 m. Voucher: Fries and Fries 1037 (EA).Cyperuskerstenii Boeckeler \u2013 Life form: Herb. Habitat: Montane grassland and moorland, 2400\u20133600 m. Voucher: Beentje et al. 62 (EA).Cyperuspapyrus L. \u2013 Life form: Herb. Habitat: Moist forest and wet grassy slopes, 1800\u20133120 m. Voucher: Wood 779 (EA).Cyperusrigidifolius Steud. \u2013 Life form: Herb. Habitat: Seasonally wet grassland and bushland, 1700\u20132800 m. Voucher: Robertson 7399 (EA).Cyperusrotundus L. \u2013 Life form: Herb. Habitat: Wet grassland, 0\u20132200 m. Voucher: Robertson 7368 (EA).Cyperustomaiophyllus K.Schum. \u2013 Life form: Herb. Habitat: Moist forest and damp grassy slopes, 1800\u20133120 m. Voucher: Kuchar 12533 (EA).Eleocharismarginulata Hochst. ex Steud. \u2013 Life form: Herb. Habitat: Swampy grassland, 1500\u20132600 m. Voucher: Robertson 7369 (EA).Fimbristyliscomplanatasubsp.keniaeensis (K\u00fck.) Lye. \u2013 Life form: Herb. Habitat: Swampy grassland, 1500\u20132700 m. Vouchers: Faden 67/771, Kabuye 378 (EA).Fimbristylisovata (Burm.f.) J.Kern \u2013 Life form: Herb. Habitat: Wet wooded grassland, 0\u20132200 m. Voucher: Verdcourt 3253 (EA).Fuirenapubescens (Poir) Kunth \u2013 Life form: Herb. Habitat: Seasonally wet grassland, 850\u20132300 m. Voucher: Musili et al. 191(EA).Isolepiscostata Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Moist montane forest and stream banks, 1700\u20133500 m. Voucher: Taylor 1274 (EA).Isolepisfluitans (L.) R.Br. \u2013 Life form: Herb. Habitat: Bogs in moorland, 1200\u20133700 m. Voucher: Okwaro 34 (EA).Isolepissepulcralis Steud. \u2013 Life form: Herb. Habitat: Upland wet grassland, 1800\u20132300 m. Voucher: Bogdan 1514a (EA).Isolepissetaceae (L.) R.Br. \u2013 Life form: Herb. Habitat: Wet montane grassland, 2400\u20133800 m. Voucher: Kuchar 8278 (EA).Kyllingabrevifoliavar.lurida (K\u00fck.) Beentje \u2013 Life form: Herb. Habitat: Montane grassland and forest clearings, 1300\u20133300 m. Voucher: Hansen 754 (EA).Cyperuserecta (Schumach.) Mattf. & K\u00fck. \u2013 Life form: Herb. Habitat: Wet depressions and swamps, 0\u20132000 m. Voucher: Musili et al. 244 (EA).Kyllingaodorata Vahl. \u2013 Life form: Herb. Habitat: Upland forest margins and woodland, 1300\u20133300 m. Voucher: Robertson 7370 (EA).Cyperusaethiops Welw. ex Ridl. \u2013 Life form: Herb. Habitat: Wet or swampy grassland, 900\u20132200 m. Voucher: Agnew et al. 8608 (EA).Cyperuselegantulus Steud. \u2013 Life form: Herb. Habitat: Wet grassland and moist forest margins, 1100\u20133050 m. Voucher: Napper 1488 (EA).Cyperusmundiivar.uniceps (C.B.Clarke) K\u00fck. \u2013 Life form: Herb. Habitat: Wet grassland and swampy forest, 200\u20132300 m. Voucher: Verdcourt 427 (EA).Cyperusnigricans Steud. \u2013 Life form: Herb. Habitat: Marshy grounds and bogs in upland forest, 1700\u20133600 m. Voucher: Kuchar 9559 (EA).Cyperusnitidus Lam. \u2013 Life form: Herb. Habitat: Wetland and swamps edges, 1000\u20132150 m. Voucher: Bogdan 2894 (EA).Carexuhligii K.Schum ex C.B.Clarke \u2013 Life form: Herb. Habitat: Open sites in moist forest and upland grassland, 1050\u20132800 m. Voucher: Hansen 850 (EA).Carexspartea Wahlenb. \u2013 Life form: Herb. Habitat: Moist forest edges and wet upland grassland, 1650\u20132800 m. Voucher: Polhill 436 (EA).EriocaulaceaeF29. Eriocaulonmesanthemoides Ruhland \u2013 Life form: Herb. Habitat: Stream-sides in montane grassland and moorland, 2400\u20133100 m. Voucher: Agnew et al. 8157 (EA).Eriocaulonschimperi K\u00f6rn. ex Ruhland \u2013 Life form: Herb. Habitat: Wet montane grassland, 2000\u20133500 m. Voucher: Wood 773 (EA).Eriocaulonvolkensii Engl. \u2013 Life form: Herb. Habitat: Montane grassland and moorland, 2500\u20133900 m. Voucher: Agnew 7226 (EA).HydrocharitaceaeF30. Egeriadensa Planch. \u2013 Life form: Herb. Habitat: Still or slow flowing freshwater, 360\u20132400 m. Voucher: Powys 373 (EA).HypoxidaceaeF31. Hypoxisangustifolia Lam. \u2013 Life form: Herb. Habitat: Open woodland and forest margins, 0\u20133000 m. Voucher: Verdcourt 1965 (EA).Hypoxiskilimanjaricasubsp.prostrata Ellen Holt & Staubo \u2013 Life form: Herb. Habitat: Montane grassland, 2900\u20133500 m. Vouchers: Mabberlay 372, Beentje 2611 (EA).IridaceaeF32. Aristeaalata Baker \u2013 Life form: Herb. Habitat: Moist forest and forest edges, 1800\u20133500 m. Voucher: Mbale et al. 850 (EA).Aristeaangolensis Baker \u2013 Life form: Herb. Habitat: Wet sites in grassland, 1750\u20132700 m. Voucher: Battiscombe 831 (EA).Dieramacupuliflorum Klatt \u2013 Life form: Herb. Habitat: Montane grassland, 2000\u20133900 m. Vouchers: Kuchar 12699, Beentje 2414 (EA).Gladiolusdalenii Van Geel \u2013 Life form: Herb. Habitat: Grassland with scattered trees, 300\u20133600 m. Voucher: Bally 8255B (EA).Gladioluswatsonioides Baker \u2013 Life form: Herb. Habitat: Forest clearings in montane forest, 2000\u20133800 m. Voucher: Lind 2901 (EA).Hesperanthapetitiana (A.Rich.) Baker \u2013 Life form: Herb. Habitat: Rocky cliffs at subalpine grassland, 1800\u20133100 m. Voucher: Napier 1254 (EA).Romuleacongoensis B\u00e9g. \u2013 Life form: Herb. Habitat: Montane grassland, 3300\u20134200 m. Voucher: Stephenson 383 (EA).Romuleafischeri Pax \u2013 Life form: Herb. Habitat: Upland grassland, 2150\u20134200 m. Voucher: Dyson 435 (EA).JuncaceaeF33. Juncusbufonius L. \u2013 Life form: Herb. Habitat: Wet places in upland grassland, 2400\u20132800 m. Voucher: Musili et al. 441 (EA).Juncusdregeanussubsp.bachitii (Hochst. ex Steud.) Hedberg. \u2013 Life form: Herb. Habitat: Along streams in upland forest and moorland, 2100\u20133400 m. Vouchers: Hedberg 4328, Kuchar 12445 (EA).Juncuseffusus L. \u2013 Life form: Herb. Habitat: Moist forest and streams banks, 1500\u20133300 m. Voucher: Kuchar 10330 (EA).Juncusoxycarpus E.Mey ex Kunth \u2013 Life form: Herb. Habitat: Marshy sites in grassland, 1500\u20133080 m. Voucher: Handa 007 (EA).Luzulaabyssinica Parl. \u2013 Life form: Herb. Habitat: Damp sites in upper montane forest and moorland, 2000\u20134550 m. Voucher: Hedberg 1541 (EA).Luzulajohnstonii Buchenau \u2013 Life form: Herb. Habitat: Shaded grounds in rainforest, 2400\u20134200 m. Voucher: Agnew et al. 7088 (EA).OrchidaceaeF34. Aerangisconfusa J.Stewart \u2013 Life form: Herb. Habitat: Epiphytic in shaded trunks and branches in upland forest, 1600\u20132500 m. Voucher: Bally 8461 (EA).Aerangisthomsonii (Rolfe) Schltr. \u2013 Life form: Herb. Habitat: Epiphytic in shaded trunks and branches in upland forest, 1600\u20132600 m. Voucher: SK 0260 .Angraecumchamaeanthus Schltr. \u2013 Life form: Herb. Habitat: Epiphytic in upland montane forest, 1600\u20132400 m. Voucher: Smart 27 (EA).Angraecumconchiferum Lindl. \u2013 Life form: Herb. Habitat: Epiphytic in montane forest, 1250\u20132400 m. Voucher: Archer 20/9/1959 (EA).Angraecumhumile Summerh. \u2013 Life form: Herb. Habitat: Epiphytic in moist montane forest and riparian forest, 1650\u20132500 m. Voucher: Someren 413 (EA).Angraecumsacciferum Lindl. \u2013 Life form: Herb. Habitat: Epiphytic in upland moist forest, 900\u20132200 m. Voucher: Bytebier 505 (EA).Bulbophyllumsandersonii (Hook.f.) Rchb.f. \u2013 Life form: Herb. Habitat: Epiphytic in shades in forest, 200\u20132700 m. Voucher: Cameron 14863 (EA).Calanthesylvatica (Thouars) Lindl. \u2013 Life form: Herb. Habitat: Moist forest floors and near streams, 900\u20133000 m. Voucher: Gardner 1411 (EA).Cynorkisanacamptoides Kraenzl. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1050\u20133350 m. Voucher: Verdcourt 434 (EA).Cyrtorchisarcuata (Lindl.) Schltr. \u2013 Life form: Herb. Habitat: Epiphytic in woodland and open forest, 0\u20133300 m. Vouchers: Gardner 2554, Padwa 59 (EA).Diaphanantherohrii (Rchb.f.) Summerh. \u2013 Life form: Herb. Habitat: Epiphytic in montane forest, 2100\u20133000 m. Voucher: Smart 22 (EA).Disafragranssubsp.deckenii (Rchb.f.) H.P.Linder \u2013 Life form: Herb. Habitat: Open sites and edges of montane forest up to the moorland, 2350\u20133700 m. Vouchers: Kokwaro 1929, Agnew et al. 8186 (EA).Disastairsii Kraenzl. \u2013 Life form: Herb. Habitat: Upland grassy swamps and damp sites in moorland, 2100\u20133750 m. Voucher: Kokwaro 3249 (EA).Disperisdicerochila Summerh. \u2013 Life form: Herb. Habitat: Upland moist forest, 1650\u20132600 m. Voucher: Williams 15379 (EA).Disperiskilimanjarica Rendle \u2013 Life form: Herb. Habitat: Shaded grounds in evergreen forest, 2100\u20133000 m. Voucher: SK 0133 .Epipactisafricana Rendle \u2013 Life form: Herb. Habitat: Montane evergreen forest and bamboo thickets, 2330\u20133750 m. Voucher: Verdcourt et al. 3022 (EA).Habenariaattenuata Hook.f. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2700\u20134000 m. Voucher: Davis 7A (EA).Habenariadecorata Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Rocky sites in moorland, 2200\u20133300 m. Voucher: Ward s.n (EA).Habenariakeniensis Summerh. \u2013 Life form: Herb. Habitat: Upland rainforest, 1950\u20132950 m. Voucher: Belcher 151/54 (EA).Habenariamacrantha Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2550\u20133000 m. Voucher: Dale 2842 (EA).Habenariapetitiana (A.Rich) T.Durand & Schinz \u2013 Life form: Herb. Habitat: Forest edges and bushland, 1500\u20133300 m. Voucher: William 15380 (EA).Habenariaschimperiana Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Swamps and wet grassland, 1250\u20132800 m. Voucher: Dale 2876 (EA).Habenariatweedieae Summerh. \u2013 Life form: Herb. Habitat: In grass on rocky hills, 1950\u20132600 m. Voucher: Cunningham 44 (EA).Habenariavaginata A.Rich. \u2013 Life form: Herb. Habitat: Wet sites in grassland, 1300\u20133000 m. Voucher: Dale 2354 (EA).Holothrixbrongniartiana Rchb.f. \u2013 Life form: Herb. Habitat: Upland grassland, 1200\u20133500 m. Voucher: Williams 12362 (EA).Liparisdeistelii Schltr. \u2013 Life form: Herb. Habitat: Epiphytic on fallen trees in shades near rivers, 1700\u20132750 m. Voucher: Dale 2861 (EA).Polystachyacaespitificasubsp.latilabris (Summerh.) P.J.Cribb & Podz. \u2013 Life form: Herb. Habitat: Epiphytic in montane forest, 1800\u20132200 m. Voucher: Lucs et al. 274 (EA).Polystachyacultriformis (Thouars) Lindl. ex Spreng \u2013 Life form: Herb. Habitat: Moist montane forest, 1800\u20132200 m. Vouchers: SK 0140, SK 00227 .Polystachyaheckmanniana Kraenzl. \u2013 Life form: Herb. Habitat: Upland moist forest, 1200\u20132000 m. Voucher: Turner 3231 (EA).Polystachyatransvaalensis Schltr. \u2013 Life form: Herb. Habitat: Moist forest, 1200\u20132900 m. Vouchers: Turner 3239 & 2385 (EA).Satyriumcrassicaule Rendle \u2013 Life form: Herb. Habitat: Wet grassland and swamps, 1000\u20133150 m. Voucher: Bytebier 500 (EA).Satyriummacrophyllum Lindl. \u2013 Life form: Herb. Habitat: Upland wet grassland, 1200\u20133150 m. Voucher: Dale 75 (EA).Satyriumschimperi Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland, 2100\u20133200 m. Voucher: Pierce 2696 (EA).Satyriumvolkensii Schltr. \u2013 Life form: Herb. Habitat: Upland grassland and bushland, 1050\u20132400 m. Voucher: Piers 143/51 (EA).PoaceaeF35. Acritochaetevolkensii Pilg. \u2013 Life form: Herb. Habitat: Shaded grounds in upland forest and bamboo thicket, 2300\u20133300 m. Voucher: Agnew et al. 8180 (EA).Agrostisgracilifolia C.E.Hubb. \u2013 Life form: Herb. Habitat: Wet places in upland grassland and moorland, 2800\u20133980 m. Voucher: Beentje 3269(EA).Agrostiskeniensis Pilg. \u2013 Life form: Herb. Habitat: Along streams and moist forest margins, 2200\u20133000 m. Voucher: Turner 1569 (EA).Agrostiskilimandscharica Mez \u2013 Life form: Herb. Habitat: Upland forest clearings and margins up to bamboo zone, 2000\u20134000 m. Voucher: Agnew et al. 8134 (EA).Agrostisproducta Pilg. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2400\u20134000 m. Voucher: Robertson 2162 (EA).Agrostistrachyphylla Pilg. \u2013 Life form: Herb. Habitat: Wet places in upland grassland and moorland, 3500\u20134900 m. Voucher: AfroAlp II team 1063 (EA).Agrostisvolkensii Stapf \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 3000\u20133900 m. Voucher: AfroAlp II team 0974 (EA).Airacaryophyllea L. \u2013 Life form: Herb. Habitat: Rocky soils in upland grassland and moorland, 2000\u20134500 m. Voucher: Rauh 407 (EA).Andropogonabyssinicus R.Br. ex Fresen. \u2013 Life form: Herb. Habitat: Upland grassland, 200\u20133100 m. Voucher: Kuchar 12501 (EA).Andropogonamethystinus Steud. \u2013 Life form: Herb. Habitat: Open or clearings in montane forest and moorland, 1400\u20134000 m. Voucher: Grant 1238 (EA).Andropogonchrysostachyus Steud. \u2013 Life form: Herb. Habitat: Moist upland grassland and evergreen forest, 2100\u20133300 m. Voucher: Napper 745 (EA).Andropogondistachyos L. \u2013 Life form: Herb. Habitat: Upland dry grassland, 1700\u20133000 m. Voucher: Kuchar 12321 (EA).Andropogonlima (Hack.) Stapf \u2013 Life form: Herb. Habitat: Montane grassland and dry moorland, 2400\u20134000 m. Voucher: Rauh 522 (EA).Anthoxanthumnivale K.Schum. \u2013 Life form: Herb. Habitat: Upland moist grassland and moorland, 2500\u20133980 m. Voucher: Kuchar 12739(EA).Aristidaadoensis Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Deciduous bushland, 1300\u20132300 m. Voucher: Robertson 332 (EA).Aristidajunciformis Trin. & Rupr. \u2013 Life form: Herb. Habitat: Dry rocky hilltops, 400\u20132100 m. Voucher: Bogdan 4163 (EA).Avenafatua L. \u2013 Life form: Herb. Habitat: Upland grassland, 2100\u20132400 m. Voucher: Ghosh 4 (EA).Avenasterilis L. \u2013 Life form: Herb. Habitat: Upland grassland, 2600\u20132600 m. Voucher: Someren 13/12/1956 (EA).Bothriochloainsculpta (A.Rich.) A.Camus \u2013 Life form: Herb. Habitat: Grassland, 0\u20132250 m. Voucher: Hansen 800 (EA).Brachypodiumflexum Nees \u2013 Life form: Herb. Habitat: Moist forest and bamboo thickets, 2000\u20133000 m. Voucher: Kuchar and Msafiri 5422 (EA).Brizamaxima L. \u2013 Life form: Herb. Habitat: Roadsides in forest, 2400\u20132700 m. Voucher: Edwards 2833/6 (EA).Bromuscatharticus Vahl \u2013 Life form: Herb. Habitat: Disturbed grounds and roadsides, 2300\u20132700 m. Vouchers: Greenway 10399 & 9574 (EA).Bromusdiandrus Roth \u2013 Life form: Herb. Habitat: Disturbed grounds and roadsides, 2300\u20133000 m. Voucher: Muchiri 580 (EA).Bromusleptoclados Nees \u2013 Life form: Herb. Habitat: Upland grassland and forest clearings, 2300\u20134300 m. Voucher: Bogdan 2646 (EA).Calamagrostisepigejos (L.) Roth \u2013 Life form: Herb. Habitat: Upland grassland and forest clearings, 2000\u20133000 m. Voucher: Kokwaro 3340 (EA).Calamagrostishedbergii Melderis \u2013 Life form: Herb. Habitat: Rocky moorland, 3500\u20134250 m. Voucher: Hedberg 1810 (EA).Chlorisvirgata Sw. \u2013 Life form: Herb. Habitat: Scattered-tree grassland and bushland, 10\u20132120 m. Voucher: Robertson 2218 (EA).Coelachnefriesiorum C.E.Hubb. \u2013 Life form: Herb. Habitat: Moist montane forest, 3000\u20133000 m. Voucher: Fries 2407 (EA).Colpodiumhedbergii (Melderis) Tzvelev \u2013 Life form: Herb. Habitat: Moorland, 3580\u20134000 m. Voucher: Hanid 157 (EA).Cymbopogonnardus (L.) Rendle \u2013 Life form: Herb. Habitat: Upland grassland, 1000\u20133000 m. Voucher: Waiganjo 39 (EA).Cynodondactylon (L.) Pers. \u2013 Life form: Herb. Habitat: Roadsides in grassland, 0\u20132000 m. Voucher: Mbevi 194 (EA).Deschampsiacespitosa (L.) P.Beauv. \u2013 Life form: Herb. Habitat: Damp places in moorland, 2900\u20134000 m. Voucher: Polhill 12035 (EA).Deschampsiaflexuosa (L.) Trin. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2600\u20133920 m. Voucher: Agnew et al. 8135A (EA).Digitariaabyssinica (A.Rich.) Stapf \u2013 Life form: Herb. Habitat: Ruderal sites in upland grassland, 0\u20133000 m. Voucher: Turner 1564 (EA).Digitariadiagonalis (Nees) Stapf \u2013 Life form: Herb. Habitat: Grassland, 0\u20132640 m. Voucher: Mbale 1024 (EA).Digitariagazensis Rendle \u2013 Life form: Herb. Habitat: Upland grassland, 1200\u20132600 m. Voucher: Barney 1031 (EA).Digitarialongiflora (Retz.) Pers. \u2013 Life form: Herb. Habitat: Deciduous bushland, 0\u20132300 m. Voucher: Robertson 2131 (EA).Digitariathouaresiana (Fl\u00fcgg\u00e9) A.Camus \u2013 Life form: Herb. Habitat: Moist forest, 0\u20132400 m. Voucher: Kerfoot 1359 (EA).Digitariavelutina (Forssk.) P.Beauv. \u2013 Life form: Herb. Habitat: Roadsides and other disturbed places, 0\u20132300 m. Voucher: Robertson 7337 (EA).Ehrhartaerecta Lam. \u2013 Life form: Herb. Habitat: Upland forest glades and margins, 1500\u20132700 m. Voucher: Robertson 7350 (EA).Eleusinejaegeri Pilg. \u2013 Life form: Herb. Habitat: Upland grassland and open sites in forest, 1800\u20133300 m. Voucher: Turner 1573 (EA).EEragrostisamanda Clayton \u2013 Life form: Herb. Habitat: Glades in bamboo thickets, 2400\u20132900 m. Voucher: Dyson 442 (EA).Eragrostischalarothyrsos C.E.Hubb. \u2013 Life form: Herb. Habitat: Swampy grassland, 1100\u20132500 m. Voucher: Lepelley 5 (EA).Eragrostisolivacea K.Schum. \u2013 Life form: Herb. Habitat: Rocky sites in grassland, 1300\u20133300 m. Voucher: Napper 1699 (EA).Eragrostispatula (Kunth) Steud. \u2013 Life form: Herb. Habitat: Roadsides and disturbed sites, 0\u20132800 m. Voucher: Verdcourt 3642 (EA).Eragrostisschweinfurthii Chiov. \u2013 Life form: Herb. Habitat: Upland evergreen forest, 1300\u20133000 m. Voucher: Beentje 3234 (EA).Eragrostistef (Zucc.) Trotter \u2013 Life form: Herb. Habitat: Roadsides and disturbed areas, 750\u20132500 m. Voucher: Frazer 195 (EA).Exothecaabyssinica (Hochst. ex A.Rich.) Andersson \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2000\u20134000 m. Voucher: Coe 771 (EA).Festucaafricana (Hack.) Clayton \u2013 Life form: Herb. Habitat: Shaded sites in upland forest and bamboo thickets, 2000\u20133000 m. Voucher: Bogdan 2832 (EA).Festucaarundinacea Schreb. \u2013 Life form: Herb. Habitat: Along stream banks in upland forests, 2300\u20133090 m. Voucher: Bogdan 4760 (EA).Festucacamusiana St.-Yves \u2013 Life form: Herb. Habitat: Upland forest and bamboo thicket, 2100\u20133500 m. Voucher: Kerfoot 1428 (EA).Festucacostata Nees \u2013 Life form: Herb. Habitat: Upland grassland, 2400\u20133000 m. Voucher: Schelpe 2684 (EA).Festucamekiste Clayton \u2013 Life form: Herb. Habitat: Forest edges and open sites in upland forest, 2300\u20133480 m. Voucher: Bogdan 3274 (EA).Festucapilgeri St.-Yves \u2013 Life form: Herb. Habitat: Moorland, 2700\u20134250 m. Voucher: Agnew and Timberlake 11165 (EA).Festucasimensis Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Shaded places in upland forest, 2000\u20133300 m. Voucher: Robertson 3935 (EA).Harpachneschimperi A.Rich. \u2013 Life form: Herb. Habitat: Grassland and open bushland, 500\u20133000 m. Voucher: Faden et al. 74/613 (EA).Helictotrichonelongatum (Hochst. ex A.Rich.) C.E.Hubb. \u2013 Life form: Herb. Habitat: Upland forest edges and grassland, 1800\u20133800 m. Voucher: Kuchar and Msafiri 5407 (EA).Helictotrichonmilanjianum (Rendle) C.E.Hubb. \u2013 Life form: Herb. Habitat: Moist shaded places in montane forest and bamboo thicket, 2300\u20133500 m. Voucher: Kerfoot 1424 (EA).Helictotrichonumbrosum (Hochst. ex Steud.) C.E.Hubb. \u2013 Life form: Herb. Habitat: Upland grassland and margins of bamboo thickets, 1850\u20134000 m. Voucher: Peacock 58 (EA).Hyparrheniamobukensis (Chiov.) Chiov. \u2013 Life form: Herb. Habitat: Margins of montane evergreen forest and bamboo forest, 2500\u20133300 m. Voucher: Kerfoot 1353 (EA).Hyparrheniatamba (Hochst. ex Steud.) Andersson ex Stapf \u2013 Life form: Herb. Habitat: Upland grassland, 2000\u20133300 m. Voucher: Kerfoot 431 (EA).Hyparrheniaumbrosa (Hochst.) Andersson ex Clayton \u2013 Life form: Herb. Habitat: Roadsides in lower montane forest, 1500\u20132300 m. Voucher: Glover et al. 1424 (EA).Koeleriacapensis Nees \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1800\u20135300 m. Voucher: Grout 1247 (EA).Leersiadenudata Launert \u2013 Life form: Herb. Habitat: Swampy grassland, 1500\u20132300 m. Voucher: Faden 74/671(EA).Loliumtemulentum L. \u2013 Life form: Herb. Habitat: Grazed pasture in moist forest, 1900\u20132300 m. Voucher: Lundin 5097 (EA).Oplismenushirtellus (L.) P.Beauv. \u2013 Life form: Herb. Habitat: Shaded grounds in forest, 0\u20132500 m. Voucher: Nattrass 716 (EA).Oplismenusundulatifolius (Ard.) Roem & Schult. \u2013 Life form: Herb. Habitat: Shaded grounds in forest, 1400\u20132500 m. Voucher: Bogdan 378 (EA).Panicumcalvum Stapf \u2013 Life form: Herb. Habitat: Shades in forest and forest margins, 1000\u20133000 m. Voucher: Davidse 7050 (EA).Panicumhymeniochilum Nees \u2013 Life form: Herb. Habitat: River banks and swamps, 700\u20133120 m. Voucher: Kabuye & Wood 100 (EA).Panicummonticola Hook.f. \u2013 Life form: Herb. Habitat: Shaded forest floors, 600\u20132600 m. Voucher: Napper et al. 1719 (EA).Panicumpusillum Hook.f. \u2013 Life form: Herb. Habitat: Montane grassland or bushland, 1300\u20133300 m. Voucher: Bogdan 4881 (EA).Panicumsubalbidum Kunth \u2013 Life form: Herb. Habitat: Along rivers and swamps, 200\u20133400 m. Voucher: Kuchar 7835 (EA).Paspalumnotatum Fl\u00fcgg\u00e9 \u2013 Life form: Exotic herb. Habitat: Grassland, 500\u20132100 m. Voucher: Hindorf 693 (EA).*Pennisetumclandestinum Hochst. ex Chiov. \u2013 Life form: Herb. Habitat: Upland grassland, 1400\u20133300 m. Voucher: Mungai 65 (EA).Pennisetumhohenackeri Hochst. ex Steud. \u2013 Life form: Herb. Habitat: Upland grassland, 1100\u20132400 m. Voucher: Robertson 7322 (EA).Pennisetumriparium Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Swamps, 1400\u20132700 m. Voucher: Bogdan 3514 (EA).Pennisetumsphacelatum (Nees) T.Durand & Schinz \u2013 Life form: Herb. Habitat: Upland grassland and evergreen forests, 1500\u20133200 m. Voucher: Bally 1177 (EA).Pennisetumthunbergii Kunth \u2013 Life form: Herb. Habitat: Upland pasture and roadsides in moist forest, 1500\u20133500 m. Voucher: Kerfoot 1422 (EA).Pennisetumtrachyphyllum Pilg. \u2013 Life form: Herb. Habitat: Moist forest often along paths and glades, 1000\u20132500 m. Voucher: Napper 1718 (EA).Pentamerisborussica (K.Schum.) Galley & H.P.Linder \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 3000\u20134680 m. Voucher: Kuchar 12524 (EA).Pentamerispictigluma (Steud.) Galley & H.P.Linder \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2600\u20134500 m. Voucher: Hedberg 1538 (EA).Phalarisarundinacea L. \u2013 Life form: Herb. Habitat: Stream banks and swamps margins, 1950\u20133000 m. Voucher: Verdcourt 876 (EA).Poaannua L. \u2013 Life form: Herb. Habitat: Disturbed grounds in upland forest, 2000\u20133550 m. Voucher: Vorontsova 767 (EA).Poaleptoclada Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland forest margins and grassland, 1800\u20134750 m. Voucher: Vorontsova 768 (EA).Poaschimperiana Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1980\u20134200 m. Voucher: Hedberg 1595 (EA).Poecilostachysoplismenoides (Hack.) Clayton \u2013 Life form: Herb. Habitat: Shaded places in evergreen forest, 1000\u20132500 m. Voucher: Bogdan 1504 (EA).Polypogonschimperianus (Hochst. ex Steud.) Cope \u2013 Life form: Herb. Habitat: Along rivers and moist places in upland grassland and moorland, 1500\u20134000 m. Voucher: Greenway 10400 (EA).Pseudechinolaenapolystachya Stapf \u2013 Life form: Herb. Habitat: Upland moist forest often in shady grounds, 1000\u20132500 m. Voucher: Faden 67374 (EA).Setariaatrata Hack. ex Engl. \u2013 Life form: Herb. Habitat: Swamps, 2000\u20132600 m. Voucher: Bogdan 2787 (EA).Setariamegaphylla (Steud.) T.Durand & Schinz \u2013 Life form: Herb. Habitat: Shaded places in forest, 200\u20132350 m. Voucher: SK 0246 .Setariasphacelata (Schumach.) Stapf & C.E.Hubb. ex Moss \u2013 Life form: Herb. Habitat: Wooded grassland, 0\u20133300 m. Voucher: Robertson 7312 (EA).Snowdeniapolystachya (Fresen.) Pilg. \u2013 Life form: Herb. Habitat: Upland grassland, 2100\u20132700 m. Voucher: Luke et al. 16120 (EA).Sporobolusafricanus (Poir.) Robyns & Tournay \u2013 Life form: Herb. Habitat: Grazed grassland, 1300\u20132640 m. Voucher: Robertson 7312 (EA).Sporobolusagrostoides Chiov. \u2013 Life form: Herb. Habitat: Shades in upland evergreen forest, 1300\u20132800 m. Voucher: Robertson 7348 (EA).Sporobolusfimbriatus (Trin.) Nees \u2013 Life form: Herb. Habitat: Open deciduous bushland, 30\u20132000 m. Voucher: Mwadime et al. 30 (EA).Sporobolusolivaceus Napper \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2010\u20134000 m. Voucher: Turner 1568 (EA).Sporobolusquadratus Clayton \u2013 Life form: Herb. Habitat: Grassland and disturbed sites, 2200\u20133000 m. Voucher: Turner 1571 (EA).Sporobolusspicatus (Vahl) Kunth \u2013 Life form: Herb. Habitat: Grassland and open bushland, 0\u20132600 m. Voucher: Hammilton 384 (EA).Stipadregeana Steud. \u2013 Life form: Herb. Habitat: Moist evergreen forest, 1940\u20132770 m. Voucher: Robertson 7342 (EA).Streblochaetelongiarista (A.Rich) Pilg. \u2013 Life form: Herb. Habitat: Undergrowth in moist forest and bamboo thickets, 1500\u20133280 m. Voucher: Magogo 1529 (EA).Themedatriandra Forssk. \u2013 Life form: Herb. Habitat: Open deciduous bushland, 0\u20133200 m. Voucher: Turner 1577 (EA).Vulpiabromoides (L.) Gray \u2013 Life form: Herb. Habitat: Rocky grounds in upland grassland, 2500\u20133500 m. Voucher: Kuchar 12326 (EA).Yushaniaalpina (K.Schum.) W.C.Lin \u2013 Life form: Herb or subshrub. Habitat: Upland moist bush thickets and forested slopes, 2300\u20133300 m. Voucher: Fries 2565 (EA).PotamogetonaceaeF36. Potamogetonpusillus L. \u2013 Life form: Herb. Habitat: Aquatic in slow flowing streams, 600\u20132000 m. Voucher: Colgahoum (EA).Potamogetonrichardii Solms \u2013 Life form: Herb. Habitat: In water pools and streams, 1150\u20133450 m. Voucher: Verdcourt & Steele 913 (EA).SmilacaceaeF37. Smilaxaspera L. \u2013 Life form: Shrub. Habitat: Moist forest and associated bushland, 1450\u20132745 m. Voucher: Luke 14245 (EA).XanthorrhoeaceaeF38. Aloekedongensis Reynolds \u2013 Life form: Shrub. Habitat: Rocky sites in open woodland, 1825\u20132300 m. Voucher: Robertson 1747 (EA).Aloengongensis Christian \u2013 Life form: Shrub. Habitat: Open deciduous woodland and forest margins, 1370\u20131900 m. Voucher: Perdue and Kibuwa 8068 (EA).Aloenyeriensis Christian & I.Verd. \u2013 Life form: Shrub. Habitat: Upland open bushland, 1760\u20132100 m. Voucher: Napier 2186 (EA).Kniphofiathomsonii Baker \u2013 Life form: Herb. Habitat: Along stream and swampy sites in forest, 1850\u20133960 m. Voucher: SK 0060 .XyridaceaeF39. Xyriscapensis Thunb. \u2013 Life form: Herb. Habitat: Bogs and marshes in montane forest, 1100\u20133000 m. Voucher: Gilbert 4875 (EA).AcanthaceaeF40. Asystasialorata Ensermu \u2013 Life form: Herb. Habitat: Wooded grassland and bushland, 1400\u20132000 m. Voucher: Verdcourt 3553 (EA).Barleriaventricosa Hochst. ex Nees \u2013 Life form: Herb or subshrub. Habitat: Upland dry woodland and thickets, 1500\u20133590 m. Voucher: Napier 10542 (EA).Crossandratridentata Lindau \u2013 Life form: Herb. Habitat: Upland rainforest in shaded places, 700\u20132700 m. Voucher: Napier 2711 (EA).Diclipteralaxata C.B.Clarke \u2013 Life form: Herb or subshrub. Habitat: Moist montane forest and forest margins, 1300\u20132800 m. Voucher: Luke 9586 (EA).Diclipteramaculatasubsp.usambarica (Lindau) I.Darbysh. \u2013 Life form: Herb. Habitat: Moist forest, 1150\u20133050 m. Vouchers: Napier 620, Luke 8243 (EA).Dyschoristekeniensissubsp.keniensis Malombe, Mwachala & Vollesen \u2013 Life form: Herb or subshrub. Habitat: Wooded grassland and bushland, 900\u20132500 m. Voucher: Perdue and Kibuwa 8182 (EA).Dyschoristenagchana (Nees) Bennet \u2013 Life form: Herb. Habitat: Wet grasslands and swamps, 0\u20131800 m. Voucher: Faden 74/697 (EA).Dyschoristeradicans (Hochst. ex A.Rich) Nees \u2013 Life form: Herb or subshrub. Habitat: Upland bushland and grassland, 900\u20132500 m. Voucher: Mailnnes 69 (EA).Hypoestesaristata (Vahl) Roem. & Schult. \u2013 Life form: Herb or subshrub. Habitat: Forest margin, 200\u20133000 m. Voucher: Napier 619 (EA).Hypoestesforskaolii (Vahl) R.Br. \u2013 Life form: Herb or subshrub. Habitat: Dry grassland and bushland, 0\u20133000 m. Voucher: Nattrass 646 (EA).Hypoestestriflora (Forssk.) Roem. & Schult. \u2013 Life form: Herb. Habitat: Forest margins and grassland, 900\u20133200 m. Voucher: Albrechtren 2618 (EA).Isoglossagregoryi (S.Moore) Lindau \u2013 Life form: Herb. Habitat: Forest margins and grassland, 1700\u20132900 m. Voucher: Chandler 2221 (EA).Isoglossalactea Lindau ex Engl. \u2013 Life form: Herb or subshrub. Habitat: Montane forest, 1250\u20132350 m. Voucher: Taylor 1032 (EA).Isoglossasubstrobilina C.B.Clarke \u2013 Life form: Herb or subshrub. Habitat: Undergrowth in montane forest, 1750\u20132600 m. Voucher: Balbo 828 (EA).Justiciastriata (Klotzsch) Bullock \u2013 Life form: Herb. Habitat: Grassland and bushland, 200\u20132600 m. Voucher: Verdcourt 2651 (EA).Justiciaunyorensis S.Moore \u2013 Life form: Herb. Habitat: Moist woodland and bushland, 1150\u20133100 m. Voucher: Kerfoot 1389 (EA).Mimulopsisalpina Chiov. \u2013 Life form: Woody herb or shrub. Habitat: Montane evergreen forest, 1900\u20133300 m. Voucher: Dale 2154 (EA).Mimulopsissolmsii Schweinf. \u2013 Life form: Herb. Habitat: Montane evergreen forest, 1200\u20132700 m. Voucher: Jackson (EA).Phaulopsisimbricata (Forssk.) Sweet \u2013 Life form: Herb. Habitat: Forest edges and riverine forest, 1500\u20132970 m. Voucher: Faden 74/608 (EA).Rhinacanthusndorensis Schweinf. ex Engl. \u2013 Life form: Herb or subshrub. Habitat: Upland grassland and open woodland, 1700\u20132150 m. Voucher: Napier 2579 (EA).Thunbergiagibsonii S.Moore \u2013 Life form: Herbaceous climber. Habitat: Montane grassland and bushland, 1700\u20133000 m. Voucher: Fries 2815 (EA).Thunbergiaalata Bojer ex Sims \u2013 Life form: Herbaceous climber. Habitat: Wet bushland, 100\u20133000 m. Voucher: SK 0018 .Thunbergiafischeri Engl. \u2013 Life form: Herb. Habitat: Upland grassland, 1200\u20132500 m. Voucher: Napier 1798 (EA).Thunbergiareniformis Vollesen \u2013 Life form: Herbaceous climber. Habitat: Grassland, 1800\u20132400 m. Voucher: Someren 5057 (EA).AdoxaceaeF41. Sambucusafricana Standl. \u2013 Life form: Herb or shrub. Habitat: Roadsides in bamboo zone and montane forest, 1750\u20133370 m. Voucher: SK 0046 .Sambucusebulus L. \u2013 Life form: Herb. Habitat: Clearings and edges of moist bamboo thickets, 2320\u20133370 m. Voucher: Williams 1305 (EA).AmaranthaceaeF42. Achyranthesaspera L. \u2013 Life form: Herb. Habitat: Moist forest and open grassland, 0\u20133080 m. Voucher: SK 0206 .Aervalanata (L.) Juss. \u2013 Life form: Herb. Habitat: Moist forest edges and bushland, 0\u20132200 m. Voucher: Kirika et al. 152 (EA).Alternantheracaracasana Kunth \u2013 Life form: Herb. Habitat: Roadsides and forest edges, 0\u20132020 m. Voucher: Kokwaro 2795 (EA).Alternantherapungens Kunth \u2013 Life form: Herb. Habitat: Roadsides and river banks, 0\u20132020 m. Voucher: Bally 4609 (EA).Amaranthusgraecizans L. \u2013 Life form: Herb. Habitat: Grassland, 950\u20132900 m. Voucher: Hansen 85 (EA).Amaranthushybridus L. \u2013 Life form: Herb. Habitat: Roadsides and forest edges, 1500\u20132600 m. Voucher: Mbevi 182 (EA).Celosiaanthelminthica Asch. \u2013 Life form: Herb or subshrub. Habitat: Moist forest margins and clearings, 500\u20132300 m. Voucher: Someren 810 (EA).Chenopodiumalbum L. \u2013 Life form: Herb. Habitat: Roadsides in moist forest, 1650\u20132600 m. Voucher: Lochhead 610 (EA).Chenopodiumcarinatum R.Br. \u2013 Life form: Herb. Habitat: Roadsides and pasture grounds, 900\u20132100 m. Voucher: Verdcourt 391 (EA).Chenopodiumfasciculosum Aellen \u2013 Life form: Herb. Habitat: Roadsides in moist forest, 1310\u20132600 m. Voucher: Bogdan 4169 (EA).Chenopodiummurale L. \u2013 Life form: Herb. Habitat: Grazing areas in lower parts of montane forest, 1070\u20132750 m. Voucher: Mungai 57 (EA).Chenopodiumopulifolium Schrad. ex W.D.J.Koch & Ziz \u2013 Life form: Herb. Habitat: Roadsides and forest edges, 760\u20132100 m. Voucher: Bally 14439 (EA).Cyathulacylindrica Moq. \u2013 Life form: Herb or subshrub. Habitat: Moist forest and open rocky bushland, 1300\u20133240 m. Voucher: SK 0258 .Cyathulauncinulata (Schrad.) Schinz \u2013 Life form: Herb. Habitat: Grassland and open bushland, 900\u20132730 m. Voucher: Faden 74/606 (EA).Dysphaniaschraderiana (Schult.) Mosyakin & Clemants \u2013 Life form: Herb. Habitat: Roadsides and forest margins, 1600\u20132300 m. Voucher: Fries 138 (EA).Gomphrenacelosioides Mart. \u2013 Life form: Herb. Habitat: Forest edges and roadsides, 0\u20132150 m. Voucher: SK 0156 .Pupalialappacea (L.) Juss. \u2013 Life form: Herb. Habitat: Open sites in forest and forest edges, 10\u20132060 m. Voucher: Faden 74/664 (EA).AnacardiaceaeF43. Rhuslongipes Engl. \u2013 Life form: Shrub or small tree. Habitat: Evergreen bushland and forest margins, 1000\u20132400 m. Vouchers: Jackson 312, Gardner 3623 (EA).Sclerocaryabirrea (A.Rich) Hochst. \u2013 Life form: Tree. Habitat: Roadsides and bushland, 800\u20131800 m. Voucher: SK 0167 .Searsianatalensis (Bernh. ex C.Krauss) F.A.Barkley \u2013 Life form: Tree. Habitat: Evergreen bushland and forest edges, 1\u20133000 m. Voucher: SK 0099 .ApiaceaeF44. Afroligusticumaculeolatum (Engl.) P.J.D.Winter \u2013 Life form: Herb. Habitat: Bushland and moist montane forest, 1360\u20133030 m. Vouchers: Albrechtsen 6744, Scheffler 277 (EA).Afroligusticumelgonense (H.Wolff) P.J.D.Winter \u2013 Life form: Herb. Habitat: Wet sites and forest margins in montane forest, 1600\u20133600 m. Voucher: SK 0175 .Afroligusticumlinderi (C.Norman) P.J.D.Winter \u2013 Life form: Herb. Habitat: Montane grassland, 1860\u20133422 m. Voucher: Verdcourt & Polhill 7 (EA).EAfrosciadiumenglerianum (H.Wolff) P.J.D.Winter \u2013 Life form: Herb. Habitat: Tussocky grounds in moorland, 3400\u20133750 m. Voucher: Townsend 2406 (EA).EAfrosciadiumfriesiorumvar.friesiorum (H.Wolff) P.J.D.Winter \u2013 Life form: Herb. Habitat: Wet grassy sites in bamboo and ericaceous zone, 2950\u20134260 m. Voucher: SK 0112 .EAfrosciadiumfriesiorumvar.bipinnatum (C.C.Towns.) P.J.D.Winter \u2013 Life form: Herb. Habitat: Damp sites in moorland, 3000\u20133824 m. Voucher: Williams 1296 (EA).Afrosciadiumkerstenii (Engl.) P.J.D.Winter \u2013 Life form: Herb. Habitat: Open places in bamboo zone, 2550\u20134300 m. Voucher: Verdcourt 2055 (EA).Agrocharisincognita (C.Norman) Heywood & Jury \u2013 Life form: Herb. Habitat: Montane forest margins, 900\u20133600 m. Vouchers: SK 0223, SK 0180 .Agrocharismelanantha Hochst. \u2013 Life form: Herb. Habitat: Upland moist forest, 1520\u20133580 m. Voucher: RV 648 (EA).Alepideapeduncularis Steud. ex A.Rich. \u2013 Life form: Herb. Habitat: Grassland and open grounds in montane forest, 1050\u20133600 m. Voucher: SK 0109 .Anthriscussylvestris (L.) Hoffm. \u2013 Life form: Herb. Habitat: Forest margins and clearings in montane forest, 1800\u20133970 m. Voucher: Hedberg 1643 (EA).Berulaerecta (Huds.) Coville \u2013 Life form: Herb. Habitat: Stream banks and swampy sites, 1000\u20131900 m. Voucher: Fries & Fries 216 (EA).Centellaasiatica (L.) Urb. \u2013 Life form: Herb. Habitat: Wet grassland and open grounds in moist forest, 0\u20133540 m. Voucher: Kayombo et al. 5290 (EA).Haplosciadiumabyssinicum Hochst. \u2013 Life form: Herb. Habitat: Moist montane forest and moorland, 2150\u20134600 m. Voucher: SK 0084 .Heracleumabyssinicum (Boiss.) C.Norman \u2013 Life form: Herb. Habitat: Upland moist grassland, 1680\u20133970 m. Voucher: Townsend 2421 (EA).Heracleumelgonense (H.Wolff) Bullock \u2013 Life form: Herb. Habitat: Damp sites in moorland, 1080\u20134200 m. Voucher: SK 0115 .Heracleumtaylorii C.Norman \u2013 Life form: Herb. Habitat: Moorland, 3000\u20133800 m. Voucher: Taylor 1454 (EA).Oenanthepalustris (Chiov.) C.Norman \u2013 Life form: Herbaceous climber. Habitat: Moist forest edges, 1130\u20133260 m. Voucher: Carmichael 1293 (EA).Oenantheprocumbens (H.Wolff) Norman \u2013 Life form: Herbaceous climber. Habitat: Moist montane forest and shades in bamboo thickets, 1360\u20133200 m. Voucher: Townsend 2201 (EA).Oreoschimperellaaberdarensis (Norman) Rauschert \u2013 Life form: Herb. Habitat: Along streams in upland forest, 2200\u20132910 m. Voucher: Napier 605 (EA).Peucedanumelgonense H.Wolff \u2013 Life form: Herb. Habitat: Wet grounds in montane forest, 1600\u20133600 m. Vouchers: Greenway 10397 (EA), SK 0175 .Pimpinellakeniensis C.Norman \u2013 Life form: Herb. Habitat: Wooded grassland, 1550\u20132500 m. Voucher: SK 0058 .Pimpinellaoreophilavar.oreophila Hook.f. \u2013 Life form: Herb. Habitat: Moist montane forest, 2300\u20134100 m. Voucher: Townsend 2428 (EA).Pimpinellaoreophilavar.kilimandscharica (Engl.) C.C.Towns. \u2013 Life form: Herb. Habitat: Glades and grassland in upper montane forest, 3040\u20134030 m. Voucher: Townsend 2200 (EA).Pseudocarumeminii (Engl.) H.Wolff \u2013 Life form: Herbaceous climber. Habitat: Bamboo thickets, 1750\u20133350 m. Voucher: Polhill 241 (EA).Saniculaelata Buch.-Ham. ex D.Don. \u2013 Life form: Herb. Habitat: Shaded sites in bamboo thickets, 1240\u20133220 m. Voucher: Napier 608 (EA).Torilisafricana Spreng. \u2013 Life form: Exotic herb. Habitat: Riverine forest and forest edges, 1360\u20132720 m. Vouchers: Semsei 2811, Bytebier 264 (EA).*ApocynaceaeF45. Acokantheraschimperi (A.DC.) Benth. & Hook.f. ex Schweinf. \u2013 Life form: Shrub or small tree. Habitat: Dry forest margins, 250\u20132200 m. Voucher: Kamau 192 (EA).Asclepiasphysocarpa (E. Mey.) Schltr. \u2013 Life form: Exotic herb or subshrub. Habitat: Roadsides in montane forest, 1500\u20133000 m. Voucher: SK 0073 .* EBrachystelmakeniense Schweinf. \u2013 Life form: Herb. Habitat: Upland dry grassland, 1600\u20132700 m. Voucher: Hansen 79 (EA).Carissaspinarum L. \u2013 Life form: Shrub. Habitat: Bushland and riverine forest, 0\u20132250 m. Voucher: Kokwaro 2785 (EA).Cynanchumabyssinicum Decne. \u2013 Life form: Herbaceous climber. Habitat: Bushland and forest margins, 1600\u20132600 m. Vouchers: Polhill 433, Gilbert 6345 (EA).Cynanchumaltiscandens K.Schum. \u2013 Life form: Herbaceous climber. Habitat: Forest margins, 1200\u20132500 m. Voucher: Mathenge 599 (EA).Cynanchumviminalesubsp.suberosum (Meve & Liede) Goyder \u2013 Life form: Herbaceous climber. Habitat: Dry rocky grounds in forest, 100\u20132200 m. Voucher: Rayner 70 (EA).Dregeaschimperi (Decne.) Bullock \u2013 Life form: Woody climber. Habitat: Upland forest margins, 1500\u20132650 m. Voucher: SK 0001 .Gomphocarpuskaessneri (N.E.Br.) Goyder & Nicholas \u2013 Life form: Herb. Habitat: Seasonal wet pastures, 900\u20132300 m. Voucher: Faden 71/530 (EA).Gomphocarpussemilunatus A.Rich. \u2013 Life form: Herb. Habitat: Seasonal wet grassland, 1300\u20132650 m. Voucher: SAJIT 006505 .Gomphocarpusstenophyllus Oliv. \u2013 Life form: Herb. Habitat: Rocky sites in upland forest, 1200\u20133050 m. Voucher: Hooper et al 1647 (EA).Mondiawhitei (Hook.f.) Skeels \u2013 Life form: Woody climber. Habitat: Upland moist forest, 1600\u2013 2000 m. Voucher: Bell 1 (EA).Orbeasprengeri (Schweinf.) Bruyns \u2013 Life form: Herb. Habitat: Upland open woodland, 1400\u20132100 m. Voucher: Perkins s.n. (EA).Pachycarpusconcolor E.Mey. \u2013 Life form: Herb. Habitat: Upland swampy grassland, 1450\u20132100 m. Voucher: Faden et al. 74/574 (EA).Cynanchumethiopicumsubsp.angolense (N.E.Br.) Liede & Khanum \u2013 Life form: Herbaceous climber. Habitat: Moist forest, 1400\u20132200 m. Voucher: Napier 2475 (EA).Cynanchumgonoloboides Schltr. \u2013 Life form: Herbaceous climber. Habitat: Montane forest, 2400\u20133600 m. Voucher: SK 0196 .Pergulariadaemia (Forssk) Chiov. \u2013 Life form: Herbaceous climber. Habitat: Dry bushland, 0\u20132000 m. Voucher: SK 0207 .Periplocalinearifolia Quart.-Dill. & A.Rich. \u2013 Life form: Herbaceous climber. Habitat: Upland forest edges and riparian scrub forest, 1900\u20132900 m. Voucher: SK 0198 .Secamonealpini Schult. \u2013 Life form: Woody climber. Habitat: Montane forest, 1300\u20132150 m. Voucher: Luke et al. 8923 (EA).Secamonepunctulata Decne. \u2013 Life form: Woody climber. Habitat: Bush thickets and riverine forest, 0\u20132400 m. Voucher: Someren 15954 (EA).Tabernaemontanastapfiana Britten \u2013 Life form: Tree. Habitat: Moist forest, 1400\u20132370 m. Voucher: Beentje 2721 (EA).Tacazzeaconferta N.E.Br. \u2013 Life form: Woody climber. Habitat: Moist bushlands, 1500\u20133000 m. Voucher: Gillett 16649 (EA).Tylophoraanomala N.E.Br. \u2013 Life form: Herbaceous climber. Habitat: Margins of montane forest, 2000\u20132500 m. Voucher: SK 0251 .Tylophoraheterophylla A.Rich. \u2013 Life form: Woody climber. Habitat: Moist montane forest, 2200\u20133000 m. Voucher: Mbale et al. 858 (EA).Tylophoralugardae Bullock \u2013 Life form: Herbaceous climber. Habitat: Margins of montane forest, 2000\u20132500 m. Voucher: Kirrika 158 (EA).AquifoliaceaeF46. Ilexmitis (L.) Radlk. \u2013 Life form: Tree. Habitat: Upland moist forest, 900\u20133150 m. Voucher: Beentje 2721 (EA).AraliaceaeF47. Cussoniaholstii Harms ex Engl. \u2013 Life form: Tree. Habitat: Dry evergreen forest, 1110\u20132550 m. Voucher: SK 0270 .Hydrocotylemannii Hook.f. \u2013 Life form: Herb. Habitat: Roadsides and forest margins, 600\u20133370 m. Voucher: Luke 3887 (EA).Hydrocotyleranunculoides L.f. \u2013 Life form: Herb. Habitat: Along streams and swamps, 700\u20132400 m. Voucher: Kibui et al. 2867 (EA).Hydrocotylesibthorpioides Lam. \u2013 Life form: Herb. Habitat: Bogs, damp grassland and swamps in montane forest, 1134\u20133900 m. Voucher: SAJIT 006468 .Polysciasfulva (Hiern) Harms \u2013 Life form: Tree. Habitat: Upland moist forest and riverine forest, 1180\u20132300 m. Voucher: SK 0164 .Polysciaskikuyuensis Summerh. \u2013 Life form: Tree. Habitat: Upland moist forest, 1750\u20132620 m. Voucher: Kirika 28 (EA).Scheffleramyriantha (Baker) Drake \u2013 Life form: Woody climber. Habitat: Moist bamboo thickets, 1540\u20132770 m. Voucher: Verdcourt et al. 2974 (EA).Scheffleravolkensii (Harms) Harms \u2013 Life form: Tree. Habitat: Upland moist forest, 1550\u20133230 m. Voucher: Muchiri 588 (EA).AristolochiaceaeF48. Aristolochialittoralis Parodi \u2013 Life form: Woody climber. Habitat: Riverine forest, 1080\u20131800 m. Voucher: Gachathi 76/135 (EA).AsteraceaeF49. Acanthospermumglabratum (DC.) Wild \u2013 Life form: Exotic herb. Habitat: Roadsides in moist forest, 150\u20131850 m. Voucher: Mbevi 177 (EA).*Acmellacaulirhiza Delile \u2013 Life form: Herb. Habitat: Along streams and forest margins, 600\u20132600 m. Voucher: SK 0160 .Anthemistigrensis J. Gay ex A.Rich. \u2013 Life form: Herb. Habitat: Montane grassland and moorland, 1950\u20134300 m. Vouchers: SAJIT 006473, SK 0079 .Artemisiaafra Jacq. ex Willd \u2013 Life form: Woody herb. Habitat: Montane forest and moorland, 1500\u20134050 m. Voucher: Molony s.n. (EA).Baccharoideslasiopus (O.Hoffm.) H.Rob. \u2013 Life form: Shrub. Habitat: Roadsides and forest margins, 1100\u20132800 m. Voucher: Mungai 123(EA).Berkheyaspekeana Oliv. \u2013 Life form: Woody herb. Habitat: Rocky slopes in upland forest, 1800\u20133140 m. Voucher: Napier 1272 (EA).Bidenscinerea Sherff \u2013 Life form: Herb. Habitat: Dry bushland, 900\u20131950 m. Voucher: Verdcourt 3198 (EA).Bidenspilosa L. \u2013 Life form: Herb. Habitat: Forest margins and grassland, 750\u20132500 m. Voucher: Kerfoot 643 (EA).Bidensrueppellii (Sch.Bip. ex Sch.Bip.) Sherff \u2013 Life form: Herb or subshrub. Habitat: Moist forest margins, 2250\u20132800 m. Voucher: Pierce 2568 (EA).Bidenswhytei Sherff \u2013 Life form: Herb. Habitat: Riverine vegetation and moist forest margin, 750\u20132500 m. Voucher: Verdcourt 1479 (EA).Blumeaaxillaris (Lam.) DC. \u2013 Life form: Herb. Habitat: Swampy sites in grassland, 0\u20132400 m. Voucher: SK 0067 .Blumeaelatior (R.E.Fr.) Lisowski \u2013 Life form: Herb. Habitat: Swampy sites in grassland, 0\u20132400 m. Voucher: SK 0264 .Bothrioclineamplifolia (O.Hoffm. & Muschl.) M.G.Gilbert \u2013 Life form: Woody herb or shrub. Habitat: Montane forest, 2100\u20132850 m. Voucher: Mungai 89/171 (EA).Bothrioclinefusca (S.Moore) M.G.Gilbert \u2013 Life form: Shrub. Habitat: Montane forest, 1800\u20133600 m. Voucher: SAJIT 006475 .Bothrioclineglabrescens C.Jeffrey \u2013 Life form: Shrub. Habitat: Montane forest, 1950\u20133050 m. Voucher: Schmitt and Mathenge 1061 (EA).Bothrioclinelongipes (Oliv. & Hiern) N.E.Br. \u2013 Life form: Woody herb or shrub. Habitat: Upland grassland and forest margins, 850\u20132700 m. Voucher: Waiganjo 36 (EA).Carduusafromontanus R.E.Fr. \u2013 Life form: Herb. Habitat: Moist bamboo thicket, 2350\u20133430 m. Voucher: Agnew et al. 5623 (EA)Carduuskeniensis R.E.Fr. \u2013 Life form: Herb. Habitat: Moist sites in moorland, 2950\u20134570 m. Voucher: Leakey 1226 (EA).ECarduusmillefolius R.E.Fr. \u2013 Life form: Herb. Habitat: Moorland and open grounds in montane forest, 2750\u20133200 m. Voucher: Kuchar 9579 (EA).Carduusnyassanussubsp.nyassanus (S.Moore) R.E.Fr. \u2013 Life form: Herb. Habitat: Upland moist grassland, 1650\u20133150 m. Voucher: Kerfoot 650 (EA).Carduusnyassanussubsp.kikuyorum (R.E.Fr.) C.Jeffrey \u2013 Life form: Herb. Habitat: Moorland and upper margins of bamboo thickets, 1500\u20133450 m. Voucher: Kuchar 12343 (EA).Carduusschimperisubsp.nanus (R.E.Fr.) C.Jeffrey \u2013 Life form: Herb. Habitat: Grassland and moorland, 2550\u20134050 m. Vouchers: Coe 774, Meinertyhegen AH (EA).Carduussilvarum R.E.Fr. \u2013 Life form: Herb. Habitat: Upland dry forest, 1700\u20132300 m. Voucher: Verdcourt 3268 (EA).Centrapaluspauciflorus (Willd.) H.Rob. \u2013 Life form: Herb. Habitat: Dry forest margins, 800\u20132200 m. Voucher: Mungai 119 (EA).Cinerariadeltoidea Sond. \u2013 Life form: Herb. Habitat: Montane forest and forest edges, 1890\u20134050 m. Vouchers: SAJIT 006474, SK 0080, 0179 & 0267 .Cirsiumvulgare (Savi) Ten. \u2013 Life form: Herb. Habitat: Roadsides in upland grassland, 1790\u20132400 m. Voucher: Kuchar 9566 (EA).Conyzaclarenceana Oliv. & Hiern \u2013 Life form: Shrub. Habitat: Damp sites in moorland, 2300\u20133300 m. Voucher: Kuchar 10306 (EA).Conyzahochstetteri Sch.Bip. ex A.Rich. Life form: Herb. Habitat: Wooded grassland, 1050\u20133600 m. Voucher: Townsend (EA).Conyzahypoleuca A.Rich. \u2013 Life form: Woody herb or shrub. Habitat: Upland dry forest and forest margins, 1800\u20133000 m. Voucher: Kirika et al. 915 (EA).Conyzanewii Oliv. & Hiern \u2013 Life form: Woody herb or shrub. Habitat: Upland forest margins and bushlands, 1500\u20133050 m. Voucher: Luke 15354 (EA).Conyzapallidiflora R.E.Fr. \u2013 Life form: Woody herb. Habitat: Upland moist forest and river banks, 1800\u20133000 m. Voucher: SK 0181 .Conyzaruwenzoriensis (S.Moore) R.E.Fr. \u2013 Life form: Herb or shrub. Habitat: Afromontane grassland, 2500\u20133700 m. Voucher: Napier 599 (EA).Conyzaschimperi Sch.Bip. ex A.Rich. \u2013 Life form: Woody herb or shrub. Habitat: Upland grassland, 1650\u20133000 m. Voucher: Kirika et al. 1051 (EA).Conyzasubscaposa O.Hoffm. \u2013 Life form: Herb. Habitat: Afromontane grassland, 1200\u20134400 m. Voucher: Kerfoot 1519 (EA).Conyzatigrensis Oliv. & Hiern \u2013 Life form: Herb. Habitat: Roadsides in montane forest, 1350\u20133000 m. Voucher: Verdcourt & Lucas 320 (EA).Conyzavernonioides (Sch.Bip. ex A.Rich.) Wild \u2013 Life form: Shrub or small tree. Habitat: Montane forest margins, 2300\u20134000 m. Voucher: Battiscombe 946 (EA).Cotulaabyssinica Sch.Bip. ex A.Rich. \u2013 Life form: Herb. Habitat: Montane grassland and forest margins, 2100\u20133650 m. Voucher: Agnew and Timberlake 11121 (EA).Crassocephalumcrepidioides (Benth.) S.Moore \u2013 Life form: Herb. Habitat: Roadsides in moist forest, 0\u20132500 m. Voucher: Mutanga 33 (EA).Crassocephalummontuosum (S.Moore) Milne-Redh. \u2013 Life form: Herb or subshrub. Habitat: Upland moist forest, 900\u20133260 m. Voucher: Kerfoot 671 (EA).Crassocephalumvitellinum (Benth.) S.Moore \u2013 Life form: Herb. Habitat: Bushland and forest margins, 1500\u20132800 m. Voucher: Ericksson 607 (EA).Crepiscarbonaria Sch.Bip. \u2013 Life form: Herb. Habitat: Montane grassland, 2960\u20133850 m. Voucher: Kerfoot 1393 (EA).Crepisnewiisubsp.oliveriana (Kuntze) C.Jeffrey & Beentje \u2013 Life form: Herb. Habitat: Montane grassland, 1650\u20133750 m. Vouchers: Hedberg 1639, Coe & Kirika 422 (EA).Crepisrueppellii Sch.Bip. \u2013 Life form: Herb. Habitat: Upland grassland, 1300\u20133200 m. Vouchers: SAJIT 006470, SK 0173, SK 0056 .Dendroseneciobattiscombei (R.E.Fr. & T.C.E.Fr.) E.B.Knox \u2013 Life form: Shrub. Habitat: Wet sites in afro-alpine zones, 2950\u20134000 m. Voucher: Dale 6981 (EA).EDendroseneciobrassiciformis (R.E.Fr. & T.C.E.Fr.) Mabb. \u2013 Life form: Shrub. Habitat: Afro-alpine zone, 2950\u20133950 m. Voucher: Mabberley 379 (EA).EDendroseneciokeniensis (Baker f.) Mabb. \u2013 Life form: Shrub. Habitat: Afro-alpine zone, 3300\u20134275 m. Voucher: Faden 70/697 (EA).EDendroseneciokeniodendron (R.E.Fr. & T.C.E.Fr.) B.Nord. \u2013 Life form: Shrub. Habitat: Afro-alpine zone, 3650\u20134350 m. Voucher: Kirika et al. 51 (EA).Dichrocephalachrysanthemifoliavar.alpina (R.E.Fr.) Beentje \u2013 Life form: Herb. Habitat: Damp sites in moorland, 2200\u20133600 m. Vouchers: Bally 1227, Napier 625 (EA).Dichrocephalaintegrifolia (L.f.) Kuntze \u2013 Life form: Herb. Habitat: Moist forest margins and wooded grassland, 1100\u20133670 m. Voucher: Mwangangi 985 (EA).Echinopsaberdaricus R.E.Fr. \u2013 Life form: Herb. Habitat: Montane grassland and moorland, 2400\u20133450 m. Voucher: Kuchar 12706 (EA).Echinopsangustilobus S.Moore \u2013 Life form: Herb. Habitat: Bushed grassland, 2000\u20132850 m. Voucher: Kerfoot 2945 (EA).Echinopshoehnelii Schweinf. \u2013 Life form: Herb. Habitat: Open sites in montane forest, 2200\u20133500 m. Voucher: SK 0149 .Erigeronbonariensis L. \u2013 Life form: Exotic herb. Habitat: Roadsides in grassland, 300\u20132850 m. Voucher: Perdue and Kibuwa 8414 (EA).*Ethuliascheffleri S.Moore \u2013 Life form: Herb or subshrub. Habitat: Marshy grassland and river banks, 1500\u20132500 m. Voucher: Bally 13211 (EA).Euryopsbrownei S.Moore \u2013 Life form: Woody herb or shrub. Habitat: Upper parts of montane forest and heath zone, 2300\u20134000 m. Voucher: SK 0088 .Euryopschrysanthemoides (DC.) B.Nord. \u2013 Life form: Shrub. Habitat: Montane grassland and bushland, 1500\u20132100 m. Voucher: SK 0190 .Euryopsjacksonii S.Moore \u2013 Life form: Woody herb or shrub. Habitat: Montane grassland and bushland, 2000\u20133300 m. Voucher: Durie 1533 (EA).Gerberapiloselloides (L.) Cass. \u2013 Life form: Herb. Habitat: Wet woodland, moist forest and moorland, 900\u20133700 m. Voucher: Napier 646(EA).Gnaphaliumunionisvar.tweediae (Hilliard) Beentje \u2013 Life form: Herb. Habitat: Montane grassland, 1600\u20133200 m. Voucher: Townsend 2313 (EA).Guizotiajacksonii (S.Moore) J. Baag\u00f8e \u2013 Life form: Herb. Habitat: Montane forest glades and moorland, 2350\u20133900 m. Voucher: SK 0052 .Gutenbergiarueppellii Sch.Bip. \u2013 Life form: Herb. Habitat: Open woodland and grassland, 900\u20132300 m. Voucher: Rauh 500 (EA).Gymnanthemumurticifolium (A.Rich.) H.Rob. \u2013 Life form: Shrubland. Habitat: Upland forest margins, 2160\u20133000 m. Voucher: Greenway 9734 (EA).Gynurascandens O.Hoffm. \u2013 Life form: Herbaceous climber. Habitat: Moist forest margins and glades, 0\u20132200 m. Voucher: Napier 2452 (EA).Haplocarpharueppellii (Sch.Bip.) K.Lewin \u2013 Life form: Herb. Habitat: Moist montane grassland and moorland, 2550\u20134650 m. Voucher: SK 0083 .Helichrysumargyranthum O.Hoffm. \u2013 Life form: Woody herb or shrub. Habitat: Montane grassland and moorland, 2100\u20133900 m. Voucher: SAJIT 006477 .EHelichrysumbrownei S.Moore \u2013 Life form: Herb or subshrub. Habitat: Rocky slopes and ridges, 3300\u20134500 m. Voucher: SK 0086 (EA).Helichrysumchionoides Philipson \u2013 Life form: Shrub. Habitat: Moorland and bamboo zone, 2800\u20133850 m. Voucher: Coe & Kirika 327 (EA).Helichrysumcitrispinumvar.hoehnelii (Schweinf.) Schweinf. & Hedberg \u2013 Life form: Shrub. Habitat: Rocky sites in afro-alpine zone, 3200\u20135100 m. Vouchers: Young 5, Townsend 2402 (EA).Helichrysumellipticifolium Moeser \u2013 Life form: Herb or subshrub. Habitat: Damp sites in bamboo zone, 2500\u20134800 m. Voucher: Kuchar 12500 (EA).Helichrysumfoetidum (L.) Cass. \u2013 Life form: Herb. Habitat: Upland forest margins and clearings, 1350\u20133000 m. Voucher: Polhill et al. 319 (EA).Helichrysumformosissimum Sch.Bip. \u2013 Life form: Woody herb or shrub. Habitat: Swamps and bogs in moorland, 2300\u20134200 m. Voucher: Kuchar 12744 (EA).Helichrysumformosissimumvar.guilelmii (Engl.) Mesfin \u2013 Life form: Woody herb or shrub. Habitat: Wet sites in moorland, 1800\u20134200 m. Voucher: Kuchar 2694 (EA).Helichrysumforskahliivar.compactum (Vatke) Mesfin. \u2013 Life form: Woody herb or shrub. Habitat: Moorland, 1200\u20135000 m. Vouchers: Perdue and Kibuwa 8244, Kirika et al. 1063 (EA).Helichrysumglobosum Sch.Bip. \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 900\u20133100 m. Voucher: Coe 783 (EA).EHelichrysumgloria-dei Chiov. \u2013 Life form: Shrub. Habitat: Rocky sites in afro-alpine zone, 3650\u20134000 m. Voucher: Taylor 1495 (EA).Helichrysumkilimanjari Oliv. \u2013 Life form: Herb. Habitat: Montane grassland and heathland, 1650\u20133900 m. Voucher: Agnew 7205 (EA).Helichrysummaranguense O.Hoffm. \u2013 Life form: Shrub. Habitat: Upland forest margins and bamboo zone, 1950\u20132700 m. Voucher: Fries and Fries 2324 (EA).Helichrysumnewii Oliv. & Hiern \u2013 Life form: Shrub. Habitat: Montane grassland, 2700\u20134600 m. Voucher: Knox 2851 (EA).Helichrysumnudifolium (L.) Less. \u2013 Life form: Woody herb or shrub. Habitat: Upland grassland, 600\u20132750 m. Voucher: Faden & Evans 74/581 (EA).Helichrysumodoratissimum (L.) Sweet \u2013 Life form: Woody herb or shrub. Habitat: Montane grassland and bushland, 1700\u20133700 m. Voucher: Kuchar 12426 (EA).Helichrysumschimperi (Sch.Bip. ex A.Rich.) Moeser \u2013 Life form: Woody herb or shrub. Habitat: Upland grassland, 1350\u20133300 m. Voucher: Kokwaro and Mathenge 3271 (EA).Helichrysumsetosum Harv. \u2013 Life form: Herb. Habitat: Clearings in forest and grassland, 1250\u20133000 m. Voucher: Natrass 1375 (EA).Helichrysumstenopterum DC. \u2013 Life form: Herb. Habitat: Montane grassland and forest margins, 600\u20132800 m. Voucher: Kirika 161 (EA).Hilliardiellaaristata (DC.) H.Rob. \u2013 Life form: Herb. Habitat: Upland grassland and woodland, 1600\u20132400 m. Voucher: Faden 67/722 (EA).Hypochaerisglabra L. \u2013 Life form: Herb. Habitat: Roadsides in grassland, 1850\u20133000 m. Voucher: Kuchar 12290 (EA).Kleiniaabyssinicavar.hildebrandtii (Vatke) C.Jeffrey \u2013 Life form: Herb. Habitat: Dry grassland and woodland, 20\u20132700 m. Voucher: Bogdan 499 (EA).Lactucaglandulifera Hook.f. \u2013 Life form: Herb. Habitat: Moist forest and grassland, 1200\u20133600 m. Voucher: SK 0222 .Lactucainermis Forssk. \u2013 Life form: Herb. Habitat: Roadsides and disturbed sites in grassland, 500\u20133300 m. Voucher: Malombe & Kirika 22 (EA).Lactucaparadoxa Sch.Bip. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland forest margins and thickets, 1950\u20132650 m. Voucher: Kokwaro and Mathenge 3348 (EA).Laphangiumluteoalbum (L.) Tzvelev \u2013 Life form: Herb. Habitat: Montane grassland, 300\u20133850 m. Voucher: Muasya 2148 (EA).Linziaglabra Steetz \u2013 Life form: Woody herb. Habitat: Roadsides in bushland, 1300\u20132160 m. Voucher: Gilbert and Thulin 1750 (EA).Linziaituriensis (Muschl.) H.Rob. \u2013 Life form: Woody herb. Habitat: Moist forest, 1200\u20132500 m. Voucher: Verdcourt 3267 (EA).Melantherascandens (Schumach. & Thonn.) Roberty \u2013 Life form: Herb. Habitat: Riverine forest and swampy sites, 250\u20132200 m. Voucher: Perdue and Kibuwa 8201 (EA).Micractisbojeri DC. \u2013 Life form: Herb. Habitat: Moist forest and swamp grassland, 1350\u20132750 m. Voucher: Verdcourt et al. 3030 (EA).Microglossadensiflora Hook.f. \u2013 Life form: Shrub. Habitat: Montane forest margins, 1200\u20132650 m. Voucher: Mathenge 192 (EA).Microglossapyrifolia (Lam.) Kuntze \u2013 Life form: Shrub. Habitat: Grassland and bushland, 50\u20132650 m. Voucher: Kokwaro 327 (EA).Mikaniopsisbambuseti (R.E.Fr.) C.Jeffrey \u2013 Life form: Woody climber. Habitat: Bamboo zone, 2100\u20133150 m. Voucher: Vorontsova et al. 61 (EA).Mikaniopsisusambarensis (Muschl.) Milne-Redh. \u2013 Life form: Woody climber. Habitat: Moist forest margins, 850\u20132350 m. Voucher: Malombe et al. 27/986 (EA).Prenanthessubpeltata Stebbins \u2013 Life form: Herbaceous climber. Habitat: Bamboo thicket, 2470\u20132500 m. Voucher: Faden et al. 71/193 (EA).Pseudognaphaliumoligandrum (DC.) Hilliard & B.L.Burtt \u2013 Life form: Herb. Habitat: Montane grassland, 1050\u20132550 m. Voucher: Burney 18 (EA).Psiadiapunctulata (DC) Vatke \u2013 Life form: Woody herb or shrub. Habitat: Evergreen bushland and forest edges, 1000\u20132500 m. Voucher: SK 0010 .Schkuhriapinnata (Lam.) Kuntze ex Thell. \u2013 Life form: Exotic herb. Habitat: Upland dry woodland and grassland, 1000\u20132220 m. Voucher: Mbevi 189 (EA).*Senecioaequinoctialis R.E.Fr. \u2013 Life form: Woody herb. Habitat: Moist afro-alpine zone, 3000\u20134250 m. Voucher: SK 0085 .ESenecioamplificatus C.Jeffrey \u2013 Life form: Herb. Habitat: Upper regions of giant heath zone, 2900\u20133500 m. Voucher: Alexander 11635 (EA).Seneciocrispatipilosus C.Jeffrey \u2013 Life form: Herb. Habitat: Open sites in bamboo zone, 2050\u20133050 m. Voucher: Coe 754 (EA).Seneciodeltoideus Less. \u2013 Life form: Herb. Habitat: Moist forest margins, 1700\u20132600 m. Voucher: Kuchar 12245 (EA).Seneciohadiensis Forsk. \u2013 Life form: Herbaceous climber. Habitat: Riverine thickets and forest margins, 500\u20132600 m. Voucher: Hiepko 2678 (EA).Seneciohochstetteri Sch.Bip. ex A.Rich. \u2013 Life form: Herb. Habitat: Forest margins and wooded grassland, 900\u20133350 m. Voucher: Rauh 388 (EA).Seneciojacksonii S.Moore \u2013 Life form: Herb. Habitat: Montane swampy grassland, 3250\u20134150 m. Vouchers: Hedberg 1545, Rauh 2388 (EA).Seneciolyratus Forssk. \u2013 Life form: Woody climber. Habitat: Evergreen dry forest margins, 1500\u20132760 m. Voucher: Gillet 20736 (EA).Seneciomaranguensis O.Hoffm. \u2013 Life form: Woody herb or shrub. Habitat: Montane forest and bamboo thicket, 1800\u20133250 m. Voucher: Fries and Fries 2699 (EA).ESeneciomargaritae C.Jeffrey \u2013 Life form: Shrub. Habitat: Rocky bushland, 1800\u20131950 m. Voucher: Bally 1013 (EA).Seneciomesogrammoides O.Hoffm. \u2013 Life form: Herb. Habitat: Open grassland, 1200\u20132500 m. Voucher: SK 0044 .Seneciomoorei R.E.Fr. \u2013 Life form: Woody herb or shrub. Habitat: Montane grassland and heath zone, 1750\u20133500 m. Voucher: Kuchar 12527 (EA).Seneciopseudosubsessilis C.Jeffrey \u2013 Life form: Herb. Habitat: Upland forest margins and swamps, 1900\u20133050 m. Voucher: Charles 10580 (EA).ESenecioroseiflorus R.E.Fr. \u2013 Life form: Woody herb or shrub. Habitat: Rocky moorland and giant heath zone, 3100\u20134200 m. Vouchers: SAJIT 006490, SK 0114 .Senecioschweinfurthii O.Hoffm. \u2013 Life form: Herb. Habitat: Moorland and clearings in upper montane forest, 2300\u20134500 m. Voucher: SK 0089 .Seneciosubsessilis Oliv. & Hiern \u2013 Life form: Woody herb or shrub. Habitat: Montane forest margins, 1800\u20133600 m. Voucher: Kuchar 12550 (EA).Seneciosyringifolius O.Hoffm. \u2013 Life form: Herbaceous climber. Habitat: Montane forest margins, 1500\u20133300 m. Voucher: SK 0103 .Solanecioangulatus (Vahl) C.Jeffrey \u2013 Life form: Herbaceous climber. Habitat: Riverine vegetation and moist bushland, 1800\u20132500 m. Voucher: Faden et al. 74/657 (EA).Solaneciomannii (Hook.f.) C.Jeffrey \u2013 Life form: Shrub or small tree. Habitat: Forest glades and margins, 80\u20132700 m. Voucher: SK 0165 .Solanecionandensis (S.Moore) C.Jeffrey \u2013 Life form: Herbaceous climber. Habitat: Forest margins and bushland, 1500\u20132700 m. Voucher: Kamau 372 (EA).Sonchusafromontanus R.E.Fr. \u2013 Life form: Herb. Habitat: Upland grassland, 2200\u20133700 m. Voucher: Agnew et al. 142 (EA).Sonchusasper (L.) Hill \u2013 Life form: Herb. Habitat: Upland grassland, 1600\u20133000 m. Voucher: Someren 63/192 (EA).Sonchusbipontini Asch. \u2013 Life form: Herb. Habitat: Upland grassland, forest glades and margins, 1700\u20133370 m. Voucher: Hooper and Townsend 1389 (EA).Sonchuscamporum (R.E.Fr.) Boulos ex C.Jeffrey \u2013 Life form: Herb. Habitat: Upland grassland, 1800\u20132300 m. Voucher: Fries & Fries 513b (EA).Sonchusluxurians (R.E.Fr.) C.Jeffrey \u2013 Life form: Herb. Habitat: Roadsides in grassland and montane forest margins, 1600\u20133800 m. Voucher: Young 1001 (EA).Sonchusstenophyllus R.E.Fr. \u2013 Life form: Herb. Habitat: Upland grassland and forest edges, 2200\u20133700 m. Voucher: Fries & Fries 123 (EA).Sphaeranthussuaveolens (Forsk.) DC. \u2013 Life form: Herb. Habitat: Stream banks and marshy sites, 350\u20132500 m. Voucher: Kuchar 8276 (EA).Stoebekilimandscharica O.Hoffm. \u2013 Life form: Shrub. Habitat: Moist afro-alpine zone, 1950\u20133900 m. Voucher: Bally 1167 (EA).Tagetesminuta L. \u2013 Life form: Exotic herb. Habitat: Roadsides and disturbed sites, 850\u20132750 m. Voucher: Spjut 2791 (EA).*Taraxacumcampylodes G.E.Haglund \u2013 Life form: Herb. Habitat: Roadsides in montane forest, 2350\u20132500 m. Voucher: Dyson 638 (EA).Tithoniadiversifolia (Hemsl.) A.Gray \u2013 Life form: Exotic woody herb or subshrub. Habitat: Roadsides and forest margins, 0\u20131950 m. Voucher: SK 0204 .*Tolpiscapensis (L.) Sch.Bip. \u2013 Life form: Herb. Habitat: Open woodland and grassland, 1800\u20133300 m. Voucher: Kerfoot 1457 (EA).Tripterisvaillantii Decne. \u2013 Life form: Herb or subshrub. Habitat: Upland grassland and bushland, 1200\u20133000 m. Voucher: Faden et al. 74/646 (EA).Vernoniaauriculifera Hiern \u2013 Life form: Woody herb or shrub. Habitat: Montane forest margins and glades, 750\u20133000 m. Voucher: Kuchar 8342 (EA).Vernoniahochstetteri Sch.Bip. ex Walp. \u2013 Life form: Woody herb or shrub. Habitat: Moist forest and bushlands, 1000\u20132400 m. Voucher: Polhill 76 (EA).Vernoniapteropoda Oliv. & Hiern \u2013 Life form: Herb or subshrub. Habitat: Wet evergreen forest, 1800\u20132750 m. Voucher: Verdcourt 2311 (EA).Vernoniasubscandens R.E.Fr. \u2013 Life form: Shrub. Habitat: Moist forest and forest margins, 1650\u20132100 m. Voucher: Verdcourt 3706 (EA).Vernoniasyringifolia O.Hoffm. \u2013 Life form: Woody herb or shrub. Habitat: Moist forest and forest margins, 1550\u20133050 m. Voucher: Kerfoot 465 (EA).Vernoniaamygdalina Delile \u2013 Life form: Shrub or small tree. Habitat: Grassland and woodland, 200\u20132300 m. Voucher: SK 0016 .Vernoniagalamensissubsp.afromontana (R.E.Fr.) M.G.Gilbert \u2013 Life form: Shrub. Habitat: Dry forest margins and glades, 800\u20132200 m. Voucher: SK 0205 .BalsaminaceaeF50. Impatiensfischeri Warb. \u2013 Life form: Herb. Habitat: Moist shaded sites in upland forest, 2000\u20133100 m. Voucher: SK 0127 .Impatienshoehnelii T.C.E.Fr. \u2013 Life form: Herb. Habitat: Moist shaded sites in rainforest, 1475\u20133350 m. Voucher: SK 0126 .Impatiensmeruensissubsp.cruciata (T.C.E.Fr.) Grey-Wilson \u2013 Life form: Herb. Habitat: Moist forest and bamboo thickets, 1100\u20133630 m. Voucher: Napier 722 (EA).Impatienstinctoria A.Rich. \u2013 Life form: Herb. Habitat: Waterfalls and stream banks in wet upland forests, 1800\u20133630 m. Voucher: SK 0178 .BasellaceaeF51. Basellaalba L. \u2013 Life form Herbaceous climber. Habitat: Bush thickets and forest edges, 0\u20132450 m. Voucher: Faden 74/712 (EA).BegoniaceaeF52. Begoniameyeri-johannis Engl. \u2013 Life form: Woody climber. Habitat: Moist forest, 1350\u20132800 m. Vouchers: SK 0183, SK 0187 .BerberidaceaeF53. Berberisholstii Engl. \u2013 Life form: Shrub. Habitat: Upland forest margins and bushland 1500\u20133450 m. Voucher: Battiscombe 203 (EA).BignoniaceaeF54. Jacarandamimosifolia D.Don \u2013 Life form: Exotic tree. Habitat: Cultivated, 1970\u20131970 m. Voucher: Perdue and Kibuwa 8096 (EA).*Kigeliaafricanasubsp.moosa (Sprague) Bidgood & Verdc. \u2013 Life form: Tree. Habitat: Moist evergreen forest and swampy forest, 1050\u20132250 m. Vouchers: Perdue and Kibuwa 8421, Nyakundi 421 (EA).Spathodeacampanulata P.Beauv. \u2013 Life form: Tree. Habitat: Montane forest and riverine forest, 1500\u20132000 m. Voucher: SK 0202 .BoraginaceaeF55. Cordiaafricana Lam. \u2013 Life form: Tree. Habitat: Forest edges and wooded grassland, 450\u20132100 m. Voucher: SK 0224 .Cynoglossumaequinoctiale T.C.E.Fr. \u2013 Life form: Herb. Habitat: Upland grassland, 2100\u20132870 m. Voucher: Lacey 24A (EA).Cynoglossumamplifoliumvar.amplifolium Hochst. ex A.DC. \u2013 Life form: Herb. Habitat: Grassland and open sites in bamboo thickets, 1800\u20133200 m. Voucher: Brown 1717 (EA).Cynoglossumamplifoliumvar.subalpinum (T.C.E.Fr.) Verdc. \u2013 Life form: Herb. Habitat: Montane grassland and open sites in bamboo thickets, 2100\u20133430 m. Voucher: Kerfoot 1418 (EA).Cynoglossumcoeruleumvar.kenyense B. Verdcourt \u2013 Life form: Herb. Habitat: Grassland and forest edges, 1100\u20133200 m. Vouchers: SAJIT 006460, SK 0075, SK 0174 .Cynoglossumlanceolatum Forssk. \u2013 Life form: Herb. Habitat: Grassland and bushland, 1100\u20133220 m. Voucher: Kuchar 12236 (EA).Ehretiacymosavar.silvatica (G\u00fcrke) Brenan \u2013 Life form: Tree. Habitat: Moist forest and bushland, 960\u20132250 m. Vouchers: Kenya Forest excursion 88 (EA), SK 0154 .Heliotropiumscotteae Rendle \u2013 Life form: Herb. Habitat: Open sites in upland forests and bushland, 1500\u20132170 m. Voucher: McDonald 879 (EA).Heliotropiumzeylanicum (Burm.f.) Lam. \u2013 Life form: Herb. Habitat: Roadsides in grassland and bushland, 0\u20132317 m. Voucher: SK 0171 .Lithospermumafromontanum Weim. \u2013 Life form: Woody climber. Habitat: Montane forest margins, 1560\u20133950 m. Voucher: SAJIT 006483 .Myosotisabyssinica Boiss. & Reut. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1560\u20133590 m. Voucher: Mabberley 381 (EA).Myosotisvestergrenii Stroh \u2013 Life form: Herb. Habitat: Wet sites in moorland and bamboo thickets, 2000\u20134250 m. Voucher: Rauh et al. 527 (EA).Trichodesmaambacensesubsp.hockii (De Wild.) Brummitt. \u2013 Life form: Herb. Habitat: Burnt grassland and woodland, 780\u20133000 m. Vouchers: Shayse 8835, Bally 8835 (EA).Trichodesmaphysaloides (Fenzl) A.DC. \u2013 Life form: Herb. Habitat: Wooded grassland, 700\u20132400 m. Voucher: SK 0184 (EA).BrassicaceaeF56. Arabidopsisthaliana (L.) Heynh. \u2013 Life form: Herb. Habitat: Montane bushland and moorland, 1750\u20134250 m. Voucher: Coe & Kirika 290 (EA).Arabisalpina L. \u2013 Life form: Herb. Habitat: Damp sites in moorland, 2450\u20134800 m. Voucher: SAJIT 006461 .Barbareaintermedia Boreau \u2013 Life form: Herb. Habitat: Streamsides in upper parts of montane forest, 3050\u20133950 m. Voucher: Muninentyhegen 9313 (EA).Brassicanapus L. \u2013 Life form: Exotic herb. Habitat: Escaped cultivation common along roadsides and disturbed sites, 1750\u20132300 m. Voucher: Someren s.n (EA).*Brassicarapa L. \u2013 Life form: Exotic herb. Habitat: Escape cultivation common along roadsides, 1500\u20132600 m. Voucher: Someren 603 (EA).*Capsellabursa-pastoris (L.) Medik. \u2013 Life form: Herb. Habitat: Roadsides in montane forest, 1600\u20132500 m. Voucher: Greenway 10206 (EA).Cardamineafricana L. \u2013 Life form: Herb. Habitat: Moist forest, 1000\u20133400 m. Voucher: Muninentyhegen 9304 (EA).Cardamineobliqua Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Moist montane forest up to moorland, 2000\u20134900 m. Voucher: Hedberg 1596 (EA).Cardaminehirsuta L. \u2013 Life form: Herb. Habitat: Wet open grounds in montane forest, 500\u20134600 m. Vouchers: SAJIT 006466, SK 0177 .Erucastrumarabicum Fisch. & C.A.Mey. \u2013 Life form: Herb. Habitat: Roadsides in upland forests, 0\u20133170 m. Voucher: John Terry 180 (EA).Farsetiastenoptera Hochst. \u2013 Life form: Herb. Habitat: Roadsides in open bushland, 500\u20133613 m. Voucher: SK 0094 .Farsetiaundulicarpa Jonsell \u2013 Life form: Shrub. Habitat: Bushland and wooded grassland, 1750\u20132300 m. Voucher: Verdcourt 2159 (EA).Lepidiumafricanum (Burm.f.) DC. \u2013 Life form: Herb. Habitat: Along the streams and roadsides in upland grassland, 1200\u20132120 m. Voucher: Harper 2143 (EA).Lepidiumbonariense L. \u2013 Life form: Exotic herb. Habitat: Roadsides in upland grassland, 1460\u20132650 m. Voucher: Verdcourt 2767 (EA).*Lepidiumdidymum L. \u2013 Life form: Herb. Habitat: Roadsides and forest clearings, 1350\u20132800 m. Voucher: Kroo 13173 (EA).Nasturtiummicrophyllum (Boenn. ex Rchb.) Rchb. \u2013 Life form: Herb. Habitat: Upland stream banks, 1500\u20132000 m. Voucher: Bally 8653 (EA).Nasturtiumofficinale R.Br. \u2013 Life form: Herb. Habitat: Muddy soils along rivers, 1500\u20132700 m. Voucher: Bogdan 2140 (EA).Oreophytonfalcatum O.E.Schulz \u2013 Life form: Herb. Habitat: Rocky sites in afro-alpine zone, 3820\u20134900 m. Voucher: Hedberg 1557 (EA).Raphanusraphanistrum L. \u2013 Life form: Exotic herb. Habitat: Roadsides and other ruderal sites, 15\u20132750 m. Voucher: Someren 549-556 (EA).*Raphanussativus L. \u2013 Life form: Exotic herb. Habitat: Roadsides, 15\u20132650 m. Voucher: Someren 550 (EA).*Rorippacryptantha (A.Rich.) Robyns & Boutique \u2013 Life form: Herb. Habitat: Stream banks and wet sites in forest, 1800\u20133000 m. Voucher: Bogdan 4757 (EA).Rorippamicrantha (Roth) Jonsell \u2013 Life form: Herb. Habitat: Along streams and muddy sites, 10\u20132400 m. Voucher: Gillett (EA).Rorippanudiuscula Thell. \u2013 Life form: Herb. Habitat: Upland moist forest and stream banks, 2200\u20133000 m. Voucher: Kuchar 8288 (EA).Sisymbriumerysimoides Desf. \u2013 Life form: Herb. Habitat: Clearings in forest and disturbed sites, 2000\u20132400 m. Voucher: Meinertzhagen 9309 (EA).Sisymbriumofficinale (L.) Scop. \u2013 Life form: Herb. Habitat: Roadsides and waste places, 1350\u20131800 m. Voucher: Frank Msafiri 20 (EA).Sisymbriumorientale L. \u2013 Life form: Herb. Habitat: Roadsides and waste places, 15\u20132000 m. Voucher: Greenway 14910 (EA).Subulariamonticola A.Braun ex Schweinf. \u2013 Life form: Herb. Habitat: Moist montane forest and moorland, 2750\u20134750 m. Voucher: SAJIT 006467 .Thlaspialliaceum L. \u2013 Life form: Herb. Habitat: Upper montane forest and moorland, 3050\u20133600 m. Voucher: Gillet 16229 (EA).Turritisglabra L. \u2013 Life form: Herb. Habitat: Roadsides in upland moist forest, 920\u20132700 m. Voucher: Verdcourt 3206 (EA).BurseraceaeF57. Commiphoraafricanavar.oblongifoliolata (Engl.) J.B.Gillett \u2013 Life form: Shrub or small tree. Habitat: Bushed grassland, 20\u20131890 m. Voucher: Adamson (EA).Commiphoraafricanavar.rubriflora (Engl.) Wild \u2013 Life form: Shrub or small tree. Habitat: Bushed grassland, 640\u20132070 m. Voucher: Gillett 19442 (EA).CampanulaceaeF58. Campanulaedulis Forssk. \u2013 Life form: Herb. Habitat: Upland grassland, 1500\u20133700 m. Voucher: Napier 2107 (EA).Canarinaeminii Asch. & Schweinf. \u2013 Life form: Herb. Habitat: Often epiphytic in moist forests, 1600\u20133200 m. Voucher: SK 0141 .Lobeliaaberdarica R.E.Fr. & T.C.E.Fr. \u2013 Life form: Shrub. Habitat: Swampy sites in montane forest, 1800\u20133500 m. Voucher: Rauh 520 (EA).Lobeliabambuseti R.E.Fr. & T.C.E.Fr. \u2013 Life form: Shrub. Habitat: Upland forests and bamboo thickets, 2350\u20134000 m. Voucher: Taylor 1361 (EA).Lobeliabaumannii Engl. \u2013 Life form: Shrub. Habitat: Forest floors and margins, 800\u20132400 m. Voucher: Knox 2575 (EA).Lobeliaduriprati T.C.E.Fr. \u2013 Life form: Herb. Habitat: Roadsides and forest margins, 1675\u20133550 m. Voucher: Agnew and Timberlake 11144 (EA).ELobeliagregorianasubsp.sattimae (R.E.Fr. & T.C.E.Fr.) E.B.Knox \u2013 Life form: Shrub. Habitat: Wet places in moorland and stream banks, 3350\u20133900 m. Vouchers: Hedberg 1608, Kirika and York 1192 (EA).Lobeliaholstii Engl. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 900\u20133520 m. Voucher: Kerfoot 412 (EA).Lobelialindblomii Mildbr. \u2013 Life form: Herb. Habitat: Moorland and swampy grounds in montane grassland, 3100\u20134250 m. Voucher: Knox 2519 (EA).Lobeliaminutula Engl. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2125\u20133940 m. Voucher: Polhill 166 (EA).Lobeliatelekii Schweinf. \u2013 Life form: Shrub. Habitat: Upland grassland and moorland, 2950\u20134550 m. Voucher: Kirika et al. 905 (EA).Monopsisstellarioidessubsp.schimperiana (Urb.) Thulin \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1100\u20133600 m. Vouchers: Kuchar 12413, Napier 730 (EA).Wahlenbergiacapillaceasubsp.tenuior (Engl.) Thulin \u2013 Life form: Herb. Habitat: Upland grassland and rocky sites in bamboo zone, 1500\u20133500 m. Vouchers: Gardner 10120, Leakey 14 (EA).Wahlenbergiakrebsiisubsp.arguta (Hook.f.) Thulin \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1500\u20134000 m. Vouchers: Kuchar 9612, 10395 (EA).Wahlenbergiapusilla Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2800\u20134500 m. Voucher: Hedberg 4297 (EA).Wahlenbergiascottii Thulin \u2013 Life form: Herb. Habitat: Upland grassland, 1500\u20133000 m. Voucher: Bogdan 4451 (EA).Wahlenbergiasilenoides Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 2200\u20133350 m. Voucher: Chandler 2317 (EA).Wahlenbergiavirgata Engl. \u2013 Life form: Herb. Habitat: Upland grassland, 1100\u20132700 m. Voucher: H & F 4850 (EA).CanellaceaeF59. Warburgiaugandensis Sprague \u2013 Life form: Tree. Habitat: Moist forest, 1100\u20132230 m. Voucher: Trapnell 2143 (EA).CannabaceaeF60. Celtisafricana Burm.f. \u2013 Life form: Tree. Habitat: Upland rainforest and riverine forest, 30\u20132400 m. Voucher: Kamau 418 (EA).CapparaceaeF61. Cadabafarinosa Forssk. \u2013 Life form: Shrub. Habitat: Deciduous bushland and grassland, 0\u20131900 m. Voucher: SK 0007 .Capparisfascicularisvar.elaeagnoides (Gilg) DeWolf \u2013 Life form: Woody climber. Habitat: Deciduous bushland and grassland, 900\u20132100 m. Vouchers: Battiscombe 1091 (EA), SK 0004 .Capparistomentosa Lam. \u2013 Life form: Shrub or small tree. Habitat: Bushland and grassland, 0\u20132500 m. Voucher: Someren 1769 (EA).Capparisviminea Oliv. \u2013 Life form: Shrub. Habitat: Moist forest, 0\u20132030 m. Voucher: Battiscombe 562 (EA).Maeruatriphylla A.Rich. \u2013 Life form: Shrub. Habitat: Grassland and bushland, 0\u20132300 m. Voucher: Agnew et al. 8724 (EA).Ritchieaalbersii Gilg \u2013 Life form: Tree. Habitat: Upland rainforest, 1100\u20132400 m. Voucher: SK 0155 .Thylaciumafricanum Lour. \u2013 Life form: Shrub or small tree. Habitat: Wooded grassland and deciduous bushland, 1\u20132400 m. Voucher: SK 0026 .CaprifoliaceaeF62. Dipsacuspinnatifidus Steud. ex A.Rich. \u2013 Life form: Herb. Habitat: Clearings in upland forests and bamboo thickets, 2000\u20133950 m. Voucher: Napier 664 .Scabiosacolumbaria L. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 2100\u20134100 m. Voucher: SK 0092 .Valerianacapensis Thunb. \u2013 Life form: Herb. Habitat: Upland moist forests and moorland, 1500\u20133400 m. Voucher: Coe 757 (EA).Valerianakilimandscharica Engl. \u2013 Life form: Woody herb. Habitat: Wet sites in moorland and tussocky grassland, 2800\u20134500 m. Voucher: Dale 294 (EA).Valerianellamicrocarpa Loisel. \u2013 Life form: Herb. Habitat: Moorlands and upper parts of bamboo zone, 2800\u20133500 m. Voucher: Kokwaro et al. 2423 (EA).CaryophyllaceaeF63. Cerastiumafromontanum T.C.E.Fr. \u2013 Life form: Herb. Habitat: Moorland, 2100\u20133940 m. Voucher: SK 0061 (EA).Cerastiumlanceolatum (Poir.) Volponi \u2013 Life form: Herb. Habitat: Forest margins and glades, 1050\u20133600 m. Voucher: Drummond and Hemsley 4283 (EA).Cerastiumoctandrumvar.adnivale (Chiov.) M\u00f6schl \u2013 Life form: Herb. Habitat: Montane bushland edges and open grassland, 1920\u20134200 m. Vouchers: Gillett 18988, Kuchar 12460 (EA).Corrigiolalitoralis L. \u2013 Life form: Herb. Habitat: Roadsides in montane forest, 1200\u20132190 m. Voucher: Mathenge 208 (EA).Drymariacordata (L.) Willd. ex Schult. \u2013 Life form: Herb. Habitat: Roadsides in forest and bushland, 870\u20132700 m. Voucher: SK 0136 .Saginaabyssinica Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Damp sites in moorland, 2150\u20134250 m. Voucher: Coe 784 (EA).Saginaafroalpina Hedberg \u2013 Life form: Herb. Habitat: Bogs and swamps in montane forest, 2980\u20134600 m. Voucher: Hedberg 1542 (EA).Sileneburchellii Otth ex DC. \u2013 Life form: Herb. Habitat: Rocky grounds in moorland, 1500\u20134050 m. Voucher: Kuchar 10349 (EA).Silenemacrosolen Steud. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland rocky grassland, 1800\u20133300 m. Voucher: Bally 906 (EA).Stellariasennii Chiov. \u2013 Life form: Herb. Habitat: Roadsides in upland wet forests, 1650\u20133440 m. Voucher: Young 1002 (EA).Uebeliniacrassifolia T.C.E.Fr. \u2013 Life form: Herb. Habitat: Grassy glades in bamboo thickets and moorland, 2500\u20134000 m. Voucher: Miss Dent 1306 (EA).CelastraceaeF64. Cassinebuchananii Loes. \u2013 Life form: Tree. Habitat: Dry evergreen forest and wooded grassland, 1000\u20132330 m. Voucher: Verdcourt 3049 (EA).Gymnosporiabuchananii Loes. \u2013 Life form: Shrub. Habitat: Dry evergreen forest, 60\u20132640 m. Voucher: Bogdan 467 (EA).Gymnosporiaheterophylla (Eckl. & Zeyh.) Loes. \u2013 Life form: Shrub. Habitat: Moist forest and riverine forest, 0\u20132670 m. Voucher: Ward 3049 (EA).Gymnosporiaputterlickioides Loes. \u2013 Life form: Shrub. Habitat: Dry woodland, 850\u20131800 m. Vouchers: H & J 6603 (EA) SK 0100 .Hippocrateagoetzei Loes. \u2013 Life form: Woody climber. Habitat: Evergreen forest, 0\u20133000 m. Voucher: SK 0247 .Maytenusobscura (A.Rich.) Cufod. \u2013 Life form: Shrub or small tree. Habitat: Moist forest, 2100\u20132550 m. Voucher: Bogdan 468 (EA).Maytenusundata (Thunb.) Blakelock \u2013 Life form: Tree. Habitat: Moist forest, 0\u20133150 m. Voucher: Kuchar 10284 (EA).Cassineaethiopicum (Thunb.) Loes. \u2013 Life form: Tree. Habitat: Moist forest, 0\u20132550 m. Voucher: Hansen 804 (EA).Pristimeragoetzei (Loes.) R. H. Archer \u2013 Life form: Herb or subshrub. Habitat: Moist forest, 90\u20133000 m. Voucher: Beentje and Mungai 2898 (EA).CleomaceaeF65. Cleomegynandra L. \u2013 Life form: Herb. Habitat: Roadsides and disturbed sites, 0\u20132400 m. Voucher: Ward 10861 (EA).ClusiaceaeF66. Garciniavolkensii Engl. \u2013 Life form: Tree. Habitat: Moist or dry evergreen forest, 30\u20132400 m. Voucher: Kuchar et al. 5455 (EA).ConnaraceaeF67. Agelaeapentagyna (Lam.) Baill. \u2013 Life form: Woody climber. Habitat: Upland wet forest, 1200\u20132100 m. Voucher: Ndonge 37 (EA).Roureathomsonii (Baker.) Jongkind \u2013 Life form: Shrub or small tree. Habitat: Upland wet forest, 0\u20132500 m. Voucher: Kuchar 5460 (EA).ConvolvulaceaeF68. Convolvulusfarinosus L -. Life form: Herbaceous climber. Habitat: Upland grassland, 450\u20132600 m. Voucher: Faden 67/270 (EA).Convolvuluskilimandschari Engl. \u2013 Life form: Herbaceous climber. Habitat: Moist forest margins and bamboo thicket, 1800\u20133750 m. Voucher: Svarreush 18 (EA).Convolvulussiculus L. \u2013 Life form: Herb. Habitat: Grassland, 1800\u20132300 m. Voucher: Faden 67/270 (EA).Cuscutaaustralis R.Br. \u2013 Life form: Herbaceous climber. Habitat: Parasitic in swampy vegetation, 1750\u20132170 m. Voucher: Gillett 16568 (EA).Cuscutakilimanjari Oliv. \u2013 Life form: Herbaceous climber. Habitat: Parasitic in upland moist forest, 500\u20132770 m. Voucher: Faden 74/709 (EA).Cuscutaplanifloravar.madagascarensis (Yunck.) Verdc. \u2013 Life form: Herbaceous climber. Habitat: Parasitic in upland grassland, 1500\u20133000 m. Vouchers: Bogdan 839, Gillett 16568 (EA).Dichondrarepens J.R.Forst. & G.Forst. \u2013 Life form: Herb. Habitat: Upland grassland, 1650\u20132520 m. Voucher: Faden 67418 (EA).Ipomoeaalba L. \u2013 Life form: Herbaceous climber. Habitat: Moist forest, 420\u20133393 m. Voucher: SAJIT 006487 .Ipomoeapurpurea (L.) Roth \u2013 Life form: Herbaceous climber. Habitat: Escaped cultivation common on roadsides and other waste places, 900\u20132040 m. Voucher: Greenway 10950 (EA).Ipomoeatenuirostrissubsp.tenuirostris Steud. ex Choisy \u2013 Life form: Herb. Habitat: Upland bushland, 1350\u20132250 m. Vouchers: Faden 68/283 (EA), SK 0048 .Ipomoeawightii Choisy \u2013 Life form: Herb. Habitat: Upland grassland and montane forest margins, 1040\u20132400 m. Voucher: Beentje 3195 (EA).CornaceaeF69. Cornusvolkensii Harms \u2013 Life form: Tree. Habitat: Moist forest and riparian forest, 1200\u20133000 m. Vouchers: Dale 402 (EA), SK 0131 .CrassulaceaeF70. Crassulaalatasubsp.pharnaceoides (Fisch. & C.A.Mey.) Wickens & Bywater \u2013 Life form: Herb. Habitat: Moist rocky sites and stream banks, 1900\u20132100 m. Vouchers: Hedberg 6278, Gilbert 4835 (EA).Crassulaalsinoides (Hook.f.) Engl. \u2013 Life form: Herb. Habitat: Along streams and swamps, 1300\u20133500 m. Voucher: Agnew 7164 (EA).Crassulagranvikii Mildbr. \u2013 Life form: Herb. Habitat: Along streams in alpine zone and damp open soils, 1200\u20134250 m. Voucher: Gillet 18059 (EA).Crassularhodesica (Merxm.) Wickens & M.Bywater \u2013 Life form: Herb. Habitat: Forest shades especially on rocky grounds, 1200\u20132100 m. Voucher: Verdcourt 670 (EA).Crassulaschimperi Fisch. & C.A.Mey. \u2013 Life form: Herb. Habitat: Moist rocky places in grassland, 1050\u20133820 m. Voucher: Bogdan 4635 (EA).Kalanchoedensiflora Rolfe \u2013 Life form: Herb. Habitat: Upland forest margins and grassland, 1000\u20133000 m. Voucher: SK 0072 .Sedumcrassularia (Schwienf.) R.-Hamet \u2013 Life form: Herb. Habitat: Rocky sites in moorland, 3300\u20134300 m. Voucher: Hedberg 1552 (EA).Sedummeyeri-johannis Engl. \u2013 Life form: Herb. Habitat: Epiphytic in moist forest and rocky heathland, 2100\u20133150 m. Voucher: SK 0265 .Sedumruwenzoriense Baker f. \u2013 Life form: Herb. Habitat: Rocky grounds in moorland, 2400\u20134500 m. Voucher: Mwangani 318 (EA).Umbilicus botryoides Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Epiphytic in wet montane forest, 2100\u20133900 m. Voucher: Kirika et al. 19 (EA).CucurbitaceaeF71. Cucumisficifolius A.Rich. \u2013 Life form: Herbaceous climber. Habitat: Grassland, 1070\u20132800 m. Voucher: Ekkens 661 (EA).Dactyliandrastefaninii (Chiov.) C.Jeffrey \u2013 Life form: Herbaceous climber. Habitat: Bushlands, 500\u20132594 m. Vouchers: SK 0036, SK 0071 .Diplocyclospalmatus (L.) C.Jeffrey \u2013 Life form: Herbaceous climber. Habitat: Moist forest and swampy grassland, 0\u20131830 m. Vouchers: SK 0220, SK 0066 .Lagenariaabyssinica (Hook.f.) C.Jeffrey \u2013 Life form: Herbaceous climber. Habitat: Upland moist forest and riparian forest, 900\u20133000 m. Voucher: SK 0230 .Momordicacalantha Gilg \u2013 Life form: Herbaceous climber. Habitat: Moist forest margins and valley grassland, 400\u20131900 m. Voucher: SK 0213 .Momordicafoetida Schumach. \u2013 Life form: Herbaceous climber. Habitat: Moist forest edges and open sites or glades, 1200\u20133000 m. Voucher: SK 0211 .Momordicafriesiorum (Harms) C.Jeffrey \u2013 Life form: Herbaceous climber. Habitat: Upland moist forest margins and glades, 1500\u20132850 m. Vouchers: SK 0211, SK 0214, SK 0232, SK 0252, SK 0218, SK 0188 .Oreosyceafricana Hook.f. \u2013 Life form: Herbaceous climber. Habitat: Moist forest margins and bamboo thickets, 900\u20133000 m. Voucher: SK 0144 .Peponiumvogelii (Hook.f.) Engl. \u2013 Life form: Herbaceous climber. Habitat: Moist forest and bamboo thickets, 10\u20132600 m. Voucher: Kamau 338 (EA).Zehneriaminutiflora (Cogn.) C.Jeffrey \u2013 Life form: Herbaceous climber. Habitat: Moist forest, 1100\u20133350 m. Voucher: Faden et al. 74/702 (EA).Zehneriascabra Sond. \u2013 Life form: Herbaceous climber. Habitat: Riverine forest and damp sites in bushland, 80\u20133350 m. Voucher: SAJIT 006501 (EA).Zehneriasubcoriaceae Y.D.Zhou & Q.F.Wang \u2013 Life form: Herbaceous climber. Habitat: Moist montane forest, 2000\u20133000 m. Voucher: SK 0137 .DichapetalaceaeF72. Dichapetalummadagascariensevar.brevistylum F.J.Breteler \u2013 Life form: Woody climber. Habitat: Upland evergreen forest, 1500\u20132400 m. Vouchers: Luke 384, Perdue and Kibuwa 8391 (EA).EbenaceaeF73. Diospyrosabyssinica (Hiern) F.White \u2013 Life form: Tree. Habitat: Montane bushland, 0\u20132400 m. Voucher: SK 0008 .Eucleadivinorum Hiern \u2013 Life form: Tree. Habitat: Grassland and open bushland, 0\u20132700 m. Voucher: Gardner 1392 (EA).Agaristasalicifolia (Lam.) G.Don \u2013 Life form: Shrub or tree. Habitat: Dry and moist forests, 1050\u20133500 m. Voucher: SK 0254 .EricaceaeF74. Ericaarborea L. \u2013 Life form: Shrub. Habitat: Upper montane forest and moorland, 1600\u20133900 m. Voucher: Gardner 1694 (EA).Ericamannii (Hook.f.) Beentje \u2013 Life form: Shrub. Habitat: Forest clearings in hilltops, 1200\u20132650 m. Vouchers: Mlawton 1803, Kuchar 10283 (EA).Ericasilvatica (Welw. ex Engl.) Beentje \u2013 Life form: Shrub. Habitat: Rocky grounds in moorland, 1650\u20134200 m. Voucher: Kokwaro 3242 (EA).Ericawhyteana Britten \u2013 Life form: Shrub. Habitat: Moist sites in moorland, 1900\u20133650 m. Voucher: Hedberg 1511 (EA).Ericafilago (Alm & T.C.E.Fr.) Beentje \u2013 Life form: Shrub. Habitat: Rocky sites in moorland, 2700\u20134350 m. Voucher: Kirika et al. 908 (EA).EuphorbiaceaeF75. Acalyphavolkensii Pax \u2013 Life form: Shrub. Habitat: Forest undergrowth and bushland, 800\u20133000 m. Voucher: SK 0192 .Brideliamicrantha (Hochst.) Baill. \u2013 Life form: Tree. Habitat: Evergreen forest and riparian forest, 0\u20132300 m. Voucher: SK 0034 .Clutiaabyssinicavar.abyssinica Jaub. & Spach \u2013 Life form: Shrub. Habitat: Upland bushland and wooded grassland, 1000\u20133700 m. Voucher: SK 0069 .Clutiaabyssinicavar.usambarica Pax & K.Hoffm \u2013 Life form: Shrub. Habitat: Dry evergreen forest, 300\u20132600 m. Voucher: Verdcourt 3135 (EA).Clutiakilimandscharica Engl. \u2013 Life form: Shrub. Habitat: Forest edges and bushland, 1700\u20133600 m. Voucher: Bally 13958 (EA).Crotonalienus Pax \u2013 Life form: Shrub or small tree. Habitat: Upland dry evergreen forest, 1525\u20131825 m. Voucher: Kamau 319 (EA).Crotonmacrostachyus Hochst. ex Delile \u2013 Life form: Tree. Habitat: Forest margins and along streams, 1350\u20132300 m. Voucher: SK 0033 .Crotonmegalocarpus Hutch. \u2013 Life form: Tree. Habitat: Wet and dry evergreen forest, 700\u20132400 m. Voucher: Kamau 319 (EA).Erythrococcabongensis Pax \u2013 Life form: Shrub. Habitat: Forest margins and bushland, 200\u20132440 m. Voucher: Kirika et al. 32 (EA).Euphorbiabrevicornu Pax \u2013 Life form: Herb. Habitat: Moist forest, 2000\u20133600 m. Voucher: Napier 657 (EA).Euphorbiabrevitorta P.R.O.Bally \u2013 Life form: Herb. Habitat: Dry bushland in rocky slopes, 1500\u20132000 m. Voucher: Kuchar 5105 (EA).Euphorbiadepauperata Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Rocky grounds in grassland and forest clearings, 1200\u20133350 m. Vouchers: Napier 655 (EA), SAJIT 006502 .Euphorbiaengleri Pax \u2013 Life form: Shrub. Habitat: Upland forest undergrowth and dense bushland, 1500\u20132800 m. Voucher: Hooper 1686 (EA).Euphorbiainaequilatera Sond. \u2013 Life form: Herb. Habitat: Swampy patches in upland grassland, 1990\u20132090 m. Voucher: Faden et al. 74/648 (EA).Euphorbiamagnicapsula S.Carter \u2013 Life form: Tree. Habitat: Open deciduous bushland, 1000\u20132165 m. Vouchers: Kirika & Muthoka 6, Perdue and Kibuwa 8264 (EA).Euphorbiascarlatina S.Carter \u2013 Life form: Shrub. Habitat: Open deciduous bushland, 600\u20132000 m. Voucher: Kirika 12 (EA).Euphorbiaschimperianavar.velutina N.E.Br. \u2013 Life form: Herb. Habitat: Open sites in montane forests and grassland, 2970\u20133760 m. Voucher: Hooper et al. 1684 (EA).Euphorbiaugandensis Pax & K.Hoffm. \u2013 Life form: Shrub. Habitat: Moist forest and bamboo thicket, 1980\u20133350 m. Voucher: Kerfoot 478 (EA).Euphorbiawellbyivar.wellbyi N.E.Br. \u2013 Life form: Shrub. Habitat: Moist upper parts montane forest zone and stream-sides in moorland, 3000\u20134000 m. Vouchers: Faden 74/856, Mabberley 333 (EA).Euphorbiawellbyivar.glabra S.Carter \u2013 Life form: Herb. Habitat: Upper montane forest edges and heathland, 2900\u20134000 m. Voucher: Beentje 2625 (EA).Euphorbiacandelabrum Tr\u00e9maux ex Kotschy \u2013 Life form: Tree. Habitat: Open wooded grassland, 900\u20132180 m. Voucher: Perdue and Kibuwa 8265 (EA).Heywoodialucens Sim \u2013 Life form: Tree. Habitat: Upland riparian forests, 1200\u20131950 m. Vouchers: JKCAT 1538, Seki (EA).Homalanthuspopulifolius Graham \u2013 Life form: Shrub to small tree. Habitat: Undergrowth in evergreen forests, 950\u20132100 m. Voucher: Gillett 20454 (EA).Macarangacapensis (Baill.) Sim \u2013 Life form: Tree. Habitat: Moist evergreen forest, 75\u20133050 m. Voucher: SK 0170 .Macarangakilimandscharica Pax \u2013 Life form: Tree. Habitat: Moist evergreen forest, 1310\u20133000 m. Voucher: Kuchar 5450 (EA).Micrococcaholstii (Pax) Prain \u2013 Life form: Shrub. Habitat: Moist evergreen forest, 1000\u20132400 m. Vouchers: Battiscombe 678, Faden & Evans 70/71 (EA).Neoboutoniamacrocalyx Pax \u2013 Life form: Tree. Habitat: Upland moist forest margins and forest clearings, 1100\u20132700 m. Voucher: Someren 3555 (EA).Phyllanthusboehmiivar.boehmii Pax \u2013 Life form: Herb. Habitat: Moist forest and woodland, 1050\u20133270 m. Vouchers: Kahurananga 2825, Verdcourt 400 (EA).Phyllanthusboehmiivar.humilis Radcl.-Sm. \u2013 Life form: Herb. Habitat: Damp sites in upland grassland and moorland, 2100\u20133250 m. Voucher: Napier 693 (EA).Phyllanthusfischeri Pax \u2013 Life form: Shrub. Habitat: Forest edges and along seasonal streams, 1450\u20132960 m. Voucher: Kamau 320 (EA).Tragiabrevipes Pax \u2013 Life form: Herb or subshrub. Habitat: Forest edges and riverine vegetation, 600\u20132600 m. Voucher: SK 0157 .Tragiellanatalensis (Sond.) Pax & K.Hoffm. \u2013 Life form: Herb. Habitat: Forest edges and associated bushland, 80\u20132300 m. Voucher: Verdcourt 546 (EA).Verniciafordii (Hemsl.) Airy Shaw \u2013 Life form: Exotic tree. Habitat: Cultivated along moist forest edges. Voucher: Patterson 324/58 (EA).*FabaceaeF76. Acaciaabyssinica Benth. \u2013 Life form: Tree. Habitat: Woodland and wooded grassland, 1500\u20132300 m. Voucher: Verdcourt 1501 (EA).Acaciaxanthophloea Benth. \u2013 Life form: Tree. Habitat: Riverine forest, 600\u20131980 m. Voucher: Ahiti 131 (EA).Adenocarpusmannii (Hook.f.) Hook.f. \u2013 Life form: Shrub. Habitat: Moorland, 1500\u20134000 m. Voucher: SK 0113 .Aeschynomeneschimperi A.Rich. \u2013 Life form: Shrub. Habitat: Swampy areas and along streams, 60\u20132340 m. Voucher: Battiscombe 193 (EA).Albiziagummifera (J.F.Gmel.) C.A.Sm. \u2013 Life form: Tree. Habitat: Moist forest, 0\u20132440 m. Voucher: Poster (EA).Amphicarpaeaafricana (Hook.f.) Harms \u2013 Life form: Herbaceous climber. Habitat: Upland moist forest and bamboo zone, 1680\u20132700 m. Voucher: Battiscombe 298 (EA).Argyrolobiumfriesianum (Hook.f.) Harms \u2013 Life form: Herb or subshrub. Habitat: Margins of upland moist forest, 1800\u20133000 m. Voucher: Mbale et al. 847 (EA).Argyrolobiumrupestresubsp.aberdaricum (Harms) Polhill \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1900\u20133500 m. Voucher: Bally 2756 (EA).Argyrolobiumrupestresubsp.kilimandscharicum (Taub.) Polhill \u2013 Life form: Herb. Habitat: Upland grassland, 2250\u20133700 m. Voucher: Sir Charles 10607 (EA).Astragalusatropilosulusvar.astropilosulus (Hochst.) Bunge \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 1200\u20134200 m. Voucher: Beentje 2452 (EA).Astragalusatropilosulussubsp.bequaertii (De Wild.) J.B.Gillett \u2013 Life form: Herb. Habitat: Roadsides in grassland, 1200\u20134200 m. Voucher: Kerfoot 402 (EA).Astragalusatropilosulussubsp.burkeanus (Harvey) J.B.Gillett \u2013 Life form: Herb. Habitat: Bushland margins and open sites in bamboo forest, 2100\u20132700 m. Voucher: Verdcourt 691 (EA).Caesalpiniadecapetala (Roth) Alston \u2013 Life form: Exotic woody climber. Habitat: Open sites in montane forest and bushland, 880\u20132200 m. Voucher: Ament et al. 121 (EA).*Calpurniaaurea (Aiton) Benth. \u2013 Life form: Tree. Habitat: Upland rainforest margins and riverine forest, 1300\u20132260 m. Voucher: Kirika et al. 881 (EA).Chamaecristahildebrandtii (Vatke) Lock \u2013 Life form: Woody herb. Habitat: Wooded grassland, 1470\u20132300 m. Voucher: Faden 67419 (EA).Chamaecristastricta E.Mey. \u2013 Life form: Woody herb. Habitat: Roadsides in open bushland, 880\u20132040 m. Voucher: Whyte (EA).Chamaecristausambarensis (Taub.) Standl. \u2013 Life form: Herb. Habitat: Rocky grounds in upland grassland, 1760\u20132590 m. Voucher: Yyne-Watt 1187 (EA).Crotalariaagatiflorasubsp.agatiflora Schweinf. \u2013 Life form: Herb. Habitat: Upland grassland and deciduous bushland, 1500\u20133150 m. Voucher: SK 0051 .Crotalariaagatiflorasubsp.engleri (Baker f.) Polhill. \u2013 Life form: Herb. Habitat: Upland forest margins and riverine forest, 1500\u20133500 m. Voucher: Kimani 16 (EA).Crotalariaaxillaris Aiton \u2013 Life form: Shrub. Habitat: Forest margins and deciduous woodland, 0\u20132500 m. Voucher: Perdue 8064 (EA).Crotalariabrevidensvar.parviflora (Baker f.) Polhill \u2013 Life form: Herb. Habitat: Upland dry evergreen forest, 1500\u20133000 m. Vouchers: Verdcourt 2920, Strange 286 (EA).Crotalariafascicularis Polhill \u2013 Life form: Shrub. Habitat: Margins of upland rainforest, 1950\u20132950 m. Voucher: Gilbert 4896 (EA).Crotalariaincanavar.purpurascens (Lam.) Milne-Redh. \u2013 Life form: Herb. Habitat: Upland grassland, 1050\u20132600 m. Vouchers: Kokwaro 346, Kuchar 12255 (EA).Crotalariajacksonii Baker f. \u2013 Life form: Shrub. Habitat: Upland grassland and margins of moist forest, 2200\u20133000 m. Voucher: Kerfoot 4590 (EA).Crotalariakeniensis Baker f. \u2013 Life form: Shrub. Habitat: Moist forest margins and clearings, 1500\u20132850 m. Voucher: Becky 2175 (EA).Crotalarialebrunii Baker f. \u2013 Life form: Shrub. Habitat: Moist forest margins and clearings, 1350\u20132760 m. Voucher: Mathenge 206 (EA).Crotalariamauensis Baker f. \u2013 Life form: Shrub. Habitat: Upland forest margins, 1600\u20132800 m. Voucher: Verdcourt 681 (EA).Crotalarianatalitia Meissner \u2013 Life form: Woody herb or shrub. Habitat: Riverine forest and upland moist forest, 0\u20133000 m. Voucher: Kerfoot 481 (EA).Crotalariaprittwitzii Baker f. \u2013 Life form: Woody herb or shrub. Habitat: Riverine forest and upland moist forest, 0\u20133000 m. Voucher: Napper 637 (EA).Crotalariapseudospartium Baker f. \u2013 Life form: Shrub. Habitat: Upland wooded grassland, 1400\u20132500 m. Voucher: Verdcourt 3571 (EA).Crotalariarhizoclada Polhill \u2013 Life form: Shrub. Habitat: Roadsides in upland grassland, 1200\u20132500 m. Voucher: Lacey (EA).Crotalariatabularis Baker f. \u2013 Life form: Shrub. Habitat: Margins of upland rainforest, 1200\u20133000 m. Voucher: Mainwaring 2407 (EA).Dolichossericeussubsp.glabrescens Verdc. \u2013 Life form: Herb. Habitat: Upland bushland and dry evergreen forest, 1200\u20132780 m. Voucher: SK 0225 .Dolichossericeussubsp.pseudofalcatus Verdc. \u2013 Life form: Herb. Habitat: Upland grassland, 1200\u20132780 m. Voucher: Someren 1151 (EA).Eriosemascioanumsubsp.lejeunei (Staner & De Craene) Verdc. \u2013 Life form: Herb. Habitat: Upland forest glades and grassland, 1500\u20132580 m. Voucher: Verdcourt 1605 (EA).Erythrinaabyssinica DC. \u2013 Life form: Tree. Habitat: Scattered-tree grassland, 200\u20132100 m. Vouchers: Kirika 163, 157 (EA).Hylodesmumrepandum (Vahl) H.Ohashi & R.R.Mill \u2013 Life form: Herb. Habitat: Shaded grounds in upland moist forest, 1000\u20133000 m. Voucher: Kerfoot 473 (EA).Indigastrumcostatum (Guill. & Perr.) Schrire \u2013 Life form: Herb. Habitat: Short grassland, 500\u20131900 m. Voucher: Bally 955 (EA).Indigoferaarrecta A.Rich. \u2013 Life form: Woody herb. Habitat: Bushland and forest edges, 300\u20132700 m. Voucher: Kerfoot 392 (EA).Indigoferaatriceps Hook.f. \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 1000\u20133200 m. Vouchers: Kerfoot 1443 (EA), SK 0041 .Indigoferacircinella Baker f. \u2013 Life form: Woody herb. Habitat: Grassland, 50\u20132200 m. Voucher: Napier 1794 (EA).Indigoferademissa Taub. \u2013 Life form: Herb. Habitat: Roadsides in grassland, 900\u20132500 m. Voucher: Nattras 1285 (EA).Indigoferanairobiensissubsp.nairobiensis Baker f. \u2013 Life form: Woody herb. Habitat: Upland grassland, 1900\u20132300 m. Voucher: Bogdan 4624 (EA).Indigoferanairobiensissubsp.vicida J.B.Gillett \u2013 Life form: Woody herb. Habitat: Upland grassland, 1900\u20132300 m. Voucher: Gillet 19364 (EA).Indigoferaswaziensis Bolus \u2013 Life form: Shrub. Habitat: Upland evergreen forest margins, 1200\u20132700 m. Voucher: Hansen 762 (EA).Indigoferatritasubsp.scabra (Roth) Ali \u2013 Life form: Woody herb. Habitat: Grassland and bushland, 0\u20132500 m. Voucher: Malombe et al. 1381 (EA).Kotschyarecurvifoliasubsp.keniensis Verdc. \u2013 Life form: Shrub. Habitat: Dry evergreen bushland, 2340\u20133000 m. Vouchers: Gardner 1135, Dale 2684 (EA).Lathyrushygrophilus Taub. \u2013 Life form: Herbaceous climber. Habitat: Wet sites in moorland and bamboo forest, 1800\u20134100 m. Voucher: Mabberley 377 (EA).Lotusbecquetii Boutique \u2013 Life form: Herb. Habitat: Upland grassland, 2000\u20133200 m. Voucher: Hawery 168B (EA).Lotuscorniculatus L. \u2013 Life form: Herb. Habitat: Wet sites in upland grassland, 1400\u20132700 m. Voucher: Allnechtsen 10 (EA).Lotusgoetzei Harms \u2013 Life form: Herb. Habitat: Upland forest edges and grassland, 1500\u20133700 m. Voucher: Napier 689 (EA).Medicagolupulina L. \u2013 Life form: Herb. Habitat: Upland grassland, 1800\u20132900 m. Voucher: Kirika et al. 77 (EA).Melilotusofficinalis (L.) Pall. \u2013 Life form: Herb. Habitat: Roadsides in grassland, 2000\u20132000 m. Voucher: Kulkarni 14116 (EA).Neonotoniawightii (Wight & Arn.) J.A.Lackey \u2013 Life form: Woody climber. Habitat: Grassland and bushland, 0\u20132500 m. Voucher: Fries 537 (EA).Ormocarpumtrachycarpum (Taub.) Harms \u2013 Life form: Shrub or small tree. Habitat: Grassland and woodland, 950\u20131800 m. Voucher: Perdue and Kibuwa 8263 (EA).Otholobiumfoliosum (Oliv.) C.H.Stirt. \u2013 Life form: Shrub. Habitat: Upland grassland and forest margins, 1200\u20133200 m. Voucher: Fries 1581 (EA).Parochetuscommunis D.Don \u2013 Life form: Herb. Habitat: Upland moist forest and bamboo forest, 1500\u20133450 m. Voucher: Kuchar and Msafiri 5442 (EA).Rhynchosiacongensissubsp.orientalis Verdc. \u2013 Life form: Herb. Habitat: Grassland, 45\u20132280 m. Voucher: SK 0022 .Rhynchosiadensiflorasubsp.stuhlmannii (Harms) Verdc. \u2013 Life form: Herbaceous climber. Habitat: Upland grassland with scattered trees, 1200\u20132160 m. Vouchers: Nattrass 375, 588 (EA).Rhynchosiahirta (Andrews) Meikle & Verdc. \u2013 Life form: Herb. Habitat: Grassland and forest edges, 0\u20131850 m. Voucher: KEFRI & Omondi 106 (EA).Rhynchosiaminimavar.prostrata (Harv.) Meikle. \u2013 Life form: Herb. Habitat: Grassland, 45\u20132280 m. Vouchers: Verdcourt 1606, Agnew 7685 (EA).Rhynchosiausambarensissubsp.inelegans Verdc. Life form: Woody herb. Habitat: Upland forest edges and bushland, 1200\u20132400 m. Vouchers: Napier 2454, Robertson 1545 (EA).Sennadidymobotrya (Fresen.) H.S.Irwin & Barneby \u2013 Life form: Shrub. Habitat: Moist forest edges and riverine forest, 1500\u20132250 m. Voucher: SK 0209 .Sennaseptemtrionalis (Viv.) H.S.Irwin & Barneby \u2013 Life form: Exotic shrub. Habitat: Dry or moist forest, 910\u20133200 m. Vouchers: Mainwaring 2192 (EA) SK 0030 .*Sennasingueana (Delile) Lock \u2013 Life form: Shrub or small tree. Habitat: Wooded grassland, 0\u20132130 m. Voucher: Perdue and Kibuwa 8216 (EA).Stylosanthesfruticosa (Retz.) Alston \u2013 Life form: Herb or subshrub. Habitat: Grassland and bushland, 10\u20132720 m. Voucher: Perdue and Kibuwa 8183 (EA).Trifoliumburchellianum Ser. \u2013 Life form: Herb. Habitat: Clearings in upland forest and bamboo thickets, 1600\u20133980 m. Voucher: SK 0063 .Trifoliumcryptopodium Steud. ex A.Rich. \u2013 Life form: Herb. Habitat: Moist forest clearings and moorland, 1800\u20134200 m. Voucher: Gillett 19289 (EA).Trifoliumlanceolatum (J.B.Gillett) J.B.Gillett \u2013 Life form: Herb. Habitat: Upland grassland, 1950\u20132800 m. Voucher: Achlactoe 2749 (EA).Trifoliummultinerve A.Rich. \u2013 Life form: Herb. Habitat: Moist upland grassland and moorland, 1800\u20133700 m. Voucher: Mabberley 352 (EA).Trifoliumpolystachyum Fresen. \u2013 Life form: Herb. Habitat: Moist forest margins, 1600\u20132800 m. Voucher: Meinertzhagen (EA).Trifoliumsemipilosumvar.semipilosum Fresen. \u2013 Life form: Herb. Habitat: Upland grassland, 1500\u20133000 m. Voucher: Beentje 320g (EA).Trifoliumsemipilosumvar.glabrescens J.B.Gillett \u2013 Life form: Herb. Habitat: Upland grassland, 1200\u20132700 m. Vouchers: Trapnell 2111, Scott Elliot 6606 (EA).Trifoliumsimense Fresen. \u2013 Life form: Herb. Habitat: Upland grassland, 1500\u20133100 m. Voucher: Muasya et al. 002 (EA).Trifoliumsteudneri Schweinf. \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 1800\u20132400 m. Voucher: Bogdan 3222 (EA).Trifoliumtembense Fresen. \u2013 Life form: Herb. Habitat: Wet places in upland forest and moorland, 2000\u20133800 m. Voucher: Polhill 438 (EA).Viciabenghalensis L. \u2013 Life form: Exotic herb. Habitat: Disturbed areas in upland forest, 2400\u20132800 m. Voucher: Agriculture Dept 11568 (EA).*Viciahirsuta (L.) Gray \u2013 Life form: Herb. Habitat: Upland forest glades and grassland, 1950\u20133360 m. Voucher: Bogdan 1985 (EA).Viciasativa L. \u2013 Life form: Herb. Habitat: Upland grassland, 1700\u20133350 m. Voucher: Mabberley 376 (EA).Viciavillosasubsp.varia (Host) Corb. \u2013 Life form: Exotic herb. Habitat: Upland grassland, 1860\u20132700 m. Vouchers: Agric. Dept 11570, Blacklands 16293 (EA).*Vignaluteola (Jacq.) Benth. \u2013 Life form: Herbaceous climber. Habitat: Swampy forest and wet grassland, 650\u20131920 m. Vouchers: Battiscombe 1123, Kirrika 230, Napper 412 (EA).Vignamembranaceasubsp.macrodon (Robyns & Boutique) Verdc. \u2013 Life form: Herbaceous climber. Habitat: Upland moist forest, 1275\u20132100 m. Vouchers: Verdcourt 661, EANHS KF/77 (EA).Vignaparkeri Baker \u2013 Life form: Herbaceous climber. Habitat: Upland grassland with scattered trees, 1050\u20132900 m. Voucher: Kerfoot 1369 (EA).GentianaceaeF77. Sebaeabrachyphylla Griseb. \u2013 Life form: Herb. Habitat: Moist montane forests and moorlands, 1400\u20133470 m. Voucher: SK 0118 .Sebaealeiostyla Gilg \u2013 Life form: Herb. Habitat: Stream-sides and marshes in upland grassland, 1800\u20133500 m. Voucher: Kerfoot 1369 (EA).Sebaeapentandravar.burchellii E.Mey. \u2013 Life form: Herb. Habitat: Stream-sides and marshes in upland grassland, 1450\u20132450 m. Voucher: Greenway 13569 (EA).Swertiacrassiusculavar.crassiuscula Gilg \u2013 Life form: Herb. Habitat: Moorland, 2700\u20134500 m. Vouchers: Copley 138 (EA), SK 0087 .Swertiacrassiusculavar.leucantha (T.C.E.Fr.) Sileshi \u2013 Life form: Herb. Habitat: Moorland, 2700\u20134500 m. Voucher: Dowson 101 (EA).Swertiaeminii Engl. \u2013 Life form: Herb. Habitat: Wet grassland and swamp margins, 1200\u20132250 m. Voucher: Paulo et al. 888 (EA).Swertiakilimandscharica Engl. \u2013 Life form: Herb. Habitat: Open sites in montane forest, 2100\u20133840 m. Voucher: Bally 8643 (EA).Swertialugardiae Bullock \u2013 Life form: Herb. Habitat: Montane grassland, 2450\u20133550 m. Voucher: Naper 1231 (EA).Swertiavolkensii Gilg \u2013 Life form: Herb. Habitat: Upper parts of montane forest to the moorland, 2800\u20134250 m. Voucher: Hedberg 1544 (EA).GeraniaceaeF78. Geraniumaculeolatum Oliv. \u2013 Life form: Herb. Habitat: Upland rainforest, 1200\u20133400 m. Voucher: Mathenge 220 (EA).Geraniumarabicumsubsp.arabicum Forssk. \u2013 Life form: Herb. Habitat: Rainforest and moist sites in grassland and moorland, 1100\u20133940 m. Voucher: SAJIT 006498 .Geraniumarabicumsubsp.latistipulatum (Hochst. ex A.Rich.) Kokwaro \u2013 Life form: Herb. Habitat: Upland grassland and bushland, 1100\u20132800 m. Vouchers: Mwangangi 989, Kokwaro 32 (EA).Geraniumkilimandscharicum Engl. \u2013 Life form: Herb. Habitat: Rocky sites in moorland, 2260\u20134300 m. Voucher: SK 0059 .Geraniummascatense Boiss. \u2013 Life form: Herb. Habitat: Upland grassland and evergreen bushland, 1000\u20132900 m. Voucher: Verdcourt 679 (EA).Geraniumocellatum Cambess. \u2013 Life form: Herb. Habitat: Upland wooded grassland and evergreen bushland, 1000\u20132900 m. Voucher: Verdcourt 679 (EA).Geraniumpurpureum Vill. \u2013 Life form: Herb. Habitat: Upland rainforest and riverine forest, 1300\u20133000 m. Vouchers: Napier 729, Pierce 1682 (EA).Geraniumvaganssubsp.vagans Baker \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1370\u20134500 m. Vouchers: SAJIT 006478, SK 0108 .Geraniumvaganssubsp.whytei (Baker) J.R.Laundon \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1370\u20134500 m. Voucher: Kuchar 12495 (EA).Pelargoniumalchemilloides (L.) Aiton \u2013 Life form: Herb. Habitat: Bushland and montane forest edges, 700\u20132800 m. Voucher: Townsend 2319 (EA).Pelargoniuminquinans (L.) L\u2019Her. \u2013 Life form: Herb. Habitat: Bushland and wooded grassland, 700\u20132800 m. Voucher: SK 0269 .GesneriaceaeF79. Streptocarpusglandulosissimus Engl. \u2013 Life form: Herb. Habitat: Moist forest, 900\u20132600 m. Voucher: Bally 8517 (EA).GunneraceaeF80. Gunneraperpensa L. \u2013 Life form: Herb. Habitat: Upland riparian forest, 1560\u20134000 m. Voucher: Gardner 1882 (EA).HamamelidaceaeF81. Trichocladusellipticus Eckl. & Zeyh. \u2013 Life form: Tree. Habitat: Upland moist forest, 1350\u20132800 m. Voucher: Hansen 808 (EA).HypericaceaeF82. Hypericumkiboense Oliv. \u2013 Life form: Shrub. Habitat: Upland dry evergreen forests and grassland, 2100\u20133900 m. Voucher: Battiscombe 710 (EA).Hypericumlalandii Choisy \u2013 Life form: Herb. Habitat: Marshes and damp sites in upland grassland, 1080\u20132250 m. Voucher: Taylor 1511 (EA).Hypericumlanceolatum Lam. \u2013 Life form: Shrub or small tree. Habitat: Upland dry evergreen forests, 1800\u20133360 m. Voucher: Edwards 2843/16 (EA).Hypericumpeplidifolium A.Rich. \u2013 Life form: Herb. Habitat: Wet places in moorland, 1170\u20133600 m. Voucher: Coe 788 (EA).Hypericumrevolutumsubsp.revolutum Vahl \u2013 Life form: Shrub. Habitat: Upland dry evergreen forest, 2100\u20133250 m. Vouchers: SAJIT 006484, SK 0117 .Hypericumrevolutumsubsp.keniense (Schweinf.) N.Robson \u2013 Life form: Shrub. Habitat: Dry evergreen forest, 2700\u20133800 m. Voucher: Knox 3722 (EA).Hypericumscioanum Chiov. \u2013 Life form: Herb. Habitat: Wet sites in moorland, 1830\u20133590 m. Voucher: Mabberley 344 (EA).IcacinaceaeF83. Apodytesdimidiata E.Mey. ex Arn. \u2013 Life form: Tree. Habitat: Upland moist forest, 1000\u20132500 m. Voucher: SK 0146 .LamiaceaeF84. Achyrospermumschimperi (Hochst. ex Briq.) Perkins \u2013 Life form: Herb. Habitat: Montane forest undergrowth, 1200\u20133000 m. Voucher: SK 0208 .Ajugaintegrifolia Buch.-Ham. ex D.Don \u2013 Life form: Herb. Habitat: Upland moist forest, 1000\u20133400 m. Voucher: SK 0197 .Clerodendrumjohnstonii Oliv. \u2013 Life form: Woody climber. Habitat: Upland moist forest, 1200\u20132550 m. Voucher: Verdcourt 3780 (EA).Clinopodiumabyssinicumvar.condensatum (Hedberg) Ryding \u2013 Life form: Shrub. Habitat: Wet evergreen bushland and grassland, 1000\u20133950 m. Vouchers: Lind 2934, Agricultural Dept 62 (EA).Clinopodiumkilimandschari (G\u00fcrke) Ryding \u2013 Life form: Herb. Habitat: Moorland and heath zone, 2900\u20134400 m. Voucher: SK 0090 .Clinopodiumsimense (Benth.) Kuntze \u2013 Life form: Herb. Habitat: Moist grassland and open woodland, 1700\u20133500 m. Voucher: Fries and Fries 2429 (EA).Clinopodiumuhligii (G\u00fcrke) Ryding \u2013 Life form: Shrub. Habitat: Montane forest edges and evergreen bushland, 3350\u20134180 m. Voucher: Kuchar 10360 (EA).Fuerstiaafricana T.C.E.Fr. \u2013 Life form: Woody herb. Habitat: Upland grassland, 1200\u20132550 m. Voucher: Kuchar 8357a (EA).Leonotisnepetifolia (L.) R.Br. \u2013 Life form: Herb. Habitat: Upland grassland and bushland, 1000\u20132290 m. Voucher: Napier 2587 (EA).Leonotisocymifoliavar.raineriana (Vis.) Iwarsson. \u2013 Life form: Shrub. Habitat: Margins of montane forest, 600\u20133700 m. Vouchers: Verdcourt 3813 (EA), SK 0097 .Leucasdeflexa Hook.f. \u2013 Life form: Herb. Habitat: Moist forest, 1000\u20132500 m. Voucher: Gilbert 6312 (EA).Leucasgrandis Vatke \u2013 Life form: Herb or subshrub. Habitat: Upland evergreen forest, 500\u20132780 m. Voucher: Kamau 367 (EA).Leucasmasaiensis Oliv. \u2013 Life form: Herb. Habitat: Upland forest glades and margins, 1300\u20133200 m. Voucher: Kirika et al. 163 (EA).Leucasmasaiensisvar.venulosa (Baker) Sebald \u2013 Life form: Herb. Habitat: Upland grassland, 1300\u20133200 m. Voucher: Faden et al. 74/577 (EA).Leucasoligocephalavar.oligocephala Hook.f. Life form: Herb. Habitat: Upland grassland and forest margins, 1600\u20132990 m. Vouchers: Verdcourt 1010, 1023 (EA).Leucasvolkensiivar.parviflora Sebald. \u2013 Life form: Herb. Habitat: Open sites in montane forest, 2000\u20132600 m. Vouchers: Taylor 1237, Beentje 3254 (EA).Menthaaquatica L. \u2013 Life form: Herb. Habitat: Upland marshes, 1100\u20132150 m. Voucher: Kuchar 9573 (EA).Menthalongifolia (L.) L. \u2013 Life form: Herb. Habitat: Upland grassland and marshes, 1650\u20132450 m. Vouchers: MacDonald 1344, Poster 3234 (EA).Micromeriaimbricatavar.imbricata (Forssk.) C.Chr. \u2013 Life form: Woody herb. Habitat: Upland open woodland and dry grassland, 1200\u20134000 m. Voucher: Napier 1761 (EA).Micromeriaimbricatavar.villosa Ryding \u2013 Life form: Woody herb. Habitat: Upland evergreen bushland and grassland, 1850\u20134100 m. Voucher: Dawson 415 (EA).Nepetaazurea R.Br. ex Benth. \u2013 Life form: Herb. Habitat: Upland evergreen bushland and grassland, 1700\u20133800 m. Voucher: SK 0120 .Ocimumdecumbens G\u00fcrke \u2013 Life form: Shrub. Habitat: Grassland, 950\u20134000 m. Voucher: Lind 3138 (EA).Ocimumgratissimum L. \u2013 Life form: Herb. Habitat: Dry montane forest, 1100\u20132400 m. Voucher: Perdue and Kibuwa 8046 (EA).Ocimumkenyense Ayob. ex A.J.Paton \u2013 Life form: Herb. Habitat: Wet places in grassland, 1050\u20132300 m. Voucher: Mainwaring 2406 (EA).Ocimumkilimandscharicum G\u00fcrke \u2013 Life form: Shrub. Habitat: Upland grassland, 1100\u20132350 m. Voucher: Faden 68/721 (EA).Ocimumlamiifolium Hochst. ex Benth. \u2013 Life form: Shrub. Habitat: Upland forest edges and bushland, 1000\u20132500 m. Voucher: Kokwaro et al. 2344 (EA).Platostomadenticulatum Robyns \u2013 Life form: Herb. Habitat: Damp sites in grassland and open woodland, 100\u20132480 m. Voucher: Kerfoot 639 (EA).Plectranthusalboviolaceus G\u00fcrke \u2013 Life form: Shrub. Habitat: Upland moist forest and along rivers, 1500\u20132800 m. Voucher: Kimani 22 (EA).Plectranthusalpinus (Vatke) Ryding \u2013 Life form: Shrub. Habitat: Moist forest and along streams, 1900\u20132750 m. Voucher: Napper 657 (EA).Plectranthuscaespitosus Lukhoba & A.J.Paton \u2013 Life form: Herb. Habitat: Upland grassland, 1500\u20132850 m. Voucher: Someren 28 (EA).Plectranthuskamerunensis G\u00fcrke \u2013 Life form: Herb. Habitat: Glades in moist forest and bamboo zone, 1200\u20132700 m. Voucher: Young 1021 (EA).Plectranthuslaxiflorus Benth. \u2013 Life form: Herb. Habitat: Glades in moist forest and bamboo forest, 1600\u20133120 m. Voucher: Alexander 11636 (EA).Plectranthuslongipes Baker \u2013 Life form: Herb or subshrub. Habitat: Rocky grounds in bushland and woodland, 700\u20132440 m. Voucher: Patel 164 (EA).Plectranthusmelleri Baker \u2013 Life form: Shrub. Habitat: Open areas in moist montane forest, 1300\u20132400 m. Voucher: Kokwaro and Mathenge 2981 (EA).Plectranthusmollis (Aiton) Spreng. \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 1200\u20132900 m. Voucher: SK 0231 .Plectranthusmontanus Benth. \u2013 Life form: Herb. Habitat: Dry evergreen forest, 500\u20132400 m. Voucher: Bally 2602 (EA).Plectranthusparvus Oliv. \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 1200\u20132900 m. Voucher: Faden 67/838 (EA).Plectranthuspunctatussubsp.edulis (Vatke) A.J.Paton \u2013 Life form: Herb. Habitat: Moist montane forest up to bamboo zone, 1800\u20133200 m. Vouchers: Kerfoot 51, Mwangangi 977 (EA).Plectranthussylvestris G\u00fcrke \u2013 Life form: Shrub. Habitat: Moist montane forest up to bamboo zone, 1750\u20133280 m. Voucher: Agnew 7705 (EA).Rothecamyricoidesvar.myricoides (Hochst.) Steane & Mabb. \u2013 Life form: Shrub. Habitat: Grassland and open woodland, 900\u20132400 m. Voucher: Faden 74/570 (EA).Rothecamyricoidesvar.discolor (Klotzsch) Verdc. \u2013 Life form: Shrub. Habitat: Grassland and open woodland, 900\u20132400 m. Voucher: Hansen 781 (EA).Salviamerjamie Forssk. \u2013 Life form: Herb. Habitat: Montane grassland and moorland, 2250\u20134100 m. Voucher: Mbale et al. 861 (EA).Salvianilotica Juss. ex Jacq. \u2013 Life form: Exotic herb. Habitat: Montane grassland and forest edges, 1350\u20133700 m. Voucher: Harvey 179 (EA).*Stachysaculeolata Hook.f. \u2013 Life form: Herb. Habitat: Moist sites in bamboo zone and moorland, 1400\u20133650 m. Voucher: Napier 698 (EA).Stachysalpigena T.C.E.Fr. \u2013 Life form: Herb. Habitat: Montane moorland and ericaceous zone, 2900\u20133750 m. Vouchers: Kokwaro 1908 (EA), SK 0064 .Stachysargillicola Sebsebe \u2013 Life form: Woody herb. Habitat: Upland grassland, 1660\u20132200 m. Voucher: Evans 60/167 (EA).Tinneaaethiopica Kotschy ex Hook.f. \u2013 Life form: Herb. Habitat: Wooded grassland, 0\u20132300 m. Voucher: Faden 74/578 (EA).Vitexkeniensis Turrill \u2013 Life form: Tree. Habitat: Moist evergreen forest, 1290\u20132100 m. Voucher: SK 0248 .LauraceaeF85. Ocoteakenyensis (Chiov.) Robyns & R.Wilczek \u2013 Life form: Tree. Habitat: Moist montane forest, 1140\u20132400 m. Voucher: Elliot 2356 (EA).Ocoteausambarensis Engl. \u2013 Life form: Tree. Habitat: Moist montane forest, 900\u20133000 m. Voucher: Forest Dept. 176 (EA).LentibulariaceaeF86. Utriculariagibba L. \u2013 Life form: Herb. Habitat: Aquatic in shallow flowing water and freshwater pools, 10\u20132550 m. Vouchers: William 12346 & 12347 (EA).Utricularialivida E.Mey. \u2013 Life form: Herb. Habitat: Wet grassland, 0\u20132730 m. Voucher: Gilbert 4868 (EA).LinaceaeF87. Linumkeniense T.C.E.Fr. \u2013 Life form: Herb. Habitat: Upland grassland and open grounds in bamboo thickets, 2200\u20133360 m. Vouchers: SAJIT 006471 & 006489 .Linumvolkensii Engl. \u2013 Life form: Herb. Habitat: Wet grassland and stream banks, 1300\u20132750 m. Voucher: Symes 131 (EA).LoganiaceaeF88. Buddlejapolystachya Fresen. \u2013 Life form: Shrub. Habitat: Margins and clearings in upland rainforest, 1000\u20132700 m. Voucher: Birch 61/31 (EA).Nuxiacongesta R.Br. ex Fresen \u2013 Life form: Tree. Habitat: Upland rainforest, 1550\u20132850 m. Voucher: Kokwaro 4421 (EA).LoranthaceaeF89. Agelanthusbrunneus (Engl.) Balle & N.Hall\u00e9 \u2013 Life form: Shrub. Habitat: Moist evergreen forest and riparian forest, 1000\u20131800 m. Voucher: Someren 3191 (EA).Agelanthuspennatulus (Sprague) Polhill & Wiens \u2013 Life form: Shrub. Habitat: Moist montane forest, 1650\u20132400 m. Voucher: Kuchar and Msafiri 5461 (EA).Agelanthussansibarensissubsp.montanus Polhill & Wiens \u2013 Life form: Shrub. Habitat: Moist montane forest, 0\u20132500 m. Vouchers: Wiens 4564, Mainwaring s.n. (EA).Agelanthussubulatus (Engl.) Polhill & Wiens \u2013 Life form: Shrub. Habitat: Bushland and wooded grassland, 10\u20132300 m. Voucher: Faden & Evans 74/706 (EA).Englerinawoodfordioides (Schweinf.) Balle \u2013 Life form: Shrub. Habitat: Moist montane forest and riverine forest, 1350\u20133050 m. Vouchers: SK 0070, SK 0240 .Oncocalyxsulfureus (Engl.) Wiens & Polhill -Life form: Herb. Habitat: Epiphytic in upland dry evergreen forest, 1700\u20133000 m. Voucher: Hepper 4916 (EA).LythraceaeF90. Parsonsiamicropetala (Kunth) Standl. \u2013 Life form: Exotic shrub. Habitat: Escaped cultivation common on stream-sides and disturbed sites. Voucher: Hooper and Townsend 1691 (EA).*Lythrumrotundifolium Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland water pools and swamps, 1650\u20133300 m. Voucher: Kahurananga et al. 2820 (EA).Nesaeakilimandscharicavar.ngongensis Verdc. \u2013 Life form: Woody herb or shrub. Habitat: Upland grassland and bushland, 1650\u20132130 m. Vouchers: Hansen 816, Gillett 17342 (EA).Nesaeaschinziisubsp.subalata (Koehne) Verdc. \u2013 Life form: Herb or subshrub. Habitat: Scattered-tree grassland, 1080\u20132100 m. Vouchers: Dowson 541, Dowson 541 (EA).MalvaceaeF91. Abutilonlongicuspevar.longicuspe Hochst. ex A.Rich. \u2013 Life form: Shrub. Habitat: Open sites in dry evergreen forest, 1650\u20133300 m. Voucher: Faden 67719 (EA).Abutilonlongicuspevar.pilosicalyx Verdc. \u2013 Life form: Shrub. Habitat: Upland grassland and dry forest margins, 1700\u20132400 m. Voucher: Dyson 456 (EA).Abutilonmauritianum (Jacq.) Medik. \u2013 Life form: Shrub. Habitat: Woodland and forest edges, 0\u20132300 m. Voucher: Kokwaro & Kabuye 329 (EA).Dombeyakirkii Mast. \u2013 Life form: Shrub or small tree. Habitat: Bushland and forest margins, 600\u20132400 m. Voucher: SK 0132 .Dombeyarotundifolia (Hochst.) Planch. \u2013 Life form: Tree. Habitat: Forest edges and wooded grassland, 1000\u20132400 m. Voucher: Someren 692 (EA).Dombeyatorrida (J.F.Gmel.) Bamps \u2013 Life form: Tree. Habitat: Upland open forests and forest margins, 1700\u20133050 m. Voucher: Brasnett 200 (EA).Grewiasimilis K.Schum. \u2013 Life form: Shrub. Habitat: Woodland and grassland, 600\u20132250 m. Voucher: Fukuoka 106 (EA).Hibiscusfuscus Garcke \u2013 Life form: Woody herb. Habitat: Upland bush thickets and grassland, 1400\u20132650 m. Voucher: Kokwaro & Kabuye 340 (EA).Hibiscusmacranthus Hochst. ex A.Rich. \u2013 Life form: Shrub. Habitat: Upland forest edges and bushland, 1500\u20132900 m. Voucher: Kuchar 12297 (EA).Hibiscusvitifoliussubsp.vitifolius Brenan & Exell \u2013 Life form: Shrub. Habitat: Dry bushland, 420\u20133000 m. Vouchers: Robertson 1805, McDonald 922 (EA).Malvaverticillata L. \u2013 Life form: Herb. Habitat: Moist montane forest, 1200\u20134050 m. Voucher: McDonald 1285 (EA).Pavoniaburchellii (DC.) R.A.Dyer \u2013 Life form: Shrub. Habitat: Woodland and rainforest margins, 750\u20132300 m. Voucher: SK 0203 .Pavoniaschimperiana Hochst. ex A.Rich. \u2013 Life form: Woody herb or shrub. Habitat: Upland short grassland and forest edges, 1100\u20132400 m. Voucher: Smith et al. 66 (EA).Pavoniaurens Cav. \u2013 Life form: Shrub. Habitat: Forest margins and riparian vegetation, 600\u20133000 m. Vouchers: SK 0020, SK 0068, SK 0261 .Sidacordifolia L. \u2013 Life form: Herb or subshrub. Habitat: Upland bushland, 1300\u20132291 m. Voucher: SK 0163 .Sidarhombifolia L. \u2013 Life form: Shrub. Habitat: Open woodland, 900\u20132250 m. Voucher: SK 0242 .Sidaschimperiana Hochst. ex A.Rich. \u2013 Life form: Shrub. Habitat: Upland grassland, 1200\u20132700 m. Voucher: Smith et al. 66 (EA).Sidatenuicarpa Vollesen \u2013 Life form: Shrub. Habitat: Roadsides in forest, 750\u20132400 m. Voucher: SK 0015 .Sidaternata L.f. \u2013 Life form: Herb. Habitat: Dry montane forest, 1350\u20133280 m. Voucher: Taylor 1586 (EA).Sparmanniaricinocarpa (Eckl. & Zeyh.) Kuntze \u2013 Life form: Shrub. Habitat: Upland grassland with moist forest edges, 1550\u20133380 m. Voucher: Blake 10858 (EA).Triumfettabrachyceras K.Schum. \u2013 Life form: Woody herb or shrub. Habitat: Moist forest clearings and margins, 1200\u20133000 m. Voucher: Musili et al. 187 (EA).Triumfettalongicornuta Hutch. & M.B.Moss \u2013 Life form: Shrub. Habitat: Glades in dry evergreen forest, 1350\u20132150 m. Voucher: SK 0125 .Triumfettapilosa Roth \u2013 Life form: Shrub. Habitat: Moist forest and swamp edges, 1200\u20132250 m. Voucher: Stroud 78 6732 (EA).MeliaceaeF92. Ekebergiacapensis Sparrm. \u2013 Life form: Tree. Habitat: Montane forest and riparian forest, 600\u20132750 m. Voucher: Gardner 380 (EA).Lepidotrichiliavolkensii (G\u00fcrke) Leroy \u2013 Life form: Tree. Habitat: Upland forest margins, 1550\u20132600 m. Voucher: Napper 1491 (EA).Trichiliadregeana Sond. \u2013 Life form: Tree. Habitat: Moist forest and riparian forest, 775\u20131800 m. Voucher: Gachathi 2/81 (EA).Turraeaabyssinica Hochst. ex A.Rich. \u2013 Life form: Shrub or small tree. Habitat: Montane forest, 1820\u20132225 m. Voucher: Gardner 542 (EA).Turraeamombassanasubsp.cuneata (G\u00fcrke) Styles & F.White \u2013 Life form: Shrub or small tree. Habitat: Upland dry forest and bushlands, 1525\u20132225 m. Vouchers: Faden 6742, Hansen 760 (EA).MelianthaceaeF93. Bersamaabyssinica Fresen. \u2013 Life form: Tree. Habitat: Upland moist forest, 1140\u20132550 m. Vouchers: Davidse 7058 (EA), SK 0013, SK 0139, SK 0233 .MenispermaceaeF94. Cissampelosfriesiorum Diels \u2013 Life form: Herbaceous climber. Habitat: Upland moist forest, 2000\u20132100 m. Voucher: Fries 1625 (EA).Stephaniaabyssinicavar.abyssinica (Quart.-Dill & A.Rich.) Walp. \u2013 Life form: Herbaceous climber. Habitat: Moist shaded sites in wooded grassland, 1450\u20133500 m. Vouchers: SAJIT 006465, SK 0035 .Stephaniaabyssinicavar.tomentella (Oliv.) Diels \u2013 Life form: Herbaceous climber. Habitat: Moist shaded sites in wooded grassland, 1450\u20133500 m. Voucher: SK 0159 .MoraceaeF95. Dorsteniaafromontana R.E.Fr. \u2013 Life form: Herb. Habitat: Upland rainforest, 2000\u20132600 m. Voucher: Kirika et al. 76 (EA).Dorsteniahildebrandtii Engl. \u2013 Life form: Herb. Habitat: Epiphytic in moist forest and stream banks, 300\u20132170 m. Voucher: Napier 2182 (EA).Ficuscordatasubsp.salicifolia (Vahl) C.C.Berg \u2013 Life form: Tree. Habitat: Riparian forest and seasonal streams, 950\u20132400 m. Vouchers: Verdcourt 3548, Makin 26 (EA).Ficussur Forssk. \u2013 Life form: Tree. Habitat: Riverine forest, 350\u20132500 m. Vouchers: SK 0228, SK 0229 .Ficusthonningii Blume \u2013 Life form: Tree. Habitat: Moist forest, 350\u20132500 m. Voucher: Kamau 310 (EA).MyricaceaeF96. Morellasalicifoliasubsp.meyeri-johannis (Engl.) Verdc. & Polhill. \u2013 Life form: Tree. Habitat: Upland grassland and moorland, 2700\u20133700 m. Vouchers: Beentje 3240, Thairu 16861 (EA).MyrtaceaeF97. Corymbiacalophylla (R.Br. ex Lindl.) K.D.Hill & L.A.S.Johnson \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Muasya 2020 (EA).*Corymbiagummifera (Gaertn.) K.D.Hill & L.A.S.Johnson \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Pudden 16 (EA).*Eucalyptuscrebra F.Muell. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Greenway 8762 (EA).*Eucalyptusglobulussubsp.maidenii (F.Muell.) J.B.Kirkp. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Vouchers: Verdcourt 12800, Forest Dept 16083 (EA).*Eucalyptuslongifolia Link & Otto. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Forest Dept 16098 (EA).*Eucalyptusmicrocorys F.Muell. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Forest Dept 16108 (EA).*Eucalyptusmuelleriana Howitt \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Pudden 26 (EA).*Eucalyptusobliqua L\u2019H\u00e9r. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Pudden 054 (EA).*Eucalyptuspaniculata Sm. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Stuart 2 (EA).*Eucalyptuspellita F.Muell. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Greenway 8754 (EA).*Eucalyptuspunctata A.Cunn. ex DC. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Darling 31 (EA).*Eucalyptussiderophloia Benth. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Verdcourt 1963 (EA).*Eucalyptusviminalis Labill. \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides and moist forest edges. Voucher: Forest Dept. 16137 (EA).*Syzygiumguineensesubsp.afromontanum F.White \u2013 Life form: Exotic tree. Habitat: Upland riverine and moist forest, 1500\u20132550 m. Vouchers: Battiscombe 555, Moore 762 (EA).OchnaceaeF98. Ochnaholstii Engl. \u2013 Life form: Tree. Habitat: Upland moist forest, 900\u20132350 m. Voucher: Polhill 165 (EA).Ochnainsculpta Sleumer \u2013 Life form: Tree. Habitat: Evergreen forest, 1050\u20132450 m. Voucher: Agnew et al. 7939 (EA).OlacaceaeF99. Strombosiascheffleri Engl. \u2013 Life form: Tree. Habitat: Moist forest, 800\u20132500 m. Voucher: SK 0028 .OleaceaeF100. Chionanthusmildbraedii (Gilg & G.Schellenb.) Stearn \u2013 Life form: Tree. Habitat: Upland moist forest and riverine forest, 1200\u20132100 m. Voucher: SK 0238 .Fraxinuspennsylvanica Marshall \u2013 Life form: Exotic tree. Habitat: Cultivated in roadsides. Voucher: SK 0127 .*Jasminumabyssinicum Hochst. ex DC. \u2013 Life form: Woody climber. Habitat: Forest undergrowth and forest margins, 690\u20133000 m. Voucher: McDonald 1336 (EA).Jasminumschimperi Vatke \u2013 Life form: Woody climber. Habitat: Rainforest and wooded grassland, 690\u20133000 m. Voucher: Miss Mainwaring 2404 (EA).Oleaeuropaea L. \u2013 Life form: Tree. Habitat: Upland wet forest, 950\u20132400 m. Voucher: Napper 1697 (EA).Oleacapensis L. \u2013 Life form: Tree. Habitat: Upland dry forest, 1150\u20132680 m. Voucher: SK 0105 .OnagraceaeF101. Epilobiumhirsutum L. \u2013 Life form: Herb. Habitat: Damp sites in upland grassland and moorland, 1190\u20132590 m. Voucher: SK 0237 .Epilobiumstereophyllum Fresen. \u2013 Life form: Herb. Habitat: Damp sites in upland grassland and moorland, 1750\u20133500 m. Voucher: SK 0116 .Fuchsiaarborescens Sims \u2013 Life form: Exotic shrub or tree. Habitat: Moist forest, 1220\u20132490 m. Voucher: SK 0130 .*Ludwigiaadscendenssubsp.diffusa (Forssk.) P.H.Raven \u2013 Life form: Herb. Habitat: Swamps and freshwater pools, 600\u20131900 m. Voucher: SK 0161 .OrobanchaceaeF102. Hedbergiaabyssinica (Benth.) Molau \u2013 Life form: Herb. Habitat: Montane grassland and forest margins, 2000\u20133980 m. Voucher: Hedberg 1646 (EA).Orobancheminor Sm. \u2013 Life form: Herb. Habitat: Forest edges and disturbed grounds, 540\u20133000 m. Voucher: Townsend 2294 (EA).Orobancheramosa L. \u2013 Life form: Herb. Habitat: Roadsides in upland grassland and woodland, 1735\u20132250 m. Vouchers: The Wallis 15436, Scaham 22 (EA).OxalidaceaeF103. Oxaliscorniculata L. \u2013 Life form: Herb. Habitat: Forest glades, 0\u20133600 m. Voucher: SAJIT 006481 .PapaveraceaeF104. Corydaliscornuta Royle \u2013 Life form: Herb. Habitat: Montane forest up to the moorland, 2300\u20133300 m. Voucher: Napier 720 (EA).Corydalismildbraedii Fedde \u2013 Life form: Herb. Habitat: Montane forest up to moorland, 2200\u20133600 m. Vouchers: SAJIT 006463, SK 0176 .Fumariaabyssinica Hammar \u2013 Life form: Herb. Habitat: Montane forest up to moorland, 1300\u20133200 m. Voucher: Verdcourt 3207 (EA).PassifloraceaeF105. Adeniaglobosasubsp.pseudoglobosa (Verdc.) W.J. de Wilde \u2013 Life form: Woody climber. Habitat: Deciduous and dry evergreen forest, 0\u20131850 m. Vouchers: Verdcourt 2677, 3547 (EA).Adeniagummifera (Harv.) Harms \u2013 Life form: Woody climber. Habitat: Dry or moist forest and bushland, 0\u20131850 m. Voucher: SK 0195 .Passifloraedulis Sims \u2013 Life form: Exotic herbaceous climber. Habitat: Moist forest edges and bush thickets, 0\u20132500 m. Voucher: Greenway 10899 (EA).*Passifloramollissima L.H.Bailey \u2013 Life form: Exotic woody climber. Habitat: Moist forest edges, 1000\u20133000 m. Voucher: SK 0065 .*Passiflorasubpeltata (Kunth) L.H.Bailey \u2013 Life form: Herbaceous climber. Habitat: Moist forest edges, 1500\u20132060 m. Voucher: SK 0003 .PenaeaceaeF106. Oliniarochetiana A.Juss. \u2013 Life form: Tree. Habitat: Upland dry and moist evergreen forest, 1700\u20133100 m. Vouchers: Verdcourt 3283, Holyoak 712 (EA).PhytolaccaceaeF107. Phytolaccadodecandra L\u2019H\u00e9r. \u2013 Life form: Shrub. Habitat: Riparian vegetation and bushland, 500\u20132400 m. Vouchers: SK 0032, SK 0236 .PiperaceaeF108. Peperomiaabyssinica Miq. \u2013 Life form: Herb. Habitat: Moist montane forest, 1600\u20132950 m. Voucher: SK 0142 .Pipercapense L.f. \u2013 Life form: Herb or subshrub. Habitat: Upland swampy forest edges and wet forest floors, 1200\u20132700 m. Voucher: SK 0134 .PittosporaceaeF109. Pittosporumviridiflorum Sims \u2013 Life form: Tree. Habitat: Upland moist forest, 900\u20132400 m. Voucher: Faden et al. 74/858 (EA).PlantaginaceaeF110. Callitricheoreophila Schotsman \u2013 Life form: Herb. Habitat: Aquatic in water pools and streams, 1150\u20133300 m. Voucher: Chandler 2322 (EA).Callitrichevulcanicola Schotsman \u2013 Life form: Herb. Habitat: Moist grounds in montane grassland, 3000\u20134050 m. Vouchers: Hedberg 1650, Gilbert and Thulin 1047 (EA).Plantagopalmata Hook.f. \u2013 Life form: Herb. Habitat: Roadsides and clearings in upland forest, 1170\u20133300 m. Voucher: Bally 8519 (EA).Veronicaabyssinica Fresen. \u2013 Life form: Herb. Habitat: Upland forest and bushy grassland, 1200\u20133900 m. Vouchers: SK 0050, SAJIT 006464 .Veronicaanagallis-aquatica L. \u2013 Life form: Herb. Habitat: Stream-sides, 480\u20132400 m. Voucher: Glover & Samuel 445 (EA).Veronicaglandulosa Hochst. ex Benth. \u2013 Life form: Herb. Habitat: Upland forest margins, 2850\u20133980 m. Voucher: Mabberlay 350 (EA).PolygalaceaeF111. Polygalaohlendorfiana Eckl. & Zeyh. \u2013 Life form: Herb. Habitat: Upland grassland, 1800\u20133050 m. Voucher: Beentje 2658 (EA).Polygalasadebeckiana G\u00fcrke \u2013 Life form: Herb or subshrub. Habitat: Upland grassland, 10\u20132500 m. Voucher: SK 0257 .Polygalasphenoptera Fresen. \u2013 Life form: Herb or subshrub. Habitat: Wooded grassland and bushland, 0\u20133300 m. Voucher: Kokwaro 2797 (EA).Polygalasteudneri Chodat \u2013 Life form: Herb. Habitat: Upland grassland, 3000\u20134050 m. Voucher: Coe 775 (EA).PolygonaceaeF112. Harpagocarpussnowdenii Hutch. & Dandy \u2013 Life form: Herbaceous climber. Habitat: Upland moist forest, 1350\u20132650 m. Voucher: Gedye 6700 (EA).Oxygonumsinuatum (Hochst. & Steud ex Meisn.) Dammer \u2013 Life form: Herb. Habitat: Waste places in grassland, 0\u20132250 m. Voucher: Margareta 6 (EA).Oxygonumstuhlmannii Dammer \u2013 Life form: Herb. Habitat: Waste places in grassland, 10\u20132250 m. Voucher: Aement et al. 150 (EA).Persicariadecipiens (R.Br.) K.L.Wilson \u2013 Life form: Herb. Habitat: Wet places often in water pools, 1100\u20132291 m. Voucher: SK 0162 .Persicarianepalensis (Meisn.) H.Gross \u2013 Life form: Herb. Habitat: Upland grassland and forest edges, 1140\u20133500 m. Voucher: Kimani 9 (EA).Persicariasetosula (A.Rich.) K.L.Wilson \u2013 Life form: Herb. Habitat: Along streams in upland forest, 1050\u20132670 m. Voucher: Kerfoot 609 (EA).Persicariastrigosa (R.Br.) Nakai \u2013 Life form: Herb. Habitat: Upland moist forest and river banks, 1110\u20131920 m. Voucher: Faden 68/706 (EA).Polygonumafromontanum Greenway \u2013 Life form: Shrub. Habitat: Upland rainforest and moorland, 2100\u20133490 m. Voucher: Townsend 2316 (EA).Polygonumaviculare L. \u2013 Life form: Exotic herb. Habitat: Upland roadsides and disturbed areas, 2100\u20133490 m. Voucher: Albrechtsen 5238 (EA).*Rumexacetosella L. \u2013 Life form: Exotic herb. Habitat: Montane grassland, 2400\u20133160 m. Voucher: Luke 15363 (EA).*Rumexnepalensis Spreng. \u2013 Life form: Herb. Habitat: Upland grassland and bushland, 690\u20133700 m. Voucher: Blain 10915 (EA).Rumexruwenzoriensis Chiov. \u2013 Life form: Herb. Habitat: Upland grassland and moorland, 1950\u20133700 m. Voucher: SK 0172 .PortulacaceaeF113. Portulacanitida (Danin & H.G.Baker) Ricceri & Arrigoni \u2013 Life form: Herb. Habitat: Roadsides and waste places in grassland, 0\u20132350 m. Voucher: Faden 74/835 (EA).PrimulaceaeF114. Lysimachiaarvensis (L.) U.Manns & Anderb. \u2013 Life form: Herb. Habitat: Dry evergreen bushland, 1350\u20132635 m. Voucher: Verdcourt 715 (EA).Lysimachiahexamera (P.Taylor) U.Manns & Anderb. \u2013 Life form: Herb. Habitat: Swampy sites in upland grassland, 2100\u20132600 m. Voucher: Hedberg 1085(EA).Lysimachiaserpens (Hochst. ex A.DC.) U.Manns & Anderb. \u2013 Life form: Herb. Habitat: Damp sites in moorland, 2600\u20133960 m. Vouchers: Kuchar 9604 (EA), SK 0074 .Ardisiandrasibthorpioides Hook.f. \u2013 Life form: Herb. Habitat: Moist evergreen forest, 900\u20132670 m. Voucher: Chandler 2227 (EA).Ardisiandrawettsteinii J.Wagner \u2013 Life form: Herb. Habitat: Upland moist forest and bamboo thickets, 1580\u20133600 m. Voucher: Albrechtsen 5946 (EA).EEmbeliakeniensis R.E.Fr. \u2013 Life form: Tree. Habitat: Upland moist forest, 1500\u20132100 m. Voucher: Luke 447 (EA).Lysimachiaruhmeriana Vatke \u2013 Life form: Herb. Habitat: Wet montane forest, 2020\u20133500 m. Voucher: Kirika and York 1061 (EA).Maesalanceolata Forssk. \u2013 Life form: Shrub or tree. Habitat: Riverine forest and moist forest margins, 360\u20132800 m. Voucher: Wimbush 1118 (EA).Myrsineafricana L. \u2013 Life form: Shrub. Habitat: Upland wooded grassland, 1200\u20133600 m. Voucher: SK 0055 .Rapaneamelanophloeos (L.) Mez \u2013 Life form: Tree. Habitat: Moist forest, 900\u20133800 m. Voucher: SK 0101 .ProteaceaeF115. Faureaarborea Engl. \u2013 Life form: Tree. Habitat: Upland dry forest, 1280\u20133100 m. Voucher: Gardner 7063 (EA).Faurearochetiana (A.Rich.) Chiov. ex Pic.Serm. \u2013 Life form: Tree. Habitat: Wooded grassland, 900\u20132400 m. Voucher: Dyson 745 (EA).Faureasaligna Harv. \u2013 Life form: Tree. Habitat: Grassland with scattered trees, 700\u20131800 m. Voucher: Bono 10 (EA).Proteacaffrasubsp.kilimandscharica (Engl.) Chisumpa & Brummitt \u2013 Life form: Shrub. Habitat: Montane grassland and forest edges, 2300\u20133700 m. Vouchers: Beentje 3241 (EA), SK 0110 .Proteagaguedi J.F.Gmel. \u2013 Life form: Tree. Habitat: Woodland and scattered-tree grassland, 900\u20132100 m. Voucher: Holyoak 711 (EA).PutranjivaceaeF116. Drypetesgerrardiivar.gerrardii Hutch. \u2013 Life form: Tree. Habitat: Dry or moist evergreen forest, 1150\u20132300 m. Voucher: Fries 234 (EA).Drypetesgerrardiivar.tomentosa Radcl.-Sm. \u2013 Life form: Tree. Habitat: Upland evergreen forest, 1150\u20132000 m. Voucher: Kirika 496 (EA).RanunculaceaeF117. Anemonethomsonii Oliv. \u2013 Life form: Herb. Habitat: Wet rocky sites in moorland, 2500\u20134000 m. Vouchers: SK 0182, SK 0054 .Clematissimensis Fresen. \u2013 Life form: Woody climber. Habitat: Bushland and forest margins, 1000\u20133360 m. Vouchers: SK 0027, SK 0081 .Delphiniummacrocentrum Oliv. \u2013 Life form: Herb. Habitat: Upland grassland and bamboo thicket margins, 1650\u20133900 m. Voucher: SK 0107 .ERanunculusaberdaricus Ulbr. \u2013 Life form: Herb. Habitat: Clearings in moist bamboo forest, 2550\u20133660 m. Voucher: Coe 789 (EA).Ranunculusmultifidus Forssk. \u2013 Life form: Herb. Habitat: Stream banks and moist bushland, 1170\u20133450 m. Voucher: Mathenge 23 (EA).Ranunculusoreophytus Delile \u2013 Life form: Herb. Habitat: Wet and boggy places in moorland, 2240\u20134200 m. Voucher: Milne-Redhead et al. 1617 (EA).Ranunculusstagnalis Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Bogs and water pools in moorland, 3000\u20134750 m. Voucher: Hedberg 994 (EA).Ranunculusvolkensii Engl. \u2013 Life form: Herb. Habitat: Marshy sites in moorland, 2700\u20134050 m. Voucher: SK 0119 .Thalictrumrhynchocarpum Quart.-Dill. & A.Rich. \u2013 Life form: Herb. Habitat: Undergrowth in upland forest, 1550\u20133275 m. Voucher: SK 0145 .ResedaceaeF118. Cayluseaabyssinica (Fresen.) Fisch. & C.A.Mey. \u2013 Life form: Herb. Habitat: Roadsides in upland grassland, 1100\u20133000 m. Voucher: SK 0124 .RhamnaceaeF119. Helinusmystacinus (Aiton.) E.Mey. ex Steud. \u2013 Life form: Woody climber. Habitat: Wooded grassland and forest margins, 100\u20132400 m. Voucher: SK 0019 .Rhamnusprinoides L\u2019H\u00e9r. \u2013 Life form: Tree. Habitat: Upland moist forests and bushland, 1500\u20133700 m. Vouchers: SK 0006, SK 0263 .Rhamnusstaddo A.Rich. \u2013 Life form: Tree. Habitat: Upland evergreen bushland and dry forest margins, 1000\u20133600 m. Voucher: SAJIT 006504 .Scutiamyrtina (Burm.f.) Kurz \u2013 Life form: Shrub. Habitat: Forest margins and bushland, 0\u20132750 m. Voucher: SK 0266 .RhizophoraceaeF120. Cassipoureacelastroides Alston \u2013 Life form: Shrub or small tree. Habitat: Rocky hills in evergreen bushland, 250\u20131850 m. Voucher: Fries 2103 (EA).Cassipoureagummiflua Tul. \u2013 Life form: Tree. Habitat: Upland wet evergreen forest, 2000\u20132300 m. Vouchers: Luke et al. 7171, Medley 665 (EA).Cassipoureamalosana (Baker.) Alston \u2013 Life form: Tree. Habitat: Moist or dry forest, 750\u20132600 m. Voucher: SK 0025 .RosaceaeF121. Alchemillaargyrophylla Oliv. \u2013 Life form: Shrub. Habitat: Damp sites in moorland, 2250\u20134650 m. Vouchers: Vorontsova 43 (EA), SK 0053 .Alchemillacryptantha Steud. ex A.Rich. \u2013 Life form: Herb. Habitat: Moist moorland and bamboo thickets, 1300\u20134050 m. Voucher: Townsend 2436 (EA).Alchemillaabyssinicasubsp.cyclophylla (T.C.E.Fr.) Kalheber \u2013 Life form: Herb. Habitat: Moist moorland and bamboo thickets, 2900\u20134300 m. Voucher: SK 0095 .Alchemillaelgonensis Mildbr. \u2013 Life form: Shrub. Habitat: Moist moorland and bamboo thickets, 2700\u20134250 m. Voucher: Verdcourt 3777 (EA).Alchemillaellenbeckii Engl. \u2013 Life form: Herb. Habitat: Moist moorland and bamboo thickets, 2100\u20133900 m. Voucher: Hedberg 1501 (EA).Alchemillafischeri Engl. \u2013 Life form: Herb. Habitat: Moist montane forest and bamboo thickets, 2320\u20133440 m. Voucher: Muasya et al. 018(EA).Alchemillapedata Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Damp sites in upland grassland, 2120\u20133120 m. Voucher: Napier 683 (EA).Alchemillahageniae T.C.E.Fr. \u2013 Life form: Herb. Habitat: Moist bamboo thickets and montane evergreen bushland, 3000\u20133490 m. Voucher: Muasya et al. 052 (EA).Alchemillajohnstonii Oliv. \u2013 Life form: Shrub. Habitat: Moist moorland and bamboo thickets, 2400\u20134260 m. Voucher: Mabberley 324 (EA).Alchemillakiwuensis Engl. \u2013 Life form: Herb. Habitat: Moist upland forest and bamboo forest, 1250\u20133000 m. Voucher: Verdcourt 601 (EA).Alchemillamicrobetula T.C.E.Fr. \u2013 Life form: Herb. Habitat: Moist moorland, 3350\u20134400 m. Voucher: Hedberg 4430 (EA).Alchemillarothii Oliv. \u2013 Life form: Herb. Habitat: Moorland and upper edges of montane forest, 2700\u20134000 m. Voucher: Kuchar 12468(EA).Cliffortianitidula (Engl.) R.E.Fr. & T.C.E.Fr. \u2013 Life form: Shrub. Habitat: Damp sites in moorland, 2040\u20133150 m. Voucher: Kuchar 10289 (EA).Fragariavesca L. \u2013 Life form: Herb. Habitat: Upland grassland and forest edges, 2400\u20132850 m. Voucher: Mungai 50 (EA).Hageniaabyssinica (Bruce ex Steud.) J.F.Gmel. \u2013 Life form: Tree. Habitat: Upland moist forest, 2400\u20133600 m. Voucher: SK 0122 .Prunusafricana (Hook.f.) Kalkman \u2013 Life form: Tree. Habitat: Upland moist forest and riverine forest, 1350\u20132750 m. Voucher: Moon 765 (EA).Rosarubiginosa L. \u2013 Life form: Herb. Habitat: Upland forest margins, 1600\u20133000 m. Voucher: SK 0264 .Rubusapetalus Poir. \u2013 Life form: Shrub. Habitat: Upland moist forest, 1275\u20132700 m. Voucher: Logic/Bally 7958 (EA).Rubusfriesiorum Gust. \u2013 Life form: Shrub. Habitat: Upland moist forest, 3050\u20133400 m. Vouchers: Kuchar 12476 (EA), SK 0062 .Rubuskeniensis Standl. \u2013 Life form: Shrub. Habitat: Upland moist forest, 1950\u20132800 m. Voucher: SAJIT 006472 .Rubuspinnatus Willd. \u2013 Life form: Shrub. Habitat: Upland moist forest and bamboo thickets, 2400\u20133000 m. Voucher: Kuchar 7838 (EA).Rubusscheffleri Engl. \u2013 Life form: Shrub. Habitat: Upland moist forest margins and evergreen bushland, 1650\u20133150 m. Voucher: Grant 1217 (EA).Rubussteudneri Schweinf. \u2013 Life form: Shrub. Habitat: Upland moist forest margins and evergreen bushland, 1500\u20133480 m. Vouchers: Kuchar 8311, Kuchar and Msafiri 5206 (EA).Rubusvolkensii Engl. \u2013 Life form: Shrub. Habitat: Upland moist forest margins and open sites, 2100\u20133450 m. Voucher: SAJIT 006480 .RubiaceaeF122. Anthospermumherbaceum L.f. \u2013 Life form: Herb. Habitat: Woodland and forest edges, 900\u20133240 m. Voucher: Kerfoot 477 (EA).Anthospermumusambarense K.Schum. \u2013 Life form: Shrub. Habitat: Moorland and upper edges of montane forest, 1300\u20134050 m. Voucher: Gardner 1113 (EA).Canthiumoligocarpumsubsp.friesiorum (Robyns) Bridson \u2013 Life form: Shrub or tree. Habitat: Upland wet evergreen forest, 2000\u20132500 m. Vouchers: Battiscombe 1049, Venn Fey 11703 (EA).Chassaliakenyensis Verdc. \u2013 Life form: Shrub. Habitat: Moist evergreen forest, 1650\u20132300 m. Voucher: Polhill 360 (EA).Galinierasaxifraga (Hochst.) Bridson \u2013 Life form: Tree. Habitat: Upland moist forest and stream-sides, 1700\u20133000 m. Voucher: SK 0234 .Galiumacrophyum Hochst. ex Chiov. \u2013 Life form: Herb. Habitat: Open areas in bamboo thickets and montane forest, 2700\u20133200 m. Voucher: Kokwaro 1947 (EA).Galiumaparinoides Forssk. \u2013 Life form: Herb. Habitat: Wet evergreen forest, 1680\u20133700 m. Voucher: Verdcourt, Cooley and Howard 3766G (EA).Galiumglacialevar.satimmae Verdc. \u2013 Life form: Herb. Habitat: Damp places in moorland, 3510\u20134350 m. Voucher: Coe & Kirika 284 (EA).Galiumkenyanum Verdc. \u2013 Life form: Herb. Habitat: Upper margins of montane forest and moorland, 2880\u20133550 m. Voucher: Polhill 239 (EA).Galiumossirwaense K.Krause \u2013 Life form: Herb. Habitat: Upland moist forest edges, 2160\u20133750 m. Vouchers: Kuchar 12353, Napper 536 (EA).Galiumruwenzoriense (Cortesi) Chiov. \u2013 Life form: Herb. Habitat: Open upland forests or bushland, 2700\u20134000 m. Voucher: Hansen 870 (EA).Galiumsimense Fresen. \u2013 Life form: Herb. Habitat: Upland bushland and woodland, 1500\u20132700 m. Voucher: Taiti 2027 (EA).Galiumspuriumsubsp.africanum Verdc. \u2013 Life form: Herb. Habitat: Upland bushland and forest edges, 1250\u20132700 m. Vouchers: Knox 3213, Kanore Kibui 16 (EA).Galiumthunbergianum Eckl. & Zeyh. \u2013 Life form: Herb. Habitat: Wet montane forest, 2000\u20133750 m. Voucher: Knox 3091 (EA).Galiumscioanum Chiov. \u2013 Life form: Herb. Habitat: Upland swamps and riversides, 1800\u20132700 m. Voucher: SK 0093 .Lasianthuskilimandscharicus K.Schum. \u2013 Life form: Shrub or small tree. Habitat: Undergrowth in moist forest, 1500\u20132500 m. Voucher: Hanse 834 (EA).Mussaendamicrodontasubsp.odorata (Hutch.) Bridson \u2013 Life form: Shrub or tree. Habitat: Upland moist evergreen forest and riparian forest, 1830\u20132100 m. Vouchers: Greenway 9680, Kirika et al. 6 (EA).Oldenlandiafriesiorum Bremek \u2013 Life form: Herb. Habitat: Upland evergreen forest and forest edges, 1800\u20132550 m. Voucher: Kuchar 8348 (EA).Oldenlandiamonanthos (Hochst. ex A.Rich.) Hiern \u2013 Life form: Herb. Habitat: Upland evergreen forest and montane grassland, 1350\u20133500 m. Voucher: Lind 2883 (EA).Pauridianthapaucinervis (Hiern) Bremek. \u2013 Life form: Shrub or small tree. Habitat: Upland moist evergreen forest, 500\u20132400 m. Voucher: SK 0244 .Pavettaabyssinicavar.lamurensis Verdc. \u2013 Life form: Tree. Habitat: Upland forest and bushland, 1500\u20132550 m. Vouchers: Luke 705, Gardner 2837 (EA).Pentanisiafoetida Verdc. \u2013 Life form: Herb. Habitat: Upland grassland and forest margins, 1830\u20132300 m. Voucher: De Block & Stieperaere 503 (EA).Pentaslanceolata (Forssk.) Deflers \u2013 Life form: Herb or subshrub. Habitat: Roadsides in upland grassland, 1200\u20132830 m. Voucher: Young 1004 (EA).Psychotriafractinervata E.M.A.Petit \u2013 Life form: Tree. Habitat: Upland wet forest, 1800\u20132600 m. Vouchers: SK 0128, SK 0135, SK 0241 .Psychotriakirkii Hiern \u2013 Life form: Shrub. Habitat: Moist forests and open woodland, 250\u20132250 m. Voucher: SK 0152 .Psychotriamahonii C.H.Wright \u2013 Life form: Tree. Habitat: Upland wet evergreen forest and swampy forest, 1230\u20132700 m. Voucher: SK 0243 .Psydraxparviflorasubsp.rubrocostata (Robyns) Bridson \u2013 Life form: Tree. Habitat: Upland moist forest, 1375\u20132750 m. Vouchers: Someren 3534, Muhia 123 (EA).Psydraxschimperiana (A.Rich.) Bridson \u2013 Life form: Tree. Habitat: Moist forest and bushland, 15\u20132500 m. Voucher: SK 0005 .Rothmanniamanganjae (Hiern) Keay \u2013 Life form: Tree. Habitat: Moist forest, 230\u20131800 m. Voucher: Gardner 2477 (EA).Rubiacordifoliasubsp.conotricha (Gand.) Verdc. \u2013 Life form: Herbaceous climber. Habitat: Upland forest edges and bushland, 1140\u20133120 m. Vouchers: Verdcourt 620 (EA), SAJIT 006503 Rytigyniabugoyensis (K.Krause) Verdc. \u2013 Life form: Shrub. Habitat: Montane evergreen forest, 1230\u20132400 m. Voucher: Faden 67/142 (EA).Rytigyniauhligii (K.Schum. & K.Krause) Verdc. \u2013 Life form: Tree. Habitat: Montane dry or moist evergreen forest, 1000\u20132460 m. Voucher: SK 0200 .Spermacoceprinceae (K.Schum.) Verdc. \u2013 Life form: Herb. Habitat: Roadsides in bamboo thickets, 960\u20132650 m. Voucher: SK 0049 .Vangueriaapiculata K.Schum. \u2013 Life form: Tree. Habitat: Evergreen forest, bushland and riverine forest, 900\u20132330 m. Voucher: SK 0138 .Vangueriainfausta Burch. \u2013 Life form: Tree. Habitat: Evergreen forest margins and woodland, 30\u20132100 m. Voucher: Faden 6774 (EA).Vangueriamadagascariensis J.F.Gmel. \u2013 Life form: Tree. Habitat: Moist forest and riparian forest, 0\u20132130 m. Voucher: SK 0037 .Vangueriavolkensii K.Schum. \u2013 Life form: Tree. Habitat: Dry forest margin and riverine forest, 900\u20132300 m. Voucher: SK 0235 .RutaceaeF123. Calodendrumcapense (L.f.) Thunb. \u2013 Life form: Tree. Habitat: Upland evergreen and riverine forest, 1200\u20132200 m. Voucher: Kamau 326 (EA).Clausenaanisata (Willd.) Hook.f. ex Benth. \u2013 Life form: Tree. Habitat: Upland moist forest, 0\u20132700 m. Voucher: SK 0129 .Fagaropsisangolensis (Engl.) Dale \u2013 Life form: Tree. Habitat: Upland moist forest, 1000\u20132250 m. Voucher: Faden 74/895E (EA).Toddaliaasiatica (L.) Lam. \u2013 Life form: Shrub. Habitat: Moist forest edges and wet bushland, 0\u20133000 m. Voucher: SK 0002 .Veprisglandulosa (Hoyle & Leakey) Kokwaro \u2013 Life form: Tree. Habitat: Upland dry evergreen forest, 1700\u20132020 m. Voucher: Kirika 491 (EA).Veprishanangensisvar.unifoliata Kokwaro \u2013 Life form: Tree. Habitat: Upland evergreen forest and bushland, 1700\u20132020 m. Vouchers: Kokwaro 4038 & 4039, Greenway 7595 (EA).Veprisnobilis (Delile) Mziray \u2013 Life form: Tree. Habitat: Dry evergreen forest and bushland, 900\u20132750 m. Voucher: SK 0169 .Veprissimplicifolia (Engl.) Mziray \u2013 Life form: Tree. Habitat: Dry forest and evergreen forest and bushland, 300\u20132420 m. Voucher: Battiscombe 867 (EA).Vepristrichocarpa (Engl.) Mziray \u2013 Life form: Shrub. Habitat: Wooded grassland and riparian forest, 0\u20132660 m. Voucher: Stuhlmann 937 (EA).Zanthoxylumusambarense (Engl.) Kokwaro \u2013 Life form: Tree. Habitat: Upland dry forest, 1200\u20132600 m. Voucher: Greenway 12624 (EA).SalicaceaeF124. Caseariabattiscombei R.E.Fr. \u2013 Life form: Tree. Habitat: Upland moist forest, 1000\u20132440 m. Voucher: Gachathi 1/81 (EA).Dovyalisabyssinica (A.Rich.) Warb. \u2013 Life form: Shrub or tree. Habitat: Upland moist forest, 1450\u20133000 m. Voucher: SK 0021 .Oncobaroutledgei Sprague \u2013 Life form: Shrub or small tree. Habitat: Upland moist forest and riparian vegetation, 900\u20132440 m. Voucher: Hargen 1186 (EA).Oncobaspinosa Forssk. \u2013 Life form: Shrub. Habitat: Moist forest edges and bushland, 0\u20131800 m. Voucher: Kirika et al. 168 (EA).Scolopiazeyheri (Nees) Szyszy\u0142 \u2013 Life form: Tree. Habitat: Dry evergreen forest and bushland, 0\u20132400 m. Voucher: Verdcourt 3132 (EA).Trimeriagrandifolia (Hochst.) Warb. \u2013 Life form: Tree. Habitat: Dry evergreen forest and bushland, 150\u20132500 m. Voucher: Napier 1933 (EA).SantalaceaeF125. Osyrislanceolata Hochst. & Steud. \u2013 Life form: Shrub or small tree. Habitat: Upland forest and bushland, 900\u20132700 m. Voucher: Robertson 7675 (EA).Thesiumkilimandscharicum Engl. \u2013 Life form: Herb. Habitat: Montane grassland and moorland, 2200\u20134200 m. Voucher: Polhill 231 (EA).Thesiummukense A.W.Hill \u2013 Life form: Herb. Habitat: Upland grassland and woodland, 1100\u20132500 m. Voucher: Faden & Evans 74/622 (EA).Thesiumradicans Hochst. ex A.Rich. \u2013 Life form: Herb. Habitat: Upland open grassland, 1800\u20133000 m. Voucher: Harwey Albuchtsen 186 (EA).Thesiumschweinfurthii Engl. \u2013 Life form: Herb. Habitat: Upland grassland and woodland, 1050\u20132300 m. Voucher: Harwey Albuchtsen 187 (EA).Viscumtuberculatum A.Rich. \u2013 Life form: Shrub. Habitat: Upland dry evergreen forest and bushland, 1200\u20132400 m. Voucher: SK 0199 .SapindaceaeF126. Allophylusabyssinicus (Hochst.) Radk. \u2013 Life form: Tree. Habitat: Upland moist forest, 1050\u20132550 m. Voucher: Lind et al. 5029 (EA).Allophylusafricanus P.Beauv. \u2013 Life form: Tree. Habitat: Wooded grassland and forest margins, 650\u20132400 m. Voucher: SK 0194 .Blighiaunijugata Baker \u2013 Life form: Tree. Habitat: Moist or dry evergreen forest and bushland, 0\u20131900 m. Voucher: Battiscombe 6 (EA).Deinbolliakilimandscharica Taub. \u2013 Life form: Tree. Habitat: Moist or dry evergreen forest and bushland, 1100\u20132400 m. Voucher: E.A.A. F.RO Staff 53 (EA).Dodonaeaviscosasubsp.angustifolia (L.f.) J.G.West. \u2013 Life form: Shrub. Habitat: Grassland and bushland, 0\u20132700 m. Voucher: SK 0098 .SapotaceaeF127. Chrysophyllumgorungosanum Engl. \u2013 Life form: Tree. Habitat: Upland moist forest, 1300\u20132250 m. Voucher: Hockliffe 1370 (EA).Pouteriaadolfi-friedericiisubsp.keniensis (R.E.Fr.) L.Gaut. \u2013 Life form: Tree. Habitat: Upland moist forest, 1430\u20132500 m. Vouchers: Leaky 1224, Luke 408 (EA).ScrophulariaceaeF128. Hedbergiadecurva (Hochst. ex Benth.) A.Fleischm. & Heubl \u2013 Life form: Herb. Habitat: Moorland and upper edges of montane forest, 2950\u20133840 m. Voucher: SK 0078 .Hedbergialongiflora (Hochst. ex Benth.) A.Fleischm. & Heubl \u2013 Life form: Herb. Habitat: Moist montane forest and grassland, 2450\u20133500 m. Voucher: Kuchar 12763 (EA).Bartsiatrixago L. \u2013 Life form: Herb. Habitat: Rocky sites in moorland, 930\u20133700 m. Voucher: Dale 2683 (EA).Craterostigmapumilum Hochst. \u2013 Life form: Herb. Habitat: Montane grassland, 2000\u20132600 m. Voucher: Verdcourt 1042 (EA).Cycniumtenuisectum (Standl.) O.J.Hansen \u2013 Life form: Herb. Habitat: Open places in montane forest, 1800\u20133500 m. Voucher: Nattrass 1459 (EA).Cycniumtubulosumsubsp.montanum (N.E.Br.) O.J.Hansen. \u2013 Life form: Herb. Habitat: Grassland, 200\u20132600 m. Vouchers: Harvey 178, Tallantire 675 (EA).Diclisbambuseti R.E.Fr. \u2013 Life form: Herb. Habitat: Moist montane forest, 2000\u20133720 m. Voucher: Kuchar 12729 (EA).Diclisovata Benth. \u2013 Life form: Herb. Habitat: Upland moist grassland and montane forest, 1300\u20133440 m. Voucher: John Terry 178 (EA).Hebenstretiaangolensis Rolfe \u2013 Life form: Herb. Habitat: Dry montane grassland and rocky heathland, 1500\u20134000 m. Voucher: SAJIT 006476, SK 0091 .Limosellaafricana Gl\u00fcck \u2013 Life form: Herb. Habitat: Aquatic in upland waterfalls edges and stream banks, 1600\u20134200 m. Voucher: Gilbert et al. 1045 (EA).Limosellacapensis Thunb. \u2013 Life form: Herb. Habitat: Aquatic in muddy water pools and slow flowing streams, 1800\u20132800 m. Voucher: Verdcourt 641 (EA).Limosellamacrantha R.E.Fr. \u2013 Life form: Herb. Habitat: Moist depressions in montane forest and moorland, 2500\u20134500 m. Voucher: Napper 1232 (EA).Limosellamaior Diels \u2013 Life form: Herb. Habitat: Aquatic in upland muddy water pools, 1800\u20132700 m. Voucher: Greenway and Hemming 8768 (EA).Linderniarotundifolia (L.) Alston \u2013 Life form: Herb. Habitat: Roadsides in upland moist grassland, 1600\u20132000 m. Voucher: Agnew 7081 (EA).Selagothomsonii Rolfe \u2013 Life form: Herb. Habitat: Dry montane grassland, 1860\u20133380 m. Voucher: Greenway and Kanuri 15045 (EA).Sibthorpiaeuropaea L. \u2013 Life form: Herb. Habitat: Moist montane forest, 2000\u20133750 m. Voucher: SAJIT 006469 .Verbascumbrevipedicellatum (Engl.) Hub.-Mor. \u2013 Life form: Herb. Habitat: Upland rocky grassland, 1550\u20134100 m. Voucher: Mbale 860 (EA).Verbascumscrophulariifolium (Hochstetter) D.Hartl. \u2013 Life form: Herb. Habitat: Upland grassland, 1800\u20133600 m. Voucher: Piers 10163 (EA).SimaroubaceaeF129. Bruceaantidysenterica J.F.Mill. \u2013 Life form: Tree. Habitat: Upland dry or moist evergreen forest, 1400\u20132800 m. Voucher: Davidse 7054 (EA).SolanaceaeF130. Brugmansiasuaveolens (Humb. & Bonpl. ex Willd.) Sweet \u2013 Life form: Exotic shrub or small tree. Habitat: Forest margins and roadsides, 500\u20131800 m. Voucher: SK 0226 .*Cestrumaurantiacum Lindl. \u2013 Life form: Exotic shrub. Habitat: Roadsides and disturbed areas, 850\u20132600 m. Voucher: SK 0158 .*Cestrumelegans (Brongn.) Schltdl. \u2013 Life form: Exotic shrub or small tree. Habitat: Disturbed sites in upland moist forest, 1350\u20132600 m. Voucher: SK 0262 .*Discopodiumpenninervium Hochst. \u2013 Life form: Shrub. Habitat: Moist upper parts of montane forest and moorland, 1400\u20133000 m. Voucher: SK 0082 .Physalisphiladelphica Lam. \u2013 Life form: Exotic herb. Habitat: Forest margins and bushland, 990\u20132250 m. Voucher: SK 0031 .*Physalisperuviana L. \u2013 Life form: Exotic herb. Habitat: Upland forest margins and bushland, 1700\u20132500 m. Voucher: Kamau 333 (EA).*Solanumaculeastrum Dunal \u2013 Life form: Shrub or tree. Habitat: Upland forest margins and grassland, 1200\u20132500 m. Voucher: SK 0043 .Solanumagnewiorum Voronts. \u2013 Life form: Shrub. Habitat: Moist montane forest, 1800\u20132500 m. Voucher: Hepper and Field 4923 (EA).Solanumamericanum Mill. \u2013 Life form: Exotic herb. Habitat: Disturbed places in grassland and bushland, 0\u20133200 m. Voucher: Kerfoot 638 (EA).*Solanumgiganteum Jacq. \u2013 Life form: Shrub. Habitat: Upland grassland and bushland, 1500\u20132450 m. Voucher: Polhill & Verdcourt 267 (EA).Solanumincanum L. \u2013 Life form: Shrub. Habitat: Bushland and wooded grassland, 15\u20132200 m. Voucher: Bally and Smith 14628A (EA).Solanumlaxum Spreng. \u2013 Life form: Exotic shrub. Habitat: Upland rainforest, 1600\u20132650 m. Voucher: Verdcourt 3026 (EA).*Solanummauense Bitter \u2013 Life form: Shrub. Habitat: Upland forest edges and bushland, 1800\u20133000 m. Voucher: Simpson 13390 (EA).Solanummauritianum Scop. \u2013 Life form: Exotic shrub or small tree. Habitat: Upland forest margins and roadsides, 1150\u20132800 m. Voucher: SK 0151 .*Solanumphoxocarpum Voronts. \u2013 Life form: Shrub or tree. Habitat: Upland moist forest and woodland, 2100\u20133000 m. Voucher: Mbale et al. 844 (EA).Solanumpseudocapsicum L. \u2013 Life form: Exotic shrub. Habitat: Disturbed sites in upland forest, 1600\u20132150 m. Voucher: SK 0153 .*Solanumpseudospinosum C.H.Wright \u2013 Life form: Shrub. Habitat: Upland grassland and bushland, 2100\u20133600 m. Voucher: Snowden 564 (EA).Solanumrunsoriense C.H.Wright \u2013 Life form: Shrub. Habitat: Upper parts of montane forest, 2400\u20133200 m. Voucher: Polhill 250 (EA).Solanumschumannianum Dammer \u2013 Life form: Shrub. Habitat: Upland forest clearings, roadsides and bushland, 1300\u20133000 m. Voucher: SK 0029 .Solanumtarderemotum Bitter \u2013 Life form: Herb. Habitat: Moist forest margins and along streams, 550\u20132950 m. Voucher: Kerfoot 637 (EA).Solanumterminale Forsk. \u2013 Life form: Shrub. Habitat: Riverine forest and bushland, 400\u20133220 m. Voucher: SK 0040 .Withaniasomnifera (L.) Dunal \u2013 Life form: Herb or subshrub. Habitat: Grassland and bushland, 0\u20132800 m. Voucher: SK 0024 .StilbaceaeF131. Hallerialucida L. \u2013 Life form: Shrub. Habitat: Dry forest, 900\u20132700 m. Voucher: SK 0104 .ThymelaeaceaeF132. Gnidiaglauca (Fresen.) Gilg \u2013 Life form: Tree. Habitat: Upland forest margins to bamboo zone, 2250\u20133300 m. Voucher: Kerfoot 1402 (EA).Peddieafischeri Engl. \u2013 Life form: Tree. Habitat: Upland forest understorey and bushland, 950\u20132400 m. Voucher: Battiscombe 391 (EA).UrticaceaeF133. Didymodoxacaffra (Thunb.) Friis & Wilmot-Dear \u2013 Life form: Herb. Habitat: Dry upland forests, 1750\u20132840 m. Voucher: Faden & Evans 74/682 (EA).Droguetiadebilis Rendle \u2013 Life form: Herb. Habitat: Undergrowth in upland moist forest, 1550\u20133090 m. Voucher: Agnew et al. 8181 (EA).Droguetiainers (Forssk.) Schweinf. \u2013 Life form: Herb. Habitat: Upland moist evergreen forest and edges of bamboo thicket, 1600\u20133250 m. Voucher: Agnew et al. 7118 (EA).Elatostemamonticola Hook.f. \u2013 Life form: Herb. Habitat: Upland moist evergreen forest, 1600\u20132800 m. Voucher: Kerfoot 601 (EA).Girardiniabullosa (Hochst. ex Steud.) Wedd. \u2013 Life form: Herb. Habitat: Upland moist forest and forest margins, 1800\u20132600 m. Voucher: Mathenge 212 (EA).Girardiniadiversifolia (Link) Friis \u2013 Life form: Herb. Habitat: Open sites in upland moist forest and margins, 1100\u20132500 m. Voucher: Agnew 7692 (EA).Laporteaalatipes Hook.f. \u2013 Life form: Herb. Habitat: Undergrowth in upland moist forest, 1400\u20133500 m. Voucher: Verdcourt 2307 (EA).Myrianthusholstii Engl. \u2013 Life form: Tree. Habitat: Upland moist forest, 900\u20132100 m. Voucher: Hutchins (EA).Obetiaradula (Baker) Baker ex B.D.Jacks. \u2013 Life form: Tree. Habitat: Dry forest margins, 700\u20132000 m. Voucher: Hansen 745 (EA).Parietariadebilis G.Forst. \u2013 Life form: Herb. Habitat: Upland moist forest and bamboo thickets, 1700\u20134200 m. Voucher: Kerfoot 655 (EA).Pilearivularis Wedd. \u2013 Life form: Herb. Habitat: Upland moist forest, 1250\u20133100 m. Voucher: Kerfoot 468 (EA).Pileausambarensisvar.veronicifolia (Engl.) Friis \u2013 Life form: Herb. Habitat: Upland moist forest, 2030\u20133160 m. Voucher: Agnew 7164 (EA).Pileausambarensisvar.engleri (Rendle) Friis \u2013 Life form: Herb. Habitat: Upland rainforest, 1500\u20133160 m. Voucher: Fries and Fries 2785 (EA).Pileajohnstonii Oliv. \u2013 Life form: Herb. Habitat: Moist montane forest, 1450\u20132910 m. Voucher: SAJIT 006462 (EA).Urticamassaica Mildbr. \u2013 Life form: Herb. Habitat: Moist montane forest, 400\u20133320 m. Voucher: SK 0038 .Urticaurens L. \u2013 Life form: Herb. Habitat: Disturbed sites in upland moist forest, 1800\u20132500 m. Voucher: Gillet 16765 (EA).VerbenaceaeF134. Glandulariaaristigera (S.Moore) Tronc. \u2013 Life form: Exotic herb. Habitat: Roadsides in upland forest, 1650\u20132060 m. Voucher: Mungai 106 (EA).*Lantanacamara L. \u2013 Life form: Exotic shrub. Habitat: Open areas or clearings in forest and roadsides, 0\u20132040 m. Voucher: SK 0201 .*Lantanatrifolia L. \u2013 Life form: Exotic shrub. Habitat: Grassland and bushland, 0\u20132400 m. Voucher: SK 0012 .*Lantanaviburnoidessubsp.viburnoides (Forssk.) Vahl \u2013 Life form: Woody herb or shrub. Habitat: Bushland, 0\u20131950 m. Vouchers: Kamau 76 (EA), SK 0011 .Lippiakituiensis Vatke \u2013 Life form: Woody herb or shrub. Habitat: Woodland and bushland, 405\u20132550 m. Voucher: Trapnell 2134 (EA).Verbenabrasiliensis Vell. \u2013 Life form: Herb. Habitat: Woodland and bushland, 1050\u20132220 m. Voucher: Gillet 16285A (EA).ViolaceaeF135. Violaabyssinica Steud. ex Oliv. \u2013 Life form: Herb. Habitat: Upland evergreen forest and bamboo thickets, 1200\u20133740 m. Voucher: Napier 723 (EA).Violaeminii (Engl.) R.E.Fr. \u2013 Life form: Herb. Habitat: Montane forest and moorlands, 2150\u20134050 m. Voucher: Napier 676 (EA).Violanannae R.E.Fr. \u2013 Life form: Herb. Habitat: Montane grassland and heathland, 2550\u20133620 m. Voucher: SAJIT 006482 .VitaceaeF136. Cyphostemmakilimandscharicum (Gilg) Desc. ex Wild & R.B.Drumm. \u2013 Life form: Herbaceous climber. Habitat: Moist montane forest and bamboo thickets, 1590\u20133040 m. Vouchers: SK 0045, SK 0076 .Cyphostemmamaranguense (Gilg) Desc. \u2013 Life form: Herbaceous climber. Habitat: Dry upland forest and scattered-tree grasslands, 1500\u20132300 m. Voucher: Kirrika 498 (EA)."} {"text": "Biophys J. (2012) 102:2605\u201314. doi: 10.1016/j.bpj.2012.04.029.\u201d It should be \u201cBasu S, Bhattacharyya D, Banerjee R. Self-complementarity within proteins: bridging the gap between binding and folding. Biophys J. (2012) 102:2605\u201314. doi: 10.1016/j.bpj.2012.04.029.\u201dIn the original article, the reference for \u201c77\u201d was incorrectly written as \u201cBatu S, Bhattacharyya D, Banerjee R. Self-complementarity within proteins: bridging the gap between binding and folding. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated."} {"text": "BMJ 2020;369:m1328) has been updated. For the latest update, visit doi:10.1136/bmj.m1328.This living systematic review by Wynants and colleagues ("} {"text": "This article has been corrected: During the assembly of 45976-45994. https://doi.org/10.18632/oncotarget.10275Original article: Oncotarget. 2016; 7:45976\u201345994."} {"text": "This article has been corrected: During assembly of 7930-7943. https://doi.org/10.18632/oncotarget.3181Original article: Oncotarget. 2015; 6:7930\u20137943."} {"text": "JCI Insight. 2019;4(8):e126749. https://doi.org/10.1172/jci.insight.126749Original citation: JCI Insight. 2020;5(15):e142898. https://doi.org/10.1172/jci.insight.142898Citation for this erratum: When the article was originally published, an incorrect panel was included in JCI Insight regrets the error."} {"text": "Mol Immunol. (2019) 105:116\u201330. doi: 10.1016/j.molimm.2018.09.023.\u201d It should be \u201cShissler SC, Lee MS, Webb TJ. Mixed signals: co-stimulation in invariant natural killer T cell-mediated cancer immunotherapy. Front Immunol. (2017) 8:1447. doi: 10.3389/fimmu.2017.01447\u201d.Due to a production error, reference 5 was incorrectly written as \u201cShissler SC, Webb TJ. The ins and outs of type I iNKT cell development. The publisher apologizes for this mistake. The original article has been updated."} {"text": "Author E. Gabriele Panarelli\u2019s ORCID iD is: 0000-0001-8790-5328 (The fourth author's name is spelled incorrectly. The correct name is: Edgar J. J. Groenen. The publisher apologizes for the error."} {"text": "This article has been corrected: Due to errors during image assembly, the images for 111144-111160. https://doi.org/10.18632/oncotarget.22676Original article: Oncotarget. 2017; 8:111144\u2013111160."} {"text": "This article has been corrected: In 48050-48058. https://doi.org/10.18632/oncotarget.10347Original article: Oncotarget. 2016; 7:48050\u201348058."} {"text": "This article has been corrected: Due to a naming mistake during the original image capture process, the 24-hour 20 microMolar image in 1603-1617. https://doi.org/10.18632/oncotarget.27558Original article: Oncotarget. 2020; 11:1603\u20131617."} {"text": "In \u201cYouth Experiences With Referrals to Mental Health Services in Canada: Protocol for a Web-Based Cross-Sectional Survey Study\u201d :e16945) the authors noted a footnote was erroneously omitted from the text of https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/app-ann/a5_1-eng.cfm, 2) Archived Census 2A-L - 2016. Retrieved from: http://www23.statcan.gc.ca/imdb/p3Instr.pl?Function=getInstrumentList& Item_Id=295122&UL=1V&, 3) Ethnic Origin Reference Guide, Census of Population, 2016. Retrieved from: https://www12.statcan.gc.ca/census-recensement/2016/ref/guides/008/98-500-x2016008-eng.cfm & 4) Data Tables 2016 Census: Ethnic Origins. Retrieved from: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/dt-td/Av-eng.cfm?LANG=E& APATH=3&DETAIL=0&DIM=1&FL=A&FREE=0& GC=0&GID=0&GK=0&GRP=1&PID=112450& PRID=10&PTYPE=109445&S=0& SHOWALL=0&SUB=0&Temporal=2017& THEME=120&VID=29591&VNAMEE=&VNAMEF=Ethnicity question and responses were adapted using information from the following documents: 1) Statistics Canada Census of Population 2016, Appendix 5.1 Ethnic Origins disseminated from 2016, 2011, and 2006. Retrieved from: The corrected"} {"text": "Open Biol.10, 200234 (Published Online 28 October 2020) (doi:10.1098/rsob.200234)"} {"text": "Correction to: J Occup Med Toxicolhttp://dx.doi.org/10.1186/s12995-017-0177-2After publication of our article we have Original name spelling:Guadio F.Correct name spelling:Gaudio F."} {"text": "This article has been corrected: During the assembly of 2515-2526. https://doi.org/10.18632/oncotarget.23507Original article: Oncotarget. 2018; 9:2515\u20132526."} {"text": "MeFT1 produces early flowering in cassava. PLoS ONE 15(1): e0227199. https://doi.org/10.1371/journal.pone.0227199.The second author\u2019s name in incorrect. The correct name is: Getu Beyene. The correct citation is: Odipio J, Beyene G, Chauhan RD, Alicai T, Bart R, et al. (2020) Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene The publisher apologizes for the error."} {"text": "This article has been corrected: Due to errors during figure assembly, the images for 79605-79616. https://doi.org/10.18632/oncotarget.12869Original article: Oncotarget. 2016; 7:79605\u201379616."} {"text": "Nature Microbiology 10.1038/s41564-019-0510-x, published online 22 July 2019.Correction to: https://genome.jgi.doe.gov/portal/PhyloTag/PhyloTag.home.html\u2019 was incorrect; it should have been \u2018https://genome.jgi.doe.gov/portal/Inovirus/Inovirus.home.html\u2019. This has now been corrected.In the version of this Article originally published, in the Data availability section, the link \u2018"} {"text": "This article has been corrected: The name of the 4th author in the listing has been updated, correcting the name as follows:4,5Antonio Herrera-Merchan82294-82302. https://doi.org/10.18632/oncotarget.19393Original article: Oncotarget. 2017; 8:82294\u201382302."} {"text": "This article has been corrected: In 81285-81294. https://doi.org/10.18632/oncotarget.18150Original article: Oncotarget. 2017; 8:81285\u201381294."} {"text": "Keynote at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019.Video stream:https://vimeo.com/357889739"} {"text": "CLINICS 2020;75:e1759errhttps://doi.org/10.6061/clinics/2020/e1759, published in 2020.Erratum for: doi: Replace the corresponding author: Yanhua ShenFor: Haixing Jiang*shenyanhua99@163.comReplace the corresponding email: jihaxi@163.comFor:"} {"text": "Correction to: EJNMMI Phys (2020) 7:24https://doi.org/10.1186/s40658-020-00295-xFollowing publication of the original article , the autThe incorrect author names are: C. G. McGinnity and S. M. GouldThe correct author names are: C. J. McGinnity and S-M GouldThe author group has been updated above and the original article has been"} {"text": "This article has been corrected: The name of the 2nd author has been updated as follows:Rob W.J. Collin2930-2946. https://doi.org/10.18632/oncotarget.26873Original article: Oncotarget. 2019; 10:2930\u20132946."} {"text": "This article has been corrected: In 74494-74505. https://doi.org/10.18632/oncotarget.20170Original article: Oncotarget. 2017; 8:74494\u201374505."} {"text": "Biology Methods and Protocols, 2017, 2(1), bpx006. doi:10.1093/biomethods/bpx006http://ssb22.user.srcf.net/pooler/.The server people.ds.cam.ac.uk has been permanently shut down. The source codes and executables are now available at: The article has been updated to reflect this."} {"text": "This article has been corrected: The co-first author, Cheng-Jei Lin, has been removed as an equal contributor for this study as compared to the first author.74320-74330. https://doi.org/10.18632/oncotarget.20382Original article: Oncotarget. 2017; 8:74320\u201374330."} {"text": "Giardia isolates genetically among patients in Chandigarh region, India. For this, nested PCR targeting fragment of the glutamate dehydrogenase (GLUD1 earlier named as GDH) gene was used. Phylogenetic analysis was done by constructing neighbor-joining tree made out of the nucleotide sequences of G. intestinalis isolates obtained in this study and with the known sequences published in GenBank.The aim of study was to characterize GLUD1 gene was amplified in 33 samples (82.5%). The product of GLUD1 gene was successfully sequenced only in 32 samples. In these samples, assemblage B was found in 27 (84.37%) samples whereas 5 (15.6%) samples had assemblage A. Among assemblage B most of them were of BIII. Therefore, genotyping of Giardia would be helpful in conducting epidemiological studies.Out of 40 samples, Giardia intestinalis\u00a0is well known intestinal parasite of humans and mammals. Giardia\u00a0causes approximately 280 million cases of giardiasis\u00a0worldwide annually [annually . Most ofGiardia in water or food [Giardia intestinalis\u00a0is\u00a0composed of eight major genotypes or assemblages (A\u2013H) [GLUD1 (earlier known as GDH)\u00a0locus has been utilized for genetic characterization of G. intestinalis isolates in vertebrates [Giardia isolates involved in its transmission by using glutamate dehydrogenase (GLUD1) marker.Giardiasis is acquired due to ingestion of cysts of or food . Giardiaes (A\u2013H) . Genotypes (A\u2013H) . These aes (A\u2013H) . Assembles (A\u2013H) , 5. The tebrates hosts anGiardia positive stool samples were collected from the Routine Laboratory of Department of Medical Parasitology, PGIMER, Chandigarh from August 2019 to December 2019.Forty microscopic From stool samples, DNA was extracted by using QIAmp Fast DNA Stool Mini Kit as per manufacturer\u2019s instructions with slight modifications. The suspension was initially incubated at 90\u00a0\u00b0C for 15\u00a0min and then for another 30\u00a0min at 75\u00a0\u00b0C. DNA was eluted in 50\u00a0\u00b5l of AE buffer. DNA concentration was measured by NanoQuant (Infinite\u00ae 200 PRO NanoQuant) and stored at \u2212\u00a020 \u00b0C until\u00a0further use.GLUD1 gene (432\u00a0bp) by using previously published primers given by Read et al. [Giardia\u00a0strain, Portland 1 was used for each PCR reaction. All the precautions were taken to prevent contamination.The two-step PCR was employed for the amplification\u00a0of\u00a0 d et al. . The conhttp://www.ncbi.nlm.nih.gov/blast). CLUSTAL X was used to determine multiple sequence alignments. Neighbor-joining distance trees were prepared using MEGAX software (https://www.megasoftware.net/) Fig. . BootstrThe direct links which are publicly available are as follows:https://www.ncbi.nlm.nih.gov/nuccore/MT584168https://www.ncbi.nlm.nih.gov/nuccore/MT584169https://www.ncbi.nlm.nih.gov/nuccore/MT584170https://www.ncbi.nlm.nih.gov/nuccore/MT584171https://www.ncbi.nlm.nih.gov/nuccore/MT584172https://www.ncbi.nlm.nih.gov/nuccore/MT584173https://www.ncbi.nlm.nih.gov/nuccore/MT584174https://www.ncbi.nlm.nih.gov/nuccore/MT584175https://www.ncbi.nlm.nih.gov/nuccore/MT584176https://www.ncbi.nlm.nih.gov/nuccore/MT584177https://www.ncbi.nlm.nih.gov/nuccore/MT584178https://www.ncbi.nlm.nih.gov/nuccore/MT584179https://www.ncbi.nlm.nih.gov/nuccore/MT584180https://www.ncbi.nlm.nih.gov/nuccore/MT584181https://www.ncbi.nlm.nih.gov/nuccore/MT584182https://www.ncbi.nlm.nih.gov/nuccore/MT584183https://www.ncbi.nlm.nih.gov/nuccore/MT584184https://www.ncbi.nlm.nih.gov/nuccore/MT584185https://www.ncbi.nlm.nih.gov/nuccore/MT584186https://www.ncbi.nlm.nih.gov/nuccore/MT584187https://www.ncbi.nlm.nih.gov/nuccore/MT584188https://www.ncbi.nlm.nih.gov/nuccore/MT584189https://www.ncbi.nlm.nih.gov/nuccore/MT584190https://www.ncbi.nlm.nih.gov/nuccore/MT584191https://www.ncbi.nlm.nih.gov/nuccore/MT584192https://www.ncbi.nlm.nih.gov/nuccore/MT584193https://www.ncbi.nlm.nih.gov/nuccore/MT584194https://www.ncbi.nlm.nih.gov/nuccore/MT584195https://www.ncbi.nlm.nih.gov/nuccore/MT584196https://www.ncbi.nlm.nih.gov/nuccore/MT584197https://www.ncbi.nlm.nih.gov/nuccore/MT584198https://www.ncbi.nlm.nih.gov/nuccore/MT584199GLUD1 gene was amplified in 33 samples (82.5%) among which 18 (66.66%) were sub-genotype BIII and 9 (33.33%) were sub-genotype BIV samples whereas 5 (15.6%) samples had assemblage A. Four of them were AI subgenotype and only1 belonged to sub-genotype AII.Out of 40 samples, the samples 8.5% and potable water\u00a0resources of Northern India [.ountries . The pre studies , 9. In o studies . There arn India , 14. Butrn India . Due to Giardia intestinalis. Detection of Giardia intestinalis assemblages and sub-assemblageswould be helpful in conducting epidemiological studies.The results\u00a0showed that PCR sequencing and phylogenetic analysis is an excellent molecular technique for genotyping of Giardia isolates.Present study involves only single locus for genotyping and also the sample size is less so it is difficult to interpret zoonotic potential of these isolates. Therefore, multi-locus typing data is required to differentiate between Additional file 1: Table S1. Sequence of primers and sgRNA were listed."} {"text": "This article has an addendum: No external funding was obtained.1109-1119. https://doi.org/10.18632/oncotarget.28280Original article: Oncotarget. 2022; 13:1109\u20131119."} {"text": "The first author\u2019s name is spelled incorrectly. The correct name is: Zeeshan Anjum Memon.https://doi.org/10.1371/journal.pone.0264958The correct citation is: Memon ZA, Said DM, Hassan MY, Leghari ZH, Sahar G. (2022) Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks. PloS ONE 17(4): e0264958."} {"text": "Bursaphelenchus zvyagintsevi sp. n. The corrected main text appears below in Section 2.1:In the original publication , there wBursaphelenchus zvyagintsevi sp. n.Adults : http://zoobank.org/urn:lsid:zoobank.org:act:71BDE14D-B778-40FE-977D-D910F701DE6D (accessed on 13 August 2023). Body curved ventrally. Stylet base slightly expanded, but without distinct knobs. Cephalic annuli faintly distinct through light microscopy. Median bulb ellipsoid, large; valve median to sub-median of bulb. Excretory pore located at nerve ring or at posterior end of the median bulb. Lateral field with two incisures.The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated."} {"text": "This article has been corrected: In 86075-86086. https://doi.org/10.18632/oncotarget.13342Original article: Oncotarget. 2016; 7:86075\u201386086."} {"text": "This article has been corrected: In 858-874. https://doi.org/10.18632/oncotarget.27495Original article: Oncotarget. 2020; 11:858\u2013874."} {"text": "This article has been corrected: In 11641-11658. https://doi.org/10.18632/oncotarget.14264Original article: Oncotarget. 2017; 8:11641\u201311658."} {"text": "Correction: BMC Women\u2019s Health (2022) 22:110.1186/s12905-022-01750-wFollowing publication of the original article , the refEinenkel R, Zygmunt M, Muzzio DO. Microorganisms in the healthy upper reproductive tract: from denial to benefcial assignments for reproductive biology. Reprod Biol 2019;19(2):113\u2013118. 10.1016/j.repbio.2019.04.001. Epub 2019 Apr 22. PMID: 31023521.The original article has been corrected."} {"text": "This article has been retracted: In Figure 8, panel B, three of the tumor images are duplicates of images published in three other journals [journals \u20133. In ad80757-80769. https://doi.org/10.18632/oncotarget.20358Original article: Oncotarget. 2017; 8:80757\u201380769."} {"text": "Nature Communications 10.1038/s41467-023-40061-y, published online 24 July 2023Correction to: In this article the author name R. C. Coombes was incorrectly written as R. Charles Coombes. The original article has been corrected."} {"text": "This article has been retracted: Several images in this paper are duplicates of images in other published papers. In Figure 5C, a panel is duplicated within Figure 6D of another paper [er paper . In Figuer paper . In Figuer paper . Althoug65823-65835. https://doi.org/10.18632/oncotarget.19502Original article: Oncotarget. 2017; 8:65823\u201365835."} {"text": "Correction: Stem Cell Research & Therapy (2021) 12:62 10.1186/s13287-020-02104-9The original article mistakenFundingThis study was supported by FCT \u2013 Funda\u00e7\u00e3o para a Ci\u00eancia e a Tecnologia, I.P., component OE under the scope of project UIDB/50026/2020 and by FCT/MCTES through the PD/59/2013, PD/BD/113800/2015 (C.M. Abreu), CEECIND/00695/2017 (M.T. Cerqueira), IF/00347/2015 (R. P. Pirraco), and IF/00945/2014 (A.P. Marques) grants."} {"text": "This article has an addendum: Wet-lab experiments conducted at Data Driven Bioscience, Rincon Biosciences, Reprocell Inc., intoDNA, and Toxys Europe were funded by Lantern Pharma Inc.597-611. https://doi.org/10.18632/oncotarget.28454Original article: Oncotarget. 2023; 14:597\u2013611."} {"text": "Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J. Assist. Reprod. Genet. 27 (7), 357\u2013363. doi:10.1007/s10815-010-9412-9\u201d.In the published article, the It should be \u201cPereira N, Rosenwaks Z. (2016). A fresh(er) perspective on frozen embryo transfers. Fertil Steril. 106(2), 257\u2013258. doi: 10.1016/j.fertnstert.2016.06.028\u201d.The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated."} {"text": "Correction to: Pediatric Radiology (2023)https://doi.org/10.1007/s00247-023-05618-5The initial online version states that all authors participated in the roundtable discussion.Correction:Only the following authors participated in the roundtable discussion.Chair: A.C.O.Panel/speakers: A.M.J., K.M., I.M., M.R.The original article has been corrected."} {"text": "This article has an addendum: Informed patient consent was obtained.6038-6042. https://doi.org/10.18632/oncotarget.27203Original article: Oncotarget. 2019; 10:6038\u20136042."} {"text": "Orgiani are co-correspondingauthors.F. Mazzola("} {"text": "This article has been corrected: In 103261-103273. https://doi.org/10.18632/oncotarget.21143Original article: Oncotarget. 2017; 8:103261\u2013103273."} {"text": "This article has been corrected: In 21663-21673. https://doi.org/10.18632/oncotarget.15523Original article: Oncotarget. 2017; 8:21663\u201321673."} {"text": "The seasonal influenza activity has been dramatically reduced worldwide due to COVID\u201019 control measures.Viral culture and characterization were routinely performed as described previously.Between January and December 2022, a total of 60 influenza viruses were isolated and characterized Table\u00a0. Of the Influenza activity in Hong Kong remained to be low in 2022. Various COVID\u201019 control measures such as the universal masking policy were still in force at the time of writing this report.Gannon C.K. Mak: Conceptualization; data curation; formal analysis; investigation; methodology; writing\u2014original draft; writing\u2014review and editing. Stephen S.Y. Lau: Investigation. Kitty K.Y. Wong: Investigation. Angela W.L. Lau: Investigation. Derek L.L. Hung: Writing\u2014original draft; writing\u2014review and editing.None.https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/irv.13123.The peer review history for this article is available at"} {"text": "Scientific Reports 10.1038/s41598-023-34932-z, published online 24 May 2023Correction to: The Data availability section in the original version of this Article was incorrect. It now reads:\u201cEach of the used datasets can be found on their respective links as shown below:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231304 should be contacted.TFED: For the dataset, the authors of the original paper introducing the public version of the dataset at this address http://www.psy.ntu.edu.tw/vnl/paper/Chen_2009_Exodatabase_SPIE.pdf) should be contacted.TFEID: For the dataset, the authors of the original paper introducing the public version of the dataset (at this link https://zenodo.org/record/3451524JAFFE: https://www.kaggle.com/datasets/shawon10/ckplusCK+: https://www.kaggle.com/datasets/msambare/fer2013FER2013: https://www.oulu.fi/en/university/faculties-and-units/faculty-information-technology-and-electrical-engineering/center-machine-vision-and-signal-analysis\u201d.SMIC: The original Article has been corrected."} {"text": "This article has an addendum: Informed patient consent to an IRB-approved research protocol was obtained.245-251. https://doi.org/10.18632/oncotarget.26521Original article: Oncotarget. 2019; 10:245\u2013251."} {"text": "This article has been retracted: A number of figure images in this paper were previously published in earlier papers. Figure 2E contains images from Figure 6C of another paper [er paper . Figure er paper . Figure er paper . Images er paper . Figure er paper . In addi101649-101658. https://doi.org/10.18632/oncotarget.21417Original article: Oncotarget. 2017; 8:101649\u2013101658."} {"text": "PLoS Genet 19(10): e1011011. https://doi.org/10.1371/journal.pgen.1011011The first author\u2019s name is spelled incorrectly. The correct name is: Lin Zhang. The correct citation is: Zhang L, Green EW, Webster SG, Hastings MH, Wilcockson DC, Kyriacou CP (2023) The circadian clock gene"} {"text": "Please remember to self\u2010claim your CPD and retain your supporting evidence. Answers are available online at J Med Radiat Sci. 2022 Dec; 69(4): 421\u2013430. https://doi.org/10.1002/jmrs.607Castillo C, Steffens T, Livesay G, et\u00a0al. IMPACT requests: Delphi study to develop criteria standards for adequate clinical information in computed tomography requests in the Australian emergency department. https://doi.org/10.1002/jmrs.621CPD Questions J Med Radiat Sci. 2022 Dec; 69(4): 463\u2013472. https://doi.org/10.1002/jmrs.606Smith\u2010Lickess SK, Stefanic N, Shaw J, et\u00a0al. What is the effect of a low literacy talking book on patient knowledge, anxiety and communication before radiation therapy starts? A pilot study. https://doi.org/10.1002/jmrs.628CPD Questions J Med Radiat Sci. 2023 Mar; 70(1): 46\u201355. https://doi.org/10.1002/jmrs.623Pinson JA, King OA, Dennett AM, et\u00a0al. Exploring the role of medical imaging assistants in Australian medical imaging departments: a mixed\u2010methods study. https://doi.org/10.1002/jmrs.644CPD Questions J Med Radiat Sci. 2023 Mar; 70(1): 72\u201380. https://doi.org/10.1002/jmrs.634Mark F, Alnsour A, Penfold SN, et\u00a0al. Volumetric modulated arc therapy (VMAT) comparison to 3D\u2010conformal technique in lung stereotactic ablative radiotherapy (SABR). https://doi.org/10.1002/jmrs.659CPD Questions J Med Radiat Sci. 2023 Apr; 70(Suppl 2): 48\u201358. https://doi.org/10.1002/jmrs.617Phonlakrai M, Ramadan S, Simpson J, et\u00a0al. Determination of hepatic extraction fraction with gadoxetate low\u2010temporal resolution DCE\u2010MRI\u2010based deconvolution analysis: validation with ALBI score and Child\u2010Pugh class. https://doi.org/10.1002/jmrs.645CPD Questions J Med Radiat Sci. 2023 Apr; 70(Suppl 2): 15\u201325. https://doi.org/10.1002/jmrs.618Gibbons E, Hoffmann M, Westhuyzen J, et\u00a0al. Clinical evaluation of deep learning and atlas\u2010based auto\u2010segmentation for critical organs at risk in radiation therapy. https://doi.org/10.1002/jmrs.655CPD Questions J Med Radiat Sci. 2023 Jun; 70(2): 137\u2013144. doi: 10.1002/jmrs.654Bantas G, Sweeney RJ, Mdletshe S. Digital radiography reject analysis: a comparison between two radiology departments in New Zealand. doi: 10.1002/jmrs.679CPD Questions https://doi.org/10.1002/jmrs.652Laing B, Caldwell P, Vincent D, Rattray G. An evaluation of radiation therapy patient body mass index trends and potential impact on departmental resource planning. J Med Radiat Sci. 2023 Jun; 70(2):145\u2013153. https://doi.org/10.1002/jmrs.673CPD Questions J Med Radiat Sci. 2023 Sep; 70(3): 229\u2013238. https://doi.org/10.1002/jmrs.676Edwards C, Perry R, Chester D, Childs J. Entrustable professional activities of graduate accredited General Medical Sonographers in Australia \u2013 industry perceptions. https://doi.org/10.1002/jmrs.696CPD Questions J Med Radiat Sci. 2023 Sep; 70(3): 292\u2013300. https://doi.org/10.1002/jmrs.699Fong SC, Pandey R, Rajaretnam M, Delaibatiki M, Peel DNY. Routine prophylactic percutaneous endoscopic gastrostomy in head and neck cancers with bilateral neck irradiation: a regional cancer experience in New Zealand. https://doi.org/10.1002/jmrs.708CPD Questions"} {"text": "In the below-listed manuscripts, a change has been made to the author list.https://doi.org/10.1093/ofid/ofz061https://doi.org/10.1093/ofid/ofy182https://doi.org/10.1093/ofid/ofy289"} {"text": "ACR Open Rheumatol. 2023 Mar;5(3):114. doi: 10.1002/acr2.11528Yokochi R, Hagino N. Clinical Images: Massive soft\u2010tissue calcification in primary Sjogren syndrome. Dr. Yokochi's first name was misspelled as Rtisuko in the published version. The correct spelling is Ritsuko.We apologize for this error."} {"text": "This article has been retracted: Oncotarget is retracting this article at the request of the Scientific Integrity office. Similarities were found between images in this article and in other articles:https://doi.org/10.1186/s12885-017-3132-91. BMC Cancer (2017), https://doi.org/10.1155/2017/61364012. Disease Markers (2017), https://pubpeer.com/publications/1D3EFEEE1E55BFC3B47D193AEFECE6).Reader concerns were initially reported in a Pubpeer thread (Image analysis performed by the Oncotarget Scientific Integrity Office confirmed the findings of fraudulent image duplication. All authors have agreed to this retraction.113977-113986. https://doi.org/10.18632/oncotarget.23048Original article: Oncotarget. 2017; 8:113977\u2013113986."} {"text": "Correction: BMC Endocr Disord 23, 81 (2023).10.1186/s12902-023-01339-wFollowing publication of the original article , the autThe correct funding statement should be:The study was supported by the European Regional Development Fund - Project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868).The original article has been"} {"text": "BMC Medical Informatics and Decision Making (2023) 23:8410.1186/s12911-023-02177-5The original publication of this article contained an incorrect ethics code. The incorrect and correct information is listed in this correction article. The original article has been updated.Incorrect: IR.ABADANUMS. REC.1401.048Correct: IR.ABADANUMS. REC.1401.101"} {"text": "This article has an addendum: Because this was an autopsy-based analysis, autopsy/donation consent was obtained.42837-42842. https://doi.org/10.18632/oncotarget.10034Original article: Oncotarget. 2016; 7:42837\u201342842."} {"text": "This article has been corrected: In 86592-86603. https://doi.org/10.18632/oncotarget.21246Original article: Oncotarget. 2017; 8:86592\u201386603."} {"text": "Correction: BioData Mining 14, 29 (2021)https://doi.org/10.1186/s13040-021-00261-yhttps://www.proteinatlas.org/). Therefore, the results in this article are reliable. To make this research repeatable, the following has provided a download link for pathological images.Following publication of the original article , the autThe patient ID of normal liver tissue is 3402. link:https://www.proteinatlas.org/ENSG00000170231-FABP6/tissue/liver#img;FABP6 normalThe liver cancer patient ID is 3334, link:https://www.proteinatlas.org/ENSG00000170231-FABP6/pathology/liver+cancer#img.FABP6 liver cancerTherefore, the correct Fig."} {"text": "J Clin Invest. 2022;132(22):e160101. https://doi.org/10.1172/JCI160101Original citation: J Clin Invest. 2023;133(13):e173145. https://doi.org/10.1172/JCI173145Citation for this corrigendum: neo2/neo2 and Foxn11089/1089 hypoplastic lobes were duplicates. The correct figure part is below. The HTML and PDF files have been updated online.In the original version of The authors regret the error."} {"text": "The second author\u2019s name is spelled incorrectly. The correct name is: Rossana Pulcinelli V. Franciscohttps://doi.org/10.1371/journal.pone.0261492The correct citation is: Gon\u00e7alves BMM, Francisco RPV, Rodrigues AS (2021) Maternal mortality associated with COVID-19 in Brazil in 2020 and 2021: Comparison with non-pregnant women and men. PloS ONE 16(12): e0261492."} {"text": "The third author\u2019s name is spelled incorrectly. The correct name is: Pratap Vydyam.https://doi.org/10.1371/journal.pone.0125358The correct citation is: Badugu SB, Nabi SA, Vydyam P, Laskar S, Bhattacharyya S, Bhattacharyya MK (2015) Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function. PloS ONE 10(5): e0125358."} {"text": "This article has an addendum: Informed patient consent was obtained.3800-3804. https://doi.org/10.18632/oncotarget.27771Original article: Oncotarget. 2020; 11:3800\u20133804."} {"text": "This article has been corrected: In n = 2 but only one is reported here. The corrected 31134-31150. https://doi.org/10.18632/oncotarget.5290Original article: Oncotarget. 2015; 6:31134\u201331150."} {"text": "Correction to: BMC Surgery 10.1186/s12893-023-02070-y.Following publication of the original article , in thiswww.editage.jp) for English language editing. The authors are grateful to JPSKAKENHI #22K16548.The authors thank Editage ("} {"text": "Phil. Trans. R. Soc. B377, 20200498 (Published online 7 March 2022). (https://doi.org/10.1098/rstb.2020.0498)An incorrect version of The corrected figure is shown below and has also been corrected on the publiser's website."} {"text": "This article has been corrected: In 44326-44334. https://doi.org/10.18632/oncotarget.17872Original article: Oncotarget. 2017; 8:44326\u201344334."} {"text": "This article has been corrected: Due to errors during figure assembly, the control images used in the bottom row of 11640-11651. https://doi.org/10.18632/oncotarget.3449Original article: Oncotarget. 2015; 6:11640\u201311651."} {"text": "Correction: BMC Neurol 23, 216 (2023)https://doi.org/10.1186/s12883-023-03261-zhttps://doi.org/10.3389/fneur.2019.01098) was incomplete and lacked DOI.Following publication of the original article , the autThe correct figures are presented below.The original article has been"} {"text": "This article has been corrected: In 68365-68380. https://doi.org/10.18632/oncotarget.20190Original article: Oncotarget. 2017; 8:68365\u201368380."} {"text": "This article has an addendum: Informed patient consent was obtained for publication of this case report.9613-9617. https://doi.org/10.18632/oncotarget.7386Original article: Oncotarget. 2016; 7:9613\u20139617."} {"text": "This article has an addendum: Research funding was obtained from the Cleveland Clinic Florida, Maroone Cancer Center, Malignant Hematology Research Fund.384-394. https://doi.org/10.18632/oncotarget.28415Original article: Oncotarget. 2023; 14:384\u2013394."} {"text": "This article has an addendum: Informed patient consent was obtained from all patients.45005-45009. https://doi.org/10.18632/oncotarget.6528Original article: Oncotarget. 2015; 6:45005\u201345009."} {"text": "Reference 17 is not correctand should be as follows:BlanazsA.; RyanA.J.; ArmesS.P.Predictive phasediagrams for RAFT aqueous dispersionpolymerization: Effect of block copolymer composition, molecular weight,and copolymer concentration.Macromolecules2012, 45, 5099\u22125107.10.1021/ma301059r(17)"} {"text": "Adv. Sci. 2023, 10, 2205862https://doi.org/10.1002/advs.202205862In the originally published article there are errors in Figure"} {"text": "This article has been corrected: In 32639-32654. https://doi.org/10.18632/oncotarget.15947Original article: Oncotarget. 2017; 8:32639\u201332654."} {"text": "Interdisciplinary CardioVascular and Thoracic Surgery.Upon original publication, the below-listed manuscripts were included into Volume 36, Issue 7, instead of Volume 37, Issue 1 of The Publisher apologizes for this error, which has now been corrected.https://doi.org/10.1093/icvts/ivad070https://doi.org/10.1093/icvts/ivad112https://doi.org/10.1093/icvts/ivad113"} {"text": "This article has been corrected: In 76920-76933. https://doi.org/10.18632/oncotarget.12729Original article: Oncotarget. 2016; 7:76920\u201376933."} {"text": "Details of correction: update email address for corresponding author.Existing text:sierksma@kennisinstituutbier.nlCorrected text should read:info@beerandhealth.eu"} {"text": "This article has an addendum: No external funding was obtained.464-475. https://doi.org/10.18632/oncotarget.28213Original article: Oncotarget. 2022; 13:464\u2013475."} {"text": "J Clin Invest. 2023;133(11):e168121. https://doi.org/10.1172/JCI168121Original citation: J Clin Invest. 2023;133(13):e172916. https://doi.org/10.1172/JCI172916Citation for this corrigendum: After the publication of this Review, the authors became aware of errors in"} {"text": "J Clin Invest. 2021;131(1):e136779. https://doi.org/10.1172/JCI136779Original citation: J Clin Invest. 2023;133(10):e171901. https://doi.org/10.1172/JCI171901Citation for this corrigendum: The authors recently became aware of an inadvertent error in The authors regret the error."} {"text": "This article has an addendum: Patient consent was required and obtained.33043-33049. https://doi.org/10.18632/oncotarget.25984Original article: Oncotarget. 2018; 9:33043\u201333049."} {"text": "This article has been corrected: In 48110-48125. https://doi.org/10.18632/oncotarget.18262Original article: Oncotarget. 2017; 8:48110\u201348125."} {"text": "Scientific Reports 10.1038/s41598-022-09445-w, published online 31 March 2022Correction to: The Data Availability section in the original version of this Article was omitted.It now appears as below:https://www.ncbi.nlm.nih.gov/nuccore/ON637243 and https://www.ncbi.nlm.nih.gov/nuccore/ON637244.\u201d\u201cThe Mus musculus transgenic K18-hACE2_PrlmnJ sequences are available here The original Article has been corrected."} {"text": "This article has been corrected: In 944-959. https://doi.org/10.18632/oncotarget.28261Original article: Oncotarget. 2022; 13:944\u2013959."} {"text": "This article has been corrected: In 2919-2929. https://doi.org/10.18632/oncotarget.27679Original article: Oncotarget. 2020; 11:2919\u20132929."} {"text": "This article has an addendum: No external funding was obtained for this article.153-172. https://doi.org/10.18632/oncotarget.28367Original article: Oncotarget. 2023; 14:153\u2013172."} {"text": "Proc. R. Soc. B290, 20222571. (Published online 1 March 2023). (https://doi.org/10.1098/rspb.2022.2571)n = 14 and n = 7; see This file contains a corrected version of This has been corrected on the publisher's website."} {"text": "This article has an addendum: No funding was used for this publication.351-357. https://doi.org/10.18632/oncotarget.28406Original article: Oncotarget. 2023; 14:351\u2013357."} {"text": "This article has an addendum: No external funding was provided for this research.178-187. https://doi.org/10.18632/oncotarget.28376Original article: Oncotarget. 2023; 14:178\u2013187."} {"text": "Adv. Sci. 2023, 10, 230028810.1002/advs.202300288DOI: In the originally published article there are errors in Figure"} {"text": "There was an error in Reference 117. The correct version of this Reference is available below.Attal Y, Maess B, Friederici A, David O (2012) Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalo\u200bgraphicdata. Rev Neurosci 23: 85\u201395. doi: 10.1515/rns.2011.056."} {"text": "C. muridarum Replication In Vitro, but Not In Vivo. The word \"Controlling\" in the title was misspelled. The correct title is: Perforin Is Detrimental to Controlling C. muridarum Replication In Vitro, but Not In Vivo. PLoS ONE 8(5): e63340. doi:10.1371/journal.pone.0063340. The correct citation is: Johnson RM, Kerr MS, Slaven JE (2013) Perforin Is Detrimental to Controlling"} {"text": "There were errors in the Author Contributions. The correct contributions are: Conceived and designed the experiments: RWC. Analyzed the data: IMG SH. Contributed reagents/materials/analysis tools: SH. Wrote the paper: IMG RWC SH. Performed Numerical Simulations: IMG. Developed theory: IMG RWC SH."} {"text": "There was information omitted from the Author Contributions. The correct version of this section is available below.Conceived and designed the experiments: DL CCV. Performed the experiments: DL EG JC. Analyzed the data: DL. Contributed reagents/materials/analysis tools: DL JKEM JC EG CB CCV. Wrote the paper: DL JKEM CCV. Logistics: DL JKEM EG CB. Permits: DL. Data collection: DL EG JC."} {"text": "Biological data set, two equations are missing. The corrected text can be viewed here: http://plosone.org/corrections/pone.0046237.e001.cn.tifIn the Materials and Methods section, under the heading"} {"text": "In the E-mail list, guoyahong7225@163.com (YG) should be in front of maozuguo@hit.edu.cn (MG). The E-mail list should read:\"*E-mail: guoyahong7225@163.com (YG); maozuguo@hit.edu.cn (MG); yufei.huang@utsa.edu (YH)\"Posted by the authors of this article."} {"text": "The enhanced recovery after surgery (ERAS) programme is a multimodal evidence-based approach to surgical care which begins in the preoperative setting and extends through to patient discharge in the postoperative period. The primary components of ERAS include the introduction of preoperative patient education; reduction in perioperative use of nasogastric tubes and drains; the use of multimodal analgesia; goal-directed fluid management; early removal of Foley catheter; early mobilization, and early oral nutrition. The ERAS approach has gradually evolved to become the standard of care in colorectal surgery and is presently being used in other specialty areas such as vascular surgery. Currently there is little evidence available for the implementation of ERAS in this field. We plan to conduct a systematic review of this literature with a view to incorporating ERAS principles into the management of major elective vascular surgery procedures.Register of Controlled Trials . Searches will be performed with no year or language restrictions. For inclusion, studies must look at adult patients over 18 years. Major elective vascular surgery includes carotid, bypass, aneurysm and amputation procedures. Studies must have evaluated usual care against an ERAS intervention in the preoperative, perioperative or postoperative period of care. Primary outcome measures are length of stay, decreased complication rate, and patient satisfaction or expectations. Only randomized controlled trials will be included.We will search EMBASE , Medline , and Cochrane Central Most ERAS approaches have been considered in the context of colorectal surgery. Given the increasing use of multiple yet different aspects of this pathway in vascular surgery, it is timely to systematically review the evidence for their independent or combined outcomes, with a view to implementing them in this clinical setting. Results from this review will have important implications for vascular surgeons, anaesthetists, nurses, and other health care professionals when making evidenced-based decisions about the use of ERAS in daily practice. The enhanced recovery after surgery (ERAS) programme is a multimodal evidence-based approach to surgical care which begins in the preoperative setting and extends through to patient discharge in the postoperative period. This interprofessional, goal-directed pathway, involves surgeons, nurses, anaesthetists, and physiotherapists. It aims to accelerate the recovery of surgical patients while decreasing complications and reducing hospital length of stay. Since the early 1990s, the ERAS approach has gradually evolved to become the standard of care in colorectal surgery-15. EvidThe use of ERAS protocols is reported in other surgical specialty areas, such as vascular,20, cardWhile there are a handful of general reviews on the topic of ERAS in vascular surgery,31,32 thEligibility: We will include studies of adult patients over the age of 18 who have undergone major elective vascular surgery and received an ERAS intervention. For this review major elective vascular surgery is defined as a carotid, aneurysm, bypass, or amputation procedure (see Appendix I). Studies must have evaluated the use of one or more ERAS intervention against usual care for patients , Medline , and Cochrane Central Register of Controlled Trials . The database search will be supplemented by searching for grey literature . Specifically, we will search online , trial registers , and conference abstracts. Searches will be performed with no year or language restrictions. Relevant non-English language articles will be translated. Literature search strategies will be developed by combining medical subject headings (MeSH terms) and appropriate wildcards. If necessary we will contact study authors to identify additional studies. The literature search will be conducted by an information specialist (LP) and peer-reviewed by another information specialist using Peer Review of Electronic Search Strategy (PRESS). In addiA pilot test of 50 randomly selected citations will be conducted by all authors to verify the inclusion/exclusion criteria. Subsequently, all studies (citations and full text) will be reviewed by two reviewers independently. Conflicts will be resolved by team discussion.Data from included studies will be abstracted in duplicate by two reviewers using a data collection form. The data collection form will include:a. patient characteristics b. study characteristics c. details of the intervention d. details of the comparator e. primary outcome results .The data abstraction form will be pilot tested on a random sample of studies to ensure high inter-rater agreement between reviewers.Two reviewers will independently assess each selected study for the strengths of the research methods and results using the Cochrane Risk of Bias Tool. This to2 statistic2. Aortic Aneurysm, Abdominal/su3. Aortic Aneurysm, Thoracic/su4. Endarterectomy, Carotid/5. Endarterectomy/6. (aneurysm adj repair$).tw.7. (aneurysm adj surg$).tw.8. (aort$ adj aneurysm$).mp.9. (aort$ adj3 repair$).tw.10. (aort$ adj3 bypass$).tw.11. (aort$ adj3 by-pass$).tw.12. (aort$ adj reconstruction$).tw.13. (aort$ adj surg$).tw.14. (arter$ adj aneurysm).tw.15. (arter$ adj bypass$).tw.16. (arter$ adj by-pass$).tw.17. (arter$ adj repair$).tw.18. (arter$ adj surg$).tw.19. (axillo$ adj2 bypass$).tw.20. (axillo$ adj2 by-pass$).tw.21. ABF.tw.22. AUI.tw.23. AKA.tw.24. (AAA adj repair$).tw.25. (AAA adj surg$).tw.26. (bypass$ adj surg$).tw.27. (by-pass$ adj surg$).tw.28. BKA.tw.29. (carotid adj surg$).tw.30. CEA.tw.31. endarterectom$.tw.32. (endovascular adj repair$).tw.33. (endovascular adj surg$).tw.34. (femor$ adj aneurysm).tw.35. (femor$ adj repair$).tw.36. (femor$ adj2 crossover$).tw.37. (femor$ adj2 cross-over$).tw.38. (femor$ adj3 bypass$).tw.39. (femor$ adj3 by-pass$).tw.40. (foot adj amputat$).tw.41. \"ilio femor$ bypass$\".tw.42. \"ilio femor$ by-pass$\".tw.43. .tw.44. .tw.45. .tw.46. .tw.47. .tw.48. .tw.49. .tw.50. (knee adj1 amputat$).tw.51. (leg adj revascular$).tw.52. \"popliteal pedal bypass$\".tw.53. \"popliteal pedal by-pass$\".tw.54. profundoplast$.tw.55. .tw.56. .tw.57. .tw.58. .tw.59. (symes adj amputat$).tw.60. (tibia$ adj bypass$).tw.61. (tibia$ adj by-pass$).tw.62. .tw.63. (TAA adj repair$).tw.64. (TAA adj surg$).tw.65. TEVAR.tw.66. (vascular adj bypass).tw.67. (vascular adj by-pass).tw.68. (vascular adj surg$).tw.69. (vascular adj repair$).tw.70. (vascular adj reconstruction$).tw.71. or/1-7072. Chewing Gum/[Enhanced Recovery]73. Early Ambulation/74. Exercise Therapy/75. Heating/76. Intraoperative Care/mt77. Preoperative Care/mt78. Perioperative Care/mt79. Postoperative Care/mt80. Patient Education as Topic/81. Surgical Procedures, Minimally Invasive/82. exp Anesthesia/83. an?esthesia.tw.84. an?esthetic?.tw.85. (accelerat$ adj2 mobil$).tw.86. (accelerat$ adj2 ambulat$).tw.87. .tw.88. (accelerat$ adj2 feed$).tw.89. (accelerat$ adj2 nutrition$).tw.90. (accelerat$ adj2 eat$).tw.91. (accelerat$ adj2 rehab$).tw.92. (chew$ adj1 gum?).tw.93. (client$ adj educat$).tw.94. (client$ adj teach$).tw.95. (client$ adj counsel$).tw.96. (client$ adj expectation$).tw.97. .tw.98. .tw.99. (earl$ adj2 mobil$).tw.100. (earl$ adj2 ambulat$).tw.101. .tw.102. (earl$ adj2 feed$).tw.103. (earl$ adj2 nutrition$).tw.104. (earl$ adj2 eat$).tw.105. (earl$ adj2 rehab$).tw.106. (enhanced adj recover$).tw.107. ERAS.tw.108. (fast adj tract$).tw. (12)109. (fast adj track$).tw. (1787)110. (heat$ adj2 patient$).tw. (440)111. intraoperative.mp. and (intravenous adj fluid?).tw. (207)112. intraoperative.mp. and (IV adj fluid?).tw. (75)113. intraoperative.mp. and Infusions, Intravenous/(856)114. intraoperative.mp. and Intubation, Gastrointestinal/(123)115. intraoperative.mp. and (NG adj tube?).tw. (5)116. intraoperative.mp. and (nasogastric adj tube?).tw. (108)117. intraoperative.mp. and (fluid? adj1 restrict$).tw. (59)118. intraoperative.mp. and .tw. (35)119. intraoperative.mp. and Anti-Inflammatory Agents, Non-Steroidal/241)120. intraoperative.mp. and NSAID?.tw.121. .mp.122. .mp.123. (intraoperative and narcotic?).mp.124. (intraoperative and (fluid adj therap$)).mp.125. intraoperative.mp. and (fluid adj manag$).tw.126. intraoperative.mp. and (electrolyte$ adj manag$).tw.127. (intraoperative and (pain adj manage$)).mp.128. (intraoperative and (vein adj thrombos?s)).mp.129. ((intraoperative adj care) and enhanced).tw.130. ((intraoperative adj care) and accelerat$).tw.131. ((intraoperative adj care) and early).tw.132. intra-operative.mp. and (intravenous adj fluid?).tw.133. intra-operative.mp. and (IV adj fluid?).tw.134. intra-operative.mp. and Infusions, Intravenous/135. intra-operative.mp. and Intubation, Gastrointestinal/136. intra-operative.mp. and (NG adj tube?).tw.137. intra-operative.mp. and (nasogastric adj tube?).tw.138. intra-operative.mp. and (fluid? adj1 restrict$).tw.139. intra-operative.mp. and .tw.140. intra-operative.mp. and Anti-Inflammatory Agents, Non-Steroidal/141. intra-operative.mp. and NSAID?.tw.142. .mp.143. .mp.144. (intra-operative and narcotic?).mp.145. (intra-operative and (fluid adj therap$)).mp.146. intra-operative.mp. and (fluid adj manag$).tw.147. intra-operative.mp. and (electrolyte$ adj manag$).tw.148. (intra-operative and (pain adj manage$)).mp.149. (intra-operative and (vein adj thrombos?s)).mp.150. ((intra-operative adj care) and enhanced).tw.151. ((intra-operative adj care) and accelerat$).tw.152. ((intra-operative adj care) and early).tw.153. .tw.154. .tw.155. (patient$ adj educat$).tw.156. (patient$ adj teach$).tw.157. (patient$ adj counsel$).tw.158. (patient$ adj expectation$).tw.159. ((perioperative adj care) and enhanced).tw.160. ((perioperative adj care) and accelerat$).tw.161. ((perioperative adj care) and early).tw.162. ((peri-operative adj care) and enhanced).tw.163. ((peri-operative adj care) and accelerat$).tw.164. ((peri-operative adj care) and early).tw.165. postoperative.mp. and (regular adj diet?).tw.166. postoperative.mp. and .tw.167. postoperative.mp. and Enteral Nutrition/168. (postoperative and catheter?).mp.169. (postoperative and (fluid adj therap$)).mp.170. postoperative.mp. and (fluid adj manage$).tw.171. postoperative.mp. and (electrolyte$ adj manag$).tw.172. .mp.173. (postoperative and opioid?).mp.174. (postoperative and opiat$).mp.175. .mp.176. postoperative.mp. and Anti-Inflammatory Agents, Non-Steroidal/177. postoperative.mp. and NSAID?.tw.178. (postoperative and (pain adj manage$)).mp.179. postoperative.mp. and (care adj map?).tw.180. postoperative.mp. and (care adj plan$).tw.181. postoperative.mp. and (treatment adj plan$).tw.182. ).mp.183. (postoperative and (care adj path$)).tw.184. ).mp.185. (postoperative and (case adj management)).mp.186. (postoperative and (patient adj discharge)).mp.187. (postoperative and (discharge adj plan$)).mp.188. (postoperative and (vein adj thrombos?s)).mp.189. (postoperative and antiemetic?).mp.190. (postoperative and anti-emetic?).mp.191. (postoperative and ileus).mp.192. ((postoperative adj care) and enhanced).tw.193. ((postoperative adj care) and accelerat$).tw.194. ((postoperative adj care) and early).tw.195. post-operative.mp. and (regular adj diet?).tw.196. post-operative.mp. and .tw.197. post-operative.mp. and Enteral Nutrition/198. (post-operative and catheter?).mp.199. (post-operative and (fluid adj therap$)).mp.200. post-operative.mp. and (fluid adj manage$).tw.201. post-operative.mp. and (electrolyte$ adj manag$).tw.202. .mp.203. (post-operative and opioid?).mp.204. (post-operative and opiat$).mp.205. .mp.206. post-operative.mp. and Anti-Inflammatory Agents, Non-Steroidal/207. post-operative.mp. and NSAID?.tw.208. (post-operative and (pain adj manage$)).mp.209. post-operative.mp. and (care adj map?).tw.210. post-operative.mp. and (care adj plan$).tw.211. post-operative.mp. and (treatment adj plan$).tw.212. ).mp.213. (post-operative and (care adj path$)).tw.214. ).mp.215. (post-operative and (case adj management)).mp.216. (post-operative and (patient adj discharge)).mp.217. post-operative.mp. and (discharge adj plan$).tw.218. (post-operative and (vein adj thrombos?s)).mp.219. (post-operative and antiemetic?).mp.220. (post-operative and anti-emetic?).mp.221. (post-operative and ileus).mp.222. ((post-operative adj care) and enhanced).tw.223. ((post-operative adj care) and accelerat$).tw.224. ((post-operative adj care) and early).tw.225. (preoperative and fasting).mp.226. preoperative.mp. and Anti-Inflammatory Agents, Non-Steroidal/227. preoperative.mp. and NSAID?.tw.228. preoperative.mp. and carbohydrate$.tw.229. (preoperative and probiotic?).mp.230. (preoperative and pro-biotic?).mp.231. preoperative.mp. and hydrat$.tw.232. preoperative.mp. and dehydrat$.tw.233. preoperative.mp. and de-hydrat$.tw.234. preoperative.mp. and stress.tw.235. ((preoperative adj care) and enhanced).tw.236. ((preoperative adj care) and accelerat$).tw.237. ((preoperative adj care) and early).tw.238. (pre-operative and fasting).mp.239. pre-operative.mp. and Anti-Inflammatory Agents, Non-Steroidal/240. pre-operative.mp. and NSAID?.tw.241. pre-operative.mp. and carbohydrate$.tw.242. (pre-operative and probiotic?).mp.243. (pre-operative and pro-biotic?).mp.244. pre-operative.mp. and hydrat$.tw.245. pre-operative.mp. and dehydrat$.tw.246. pre-operative.mp. and de-hydrat$.tw.247. pre-operative.mp. and stress.tw.248. ((pre-operative adj care) and enhanced).tw.249. ((pre-operative adj care) and accelerat$).tw.250. ((pre-operative adj care) and early).tw.251. (rapid$ adj2 recover$).tw.252. (rapid adj2 mobil$).tw.253. (rapid adj2 ambulat$).tw.254. .tw.255. (rapid adj2 feed$).tw.256. (rapid adj2 nutrition$).tw.257. (rapid adj2 eat$).tw.258. (rapid adj2 rehab$).tw.259. (warm$ adj patient$).tw.260. or/72-259261. 71 and 260262. exp Animals/ not 263. 261 not 262 [ Removing Animal Studies ]264. randomized controlled trial.pt. [ RCT filter - validated - optimized ]265. randomized.mp.266. placebo.mp.267. or/264-266268. 263 and 267ERAS: Enhanced recovery after surgery; AAA: Abdominal aortic aneurysm; EVAR: Endovascular aneurysm repair; AUI: Aorto-uni-iliac; ABF: Aorto-Bifemoral bypass; NSAIDs: Non-Steroidal Anti-Inflammatory drugs; MeSH: Medical subject headings.There are no competing interests.LGC collaborated in the design of the study and drafted the protocol. OR conceived of the study, collaborated in the design of the study, and edited the protocol. EG collaborated in the design of the study and edited the protocol. ACT collaborated in the design of the study and edited the protocol. LP developed the search strategy and edited the protocol. CS collaborated in the design of the study and edited the protocol. TM collaborated in the design of the study and edited the protocol. All authors read and approved the final manuscript.This systematic review is funded by the Department of Surgery, St. Michael\u2019s Hospital. ACT is funded by a Canadian Institutes for Health Research/Drug Safety and Effectiveness Network New Investigator Award in Knowledge Synthesis."} {"text": "It was published in 2012, so it contains recent information.http://rkt.chem.ox.ac.uk/projects/biosurfactants.htmlThis academic research page provides a good overview of biosurfactants.http://www.prweb.com/releases/2012/11/prweb10158903.htmWhile the full report is available only for a fee, this page hints at the importance of biosurfactants commercially.http://www.ideaconnection.com/crowdfunding/isolation-and-characterization-of-biosurfactant-produ-00041.htmlThis page on the IdeaConnection website proposes research on bacterial biosurfactants.http://envismadrasuniv.org/Bioremediation/pdf/Biosurfactants%20and%20oil%20bioremediation.pdfThis page links to a comprehensive review article on the role of biosurfactants in bioremediation.http://www.amb-express.com/content/1/1/9/abstractThis is a typical example in which an alkane-degrading pseudomonad makes a rhamnolipid surfactant that aids in solubilizing and degrading the alkanes.http://www.columbia.edu/cu/iucrc/research.shtmlThis list of research at a university centre describes numerous projects on surfactants, including biosurfactants.http://www.dfo-mpo.gc.ca/science/publications/microbes/index-eng.htmlThis page contains a reprinting of a document from the American Academy of Microbiology that answers frequently asked questions about oil spills, largely from the perspective of how microorgansisms are impacted and impact the spill.http://www.biosurf.ugent.be/Biosurfactantia.htmThis introduction to biosurfacants contains text and shows chemical structures of characterized biosurfactants.http://nopr.niscair.res.in/bitstream/123456789/4804/1/JSIR%2065(2)%2091-115.pdfThis review arrticle contains information on more than 250 patents relevant to biosurfactants.http://www.iisc.ernet.in/currsci/jul10/articles19.htmThis web review article contains detailed information and more than 160 references.http://gradworks.umi.com/35/50/3550595.htmlThis page links to a dissertation that describes the multiple environmental roles of microbial biosurfactants. Examples include their role in biodegradation and aid in swarming motility.http://www.igb.fraunhofer.de/en/competences/molecular-biotechnology/white-biotechnology/biosurf.htmlThis page describes an institutional programme to develop biosurfactants for industrial uses.http://www.tau.ac.il/lifesci/departments/biotech/members/rosenberg/rosenberg.htmlThis personal web page contains links to many papers and patents pertaining to biosurfactants."} {"text": "The first author's name was incorrectly given in the byline and citation.The correct name is K. Anne-Isola NekarisNycticebus spp.) on Web 2.0 Sites. PLoS ONE 8(7): e69215. doi:10.1371/journal.pone.0069215. The correct citation is: Nekaris KA-I, Campbell N, Coggins TG, Rode EJ, Nijman V (2013) Tickled to Death: Analysing Public Perceptions of \u2018Cute\u2019 Videos of Threatened Species (Slow Lorises \u2013"} {"text": "There was an error in the third author's name. Srivathsa S. Magadi is correct. The correct citation is: Kulkarni V, Khadilkar RJ, Magadi SS, Inamdar MS (2011) Asrij Maintains the Stem Cell Niche and Controls Differentiation during Drosophila Lymph Gland Hematopoiesis. PLoS ONE 6(11): e27667. doi:10.1371/journal.pone.0027667"} {"text": "Please see the corrected Figure 1 here: http://plosone.org/corrections/pone.0071659.t001.cn.tifThe P-Values in Table 1 were erroneously altered. Please see the corrected Table 1 here:"} {"text": "Mycobacterium tuberculosis Infection of Domesticated Asian Elephants, Thailand . The article has been corrected online (http://wwwnc.cdc.gov/eid/article/16/12/10-0862_article).An online Technical Appendix was omitted from the article"} {"text": "The name of the first author is incorrect. The correct name is: Aditi J. Ravindranath.The correct Citation is: Ravindranath AJ, Cadigan KM (2014) Structure-Function Analysis of the C-clamp of TCF/Pangolin in Wnt/\u00df-catenin Signaling. PLoS ONE 9(1): e86180. doi:10.1371/journal.pone.0086180."} {"text": "There was an error in the fourth author's name. The correct name is Gabri\u00eblle H.S. Buitendijk. The correct citation is van Beveren NJM, Krab LC, Swagemakers S, Buitendijk GHS, Boot E, et al. (2012) Functional Gene-Expression Analysis Shows Involvement of Schizophrenia-Relevant Pathways in Patients with 22q11 Deletion Syndrome. PLoS ONE 7(3): e33473. doi:10.1371/journal.pone.0033473"} {"text": "The image for Figure 2 is incorrect. Please view the correct image here:http://www.plosntd.org/corrections/pntd.0001885.g002.cn.tif"} {"text": "The name of author A.A.T. Simone Reinders contained an error in the citation. The correct citation should read: Reinders AATS, Willemsen ATM, Vos HPJ, den Boer JA, Nijenhuis ERS (2012) Fact or Factitious? A Psychobiological Study of Authentic and Simulated Dissociative Identity States. PLoS ONE 7(6): e39279. doi:10.1371/journal.pone.0039279"} {"text": "AbstractSesioctonus (Braconidae: Agathidinae) are described and illustrated, i.e., Sesioctonus huggerti, Sesioctonus wayquecha, and Sesioctonus bina. Two new Peruvian species records for Sesioctonus are reported: Sesioctonus longinoi and Sesioctonus diazi. A revised key to all known species of Sesioctonus is presented.Three new species of Sesioctonus Viereck, 1912 is a Neotropical genus of Agathidinae which for which the biology is largely unknown, only Sesioctonus parathyridis is recorded as a larval parasitoid of Parathyris perspicilla Stall (Lepidoptera: Arctiidae) (Viereck 1912). Sesioctonus and included twenty six species and Morphological terminology follows that of Unless otherwise stated specimens are deposited in the Natural History Museum, University of San Marcos, Lima, Peru (MUSM), with duplicates deposited in the Hymenoptera Institute Collection at the University of Kentucky, USA (HIC).Sesioctonus are restricted to the Neotropical realm of the New World and may be distinguished from all other agathidine braconids with the following combination of characters: Mesoscutum smooth, lacking notauli; tarsal claws simple, lacking a basal claw; hind coxal cavities open, sharing a common opening with the metasomal foramen.Members of Sulca & Sharkeysp. n.urn:lsid:zoobank.org:act:A198E0BC-7DFE-42CB-B5AD-9DF7E63597E6http://species-id.net/wiki/Sesioctonus_huggertiSesioctonus by the following suite of characters: Interantennal space lacking longitudinal keel, epicnemial carinae straight medially.Distinguished from all other known species of Length. Length of body, excluding ovipositor, 5 mm.\u2640 Head. Flagellum with 30 flagellomeres. Interantennal space lacking longitudinal keel. Antennal sockets moderately excavated. Face with median longitudinal carina. Gena not expanded posteroventrally. Occipital tubercles present. Occiput not excavated. Mandible concave. Outer tooth of mandible not longer than inner tooth. Maxillary palpus with 4 palpomeres. Third and fourth labial palpomeres not fused. Mesosoma. Subpronope elongate-oval. Longitudinal carinae of scutellar depression absent. Scutellum convex. Median areola of metanotum smooth, with median longitudinal carina, and with lateral carinae present and not meeting posteriorly. Propodeum convex. Median longitudinal carina of propodeum absent. Epicnemial carina complete, sharp, straight medially (between fore coxae). Hind femur 6 times as long as wide. (RS+M)a vein of fore wing incomplete. 3RSa vein of fore wing absent. 2\u20131A vein of hind wing not tubular. Cub vein of hind wing not tubular. Metasoma. Median tergite of first metasomal segment without pair of lateral longitudinal carinae. Hind wing with 4 hamuli. First metasomal median tergite without depression posteriad spiracle. Length/width ratio of first metasomal median tergite 0.63. Ovipositor 4 mm.Color. Head melanic. Maxillary palpomeres melanic. Labial palpomeres melanic. Pronotum melanic. Mesoscutum yellowish orange. Scutellum yellowish orange. Metanotum yellowish orange. Propodeum melanic. Propleuron melanic. Mesopleuron yellowish orange. Metapleuron melanic. Fore coxa melanic. Fore trochanter melanic. Fore trochantellus melanic. Fore femur melanic. Fore tibia melanic. Fore tarsus melanic. Mid coxa melanic. Mid trochanter melanic. Mid trochantellus melanic. Midfemur melanic. Mid tibia melanic. Mid tarsus melanic. Hind coxa melanic. Hind trochanter melanic. Hind trochantellus melanic. Hind femur melanic. Hind tibia melanic. Hind tarsus melanic. Fore wing entirely infuscate. Stigma melanic. Hind wing entirely infuscate. First metasomal tergum melanic. Second metasomal tergum mePageBreaklanic. Third metasomal tergum melanic. Fourth metasomal tergum melanic. Fifth to eighth metasomal terga melanic. Ovipositor yellowish orange.\u2642 Unknown.Etymology. Named in honor of the late Lars Huggert who collected the type specimen.Holotype. PERU, Madre de Dios, Puerto Maldonado, 6\u201311.i.1984, L. Huggert Leg. .Known only from the type locality in Peru.Sulca & Sharkeysp. n.urn:lsid:zoobank.org:act:19BD24A0-162D-405A-8BF0-5CDA62C5FE86http://species-id.net/wiki/Sesioctonus_wayquechaSesioctonus by the following suite of characters: occipital tubercles absent, epicnemial carina completely absent, antennal socket not excavated, gena moderately expanded posteroventrally .Distinguished from all other known species of Length. Length of body, excluding ovipositor, 4.3\u20135.5 mm.\u2640 Head. Flagellum with 31 flagellomeres. Interantennal space lacking longitudinal keel. Antennal sockets not excavated. Face without median longitudinal carina. Gena moderately expanded posteroventrally. Occipital tubercles absent. Occiput not excavated. Mandible concave. Outer tooth of mandible not longer than inner tooth. Maxillary palpus with 5 palpomeres. Third and fourth labial palpomeres not fused. Mesosoma. Subpronope elongate-oval. Longitudinal carinae of scutellar depression absent. Scutellum convex. Median areola of metanotum smooth, without median longitudinal carina, and with lateral carinae present and meeting posteriorly. Propodeum convex. Median longitudinal carina of propodeum absent. Epicnemial carina completely absent. Fore tibial spines present. Mid tibia with 7 spines. Hind tibia with 15 spines. Hind femur 3.3\u20134 times as long as wide. (RS+M)a vein of fore wing complete. 3RSaPageBreak vein of fore wing absent. 2\u20131A vein of hind wing not tubular. Cub vein of hind wing not tubular. Metasoma. Median tergite of first metasomal segment without pair of lateral longitudinal carinae. Hind wing with 4 hamuli. First metasomal median tergite without depression posteriad spiracle. Length/width ratio of first metasomal median tergite 0.63. Ovipositor 0.5\u20130.6 mm.Color. Head melanic. Antenna melanic. Maxillary palpomeres yellowish orange. Labial palpomeres yellowish orange. Pronotum melanic. Mesoscutum melanic. Scutellum melanic. Metanotum melanic. Propodeum mostly yellowish orange with melanic spots. Propleuron mostly melanic with yellowish orange areas. Mesopleuron melanic. Metapleuron yellowish orange. Fore coxa yellowish orange. Fore trochanter yellowish orange. Fore trochantellus yellowish orange. Fore femur yellowish orange. Fore tibia melanic with yellowish orange ends. Fore tarsus melanic. Mid coxa yellowish orange. Mid trochanter yellowish orange. Mid trochantellus yellowish orange. Mid femur yellowish orange. Mid tibia melanic. Mid tarsus melanic. Hind coxa yellowish orange. Hind trochanter yellowish orange. Hind trochantellus yellowish orange. Hind femur yellowish orange. Hind tibia melanic with a yellow orange apical spot. Hind tarsus melanic. Fore wing entirely infuscate. Stigma melanic. Hind wing entirely infuscate. First metasomal tergum yellowish orange. Second metasomal tergum yellowish orange. Third metasomal tergum yellowish orange. Fourth metasomal tergum yellowish orange but median tergum melanic. Fifth to eighth metasomal terga melanic. Ovipositor yellowish orange.\u2642. As in the female (above).PageBreakEtymology. Named after the type locality, Wayquecha which means \u2018brother\u2019 in Quechua.Holotype. PERU. \u2640,Cusco, Wayquecha, 13\u00b011'21\"S, 71\u00b035'04\"W 2837m ,6\u2013 20.x.2007, C. Castillo. Leg.Paratypes: PERU: Cusco: 2\u2640\u2640,Wayquecha, 13\u00b011'21\"S, 71\u00b035'4\"W, 2837m, Malaise, 20.x.2007, C. Castillo Leg.; 3\u2640\u2640, 1\u2642,Wayquecha, 13\u00b010'31\"S, 71\u00b034'53\"W, 2692m, Malaise, 10.ix.2007, C. Castillo Leg.; \u2640, Wayquecha 13\u00b011'S, 71\u00b035'W, 2800m, sweep, 12.ix.2007, C. Castillo Leg; \u2642 Wayquecha, 13\u00b010'31\"S, 71\u00b034'53\"W, 2692m, Malaise, 22.x.2007, C. Castillo Leg.Known only from one locality in Peru.Sulca & Sharkeysp. n.urn:lsid:zoobank.org:act:5AE5EEED-ACF8-47D4-8189-531FFDBB1209http://species-id.net/wiki/Sesioctonus_binaSesioctonus by the following suite of characters: occiput not excavated, subpronope oval, median tergite of first metasomal segment with pair of lateral longitudinal carinae.Distinguished from all other known species of Length. Length of body, excluding ovipositor, 3.35 mm. Flagellum broken after flagellomere 28. Interantennal space with longitudinal rounded keel. Antennal sockets moderately excavated. Face without median longitudinal carina. Gena not expanded posteroventrally. Occipital tubercles present. Occiput not excavated. Mandible concave. Outer tooth of mandible not longer than inner tooth. Maxillary palpus with 4 palpomeres. Mesosoma. Subpronope oval. Longitudinal carinae of scutellar depression absent. Scutellum convex. Median areola of metanotum smooth, without median longitudinal carina, and with lateral carinae present and meeting posteriorly. Propodeum convex. Median longitudinal carina of propodeum present. Epicnemial carina complete, blunt, bilobed medially (between fore coxae). Fore tibial spines present. Mid tibia with 3 spines. Hind tibia with 12 spines. Hind femur 4 times as long as wide. (RS+M)a vein of fore wing incomplete. 3RSa vein of fore wing present. 2\u20131A vein of hind wing tubular. Cub vein of hind wing not tubular. Metasoma. Median tergite of first metasomal segment with pair of lateral longitudinal carinae. Hind wing with 3 hamuli. First metasomal median tergite without depression posteriad spiracle. Length width ratio of first metasomal median tergite 0.5. Ovipositor 1.68 mm.\u2640 Color. Head black and yellowish orange. Antenna melanic. Maxillary palpomeres yellowish orange. Labial palpomeres yellowish orange. Pronotum melanic. Mesoscutum melanic. Scutellum melanic. Metanotum melanic. Propodeum melanic. Propleuron melanic. Mesopleuron melanic. Metapleuron melanic. Fore coxa yellowish orange. Fore trochanter yellowish orange. Fore trochantellus yellowish orange. Fore femur yellowish orange. Fore tibia yellowish orange. Fore tarsus mostly yellowish orange, but apical tarsomere melanic. Mid coxa yellowish orange. Mid trochanter yellowish orange. MidPageBreak trochantellus yellowish orange. Mid femur yellowish orange. Mid tibia yellowish orange in basal half, melanic apically, or yellowish orange basally, otherwise melanic. Mid tarsus melanic. Hind coxa melanic. Hind trochanter melanic. Hind trochantellus melanic. Hind femur melanic. Hind tibia melanic in basal and apical third, yellowish orange medially. Hind tarsus melanic. Fore wing entirely infuscate. Stigma melanic. Hind wing entirely infuscate. First metasomal tergum melanic. Second metasomal tergum yellowish orange but median tergite melanic. Third metasomal tergum melanic. Fourth metasomal tergum melanic. Fifth to eighth metasomal terga melanic. Ovipositor yellowish orange.\u2642 unknownEtymology. Bina means \u2018wasp\u2019 in Shipibo, an indigenous language of the Peruvian Amazon.Holotype. \u2640, PERU, Cusco, Rocotal, 16.ix.2007, Sweep, C. Castillo Leg.Sesioctonus longinoi13\u00b003'23\"S, 71\u00b032'55\"W, 1520m, Malaise, 7.i.2009,C.Castillo. leg. \u2640,Cusco, San Pedro, 13\u00b003'23\"S, 71\u00b032'55\"W, 1520m, Malaise, C. Castillo. leg.\u2640, Cusco, Cos\u00f1ipata valley, San Pedro, Sesioctonus diazi12\u00b049,8'24\"S, 71\u00b005'55\"W, 507m, 11.x.2010. C.Castillo. leg. \u2640, Loreto, Alto Nanay, Albarenga north, 18M 0533605 9645694, 142m, C. Castillo leg.\u2640, Cusco, Reserva Comunal Amarakaeri, Rio Azul,"} {"text": "There were errors in the Author Contributions. The correct contributions are: Conceived and designed the experiments: RE MSR RC HJB ITdA. Performed the experiments: RE MSR MB CF RMK. Analyzed the data: RE MSR TT YMS IR PL PK RC HJB ITdA. Contributed reagents/materials/analysis tools: TT PK RC HJB ITdA. Wrote the paper: RE MSR TT YMS IR PL PK RC HJB ITdA."} {"text": "There were errors in the Author Contributions section. A correct version of the section is available below.Conceived and designed the experiments: FZ M.Lazzerini. Performed the experiments: FZ JAOG AC M.Lonardi MS PP DG CG. Analyzed the data: M.Lazzerini FZ. Contributed reagents/materials/analysis tools: FZ M.Lazzerini TN. Wrote the paper: M.Lazzerini, FZ."} {"text": "Please view Dataset S1 here: http://www.plosbiology.org/corrections/pbio.1001105.s008.tif .and Dataset S2 here:"} {"text": "Geranium sylvaticum. The correct citation is: Varga S, Nuortila C, Kyt\u00f6viita M-M (2013) Nectar Sugar Production across Floral Phases in the Gynodioecious Protandrous Plant Geranium sylvaticum. PLoS ONE 8(4): e62575. doi:10.1371/journal.pone.0062575. The words \"Gynodioecious\" and \"Protandrous\" in the article title were incorrectly italicized. The correct title is: Nectar Sugar Production across Floral Phases in the Gynodioecious Protandrous Plant"} {"text": "T is erroneously cited as LMG 2670T.In the abstract of the above paper (doi:10.1099/ijs.0.040162-0), the type strain LMG 26707doi:10.1099/ijs.0.055368-0"} {"text": "The second author's name should be: April W. Armstrong. The corrected citation is: Rehal B, Armstrong AW (2011) Health Outcome Measures in Atopic Dermatitis: A Systematic Review of Trends in Disease Severity and Quality-of-Life Instruments 1985 - 2010. PLoS ONE 6(4): e17520. doi:10.1371/journal.pone.0017520. The corrected Author Contributions are: Conceived and designed the experiments: AWA BR. Analyzed the data: AWA BR. Contributed reagents/materials/analysis tools: AWA BR. Wrote the paper: AWA BR."} {"text": "There was an error in the third author's name.The correct name is: Tirtha K. Das.The correct citation is: Fu S, Yang Y, Das TK, Yen Y, Zhou B-s, et al. (2012) \u03b3-H2AX Kinetics as a Novel Approach to High Content Screening for Small Molecule Radiosensitizers. PLoS ONE 7(6): e38465. doi:10.1371/journal.pone.0038465 The correct Author Contributions are: Conceived and designed the experiments: SF TKD Y. Yen RC JK. Performed the experiments: SF Y. Yang TKD BZ JK. Analyzed the data: SF TKD MO MMZ ECK BSR SHC JK. Contributed reagents/materials/analysis tools: SF Y. Yen MMZ MO RC BSR SHC JK. Wrote the paper: SF TKD BZ ECK JK."} {"text": "PLoS Genet 10(1): e1004100. doi:10.1371/journal.pgen.1004100The second author\u2019s name is spelled incorrectly. The correct name is: Oleg Evgrafov. The correct citation is: Staab TA, Evgrafov O, Knowles JA, Sieburth D (2014) Regulation of Synaptic"} {"text": "The third author's name is misspelled. The correct spelling is: Brian P. Kavanagh. The correct citation is: Kroon AA, Wang J, Kavanagh BP, Huang Z, Kuliszewski M, et al. (2011) Prolonged Mechanical Ventilation Induces Cell Cycle Arrest in Newborn Rat Lung. PLoS ONE 6(2): e16910. doi:10.1371/journal.pone.0016910"} {"text": "There were numerous errors throughout the article.The fifth author's name is misspelled. The correct name is: Bj\u00f6rn Brembs.http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0041642Reference 6 is incorrect. The correct reference is: Gomez-Marin A, Partoune N, Stephens GJ, Louis M (2012) Automated Tracking of Animal Posture and Movement during Exploration and Sensory Orientation Behaviors. PLoS ONE 7(8): e41642. doi:10.1371/journal.pone.0041642 Figure 1 is incorrect. The correct figure can be viewed here:"} {"text": "The first author's name was misspelled. The correct name is: Jia-Qian Jiang. The correct citation is: Jiang J-Q, Zhou Z (2013) Removal of Pharmaceutical Residues by Ferrate(VI). PLoS ONE 8(2): e55729. doi:10.1371/journal.pone.0055729"} {"text": "In Table 2, the table's symbol legends at the bottom are misaligned. Please see the corrected Table 2 here:http://www.plosntd.org/corrections/pntd.0001822.t002.cn.tif"} {"text": "The cations are occupationally disordered and are located in the interlayer space. For both types of cations, distorted coordination polyhedra are observed.The title compound, potassium strontium trialuminium tetra\u00adarsenate, was prepared by solid-state reaction. The structure consists of AlO DOI: 10.1107/S1600536812014304/br2195Isup2.hklStructure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014304/br2195Isup3.cmlSupplementary material file. DOI: crystallographic information; 3D view; checkCIF reportAdditional supplementary materials:"} {"text": "From thSources: McElhinny T. A mammalian lexicon. [cited 2005 Oct 13]. Available from http://www.msu.edu/~mcelhinn/zoology/mammalwords.htm; Webster's Third New International Dictionary (unabridged). Springfield (MA), 1993; and wikipedia.org."} {"text": "This paper was published with an incorrect doi. The correct doi is: 10.1099/ijs.0.016451-0."} {"text": "The Author Contributions are incorrect.They should be: Conceived the experiments: TBY GL. Designed the experiments: TB TBY GL. Performed the experiments: TB GL TBY. Analyzed the data: TB TBY GL YM. Wrote the paper: TBY TB ES."} {"text": "The hydrogen-bond lengths determined from the structure refinement agree well with Raman spectroscopic data.The crystal structure of kovdorskite, ideally Mg al. 1980. Dokl. A DOI: 10.1107/S1600536812000256/wm2577Isup2.hklStructure factors: contains datablock(s) I. DOI: crystallographic information; 3D view; checkCIF reportAdditional supplementary materials:"} {"text": "There were errors in the Author Contributions. The correct contributions are:Conceived and designed the experiments: BK DN PG JG EP SS JS.Performed the experiments: EP SS JS ML CCV MJ GG VN.Analyzed the data: BK DN ST PG JG EP CCV SS JS ML MJ GG.Contributed reagents/materials/analysis tools: SS EP NB HL.Wrote the paper: BK DN PG."} {"text": "AbstractDistephanus for two species from Madagascar.New combinations are provided in Distephanus Cass. a number of combinations have already been made H. Rob., comb. nov. Basionym: Vernonia ambongensis Humbert, Bull. Soc. Bot. France 87: 346. 1940.urn:lsid:ipni.org:names:77122348-1Distephanus bara(Humbert) H. Rob., comb. nov. Basionym: Vernonia bara Humbert, Notul. Syst. (Paris) 8: 9\u201310. 1939.urn:lsid:ipni.org:names:77122349-1"} {"text": "There is a typographical error in the title. The correct title is: Difference In Adaptive Dispersal Ability Can Promote Species Coexistence in Fluctuating Environments. The correct citation is: Lin W-T, Hsieh C-h, Miki T (2013) Difference In Adaptive Dispersal Ability Can Promote Species Coexistence in Fluctuating Environments. PLoS ONE 8(2): e55218. doi:10.1371/journal.pone.0055218"} {"text": "Pseudoalteromonas arabiensis sp. nov. is erroneously cited as Pseudoalteromonas arabianensis sp. nov. in the title of the species description (page 1807).In this paper (doi:10.1099/ijs.0.043604-0), doi:10.1099/ijs.0.055459-0"} {"text": "Int. J. Mol. Sci. 2011, 12, 2325\u20132335.Zhong Ye; Darya O. Mishchuk; Natasha S. Stephens and Carolyn M. Slupsky. Dextran Sulfate Sodium Inhibits Alanine Synthesis in Caco-2 Cells. Shu-Kun Linlin@mdpi.comMDPI AG, Postfach, CH-4005 Basel, Switzerland; E-Mail: Received: 8 January 2012 / Published: 9 February 2012It has been brought to our attention by the corresponding author that the results presented this article are in e"} {"text": "Several errors are present in Figures 2 and 3. Please find the corrected versions of the figures here:http://plosone.org/corrections/pone.0060157.g002.cn.tifFigure 2: http://plosone.org/corrections/pone.0060157.g003.cn.tifFigure 3:"} {"text": "The second author's name was spelled incorrectly. The correct name is: Michelle J. Sun.The correct citation is: Buskohl PR, Sun MJ, Thompson RP, Butcher JT (2012) Serotonin Potentiates Transforming Growth Factor-beta3 Induced Biomechanical Remodeling in Avian Embryonic Atrioventricular Valves. PLoS ONE 7(8): e42527. doi:10.1371/journal.pone.0042527"} {"text": "Corresponding authorship was incorrectly omitted for two authors. The following are corresponding authors on this article: Hiroko Bannai (hbannai@brain.riken.jp), Antoine Triller (triller@biologie.ens.fr), and Katsuhiko Mikoshiba (mikosiba@brain.riken.jp)."} {"text": "Due to errors introduced during the production process, Figure 1 and Figure 2 are incomplete. The full, correct figures can be found here:http://plosone.org/corrections/pone.0033023.g001.cn.tifFigure 1: http://plosone.org/corrections/pone.0033023.g002.cn.tifFigure 2:"} {"text": "The authors note thahttp://www.biomedcentral.com/1741-7015/11/43.This is a Correction article onThe pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1741-7015/11/193/prepub"} {"text": "Graphics 1 and 2 were omitted from the article. They are available below:http://www.plosone.org/corrections/pone.0071743.g001.1.cn.tifGraphic 1: http://www.plosone.org/corrections/pone.0071743.g002.1.cn.tifGraphic 2:"} {"text": "Current Cardiology Reviews. Their efforts have contributed greatly tothe high quality and continuous growth of the journal. Given below is the list of reviewers who reviewed articles for the Journalduring 2013.Bentham Science Publishers would like to thank and appreciate the co-operation from all reviewers for their constructivecomments and feedback on the manuscripts submitted to S. Apostolakis (UK)K. Asrress (UK)A. Banerjee (UK)A. Baranchuk (Canada)H. Baumgartner (Germany)H. Baumgartner (Germany)A. Bobik R. Cemin G. J. Crystal (USA)P. M. Eckman (USA)M. Endoh (Japan)C. Foerch (Germany)S. Fujii (Japan)S. Fynn (UK)K. Guha (UK)K. Kallenbach (Germany)L .W. Klein (USA)L. H. Kuller (USA)J. L. Mehta (USA)P. Meier (UK)L. C. Naz\u00c1rio Scala (Brazil)P. Pagliaro M. A. Portman (USA)F. Recchia (USA)R. Sankaranarayanan (UK)R. J. Selvaraj (India)C. Shanahan (UK)E. Shantsila (UK)N. Turck (Switzerland)"} {"text": "Abstractth century explorer and ornithologist Prince Maximilian of Wied-Neuwied form one of the foundation collections of the American Museum of Natural History in New York. However, parts of his collection remained in Germany and came to the Museum Wiesbaden. Since Wied described numerous new species without designating types, some of these specimens might be type material. Here we present a catalog of the 30 Wiesbaden specimens associated with him and discuss their potential type status. We conclude that 17 individuals in 11 species are potential type specimens that should be considered in future taxonomic work.Bird specimens collected by 19 In 1870 part of the Wied collection comprising 4,000 birds, 600 mammals and 2,000 fish and reptiles was purchased by the American Museum of Natural History in New York (AMNH) and constitutes the cornerstone of its scientific collection owns several specimens that either originate from the collection of Prince Maximilian of Wied-Neuwied or were described by him as new species. In the early 19llection .Besides mammals, reptiles, and amphibians, Wied described 160 species and subspecies of birds. The names of more than 50 of these taxa are still valid today . PotentiLike at the AMNH, in Wiesbaden as well many of the originally mounted specimens were later dismounted and added to the study skin collection. Most of the series of the main Wied collection at the AMNH still bear their original labels, but not every individual specimen has such a label by Wied see . It appeWied\u2019s work on birds is significant not only because of the huge number of species and forms described for the first time, but it also gives information on distribution and biology of numerous animals. Even today records on the biology of many organisms are completely lacking. As PageBreakHandbook of the Birds of the World Arctic Tern \u2013 K\u00fcstenseeschwalbeInv. nr. 2209: 1 ad., breeding plumage, mounted specimenLabels: a) [*] 2209. Cat. Birds Br. Mus. XXV, 62. Sterna macrura Naum. S\u00fcdamerika Fr\u00fchjahr 1846 G.: Prinz Max v. Wied; b) [**] 2209 Rchw. 1, 116. Sterna macrura Naum. K\u00fcsten-Seeschwalbe (Sommerkleid) S\u00fcd-Amerika G.: Prinz Max v. Wied.Anser albifrons albifrons 2. (Anseriformes \u2013 Anatidae)Greater White-fronted Goose \u2013 Bl\u00e4\u00dfgansInv. nr. 2504: 1 fem. juv., mounted specimenLabels: a) Anser albifrons, Bechst. Bl\u00e4\u00dfgans \u2640 N.Europa; b) [*] 2504. Cat. Birds Brit. Mus. 27 pag. 92. Anser albifrons (Scop.) \u2640 N.Europa Novbr. 1847 G.: Prinz Max v. Wied; c) [**] 2504. Anser albifrons (Scop.) Wei\u00dfstirngans, Bl\u00e4\u00dfgans \u2640 juv. Europa XI/1847 G.: Prinz Max v. WiedMeleagris gallopavo osceola Scott, 18903. Florida Wild Turkey \u2013 Florida-TruthuhnInv. nr. 1853: 1 fem. ad., mounted specimenLabels: a) Meleagris Gallopavo Nord-Amerika; b) [*] 1853 Cat. B. Br. Mus. XXII, 389/90 Meleagris americana Bartr. subsp. osceola Scott \u2640 Nord-Amerika 1835. G.: Prinz Max v. Wied; c) [**] 1853 Rchw. 1, 304. Meleagris americana Bartr. subsp. osceola Scott Wildes Truthuhn Nord-Amerika S.G.: S. H. Prinz M. v. WiedPageBreakPageBreakAulacorhynchus prasinus atrogularis 4. (Piciformes \u2013 Ramphastidae)Emerald Toucanet \u2013 LaucharassariInv. nr. 848: 1 ad., mounted specimenLabels: a) Pteroglossus atrogularis Gould. Amerika Von Prinz Max erkauft(?) [purchased from Prince Max]; b) [*] 848. Br. C. B. XIX p. 160 Aulacorhamphus atrogularis Sturm S.Amerika S. Prinz Max v. Wied; c) [**] 848 Rchw. 2, 37. Aulacorhynchus atrogularis (Sturm.) Schwarzkehliger Arassari S\u00fcdamerika.; on pedestal: 1835 ans Museum [to the museum in 1835]Colaptes auratus auratus -group5. (Piciformes \u2013 Picidae)Yellow-shafted Flicker \u2013 GoldspechtInv. nr. 1002: 1 fem. ad., study skinLabels: a) Picus auratus Nord-Amerika; b) [*] 1002 Cat. Birds Brit. Mus. 18.p.12. Colaptes auratus (L.) \u2640 Nord-Amerika; catalog: Prinz Max von Wied, 1835Melanerpes erythrocephalus 6. (Piciformes \u2013 Picidae)Red-headed Woodpecker \u2013 RotkopfspechtInv. nr. 1027: 1 ad., study skinLabel: [***] Kat.Nr. 1027 Br.C.B. XVIII 145 Melanerpes erythrocephalu (L) Rotkopfspecht Nord-Amerika; database: erworben 1835 von Prinz Max v. Wied [purchased 1835 from Prince Max of Wied]Sporophila caerulescens 7. (Passeriformes \u2013 Thraupidae)Double-collared Seedeater \u2013 Schmuckpf\u00e4ffchenInv. nr. 5238: 1 male ad., study skinLabel: [***] Kat.Nr. 5238. Sporophila ornata (Licht.) \u2642 Brasilien leg. Prinz Max v. Wied; reverse: Sporophila (-)caerulescens (Vieill.) Schmuckpf\u00e4ffchenTouit melanonota 1. (Psittaciformes \u2013 Psittacidae)Brown-backed Parrotlet \u2013 Braunr\u00fcckenpapageiInv. nr. 748: 1 ad., mounted specimenSyn.: Psittacus melanonotus Wied, 1820: 275; Urochroma melanota Labels: a) Psittacus melanotus Brasilien; b) [*] 748 Br.C.B. XX. p. 352. Urochroma wiedi Allen Brasilien.; c) [**] 748 Rchw. 1, 484. Urochroma melanota (Lcht.) Wied Schwarzr\u00fcckiger Zwergpapagei Brasilien.; catalog: Prinz Max v. Wied, 1835Remarks: According to the original description, Wied saw several animals and noted that this new species was displayed at the Berlin museum under the name PageBreakPageBreakPsittacus melanonotus. Psittacus, Wied\u2019s name was preoccupied by Psittacus melanotus Shaw, 1804. Allen provided a replacement name, Urochroma wiedi. Wied\u2019s form is now placed in the genus Touit 2. (Strigiformes \u2013 Strigidae)Least Pygmy-owl \u2013 KleinstzwergkauzInv. nr. 202: 1 ad., study skinSyn.: Strix minutissima Wied, 1830: 242Label: [*] 202 Glaucidium (Glaucidium) minutissimum (Wied) Zwergkauz BrasilienRemarks: According to the original description, Wied examined males and females, but does not give any information about the quantities or the whereabouts. Strix minutissima at the AMNH with the inventory numbers 6345 and 6345 bis . The MWNH specimen might belong to the original type series, although there is no proof.Spizaetus tyrannus 3. Black Hawk-eagle \u2013 TyrannenadlerI. Inv. nr. 2989: 1 male ad., mounted specimenII. Inv. nr. 2990: 1 juv., study skinSyn.: Falco tyrannus Wied, 1820: 360Labels: I. a) No. 109 Falco Tyrannus Pr. Max Temm. Pl. col. 73. Seite 61 Cuv. Seite 384. Iris gelb.; b) [*] 2989. Brit. Cat. I. 264 Spizaetus tyrannus Wied. \u2642 Surinam; c) [**] 2989 Rchw. 1, 386. Spizaetus tyrannus (Wied.) Tyrann-Adler \u2642 Surinam.; II. [***] Kat.Nr. 2990 R. I. 386 Spizaetus tyrannus (Wied) Tyrann-Adler SurinamRemarks: According to the original description, Wied had at least one male at his hands. The AMNH has a specimen (inv. nr. 6381) that Conopias trivirgatus 4. (Passeriformes \u2013 Tyrannidae)Three-striped Flycatcher \u2013 Olivbrust-MaskentyrannInv. nr. 5313: 1 ad., study skinSyn.: Muscicapa trivirgata Wied, 1831: 871Labels: a) Muscicapa trivirgata unserer(?) Beitr\u00e4ge; b) Muscicapa trivirgata M. v. Wied, Brasilien; c) [*] 5313. Cat. Birds Brit. Mus. Conopias (Conopias) trivirgata (Wied) Subsp. Dreistreifentyrann BrasilienPageBreakPageBreakRemarks: According to the original description, Wied examined one female from Bahia. Femina\u201d was not written in Wied\u2019s catalog, but AMNH 4926 is sexed as a female. Since Wied himself only mentions one female, the specimen at the AMNH probably is the holotype.Lipaugus vociferans 5. (Passeriformes \u2013 Cotingidae)Screaming Piha \u2013 Tiefland-GraupihaI. Inv. nr. 150: 1 ad., mounted specimenII. Inv. nr. 3989: 1 fem. ad., study skinSyn.: Muscicapa vociferans Wied, 1820: 242Labels: I. a) [*] 150 Cat. Birds Brit. Mus. 14 p.352. Lathria cinerea (Vieill.) Surinam; b) [**] 150 Rchw. 2, 191. Lipaugus cinereus (Vieill.) Surinam.; II. [*] 3989. R. II. 191. Lipaugus cinereus (Vieill.) Brasilien G.: Geschw. Brambeer.; reverse: CotingidaeRemarks: In the original description Wied does not state the quantity of examined specimens. According to him, this new species was displayed at the Berlin museum under the name Muscicapa ampelina. Todirostrum poliocephalum 6. (Passeriformes \u2013 Tyrannidae)Grey-headed Tody-flycatcher \u2013 Gelbz\u00fcgel-TodityrannI. Inv. nr. 120 a: 1 ad., study skinII. Inv. nr. 120 b: 1 ad., study skinIII. Inv. nr. 120 c: 1 ad., study skinSyn.: Todus poliocephalus Wied, 1831: 964Lab els: I. a) Todus poliocephalus, Pr. Max Grauk\u00f6pfiger Plattschnabel Brasilien; b) [*] 120 3/a Cat. Birds Brit. Mus. 14 p. 71. Todirostrum poliocephalum (Wied) Brasilien.; II. a) Todus poliocephalus Max v. Wied. Grauk\u00f6pfiger Plattschnabel Brasilien; b) [*] 120 3/b Cat. Birds Brit. Mus. 14. 71 Todirostrum poliocephalum (Wied.) Brasilien; III. a) Todus policephalus, Max v. [abgeschnitten] Grauk\u00f6pfiger Plattschnabel Brasilien; b) [*] 120 3/c Cat. Birds Brit. Mus. 14 p. 71 Todirostrum poliocephalum (Wied) Brasilien.; reverse of b) : TyrannidaeRemarks: In the original description Wied examined males and females, but did not note the quantities and whereabouts. PageBreakConopophaga lineata 7. (Passeriformes \u2013 Conopophagidae)Rufous Gnateater \u2013 Rotkehl-M\u00fcckenfresserI. Inv. nr. 106 a: 1 ad., study skinII. Inv. nr. 106 b: 1 ad., study skinIII. Inv. nr. 107: 1 ad., study skinSyn.: Myiagrus lineatus Wied, 1831: 1046Labels: I. [*] 106a. Cat. Birds Brit. Mus. 15. p. 333 Conopophaga lineata (Wied) Brasilien; II. [*] 106b. Cat. Birds Brit. Mus. 15 p. 333. Conopophaga lineata (Wied.) Brasilien; III. [*] 107 Cat. Birds Brit. Mus. 15 p. 333. Conopophaga lineata (Wied.) BrasilienRemarks: In the original description Wied mentions only one individual. The AMNH has one female holotype (Nr. 6777) listed by Myrmeciza ruficauda 8. (Passeriformes \u2013 Thamnophilidae)Scalloped Antbird \u2013 N\u00f6rdlicher SchuppenameisenvogelInv. nr. 121: 1 ad., mounted specimenSyn.: Myiothera ruficauda Wied, 1831: 1060Labels: a) Formicivora loricata \u2640 Swains. Bahia; b) Formicivora \u2642. Bahia. 3. Gust. Schneider, Basel.; c) [*] 121. Cat. Birds Brit. Mus. 15 p. 281. Myrmeciza ruficauda Wied Bahia S.: G. Schneider, Basel.; d) [**] 121 Rchw. 2, 231. Myrmeciza ruficauda Wied. Bahia.Remarks: In the original description Wied examined males and females, but does not specify the quantities and whereabouts. There are four syntypes at the AMNH: males nr. 5388 and 6829, juvenile male nr. 5386 and female nr. 5385 9. (Passeriformes \u2013 Corvidae)White-naped Jay \u2013 Wei\u00dfnacken-BlaurabeInv. nr. 609: 1 ad., mounted specimenSyn.: Corvus cyanopogon Wied, 1821: 137Labels: a) Corvus cyanopogon Brasilien; later altered: Cyanocorax Corvus cyanopogon (Max Neuwied) III, 123.; b) [*] 609 Br. C. B. III p. 123 Cyanocorax cyanopogon (Neuwied) Brasilien.Remarks: In the original description Wied had several individuals at hand. Tangara velia cyanomelas Wied, 183010. (Passeriformes \u2013 Thraupidae)Silvery-breasted Tanager \u2013 Rotbauchtangare; group of 3 individualsI. Inv. nr. 3792: 1 male ad., mounted specimenII. Inv. nr. 3793: 1 fem. ad., mounted specimenIII. Inv. nr. 3794: 1 fem. ad., mounted specimenPageBreakSyn.: Tangara cyanomelas Wied, 1830: 453Labels: a) Tanagrella velia \u2642\u2640? Gmel Bahia; b) [*] 3792/94 Brit.Cat.11 p. 88. Tanagrella cyanomelaena (Wied.) \u2642\u2640\u2640 Bahia; c) [**] 3792/94 Rchw. 2, 436. Calospiza cyanomlaena (Wied.) 1 \u2642, 2 \u2640 Bahia, Brasilien.Remarks: In the original description Wied mentions several males, while the female was unknown to him. According to Coryphospingus pileatus 11. (Passeriformes \u2013 Thraupidae)Pileated Finch \u2013 Graur\u00fcckenkronfinkInv. nr. 5102: 1 male ad., study skinSyn.: Fringilla pileata Wied, 1821: 160Label:[*] 5102. Cat. Birds Brit. Mus. Tanagra cristatella Spix. \u2642 Brasilien; reverse: Tanagridae = ThraupidaeCoryphospingus pileatus (Wied) Subsp. Graur\u00fccken-KronfinkRemarks: In the original description Wied described the male without giving details on quantity or whereabouts of the specimens. According to Schistochlamys ruficapillus capistratus 12. (Passeriformes \u2013 Thraupidae)Cinnamon Tanager \u2013 GimpeltangareInv. nr. 5095: 1 ad., study skinSyn.: Tanagra capistrata Wied, 1821: 179Label: [*] 5095. Brit.Cat.11 p. 301. Schistochlamys capistratus (Max) Brasilien.; reverse: Tanagridae = ThraupidaeRemarks: In the original description, and also in 1831 (p. 500), Wied examined males and females, but did not note specifics on quantities and whereabouts. According to Thraupis palmarum palmarum 13. (Passeriformes \u2013 Thraupidae)Palm Tanager \u2013 PalmentangareI. Inv. nr. 43: 1 ad., mounted specimenPageBreakII. Inv. nr. 5096: 1 ad., study skinSyn.: Tanagra palmarum Wied, 1821: 76Labels: I. a) Tanagra palmarum Mexiko; b) [*] 43 Brit.Cat. 11 p. 159. Tanagra palmarum Max. Brasilien. Mexiko auf alt/Schauetik.; c) [**] 43 Rchw. 2, 435. Tanagra palmarum Max. Brasilien.; II. [*] 5096. Brit.Cat.11 p.159. Tanagra palmarum Max. Brasilien.Remarks: In the original description Wied refers to both sexes, but does not specify the quantity and whereabouts of the examined specimens. Oryzoborus maximiliani Cabanis, 185114. (Passeriformes \u2013 Thraupidae)Great-billed Seed-finch \u2013 Dickschnabel-ReisknackerInv. nr. 5235: 1 fem. ad., study skinSyn.: Oryzoborus crassirostris Wied, 1830: 564, preocc. Oryzoborus crassirostris Labels: a) Fringilla crassirostris, Max v. Wied Pyrrhula crassirost. \u2640 Brasilien; b)[*] 5235. Brit.Cat.12 p. 78 Oryzoborus maximiliani Cab. \u2640 Brasilien.Remarks: Unfortunately we could not obtain the original description. In conclusion, it can be assumed that 17 individuals in 11 species of birds in the Wiesbaden collection are potential type specimens that should be considered in future taxonomic work. Close examination, comparison with other material, or even genetic tests will be necessary to make a final decision on the specimens\u2019 type status."} {"text": "There were multiple errors in the legends for Figures 2, 3 and 4 in the online version of the article, and in Figure 2 of the PDF version of the article. The correct legends can be viewed below.http://www.plosone.org/corrections/pone.0075177.002.cn.tiffFigure 2: http://www.plosone.org/corrections/pone.0075177.003.cn.tiffFigure 3: http://www.plosone.org/corrections/pone.0075177.004.cn.tiffFigure 4:"} {"text": "The name of the first author was given incorrectly. The correct name is: Jacob Keller. The correct citation is: Keller J, Homma K, Dallos P (2013) Pixels as ROIs (PAR): A Less-Biased and Statistically Powerful Approach for Gleaning Functional Information from Image Stacks. PLoS ONE 8(7): e69047. doi:10.1371/journal.pone.0069047."} {"text": "The image for Figure 1 is incorrect. Please view the correct image here:http://www.plosntd.org/corrections/pntd.0001902.g001.cn.tif"} {"text": "AbstractFirensia Scop. was based on Cordia flavescens Aubl., a species described and illustrated from a mixed collection that Scopoli never transferred to Firensia. The genus included three additional species formally named by Rafinesque. Currently the four species are placed in three different families and none retained the epithet accepted by Scopoli or given by Rafinesque for reason of priority. A lectotype is designated for Cordia flavescens that places Firensia in the synonymy of Ocotea (Lauraceae). Boraginaceae for the Flora of the Guianas, I got intrigued by the history of Firensia Scop. When Firensia, he included only Cordia flavescens Aubl. that is therefore the type of the genus. Contrary to what is stated by http://www.ipni.org/index.html; accessed 23.01.2013), in that work Cordia flavescens was not transferred to Firensia. Firensia as one PageBreakof his \u201cspecies naturalis\u201d in a work where the nomenclature was uninominal and that is rejected as a source of names by the International Code of Botanical Nomenclature \u201d. When the original description was associated with several collections of equal status or syntypes, a type collection and a lectotype were selected and the text says: \u201cLectotype...: ... \u201d. In both cases the information on the date of lectotypification is given next to the word lectotype.Cordia flavescens Aubl. was described and illustrated based on a mixture of fruiting branches of Ocotea commutata Nees (LAURACEAE) and flowers belonging in Cordia. Specimens by Aublet at BM and S represent only the Ocotea element does not have priority over Ocotea Aubl. (1775), and the epithet flavescens cannot be transferred to Ocotea as the name Ocotea flavescens Rusby (1920) applies to a different species from Colombia. Aublet\u2019s name becomes a synonym of Ocotea commutata (Nees) Mez.Nomenclature stability is satisfied: PageBreakOcotea Aubl., Hist. Pl. Guiane 2: 780; 4: t. 310. 1775.Ocotea guianensis Aubl.Type: Firensia Scop., Intr. Hist. Nat. 157. 1777.Cordia flavescens Aubl.Type: Firensia have been named or identified as species of Cordia L., one by Firensia could be kept for reason of priority. The type species, Cordia flavescens, and the three species of Firensia currently belong in three different genera and families.The species once placed in 1.Aubl., LauraceaeOcotea commutataOreodaphne commutata Nees (Nees) Mez, Jahrb. K\u00f6nigl. Bot. Gart. Berlin 5: 327. 1889. Type: Based on Cordia flavescensOcotea flavescens Rusby 1920. Type: French Guiana. J.B. Aublet s.n. [specimens without the Cordia flowers] Aubl., Hist. Pl. Guiane 1: 226; 3: t. 89. 1775; not Cordia sarmentosaCordia flavescens Aubl. Lam., Tab. Encycl. M\u00e9thod. 1: 422. 1791; illegitimate renaming. Type: Based on Oreodaphne commutataJ. Martin s.n. Kuntze, Revis. Gen. Pl. 2: 977. 1891. Type: Based on Gerascanthus flavescensCordia flavescens Aubl. (Aubl.) Borhidi, Acta Bot. Hung. 34(3\u20134): 400. 1988. Type: Based on Oreodaphne commutata can be seen at http://ww2.bgbm.org/herbarium/view_large.cfm?SpecimenPK=47688&idThumb=253360&SpecimenSequenz=1&loan=0 , and the Paris isotypes at http://coldb.mnhn.fr/colweb/request.do?requestaction=exec; the lectotype of Cordia flavescens at http://plants.jstor.org/specimen/bm000993950 , and its Stockholm isotype at http://plants.jstor.org/specimen/s04-2350?history=true .The holotype of PageBreak2.Raf., CordiaceaeCordia collococcaP. Browne s.n. L., Sp. Pl. ed. 2, 1: 274. 1762. Lectotype Kuntze, Revis. Gen. Pl. 2: 438. 1891. Type: Based on Gerascanthus collococcusCordia collococca L. (L.) Borhidi, Acta Bot. Hung. 34(3\u20134): 399. 1988. Type: Based on Cordia collococca can be seen at .The hololectotype of For other synonyms, see 3.(Willd.) Raf., CordiaceaeCordia nodosa Lam., Tab. Encycl. 1: 422. 1792. Type: Cordia collococcaCordia nodosa Lam.) sensu J.B. Aublet, Hist. Pl. Guiane 1: 219; & 3: pl. 86. 1775; non L. 1757. : 1076. 1798. Type: Based on Firensia hirsutaCordia nodosa Lam. (Willd.) Raf., Sylva Tellur. 40. 1838. Type: Based on Lithocardium nodosumCordia nodosa Lam. (Lam.) Kuntze, Rev. Gen. 2: 977. 1891. Type: Based on Cordia nodosa and Cordia hirsuta. In fact it is unlikely that Sometimes the collection from French Guiana\u2014J.B. Aublet s.n. \u2014is cited as the type of http://plants.jstor.org/specimen/bm000906214Aublet s.n. can be seen at Cordia hirsuta Fresen. 1857 is different from Cordia hirsuta Willd. 1798.For other synonyms, see 4.Raf., CombretaceaeBuchenavia tetraphyllaCordia tetraphylla Aubl. (Aubl.) R.A. Howard, J. Arnold Arbor. 64(2): 266. 1983. Type: Based on PageBreakCordia tetraphylla Aubl., Hist. Pl. Guiane 1: 224; 3: t. 88. 1775. Lectotype Kuntze, Rev. Gen. 2: 977. 1891. Type: Based on Gerascanthus tetraphyllusCordia tetraphylla Aubl. (Aubl.) Borhidi, Acta Bot. Hung. 34(3\u20134): 402. 1988. Type: Based on For other synonyms, see Ocotea commutata Nees ex Meisn., Prodr. (DC.) 15(1): 120. 1864, invalid: pro syn. Oreodaphne commutata Nees (= Ocotea commutata (Nees) Mez 1889).Cordia echitioides Lam. ex D. Dietr., Syn. Pl. 1: 612. 1839; invalid: pro syn. Cordia flavescens Aubl. (= Ocotea commutata (Nees) Mez)."} {"text": "The eighth author's name was spelled incorrectly. The correct name is: Montserrat Carmona.The title of Reference 16 is incorrect. The corrected Reference 16 is:http://www.isciii.es/ISCIII/es/contenidos/fd-servicios-cientifico-tecnicos/fd-vigilancias-alertas/M_10_Cap_cau.xls. Accesssed 17 September 2013.16. Instituto de Salud Carlos III website. (2010) . In the footnote of Table 3, the text for a. references Figure 4 erroneously. The correct text should read: \"a. Correspond to overall values in Figure 3.\""} {"text": "Figures 2B through 2E do not appear.http://www.plosone.org/corrections/pone.0066792.g002b.cn.tifPlease view Figure 2B here: http://www.plosone.org/corrections/pone.0066792.g002c.cn.tifPlease view Figure 2C here: http://www.plosone.org/corrections/pone.0066792.g002d.cn.tifPlease view Figure 2D here: http://www.plosone.org/corrections/pone.0066792.g002e.cn.tifPlease view Figure 2E here:"} {"text": "A typicl Figure . Insteadt Figure . Spatialparisons . These r"} {"text": "Supplementary Videos S1 and S2 and Supplementary Tables S1 through S4 were incorrectly omitted from the Supporting Information. Please view the Supplementary Videos and Tables at the following links: http://plosone.org/corrections/pone.0079913.s001.cn.mp4 Video S1: http://plosone.org/corrections/pone.0079913.s002.cn.mp4 Video S2: http://plosone.org/corrections/pone.0079913.s003.cn.tif Table S1: http://plosone.org/corrections/pone.0079913.s004.cn.tif Table S2: http://plosone.org/corrections/pone.0079913.s005.cn.tif Table S3: http://plosone.org/corrections/pone.0079913.s006.cn.tifTable S4:"} {"text": "The Table 1 that was presented is incorrect. The correct version is available below.http://plosone.org/corrections/pone.0050295.t001.cn.tifTable 1:"} {"text": "The last author's name was misspelled. The correct name is: Glenn J. Tattersall. The correct citation is: Greenberg R, Cadena V, Danner RM, Tattersall GJ (2012) Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats. PLoS ONE 7(7): e40933. doi:10.1371/journal.pone.0040933"} {"text": "There were numerous errors throughout the article. http://www.plosone.org/corrections/pone.0049593.cn.tifThe corrections can be viewed here:"} {"text": "The middle initial of the second author is incorrect. The correct spelling is: Peter N. Ruygrok.The correct citation is: Crossman DJ, Ruygrok PN, Soeller C, Cannell MB (2011) Changes in the Organization of Excitation-Contraction Coupling Structures in Failing Human Heart. PLoS ONE 6(3): e17901. doi:10.1371/journal.pone.0017901The correct author contributions are: Conceived and designed the experiments: MBC DJC PNR. Performed the experiments: DJC. Analyzed the data: MBC DJC CS. Contributed reagents/materials/analysis tools: MBC CS PNR. Wrote the paper: DJC MBC."} {"text": "Mycobacterium tuberculosis Complex Pathogen, M. mungi contained several errors related to scoring of mycobacterial interspersed repetitive unit\u2013variable number tandem repeats of selected isolates. The article has been corrected online (http://wwwnc.cdc.gov/eid/article/16/8/10-0314_article.htm). Table 2 in the article Novel"} {"text": "The data in doi:10.1099/mic.0.X00007-0"} {"text": "There was an error in the second author's name. Peter J. Carolan is correct. The correct citation is: Chen CA, Carolan PJ, Annes JP (2012) In Vivo Screening for Secreted Proteins That Modulate Glucose Handling Identifies Interleukin-6 Family Members as Potent Hypoglycemic Agents. PLoS ONE 7(9): e44600. doi:10.1371/journal.pone.0044600"} {"text": "In \u201cOsler and the Infected Letter,\u201d by Charles T. Ambrose, an error occurred. Yellow fever swept through Philadelphia in 1793.http://wwwnc.cdc.gov/eid/article/11/5/04-0616_article.htm.The corrected article appears online at We regret any confusion these errors may have caused."} {"text": "The fifth author's name is spelled incorrectly. The correct name is: Aparna Wagle Shukla.The correct citation is: Hass CJ, Malczak P, Nocera J, Stegem\u00f6ller EL, Wagle Shukla A, et al. (2012) Quantitative Normative Gait Data in a Large Cohort of Ambulatory Persons with Parkinson\u2019s Disease. PLoS ONE 7(8): e42337. doi:10.1371/journal.pone.0042337"} {"text": "Due to errors introduced during the production process, some of the text has been reproduced incorrectly.http://www.plosone.org/corrections/pone.0052603.001.cn.tif In the Results section, in the sub-section \"Incorporation of Gag-GFP into Yeast VLPs does not Require ESCRT Function\", errors were introduced into the text. The correct text can be viewed here: http://www.plosone.org/corrections/pone.0052603.002.cn.tif In the Materials and Methods section, in the sub-section \"Strains\", errors were introduced into the text. The correct text can be viewed here: In the legends of Figure 1, Figure 4, and Figure 5, errors were introduced into the text. The correct legends can be found below.http://www.plosone.org/corrections/pone.0052603.003.cn.tif Figure 1: http://www.plosone.org/corrections/pone.0052603.004.cn.tif Figure 4: http://www.plosone.org/corrections/pone.0052603.005.cn.tif Figure 5:"} {"text": "There was an error in the Author Contributions designations. The correct Author Contributions are: Conceived and designed the experiments: PF PT GK CP AHF. Performed the experiments: PF ML CP. Analyzed the data: PF ML GK AJF NR. Contributed reagents/materials/analysis tools: PF ML PM CP NR. Wrote the paper: PF PT GK BW ML PM. Provided data: PM AHF GK BW."} {"text": "Recurrent/Persistent Pneumonia among Children in Upper Egypt. Mediterr J Hematol Infect Dis. 2013 Apr 18;5(1):e2013028. doi: 10.4084/MJHID.2013.028. Print 2013. PubMed PMID: 23667726;PubMed Central PMCID: PMC3647710.\" has been removed from Mediterr J Hematol Infect Dis because the paper was previously published in another journal.The article deposited in PUBMED as"} {"text": "Sensors [http://www.mdpi.com/1424-8220/15/4/9277.The authors wish to update the Acknowledgments in their paper published in Sensors , doi:10."} {"text": "The third and fourth author's names are spelled incorrectly. The correct names are: Gert S. Faber and N. Peter Reeves. The correct citation is: Cofr\u00e9 Lizama LE, Pijnappels M, Faber GS, Reeves NP, Verschueren SM, et al. (2014) Age Effects on Mediolateral Balance Control. PLoS ONE 9(10): e110757. doi:10.1371/journal.pone.0110757"} {"text": "Footnotes 6 and 7:http://fcon_1000.projects.nitrc.org/indi/abide/Should both refer to the ABIDE dataset: Footnote 8:http://neuro.debian.net.Should reference the article below, in addition to the NeuroDebian website: Front. Neuroinform. 6:22. doi: 10.3389/fninf.2012.00022. http://journal.frontiersin.org/article/10.3389/fninf.2012.00022/pdfHalchenko, Y. O., and Hanke, M. (2012). Open is not enough. Let's take the next step: an integrated, community-driven computing platform for neuroscience. The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest."} {"text": "Present: Due to a technical error during publication, duplicate videos were uploaded as Supplementary File 5 and Supplementary File 28. As a result, Figure 5E contains a reference to the duplicate files.Corrected: Correct Supplementary File 28 was uploaded. Updated figure 5E can be found below. The publisher apologizes for this oversight.21655-21674. doi: 10.18632/oncotarget.4130.Original Article: Oncotarget. 2015; 6:"} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceived and designed the experiments: AM FT AG CC LR. Performed the experiments: FT DL GB AM. Analyzed the data: AM FT AG CC LR. Contributed reagents/materials/analysis tools: FV. Wrote the paper: AM FT AG LR"} {"text": "Jaroma A, Soininvaara T, Kr\u00f6ger H. Periprosthetic tibial bone mineral density changes after total knee arthroplasty. ACTA ORTHOP 2016; 87 (3): 268-273.http://dx.doi.org/10.3109/17453674.2016.1173982When the above article was first published online, co-author Tarja Soininvaara\u2019s surname was incorrectly spelt as Soinninvaara. This has now been corrected online and in the print edition."} {"text": "Nucl. Acids Res. (2013) 41 (18): e175. doi: 10.1093/nar/gkt684The authors wish to correct the full name of Billie Jo Masek to Billie J. Masek."} {"text": "Bulletin \u00e9pid\u00e9miologique hebdomadaire 24-25/201626 July 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/24-25/2016_24-25_3.htmlHealth Protection Report; 10(23)15 July 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/541028/hpr2316.pdfHealth Protection Report; 10(24)22 July 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/541032/hrp2416.pdfHealth Protection Report; 10(23)15 July 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/541028/hpr2316.pdfHealth Protection Report; 10(22)08 July 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/543433/hpr2216_crrctd2.pdfFolkehelseinstituttet website20 July 2016https://www.fhi.no/nyheter/2016/oppdaterte-rad-om-forebygging-av-zikavirus-infeksjon-etter-opphold-i-utbrud/Health Protection Report; 10(24)22 July 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/541032/hrp2416.pdfEpidemiologisches Bulletin 29, 201625 July 2016, Germanyhttp://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2016/Ausgaben/29_16.pdf?__blob=publicationFileHealth Protection Report; 10(24)22 July 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/541032/hrp2416.pdfFolkehelseinstituttet website07 July 2016https://www.fhi.no/nyheter/2016/mat-og-vannbarne-infeksjoner/Epi-Insight 2016;17(8)August 2016, Irelandhttp://ndsc.newsweaver.ie/epiinsight/xvz2wrpu8jr?a=1&p=50630336&t=17517774EPI-NEWS 27a+b, 20166 July 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2027%20-%202016.aspxEpidemiologisches Bulletin 30, 20161 August 2016, Germanyhttp://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2016/Ausgaben/30_16.pdf?__blob=publicationFileHealth Protection Report; 10(24)22 July 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/541032/hrp2416.pdf"} {"text": "The fourth author\u2019s name is spelled incorrectly. The correct name is David Johansen. The correct citation is: Songstad NT, Serrano MC, Sitras V, Johansen D, Ytrehus K, et al. (2014) Coronary Flow Reserve in Pregnant Rats with Increased Left Ventricular Afterload. PLoS ONE 9(7): e102147. doi:10.1371/journal.pone.0102147."} {"text": "Tunga penetrans Antigens in Selected Epidemic Areas in Murang\u2019a County in Kenya. PLoS Negl Trop Dis 9(3): e0003517. doi:10.1371/journal.pntd.0003517.The third author\u2019s name is spelled incorrectly. The correct name is Joshua M. Mutiso. The correct citation is: Mwangi JN, Ozwara HS, Mutiso JM, Gicheru MM (2015) Characterization of"} {"text": "AbstractIn order to contribute to the butterflies\u2019 biodiversity knowledge at Serra do Intendente State Park - Minas Gerais, a study based on collections using Van Someren-Rydon traps and active search was performed. In this study, a total of 395 butterflies were collected, of which 327 were identified to species or morphospecies. 263 specimens were collected by the traps and 64 were collected using entomological hand-nets; 43 genera and 60 species were collected and identified. Lepidoptera is comprised of butterflies and moths; it is one of the main orders of insects which has approximately 157,424 described species (Papilionoidea and Hesperioidea and are subdivided into six families: Hesperiidae (Hesperioidea) and Papilionidae, Pieridae, Lycaenidae, Riodionidae, and Nymphalidae (Papilionoidea) (The species . The but species . The occ species . The groonoidea) .These insects are characterized as holometabolous, terrestrial, and diurnal. They are plant material chewers in the larval stage and liquid suckers in adulthood . ButterfButterflies are important indicators of environmental quality, because they are diverse, can be easily viewed, captured, identified, and manipulated by researchers . They arLepidoptera biodiversity in Minas Gerais, is still scarce , Minas Gerais, Brazil.Study SiteThe study was conducted in the region of Serra do Espinha\u00e7o, more precisely, within the Serra do Intendente State Park Fig. and the The climate is mesothermal, characterized by mild, humid summers and dry, cold winters. The average annual rainfall is 1,600 mm. The annual mean temperature is 18, 7\u00baC . The preData CollectionThe collections began in April 2012 and were completed in February of 2013. During this period four collections (two in the rainy season and two in the dry season) were performed. Each collection was performed for five days. The study area was divided into two areas throughout the Peixe Tolo River basin and in each area, forty Van Someren-Rydon traps were distributed. Twenty traps were located on the right bank and other twenty on the left bank of the Peixe Tolo River . Genera and species were confirmed by Dr. Andr\u00e9 Freitas, from the Department of Animal Biology, Universidade Estadual de Campinas. Furthermore, a comparison with available identified species in the Lepidoptera collection in the Invertebrates Laboratory (PUC Minas) was performed.The collected material was mounted, identified and labeled in the PUC Minas Natural Sciences Museum entomological collection laboratory. The identification of the individuals was made using In this study 394 individuals were captured, and 327 were identified. Sixty-seven individuals were not identified to genus or species due to bad specimen conditions or incipient systematics.Nymphalidae, Pieridae, Hesperiidae, Lycaenidae, Papilionidae and Riodinidae. A total of 299 individuals belonging to the Nymphalidae, 15 from the Pieridae, four from the Hesperiidae, four from the Lycaenidae, three from the Papilionidae, and one species from the Riodinidae.The families represented in this study were: A total of 263 butterflies were collected in traps and 63 using entomological hand-nets. The collections gathered specimens belonging to 43 genera and 60 species Table . During http://eol.org/pages/4090956/overviewhttp://www.butterfliesofamerica.com/L/adelotypa_malca.htmhttp://eol.org/pages/168926/overviewhttp://butterfliesofamerica.com/L/archaeoprepona_d_demophoon_types.htmhttp://eol.org/pages/181967/overviewhttp://eol.org/pages/159066/overviewhttp://butterfliesofamerica.com/anartia_a_amathea_types.htmhttp://eol.org/pages/172859/overviewhttp://www.butterfliesofamerica.com/L/ascia_m_monuste_types.htmhttp://eol.org/pages/11555451/overviewhttp://www.butterfliesofamerica.com/L/blepolenis_b_batea_types.htmH\u00fcbner, 1820http://eol.org/pages/149491/overviewhttp://www.butterfliesofamerica.com/L/caligo_a_arisbe_types.htmhttp://eol.org/pages/4090003/overviewhttp://www.butterfliesofamerica.com/L/callicore_s_sorana_types.htmhttp://eol.org/pages/163630/overviewhttp://www.butterfliesofamerica.com/L/catonephele_a_acontius_types.htmhttp://eol.org/pages/156101/overviewhttp://www.butterfliesofamerica.com/L/colobura_d_dirce_types.htmhttp://eol.org/pages/158533/overviewhttp://www.butterfliesofamerica.com/L/dryas_i_iulia_types.htmhttp://eol.org/pages/12083351/overviewhttp://www.butterfliesofamerica.com/L/euptychoides_castrensis_types.htmhttp://eol.org/pages/146531/overviewhttp://www.butterfliesofamerica.com/L/eryphanis_r_reevesii_types.htmhttp://eol.org/pages/160030/overviewhttp://www.butterfliesofamerica.com/L/eresia_lansdorfi_types.htmhttp://eol.org/pages/176703/overviewhttp://butterfliesofamerica.com/L/eurema_a_albula_types.htmhttp://eol.org/pages/178177/overviewhttp://www.butterfliesofamerica.com/L/eurema_e_elathea.htmhttp://eol.org/pages/184116/overviewhttp://www.butterfliesofamerica.com/L/eurema_p_phiale_types.htmhttp://eol.org/pages/19949/overviewhttp://eol.org/pages/961111/overviewhttp://www.butterfliesofamerica.com/L/godartiana_muscosa_types.htmhttp://eol.org/pages/166283/overviewhttp://www.butterfliesofamerica.com/L/hamadryas_a_amphinome_types.htmhttp://eol.org/pages/166346/overviewhttp://www.butterfliesofamerica.com/L/hamadryas_f_februa_types.htmhttp://eol.org/pages/166361/overviewhttp://www.butterfliesofamerica.com/L/hamadryas_f_feronia_types.htmhttp://eol.org/pages/155098/overviewhttp://www.butterfliesofamerica.com/L/heliconius_besckei_types.htmhttp://eol.org/pages/151378/overviewhttp://www.butterfliesofamerica.com/L/heliconius_e_erato_types1.htmhttp://eol.org/pages/157369/overviewhttp://www.butterfliesofamerica.com/L/heliconius_e_ethilla_types.htmhttp://eol.org/pages/185550/overviewhttp://www.butterfliesofamerica.com/L/heliopetes_omrina_types.htmhttp://eol.org/pages/162840/overviewhttp://www.butterfliesofamerica.com/junonia_e_evarete_types.htmhttp://eol.org/pages/157257/overviewhttp://www.butterfliesofamerica.com/junonia_g_genoveva_types.htmhttp://eol.org/pages/264320/overviewhttp://www.butterfliesofamerica.com/L/leptotes_c_cassius_types.htmhttp://eol.org/pages/33170/overviewhttp://eol.org/pages/165801/overviewhttp://www.butterfliesofamerica.com/L/marpesia_c_chiron_types.htmhttp://eol.org/pages/29501563/overviewhttp://www.butterfliesofamerica.com/L/memphis_m_moruus_types.htmhttp://eol.org/pages/29514890/overviewhttp://www.butterfliesofamerica.com/L/memphis_otrere_types.htmhttp://eol.org/pages/23311886/overviewhttp://eol.org/pages/19988/overviewhttp://eol.org/pages/138539/overviewhttp://www.butterfliesofamerica.com/L/morpho_h_helenor_types.htmhttp://eol.org/pages/148144/overviewhttp://www.butterfliesofamerica.com/L/narope_cyllarus_types.htmhttp://eol.org/pages/150133/overviewhttp://www.butterfliesofamerica.com/L/opsiphanes_c_cassiae_types.htmhttp://eol.org/pages/147972/overviewhttp://www.butterfliesofamerica.com/L/opsiphanes_q_quiteria_types.htmhttp://eol.org/pages/148836/overviewhttp://www.butterfliesofamerica.com/L/opoptera_syme_types.htmhttp://eol.org/pages/138517/overviewhttp://www.butterfliesofamerica.com/L/pareuptychia_o_ocirrhoe.htmhttp://www.butterfliesofamerica.com/L/paryphthimoides_undulata_types.htmhttp://eol.org/pages/168780/overviewhttp://www.butterfliesofamerica.com/L/prepona_l_laertes_types.htmhttp://eol.org/pages/261603/overviewhttp://www.butterfliesofamerica.com/L/pseudolycaena_marsyas_types.htmhttp://eol.org/pages/183872/overviewhttp://butterfliesofamerica.com/L/pyrgus_orcus_types.htmhttp://eol.org/pages/170707/overviewhttp://www.butterfliesofamerica.com/L/siderone_g_galanthis_types.htmhttp://eol.org/pages/4068082/overviewhttp://butterfliesofamerica.com/siproeta_s_stelenes_types.htmhttp://eol.org/pages/164148/overviewhttp://www.butterfliesofamerica.com/L/smyrna_b_blomfildia_types.htmhttp://eol.org/pages/20450/overviewhttp://eol.org/pages/147615/overviewhttp://www.butterfliesofamerica.com/L/taygetis_acuta_types.htmhttp://eol.org/pages/146471/overviewhttp://www.butterfliesofamerica.com/L/taygetis_l_laches_types.htmhttp://eol.org/pages/139915/overviewhttp://www.butterfliesofamerica.com/L/taygetis_m_mermeria_types.htmhttp://eol.org/pages/146462/overviewhttp://www.butterfliesofamerica.com/L/taygetis_sylvia_types.htmhttp://eol.org/pages/164154/overviewhttp://www.butterfliesofamerica.com/L/temenis_l_laothoe_types.htmhttp://eol.org/pages/153045/overviewhttp://www.butterfliesofamerica.com/L/telenassa_t_teletusa_types.htmhttp://eol.org/pages/20632/overviewhttp://eol.org/pages/40034120/overviewhttp://www.butterfliesofamerica.com/L/yphthimoides_straminea_types.htmhttp://eol.org/pages/36076631/overviewhttp://www.butterfliesofamerica.com/L/zaretis_isidora_types.htmhttp://www.butterfliesofamerica.com/L/zaretis_isidora_types.htmhttp://butterfliesofamerica.com/zaretis_i_itys_types.htmThe present study showed greater richness of species than the studies performed by In southeastern Brazil Nymphalidae was the family with greatest richness; this diversity can be explained by the fact that this family has great diversity in morphology and habits, as well as in environments with varying vegetation types belongs to the subfamily studies , in addi studies . From thronments .Euremaalbula and Euremaelathea, also registered in this site, have cosmopolitan habits and great adaptations for disturbed areas (Morphohelenor, which was well sampled \u2013 51 individuals (Table ed areas . It is ils Table . These dMorphohelenor, Siproetastelenes, Heliconiuserato, and Heliconiusethilla coincided with the study realized at the University Campus Darcy Ribeiro, in an urbanized area in the Federal District (Euptychoidescastrensis is found in abundance in tropical rain forest environments, being registered in the states of S\u00e3o Paulo, Rio Grande do Sul, and Minas Gerais District . These aNymphalidae. The species shared among these two studies are: Adelphapleasure, Archaeopreponademophon, Asciamonuste, Callicoresorana, Coloburadirce, Dryasiulia, Eresialansdorfi, Eryphanisreevesii, Euremaalbula, Euremaelathea, Hamadryasamphinome, Hamadryasfebrua, Hamadryasferonia, Heliconiuserato, Heliconiusethilla, Junoniaevarete, Leptotescassius, Pareuptychiaocirrhoe, Pyrgusorcus, Preponalaertes, Siproetastelenes, Smyrnablomfildia, Taygetislaches, Temenislaothoe, Zaretisitys, and Yphthimoidesstraminea.There are no records of inventories for the Espinha\u00e7o mountain range within the state of Minas Gerais: this is the first published inventory for the region. This study and the only study in the Serra do Espinha\u00e7o about butterflies, conducted in Chapada Diamantina in Bahia - Brazil by It is emphasized that in this study the majority of butterflies species captured are typical of Cerrado and Atlantic Forest .Lepidoptera showed great research and conservation potential for the Serra do Intendente State Park. The biodiversity information should be made available for decision makers, specially for regions such as the one studied, which is currently threatened by mining, tourism, and housing developments.Further investigation on biodiversity should be conducted and motivated in this region. The group of"} {"text": "Nucleic Acids Res. 2014 Dec 16;42(22):13887\u201396. doi: 10.1093/nar/gku1236.TamulaitieneG.SilanskasA.GrazulisS.ZarembaM.SiksnysV.Nucleic Acids Res. 2014 Dec 16;42(22):14022\u201330. doi: 10.1093/nar/gku1237.Throughout these articles, we have used the prefix \u2018N\u2019 (as in N.CglI and N.NgoAVII) to describe NTPases associated with the cognate restriction systems. However, this prefix is also used for nicking restriction enzymes as described in . To avoi"} {"text": "The first author\u2019s name is incorrect. The correct name is: G. W. Wieger Wamelink.The third author\u2019s name is incorrect. The correct name is: Joep Y. Frissel.The correct citation is: Wamelink GWW, Goedhart PW, Frissel JY (2014) Why Some Plant Species Are Rare. PLoS ONE 9(7): e102674. doi:10.1371/journal.pone.0102674"} {"text": "Phytophthora plurivora. PLoS ONE 9(1): e85368. doi:10.1371/journal.pone.0085368The third author's name is spelled incorrectly. The correct name is: Niklaus J. Gr\u00fcnwald. The correct citation is: Schoebel CN, Stewart J, Gr\u00fcnwald NJ, Rigling D, Prospero S (2014) Population History and Pathways of Spread of the Plant Pathogen"} {"text": "The first author\u2019s name is spelled incorrectly. The correct name is: Nina B. Illarionova. The correct citation is: Illarionova NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na,K-ATPase \u03b11 and \u03b12 Isoforms in the Support of Astrocyte Glutamate Uptake. PLoS ONE 9(6): e98469. doi:10.1371/journal.pone.0098469"} {"text": "The third author\u2019s name is spelled incorrectly. The correct name is: K. Suzanne Sherf. The correct citation is: Halliday DWR, MacDonald SWS, Sherf KS, Tanaka JW (2014) A Reciprocal Model of Face Recognition and Autistic Traits: Evidence from an Individual Differences Perspective. PLoS ONE 9(5): e94013. doi:10.1371/journal.pone.0094013"} {"text": "The second author\u2019s name is spelled incorrectly. The correct name is: Antonia D\u00edaz-Moreno. The correct citation is:Escribano BM, D\u00edaz-Moreno A, Tasset I, T\u00fanez I (2014) Impact of Light/Dark Cycle Patterns on Oxidative Stress in an Adriamycin-Induced Nephropathy Model in Rats. PLoS ONE 9(5): e97713. doi:10.1371/journal.pone.0097713"} {"text": "Cell Rep. 9(6): 2180\u20132191. doi: 10.1016/j.celrep.2014.11.035.In the Discussion, Khanna et al. is described as an accompanying manuscript. The correct reference for this paper is: Khanna A, Johnson DL, Curran SP (2014) Physiological Roles for"} {"text": "Nucleic Acids Res. 2014 Dec 1;42(21):13269\u201379. doi: 10.1093/nar/gku1067.In the legends of Figures"} {"text": "Sensors [http://www.mdpi.com/1424-8220/15/10/26281.The authors wish to add an Acknowledgments section to their paper published in Sensors , doi:10."} {"text": "Nucl. Acids Res. 43 (13): 6207\u20136221. doi: 10.1093/nar/gkv603The authors wish to correct the full name of Elenora Leucci to Eleonora Leucci."} {"text": "The second author\u2019s name is spelled incorrectly. The correct author\u2019s name is: Natalie C. Hahn.Rai1. PLoS ONE 9(8): e105077. doi:10.1371/journal.pone.0105077The correct citation is: Alaimo JT, Hahn NC, Mullegama SV, Elsea SH (2014) Dietary Regimens Modify Early Onset of Obesity in Mice Haploinsufficient for"} {"text": "These \u03bc-1,3-bridging thio\u00adcyante anions bridge the CdII cations, forming chains that propagate parallel to the b axis.In the crystal structure of the title compound, [Cd(NCS) DOI: 10.1107/S1600536814024647/pk2535Isup2.hklStructure factors: contains datablock(s) I. DOI: Click here for additional data file.10.1107/S1600536814024647/pk2535fig1.tif. DOI: Crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: i: ; ii: .1033510CCDC reference: crystallographic information; 3D view; checkCIF reportAdditional supporting information:"} {"text": "Scientific Reports 5: Article number: 1035310.1038/srep10353; published online: 06032015; updated: 09022015.In this Article, Fig. 5 is a duplication of Fig. 7. The correct Fig. 5 appears below as"} {"text": "The third author\u2019s name is incorrect. The correct name is: Henricus G. Ruh\u00e9.2/3 Receptor Availability in Treatment Resistant Depression. PLoS ONE 9(11): e113612. doi:10.1371/journal.pone.0113612.The correct citation is: de Kwaasteniet BP, Pinto C, Ruh\u00e9 HG, van Wingen GA, Booij J, Denys D (2014) Striatal Dopamine DThe correct author contributions are: Conceived and designed the experiments: BDK CP JB HGR. Performed the experiments: BDK CP. Analyzed the data: BDK CP. Contributed reagents/materials/analysis tools: BDK CP JB. Wrote the paper: BDK CP JB HGR GVW DD."} {"text": "The first author\u2019s name is spelled incorrectly. The correct name is: Yoav Atsmon-Raz. The correct citation is: Atsmon-Raz Y, Tannenbaum ED (2014) Repression/Depression of Conjugative Plasmids and Their Influence on the Mutation-Selection Balance in Static Environments. PLoS ONE 9(5): e96839. doi:10.1371/journal.pone.0096839"} {"text": "The first author\u2019s name is spelled incorrectly. The correct name is: Karolina Skowronski. The correct citation is: Skowronski K, Andrews J, Rodenhiser DI, Coomber BL (2014) Genome-Wide Analysis in Human Colorectal Cancer Cells Reveals Ischemia-Mediated Expression of Motility Genes via DNA Hypomethylation. PLoS ONE 9(7): e103243. doi:10.1371/journal.pone.0103243"} {"text": "The first, second and last links in the Data Availability Statement are incorrect. The correct Data Availability Statement is:The authors confirm that all data underlying the findings are fully available without restriction. Datasets used in this study have been deposited at opencontext.org and can be found at the following DOIs:http://dx.doi.org/10.6078/M76H4FBShttp://doi.org/10.6078/M7VX0DF7http://dx.doi.org/10.6078/M74Q7RW8http://dx.doi.org/10.6078/M7X34VD1http://dx.doi.org/10.6078/M7SB43PPhttp://dx.doi.org/10.6078/M70Z715Bhttp://dx.doi.org/10.6078/M7KS6PHVhttp://dx.doi.org/10.6078/M7D798BQhttp://dx.doi.org/10.6078/M7CC0XMThttp://dx.doi.org/10.6078/M73X84KXhttp://dx.doi.org/10.6078/M7S46PVNhttp://dx.doi.org/10.6078/M76H4FBShttp://dx.doi.org/10.6078/M78G8HM0.The DOIs are incorrect in the Illipinar and \u00c7atalh\u00f6y\u00fck Area TP site rows of Table S1. Please view the correct Table S1 here.Table S1List of sites used in this paper including phasing, chronologies, sample sizes, authors, and links to online databases where available. Assemblages in bold were part of this data sharing project. Only biometric data from the Pendik and Yenikap\u0131 assemblages were included in this project. Assemblages in regular typeface represent previously published data. doi:10.1371/journal.pone.0099845.s002(DOCX)Click here for additional data file."} {"text": "Email nbudhoo@iapb.orgUseful and highly relevant news and updates (including events) related to eye health. For a free subscription, write to Neebha Budhoo: http://tinyurl.com/rehabcourse Email: vtc@gju.edu.joProfessional diploma and MSc in Vision Rehabilitation. For more information, visit www.health.uct.ac.za or email chervon.vanderross@uct.ac.zaShort courses, postgraduate diploma, and MPH Community Eye Health. Lions Medical Training Centre, Nairobi, Kenya. Small incision cataract surgery (SICS). Write to: The Training Coordinator, Lions Medical Training Centre, Lions SightFirst Eye Hospital, PO Box 66576-00800, Nairobi, Kenya. Tel: +254 20 418 32 39www.kcco.net or contact Genes Mng'anga atgenes@kcco.net and/or genestz@yahoo.comVisit Contact Anita Shah, ICEH, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK. admin@cehjournal.orgwww.cehjournal.orgwww.facebook.com/CEHJournal/https://twitter.com/CEHJournal Share your questions and experiences with us at correspondence@cehjournal.org Articles of up to 800 words considered.web@cehjournal.org or visit www.cehjournal.org/subscribeGet an email alert each time a new issue is published! Write to"} {"text": "A reference is omitted from the article. All sentences in the Discussion section which mention \u201cin an accompanying paper\u201d should cite Flores-Sandoval et al., 2015.Marchantia polymorpha. PLoS Genet 11(5): e1005207. doi:10.1371/journal.pgen.1005207.The reference is: Flores-Sandoval E, Eklund DM, Bowman JL (2015) A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort"} {"text": "There are errors in the Author Contributions section. The correct contributions are: Conceived and designed the experiments: MB LB FB JC. Performed the experiments: MB EO LB. Analyzed the data: MB YB BB JZ FB JC. Contributed reagents/materials/analysis tools: BB JZ PD. Wrote the paper: MB YB MH AB RH FB JC."} {"text": "The author contributions of the manuscript are incorrect, the correct contributions are:Conceived and designed the experiments: SE KH JK JL.Performed the experiments: KH MF CT SE AH.Analyzed the data: BA CT KH AH AK JL MF.Contributed materials and analysis tools: SE AH KH JK CT JL.Wrote the paper: SE KH JD MF JK JL.Preprocessed/organized raw food sales data: CT MF BA AK.Designed/wrote likelihood algorithm: SE JL.Designed and performed clustering analysis: AH CT.Proposed this use of retail data with public health data: MF JK."} {"text": "The third author's name is spelled incorrectly. The correct name is: Sabrina D. Thiel. The correct citation is: Goltz D, Pleger B, Thiel SD, Villringer A, M\u00fcller MM (2013) Sustained Spatial Attention to Vibrotactile Stimulation in the Flutter Range: Relevant Brain Regions and Their Interaction. PLoS ONE 8(12): e84196. doi:10.1371/journal.pone.0084196"} {"text": "The first author's name is displayed incorrectly. The correct name is: Geir Pedersen. The correct citation is: Pedersen G, Selsbakk JM, Theresa W, Sigmund K (2014) Testing Different Versions of the Affective Neuroscience Personality Scales in a Clinical Sample. PLoS ONE 9(10): e109394. doi:10.1371/journal.pone.0109394"} {"text": "Unfortunately, the original version of this article containehttp://www.saglik.gov.tr/TR/dosya/1-97020/h/saglik-istatistik-yilligi-2013.pdf)\u201d should have read \u201cThe Turkish neonatal mortality rate is 0.4\u00a0% according to the Ministry of Health of Turkey (http://www.saglik.gov.tr/TR/dosya/1-97020/h/saglik-istatistik-yilligi-2013.pdf)\u201d.The sentence \u201cThe Turkish neonatal mortality rate is 0.04\u00a0% according to World Health Organization Reports and the Ministry of Health of Turkey (The corrected sentence has been included in full in this erratum."} {"text": "There are errors in the Author Contributions section. The correct Author Contributions are: Conceived and designed the experiments: FX LM VM RL GL. Performed the experiments: FX LM. Analyzed the data: FX LM. Contributed reagents/materials/analysis tools: MZ GH. Wrote the paper: FX. Helped in designing the experiments: GH AD. Reviewed/edited the manuscript: LM AD RL GL."} {"text": "The second author's name is spelled incorrectly. The correct name is: Zubair Kabir. The correct citation is: Ajagbe OB, Kabir Z, O'Connor T (2014) Survival Analysis of Adult Tuberculosis Disease. PLoS ONE 9(11): e112838. doi:10.1371/journal.pone.0112838"} {"text": "During 2008\u20132012, 29.9% of adults aged \u226518 years currently employed in construction and 28.2% of those currently employed in mining were current smokers. Adults currently employed in construction were more likely than adults currently employed in manufacturing (23.3%), transportation/warehousing/utilities (23.2%), trade (22.0%), agriculture/forestry/fishing (18.6%), services (16.9%), or health care/social assistance (16.0%) to be current smokers.Sources: National Health Interview Survey, 2008\u20132012. Available at http://www.cdc.gov/nchs/nhis.htm.Reported by: Debra L. Blackwell, PhD, debra.blackwell@cdc.hhs.gov, 301-458-4103."} {"text": "This particular report describes cellulose conversion to isobutanol.http://www.biotechnologyforbiofuels.com/content/6/1/59This report describes a yeast-bacterial consortium that transforms cellulose to ethanol.http://www.researchgate.net/publication/221885494_Towards_synthetic_microbial_consortia_for_bioprocessingThis Research Gate page describes a review article on broad principles for engineering microbial consortia for practical purposes.http://www.springer.com/chemistry/biotechnology/book/978-1-4939-0553-9This e-book provides an engineering view of using mixed prokaryotic species for carrying out industrially relevant processes.http://yoric.mit.edu/design-microbial-consortia-industrial-biotechnologyThis report from a conference proceedings describes a chemical engineering approach to designing multi-species systems for robust industrial biotechnology.http://www.ifac-papersonline.net/Detailed/64335.htmlTrichoderma and Saccharomyces species for degrading cellulose and converting the monomers to ethanol.This report describes an association between http://journals.sfu.ca/rncsb/index.php/csbj/article/view/csbj.201210017/188This report contains some nice examples of naturally-occurring consortia and synthetic, or engineered, consortia that carry out useful biotransformations.http://journal.frontiersin.org/Journal/10.3389/fmicb.2012.00203/fullThis Frontiers report largely focuses on mixed microbial populations for handling metals and metal remediation.http://www.eastscotbiodtp.ac.uk/using-synthetic-ecology-optimise-methanogenic-consortia-anaerobic-digestionBiogas production is a logical choice for investigating anaerobic microbial consortia that produce methane since methanogens are often highly metabolically interdependent with other microorganisms in natural settings.http://rsif.royalsocietypublishing.org/content/11/96/20140065This is a comprehensive review of co-cultures for biotechnology, has many illustrative figures, and over one hundred references.http://www.academia.edu/7450923/Consortia_of_cyanobacteria_microalgae_and_bacteria_Biotechnological_potentialThe benefits of cyanobacteria and heterotroph consortia are obvious, with the ability to harvest energy from light and having oxygen transfer from phototroph to heterotroph.http://2014.igem.org/Team:Edinburgh/logic/This IGEM project page describes the design of a control system for working with mixed populations of bacteria."} {"text": "AbstractAlnusviridis (Chaix) DC., based on Betulaviridis Chaix (1785), has traditionally been attributed to green alders although it is based on a later basionym. Alnusalnobetula (Ehrh.) K. Koch based on Betulaalnobetula Ehrh. (1783) is the correct name for green alders. In light of the increasing use and recognition of the name Alnusalnobetula (Ehrh.) K. Koch in the literature. I herein propose new nomenclatural combinations to account for the Japanese and Chinese subspecies respectively: Alnusalnobetulasubsp.maximowiczii J. Chery and Alnusalnobetulasubsp.mandschurica J. Chery. Recent phylogenetic analyses place these two taxa in the green alder species complex, suggesting that they should be treated as infraspecific taxa under the polymorphic Alnusalnobetula.The name Alnusalnobetula (Ehrh.) K. Koch is an anemophilous shrub with carpellate catkins that develop into woody strobili. It has a circumpolar distribution with subspecies in Europe DC. has long been attributed to green alders; however a closer look at the literature reveals the name Alnusalnobetula (Ehrh.) K. Koch has priority Raus, Alnusalnobetulasubsp.sinuata (Aiton) Raus Lambinon & Kergu\u00e9len (The name priority . Appropron) Raus , and Alnergu\u00e9len . SubspecBetulaviridis Chaix dates from 1785 describing a shrub in which \u201cthe homeland is unknown to me\u201d (translated from German). In Betulaalnobetula Ehrh. reappeared.The confusion lies in the appropriate basionym of this taxon. The name Betula species were transferred to Alnus, authors were evidently unaware of the original 1783 publication of the name Betulaalnobetula Ehrh., so Betulaviridis Chaix was thought to be the older name and was taken to be the basionym for green alders. Alnusalnobetula Ehrh. has consistently been associated with the 1788 reproduced work and thus listed as a later synonym of Alnusviridis (Chaix) DC.As Alnusviridis (Chaix) DC. as a synonym of Alnusalnobetula (Ehrh.) K. Koch. Other databases seem to be waiting for formal action to account for all subspecies names. For example, USDA, Germplasm Resources Information Network K. Koch, based on Betulaalnobetula Ehrh. (1783) has priority over Alnusviridis (Chaix) DC., based on Betulaviridis Chaix (1786); nevertheless, Alnusviridis is retained here until all infraspecific taxa are accounted for under Alnusalnobetula\u201d. Other major databases have incomplete citation list for synonyms such as Fl. North Amer. North of Mexico Editorial Committee [http://www.efloras.org/flora_page.aspx?flora_id=1 \u2013 accessed 22.07.2015]. Flora Europea [http://rbg-web2.rbge.org.uk/FE/fe.html \u2013 accessed 22.07.2015] omits citations for green alder names.Major databases such as plantlist.org [accessed 22.07.2015], list the name Network [http://PageBreakAlnusmandshurica, Alnusfirma, Alnuspendula and Alnussieboldiana embedded within a greater polytomy that includes all other green alders Cherycomb. n.urn:lsid:ipni.org:names:77149153-1Alnusmaximowiczii Callier ex C.K. Schneid., Illustr. Handb. Laubholzk. 1: 122. 1904: typified by the plate accompanying the protologue (Basionym).Alnuscrispasubsp.maximowiczii Hult\u00e9n, Acta Univ. Lund. Avd. 2. 40(1): 590. 1944.Alnastermaximowiczii Czerep., Bot. Mater. Gerb. Bot. Inst. Komarova Akad. Nauk. S.S.S.R. 17: 97. 1955.Alnastercrispussubsp.maximowiczii Murai, Bull. Gov. Forest Exp.Sta.154: 62. 1963.Duschekiamaximowiczii Pouzar, Preslia 36: 339. 1964.Alnastermaximowiczii Czerep., Fl. Arct. URSS Fasc. 5, 133 in obs. 1966.Alnusviridissubsp.maximoviczii D. L\u00f6ve, Taxon 17: 89. 1968.Alnusviridissubsp.maximowiczii H. Ohba, Fl. Japan 2a: 27. 2006.Temperate Asia: Russian Federation - Khabarovsk, Kurile Islands, Primorye, Sakhalin; Japan - Hokkaido, Honshu; KoreaTaxon classificationPlantaeFagalesBetulaceae Cherycomb. n.urn:lsid:ipni.org:names:77149155-1Alnusfruticosavar.mandschurica Callier ex C.K. Schneid., Illustr. Handb. Laubholzk. 1:121. 1904: Lectotype: Nadelholzzone des Tschangpei-schan, immer vereinzelt, 1600\u20131800 m (Fenze 262); designated by Hand.-Mazz., not seen) (Basionym).Alnusfruticosavar.mandschurica Callier ex Kom., Acta Hort. Petr. 22: 59. 1903.Alnusfruticosavar.mandschuricaf.normalis Callier, Fedde, Rep. Spec. Nov. 10: 227. 1911.Alnusfruticosavar.mandschuricaf.grandifolia Callier, Fedde, Rep. Spec. Nov. 10: 227.1911.PageBreakAlnusmandschurica Hand.-Mazz., Oesterr. Bot. Z. 81: 306\u2013307.1932.Alnuscrispa(Aiton)Purshsubsp.mandshurica Hara, J. Fac. Sci. Univ. Tokyo III, -6, (2): 32. 1952.Alnusmandschuricavar.pubescens Baranov, in T. N. Liou, Illustrated Flora of Ligneous plants of N. E. China 206, t. 75, fig. 112, t. 76, figs 1\u20134. 1955.Duschekiamandschurica Pouzar, Preslia 36(4): 339. 1964.Alnastercrispa(Aiton)ssp.mandshurica Murai, Bull. Gov. For. Expt. Sta. Jap. 171: 34. 1964.Russian Federation: Khabarovsk, Primorye; China: Heilongjiang, Jilin, Liaoning, Nei Monggol; Korea"} {"text": "The second author's name is spelled incorrectly. The correct name is: Lauren A. Howell. The correct citation is: Korrapati MC, Howell LA, Shaner BE, Megyesi JK, Siskind LJ, et al. (2013) Suramin: A Potential Therapy for Diabetic Nephropathy. PLoS ONE 8(9): e73655. doi:10.1371/journal.pone.0073655The Author Contributions should read: Conceived and designed the experiments: MCK LJS RGS. Performed the experiments: MCK LAH BES. Analyzed the data: MCK LAH JKM LJS RGS. Wrote the paper: MCK LJS RGS."} {"text": "AbstractThe island of \u00d6land, at the southeast of Sweden, has unique geological and environmental features. The Station Linn\u00e9 is a well-known \u00d6land research station which provides facilities for effective studies and attracts researchers from all over the world. Moreover, the station remains a center for ecotourism due to extraordinary biodiversity of the area. The present paper is aimed to support popular science activities carried out on the island and to shed light on diverse geometrid moth fauna of the Station Linn\u00e9.Lepidoptera: Geometridae) collected on the territory of the station is presented. Images of moths from above and underside are shown. Of the totally 192 species registered for Sweden, 41 species (more than 21%) were collected in close proximity to the main building of the Station Linn\u00e9. Malaise trap sampling of Lepidoptera is discussed.As an outcome of several research projects, including the Swedish Malaise Trap Project (SMTP) and the Swedish Taxonomy Initiative (STI) conducted at the Station Linn\u00e9, a list of larentiine moths ( The island of \u00d6land, at the southeast of Sweden, is famous for its dominant environmental feature, an Ordovician limestone pavement, which is called the Stora Alvaret (= the Great Alvar). Alvars are semi-natural grasslands which have been formed and developed due to long periods of human influence, including grazing . The StoThe Swedish Malaise Trap Project (SMTP), funded by the Swedish Species Information Centre (ArtDatabanken), is based at the Station Linn\u00e9. The project aims to provide species determinations for the specimens obtained from Malaise traps sampling at a wide range of landscapes and habitats. For many groups, including geometrid moths, the final data release is still awaited. The present paper is aimed to present a first list of the larentiine moths collected at the Station Linn\u00e9.56.6186 N, 16.4989 E). The UV light trap was placed between the tree and shrub rows along a walking path, with a meadow on one side and a swampy area on the other side , a mercury vapor light trap (MV) and net sweeping (NS) by O. Schmidt in 2014 and 2015 (July 20-31) in the M\u00f6rbyl\u00e5nga kommun, Skogsby, Station Linn\u00e9 was checked and the larentiine moths identified. This Malaise trap was placed on a lawn, about 100 m north of the Alvar edge and was running from April 2007 until November 2008. A note is given for the species recorded from Malaise trap samples only.Furthermore, material collected as part of the SMTP in 2007 and 2008 using a Malaise trap (MF) located close to the main building of the Station Linn\u00e9 and publications by The genitalia of all small-sized moths were studied to correctly identify the species. The material was identified using the http://eol.org/pages/4031647/overviewhttp://www.lepiforum.de/lepiwiki.pl?Phibalapteryx_virgataFigs 4http://eol.org/pages/283762/overviewhttp://www.lepiforum.de/lepiwiki.pl?Cidaria_FulvataFigs 6http://eol.org/pages/277279/overviewhttp://www.lepiforum.de/lepiwiki.pl?Colostygia_olivataFigs 8http://eol.org/pages/278481/overviewhttp://www.lepiforum.de/lepiwiki.pl?Colostygia_PectinatariaFigs 10http://eol.org/pages/270324/overviewhttp://www.lepiforum.de/lepiwiki.pl?Cosmorhoe_OcellataFigs 12http://eol.org/pages/281849/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eulithis_PrunataFigs 14http://eol.org/pages/284564/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eulithis_MellinataFigs 16http://eol.org/pages/286201/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eulithis_TestataFigs 18http://eol.org/pages/4017307/overviewhttp://www.lepiforum.de/lepiwiki.pl?Gandaritis_PyraliataFigs 20http://eol.org/search?q=Plemyria+rubiginata&search=Gohttp://www.lepiforum.de/lepiwiki.pl?Plemyria_RubiginataFigs 22http://eol.org/pages/298019/overviewhttp://www.lepiforum.de/lepiwiki.pl?Thera_cognataFigs 24http://eol.org/pages/285123/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_absinthiatahttp://mothphotographersgroup.msstate.edu/species.php?hodges=7586.1Figs 26http://eol.org/search?q=Eupithecia+denotata&search=Gohttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_denotatahttp://www.euroleps.ch/seiten/s_art.php?art=geo_denotataFigs 28http://eol.org/pages/284131/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_exiguataFigs 30http://eol.org/pages/281026/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_icterataFigs 32http://eol.org/pages/283937/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_LinariataFigs 34http://eol.org/pages/287885/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_nanataFigs 36http://eol.org/search?http://eol.org/search?q=Eupithecia+pusillata&search=Gohttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_PusillataFigs 38http://eol.org/pages/292707/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_satyrataFigs 40http://eol.org/pages/286559/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_SubfuscataFigs 42http://eol.org/pages/287281/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_subumbrataFigs 44http://eol.org/pages/292925/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_succenturiataFigs 46http://eol.org/pages/285093/overviewhttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_tenuiataFigs 48https://en.wikipedia.org/wiki/Eupithecia_valerianatahttp://www.lepiforum.de/lepiwiki.pl?Eupithecia_ValerianataFigs 50http://eol.org/pages/4031644/overviewhttp://www.lepiforum.de/lepiwiki.pl?Pasiphila_ChloerataFigs 52http://eol.org/pages/277386/overviewhttp://www.lepiforum.de/lepiwiki.pl?Pasiphila_RectangulataFigs 54http://eol.org/pages/286763/overviewhttp://www.lepiforum.de/lepiwiki.pl?Hydriomena_furcataFigs 56http://eol.org/pages/284799/overviewhttp://www.lepiforum.de/lepiwiki.pl?Pelurga_ComitataFigs 58http://eol.org/pages/4012784/overviewhttp://www.lepiforum.de/lepiwiki.pl?Mesotype_DidymataFigs 60http://eol.org/pages/295004/overviewhttp://www.lepiforum.de/lepiwiki.pl?Perizoma_AlchemillataFigs 62http://eol.org/pages/296282/overviewhttp://www.lepiforum.de/lepiwiki.pl?Philereme_transversataFigs 64http://eol.org/search?http://eol.org/search?q=Philereme+vetulata&search=Gohttp://www.lepiforum.de/lepiwiki.pl?Philereme_vetulataFigs 66http://eol.org/pages/295986/overviewhttp://www.lepiforum.de/lepiwiki.pl?Scotopteryx_ChenopodiataFigs 68http://eol.org/pages/297593/overviewhttp://www.lepiforum.de/lepiwiki.pl?Pterapherapteryx_sexalataFigs 70http://eol.org/search?http://eol.org/search?q=Camptogramma+bilineata&search=Gohttp://www.lepiforum.de/lepiwiki.pl?Camptogramma_BilineataFigs 72http://eol.org/pages/276073/overviewhttp://www.lepiforum.de/lepiwiki.pl?Catarhoe_cuculataFigs 74http://eol.org/pages/279041/overviewhttp://www.lepiforum.de/lepiwiki.pl?Catarhoe_RubidataFigs 76http://eol.org/search?q=Epirrhoe+alternata&search=Gohttp://www.lepiforum.de/lepiwiki.pl?Epirrhoe_AlternataFigs 78http://eol.org/pages/285918/overviewhttp://www.lepiforum.de/lepiwiki.pl?Epirrhoe_HastulataFigs 80http://eol.org/pages/285474/overviewhttp://www.lepiforum.de/lepiwiki.pl?Epirrhoe_TristataFigs 82http://eol.org/pages/288630/overviewhttp://www.lepiforum.de/lepiwiki.pl?Xanthorhoe_ferrugataFigs 84Larentiinae are recorded for Sweden (http://www2.nrm.se/en/svenska_fjarilar/svenska_fjarilar.html). Bert Gustafsson listed 156 species occurring on \u00d6land . Currently, 41 species are recorded for the territory of the Station Linn\u00e9, which comprises 26.3% of the \u00d6land species and more than 21% of the Swedish larentiine fauna. Interestingly, 37 species were sampled during 22 nights of light trapping in summer 2014 and 2015, when the weather was not quite favorable for collecting. For comparison, a recent rapid biotic survey at a 365 hectare Charitable Research Reserve in Ontario (Canada) revealed only nine larentiine species and in the female genitalia (the length of the ductus bursae and the shape of the signum). The specimens require more detailed study.A series of specimens presumably belonging to the species e.g.Lepidoptera by means of malaise traps is a challenging method. Designed for Diptera and Hymenoptera, a malaise trap indeed effectively samples Lepidoptera, as they get trapped within the malaise tent, flying upward towards either the sun (during the day) or the moon (at night) see . HoweverSupplementary material 1Lepidoptera: Geometridae) of the Station Linn\u00e9List of larentiine moth species (Data type: occurencesFile: oo_64905.xlsSchmidt, O."} {"text": "This erratum corrects article: \u201cSecondary reconstruction of vaginal stenosis using a posterior labial perforator based Falandry flap\u201d, The Pan African Medical Journal. 2015;21:185. doi:10.11604/pamj.2015.21.185.6559. The original version of this article was corr"} {"text": "The second author\u2019s name is incorrect in the citation. The correct name is: van Sorge NM.The correct citation is:10.1371/journal.ppat.1004644Van Avondt K, van Sorge NM, Meyaard L (2015) Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling. PLoS Pathog 11(3): e1004644. doi:"} {"text": "Scientific Reports5: Article number: 1043810.1038/srep10438; published online: 07032015; updated: 09022015.In this Article, the Accession codes were omitted from the Additional Information section:http://www.ncbi.nlm.nih.gov/geo/). The NGS data were submitted under accession number GSE62010 (URL: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62017), The microarray data were submitted under accession number GSE62011 (URL: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62011) and the NanoString data were submitted under accession number GSE62017 (URL: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62017). These three accession numbers are linked as super series.Data availability: Accession codes: All the data generated and described in this article have been submitted to the NCBI Gene Expression Omnibus (GEO;"} {"text": "Background. Applying quantitative morphological approaches in systematics research is a promising way to discover cryptic biological diversity. Information obtained through twenty-first century science poses new challenges to taxonomy by offering the possibility of increased objectivity in independent and automated hypothesis formation. In recent years a number of promising new algorithmic approaches have been developed to recognize morphological diversity among insects based on multivariate morphometric analyses. These algorithms objectively delimit components in the data by automatically assigning objects into clusters.Method. In this paper, hypotheses on the diversity of the Malagasy Nesomyrmex angulatus group are formulated via a highly automated protocol involving a fusion of two algorithms, (1) Nest Centroid clustering (NC clustering) and (2) Partitioning Algorithm based on Recursive Thresholding (PART). Both algorithms assign samples into clusters, making the class assignment results of different algorithms readily inferable. The results were tested by confirmatory cross-validated Linear Discriminant Analysis (LOOCV-LDA).Results. Here we reveal the diversity of a unique and largely unexplored fragment of the Malagasy ant fauna using NC-PART-clustering on continuous morphological data, an approach that brings increased objectivity to taxonomy. We describe eight morphologically distinct species, including seven new species: Nesomyrmex angulatus , N. bidentatussp. n., N. clypeatussp. n., N. deviussp. n., N. exiguussp. n., N. fragilissp. n., N. gracilissp. n., and N. hirtellussp. n.. An identification key for their worker castes using morphometric data is provided.Conclusions. Combining the dimensionality reduction feature of NC clustering with the assignment of samples into clusters by PART advances the automatization of morphometry-based alpha taxonomy. Madagascar, one of Earth\u2019s biodiversity hotspots , has a uNesomyrmex, may contain ten times more species than was previously described. This dramatic increase in suspected species is due to a profusion of microendemic species. Our approach to this taxonomic challenges is to apply a quantitative morphological approach in combination with modern algorithms to delineate species by statistical means.On Madagascar, the high rate of diversity and possible cryptic species and Partstering) using costering) and PARTstering) .Delimitations of clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis (LDA) and Multivariate Ratio Extractor, MRA followinN. angulatus species-group comprises eight well-outlined clusters in the Malagasy zoogeographical region, all representing species; of these, seven taxa are new to science. The eight species outlined, Nesomyrmex angulatus , N. bidentatussp. n., N. clypeatussp. n., N. deviussp. n., N. exiguussp. n., N. fragilissp. n., N. gracilissp. n., and N. hirtellussp. n. are described or redefined here based on worker caste. We provide a combined key that includes both a traditional, character-based key and a numeric identification tool that helps readers resolve the most problematic cases.Multivariate evaluation of morphological data has revealed that the The final species hypotheses are corroborated by qualitative morphological characters. Combining NC clustering and PART has proved to be an efficient method to automate species delimitation in insect taxonomy.Ant samples used in this study comply with the regulations for export and exchange of research samples outlined in the Convention on Biological Diversity and the Convention on International Trade in Endangered Species of Wild Fauna and Flora. For field work conducted in Madagascar, permits to research, collect, and export ants were obtained from the Ministry of Environment and Forest as part of an ongoing collaboration between the California Academy of Sciences and the Ministry of Environment and Forest, Madagascar National Parks and Parc Botanique et Zoologique de Tsimbazaza. Approval Numbers: No. 0142N/EA03/MG02, No. 340N-EV10/MG04, No. 69 du 07/04/06, No. 065N-EA05/MG11, No. 047N-EA05/MG11, No. 083N-A03/MG05, No. 206 MINENVEF/SG/DGEF/DPB/SCBLF, No. 0324N/EA12/MG03, No. 100 l/fEF/SG/DGEF/DADF/SCBF, No. 0379N/EA11/MG02, No. 200N/EA05/MG02. Authorization for export was provided by the Director of Natural Resources.In the present study, 23 continuous morphometric traits were recorded in 378 worker individuals belonging to 266 nest samples collected in the Malagasy region.The material is deposited in the following institutions, abbreviations after type material investigated sections for each taxon.The full list of material morphometrically examined in this revision is listed in http://www.antweb.org). Images are linked to their specimens via the unique specimen code affixed to each pin (CASENT0486461). Online specimen identifiers follow this format: http://www.antweb.org/specimen/CASENT0486461.All images and specimens used in this study are available online on AntWeb , or a Leica DFC 425 camera in combination with the Leica Application Suite software (version 3.8). Distribution maps were generated in R via the Measurements were taken with a Leica MZ 12.5 stereomicroscope equipped with an ocular micrometer at a magnification of 100\u00d7. Measurements and indices are presented as arithmetic means with minimum and maximum values in parentheses. Body size dimensions are expressed in \u00b5m. Due to the abundance of worker specimens relative to queen and male specimens, the present revision is based on the worker caste only. Revision based on the study of the workers is further facilitated by the fact that the name-bearing type specimens of the vast majority of existing ant taxa belong to the worker caste. All measurements were made by the first author. For the definition of morphometric characters, earlier protocols were conCL: Maximum cephalic length in median line. The head must be carefully tilted to the position providing the true maximum. Excavations of hind vertex and/or clypeus reduce CL .FRS: Frontal carina distance. Distance between the frontal carinae immediately caudal of the posterior intersection points between the frontal carinae and the torular lamellae. If these dorsal lamellae do not laterally surpass the frontal carinae, the deepest point of the scape corner pits may be taken as the reference line. These pits take up the inner corner of the scape base when the scape is directed caudally and produce a dark triangular shadow in the lateral frontal lobes immediately posterior to the dorsal lamellae of the scape joint capsule ( capsule .ML (Weber length): Mesosoma length from caudalmost point of propodeal lobe to transition point between anterior pronotal slope and anterior pronotal shield. Preferentially measured in lateral view; if the transition point is not well defined, use dorsal view and take the centre of the dark-shaded borderline between pronotal slope and pronotal shield as anterior reference point. In gynes: length from caudalmost point of propodeal lobe to the most distant point of steep anterior pronotal face were used only in two species, http://purl.org/NET/mx-database). Taxonomic history and descriptions of taxonomic treatments were rendered from this software. Hymenoptera-specific terminology of morphological statements used in descriptions and identification key, and diagnoses are mapped to classes in phenotype-relevant ontologies (Hymenoptera Anatomy Ontology (HAO) phenotypes were compiled in mx (gy (HAO) via a URgy (HAO) ; for morIn verbal descriptions of taxa based on external morphological traits, recent taxonomic papers were conhttp://zoobank.org/. The LSID for this publication is: lsid:zoobank.org:pub:63B1A3E5-9E62-46AD-B594-6B3E83364D90. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix The present statistical framework follows the procedure applied in Nest-centroid clustering (NC-clustering), and linear discriminant analysis (LDA) do not require special data preparation , hence raw data were applied for each of the statistical analyses. Data, however, are standardized for the multivariate ratio analysis (MRA) to prevent variables with large values from dominating the analysis . Variablcluster using nest samples as groups . The seccluster and MASSer . Classification hypotheses were imposed for all samples congruently classified by partitioning methods, while wild-card settings were given to samples that were incongruently classified by the two methods or proved to be outliers. To extract the best ratios for the easiest species separation in the key and diagnoses we applied multivariate ratio analysis (MRA), a modern statistical method based on principal component analysis (PCA) and linear discriminant analysis (LDA) .Eight clusters were identified by both clustering algorithms \u2018hclust\u2019 and \u2018kmeans\u2019 using function \u2018part\u2019. The pattern recognized by these partitioning algorithms can be fitted on the hierarchical structure seen on the dendrogram generated by NC clustering .The grouping hypotheses generated by the combination of hypothesis-free exploratory analyses was validated by Linear Discriminant Analysis with leave-one-out cross-validation (LOOCV-LDA). The overall classification success is 100% . The pheThe geographic distribution of each morphospecies corresponds to the known major areas of endemism in Madagascar and can Nesomyrmex angulatus , N. bidentatussp. n., N. clypeatussp. n., N. deviussp. n., N. exiguussp. n., N. fragilissp. n., N. gracilissp. n., N. hirtellussp. n..The eight species described here are as follows in alphabetic order: bidentatus-complex consists of two species: Nesomyrmex bidentatussp. n. and N. fragilissp. n.; the devius-complex includes two new species: N. deviussp. n., N. exiguussp. n., N. gracilissp. n. and N. hirtellussp. n.; while two species, N. angulatus and N. clypeatussp. n., form a complex of their own in the Malagasy zoogeographical region. Separation of species as well as complexes are convincingly supported by Multivariate Ratio Analyses. Morphometric data for species calculated on individuals are given in These species are grouped into four species complexes based on morphological similarity. The angulatus angulatus ilgii = latinodis = angulatus concolor = bidentatus Cs\u0151sz & Fisher sp. n.clypeatus Cs\u0151sz & Fisher sp. n.devius Cs\u0151sz & Fisher sp. n.exiguus Cs\u0151sz & Fisher sp. n.fragilis Cs\u0151sz & Fisher sp. n.gracilis Cs\u0151sz & Fisher sp. n.hirtellus Cs\u0151sz & Fisher sp. n.Note: absolute size is given in \u00b5m, indexes are dimensionless values minimum and maximum values are given in brackets. Classification power between couplet based on a certain character is calculated and percent value is given in parentheses. 1.clypeatusMedian clypeal notch present : Cdep Propodel spines short: SPST/CS = 0.286 (94.9%). In lateral view dorsal contour line of propodeal spine or tubercle continues in a flat transition into metasomal dorsum \u20134F. Post-5 (devius complex)Propodeal spines longer and acute: SPST/CS = 0.378 , (94.9%). In lateral view dorsal contour line of propodeal spine continues in bent transition to metasomal dorsum . Postpet4.bidentatusPropodeal spine very short: SPST CS = 0.264 (84.2%), forming blunt tubercle . Postocu-fragilisPropodeal spine moderately long: SPST CS = 0.307 (84.2%) and acute . Postocu5.6North Madagascar only, north of \u221215\u00b0 latitude\u2026 -7The middle and southern part of Madagascar, south of \u221215\u00b0 latitude\u2026 6.exiguusIn profile, petiolar node rounded, leaning backward . Postocu-gracilisIn profile, petiolar node rectangular . Postocu7.deviusPostocular distance longer, apical spine distance shorter: PoOC/SPST = 1.261 (92.2%). Combination of best ratios (PoOC/SPST and MW/PPH) yields 100% of classification success see ... deviu-hirtellusPostocular distance shorter, apical spine distance longer: PoOC/SPST = 1.122 (92.2%). Combination of best ratios (PoOC/SPST and MW/PPH) yields 100% of classification success see ... hirteNesomyrmex angulatus .Type material investigated.Leptothorax angulatus Mayr, 1862:739\u2014\u201cSinai\u201d [Egypt], collect. G.Mayr. Lectotype, designated by Bolton 1982: 324 ;Leptothorax angulatus r. ilgii Forel, 1894:82\u2014\u201cr. L. ilgii Forel typus Harar (Ilg)\u201d [Ethiopia] coll. Forel. Syntype ;Leptothorax latinodis Mayr, 1895:130\u2014\u201clatinodis\u201d G. Mayr Type, \u201cDelagoa Bay Mozambiqe\u201d, collect. G. Mayr. Holotype. , [morphometrically not investigated due to fractured mesosoma];Leptothorax angulatus var. concolor Santschi, 1914:107\u2014\u201cL. Goniothorax angulatus Mayr v. concolor Sant Type\u201d, Cote d\u2019Afrique or. angl. Ile de Mombasa Allaud & Jeannel Oct. 1911 St.3. Syntypes ;Description of workers. Body color: yellow; brown. Body color pattern: concolorous; only clava darker. Absolute cephalic size (\u00b5m): 688 , (n = 33). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.258 . Postocular distance vs. cephalic length (PoOc/CL): 0.371 . Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: feebly convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugoso-reticulate, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging; strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.280 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.325 . Longitudinal carinae on median region of frons: present. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.818 . Facial area of the scape absolute setal angle: setae absent, pubescence only. Median clypeal notch: absent. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 58\u201362\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.273 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.325 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.334 . Propodeal spine shape: straight; curving upward. Anterolateral pronotal corner: present. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.690 . Metanotal depression: absent. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.410 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture rogoso-reticulate. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.488 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Diagnosis. Workers of N. angulatus can be convincingly separated from those of N. clypeatus based on the lack of median clypeal notch in the former species by having sharp anterolateral pronotal angles ;Paratypes: Eighteen workers, a single gyne and a male with the same locality data under CASENT codes: CASENT0486459, BLF6646, ; CASENT0486460, BLF6646, ; CASENT0486462, BLF6646, ; CASENT0486797, BLF6618, ; CASENT0486798, BLF6618, ; CASENT0486799, BLF6618, ; CASENT0488445, BLF6584(24), ; CASENT0746773, BLF6646, ;Description of workers. Body color: yellow. Body color pattern: concolorous. Absolute cephalic size (\u00b5m): 510 (n = 60). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.277 . Postocular distance vs. cephalic length (PoOc/CL): 0.416 . Postocular sides of cranium contour frontal view orientation: converging anteriorly; parallel. Postocular sides of cranium contour frontal view shape: straight; feebly convex; convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugoso-reticulate, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging; strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: absent. Eye length vs. absolute cephalic size (EL/CS): 0.264 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.399 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.665 . Facial area of the scape absolute setal angle: 0\u201315\u00b0. Median clypeal notch: absent. Ground sculpture of submedian area of clypeus: present. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: cannot be measured. Spine length vs. absolute cephalic size (SPST/CS): 0.264 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.346 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.335 . Propodeal spine shape: triangular, blunt. Anterolateral pronotal corner: absent. Metanotal depression count: absent; inconspicuous if present. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.397 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.462 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Etymology. The name (bidentatus) refers to the short propodeal denticle pair of this species.Diagnosis. Workers of N. bidentatus differ from those of N. clypeatus by having no median clypeal notch D4 = + 1.973 T. fragilissp. n. (n = 42) D4 = \u2212 2.234 Distribution.Nesomyrmex bidentatus is distributed in rainforests and littoral rainforests along the coastline around the entirety of Madagascar. This species occurs syntopically with its sister species N. fragilis in the western Antsisarana region ;Paratypes: four workers with the same locality data under CASENT codes: CASENT0427944, BLF3007, ; CASENT0422553, BLF2968, ; CASENT0427970, BLF2970, ; CASENT0427971, BLF2971, ;Description of workers. Body color: yellow; brown. Body color pattern: concolorous, only clava darker. Absolute cephalic size (\u00b5m): 898 (n = 12). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.076 . Postocular distance vs. cephalic length (PoOc/CL): 0.434 . Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: feebly convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugoso-reticulate, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: absent. Eye length vs. absolute cephalic size (EL/CS): 0.210 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.310 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.758 . Facial area of the scape absolute setal angle: setae absent, pubescence only. Median clypeal notch: present. Median clypeal notch depth vs. absolute cephalic size (Cdep/CS): 0.021 . Ground sculpture of submedian area of clypeus: present. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 50\u201360\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.361 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.349 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.463 . Propodeal spine shape: straight; slightly bent. Anterolateral pronotal corner: present. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.773 . Metanotal depression count: absent. Dorsal region of mesosoma sculpture: rugose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.460 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture rogoso-reticulate. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.493 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Etymology. The name (clypeatus) refers to the presence of an antero-median clypeal depression in this species, the characteristic found to be unique in this revisionary work.Diagnosis. This species cannot be confused with other taxa in this revisionary work based on the dark antennal club and the conspicuous median notch on the anterior clypeal border.Distribution. This species is endemic to the Malagasy region. It is known to occur in tropical dry forests and littoral forests of the northern, dry area of Madagascar ;Paratypes: fifteen workers, and 6 gynes with the same label data with the holotype under CASENT codes: CASENT0448818, BLF5777, ; CASENT0448819, BLF5777, ; CASENT0448823, BLF5777, ; CASENT0448824, BLF5777, ; CASENT0448825, BLF5777, ; CASENT0448829, BLF5777, ; CASENT0448830, BLF5777, ; CASENT0448831, BLF5777, ; CASENT0448832, BLF5777, ; CASENT0448833, BLF5777, ; CASENT0746772, BLF5777, ;Description of workers. Body color: yellow; brown. Body color pattern: concolorous. Absolute cephalic size (\u00b5m): 593 (n = 27). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.188 . Postocular distance vs. cephalic length (PoOc/CL): 0.394 . Postocular sides of cranium contour frontal view orientation: converging anteriorly; parallel. Postocular sides of cranium contour frontal view shape: straight; feebly convex; convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugose, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging; strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: absent. Eye length vs. absolute cephalic size (EL/CS): 0.263 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.415 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.632 . Facial area of the scape absolute setal angle: 0\u201315\u00b0. Median clypeal notch: absent. Ground sculpture of submedian area of clypeus: present. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 42\u201347\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.340 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.371 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.430 . Propodeal spine shape: straight. Anterolateral pronotal corner: absent. Metanotal depression count: present. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.447 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture rugoso-reticulate. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.499 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Etymology. The name (d\u0113vius = devious) refers to the relatively long path required to arrive at the current taxonomic situation of this species, caused by its superficial similarities to other taxa.Diagnosis. Workers of N. devius differ from those of N. clypeatus by having no median clypeal notch offers 92.2% success in determination between this species and N. Hirtellus, but a combination of two ratios (PoOC/SPST and MW/PPH) yields a safer determination ;Paratypes: seventeen workers, a single gyne and a male with the same locality data under CASENT codes: CASENT0077580, BLF10161, ; CASENT0746774, BLF10161, ; CASENT0077624, BLF10190, ; CASENT0077625, BLF10190, ; CASENT0077626, BLF10190, ; CASENT0077586, BLF10206, ; CASENT0077587, BLF10206, ;Description of workers. Body color: yellow; brown. Body color pattern: concolorous. Absolute cephalic size (\u00b5m): 586 (n = 84). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.213 . Postocular distance vs. cephalic length (PoOc/CL): 0.408 . Postocular sides of cranium contour frontal view orientation: parallel; converging anteriorly. Postocular sides of cranium contour frontal view shape: straight; feebly convex; convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugose, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging; strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: absent. Eye length vs. absolute cephalic size (EL/CS): 0.249 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.413 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.656 . Facial area of the scape absolute setal angle: 0\u201315\u00b0. Median clypeal notch: absent. Ground sculpture of submedian area of clypeus: present. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 27\u201332\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.382 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.390 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.436 . Propodeal spine shape: straight; slightly bent. Anterolateral pronotal corner: absent. Metanotal depression count: present. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.437 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.516 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Etymology. This name exiguus refers to the fact that this species is relatively easily to distinguish.Diagnosis. Workers of N. exiguus differ from those of N. clypeatus by having no median clypeal notch provides a safe opportunity for separation offers 94.5% success discriminating between this species and N. gracilis, and a combination of two ratios (PoOC/SPTI and CWb/ML) yields a safe determination when these were added as wildcards to minimize the chance of possible misclassifications. These individuals are most probably representatives of populations brought to these localities by people.dagascar . There idagascar . These sNesomyrmex fragilis Cs\u0151sz & Fisher sp. n..Type material investigated.Holotype worker: MADGAGASCAR: Prov. Antsisarana, Nosy Be, R\u00e9serve Naturelle Int\u00e9grale de Lokobe, 6.3 km 112\u00b0 ESE Hellville, 13.41933\u00b0S, 48.33117\u00b0E, 30 m, 19-24.iii.2001, collection code: BLF3496; CASENT0421396, Fisher et al. ;Paratypes: five workers and a single gyne with the same locality data under CASENT codes: CASENT0421397, BLF3496, ; CASENT0421395, BLF3496, ; CASENT0421398, BLF3482, ; CASENT0421399, BLF3482, ;Description of workers. Body color: yellow. Body color pattern: concolorous. Absolute cephalic size (\u00b5m): 539 (n = 42). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.229 . Postocular distance vs. cephalic length (PoOc/CL): 0.404 . Postocular sides of cranium contour frontal view orientation: converging anteriorly; parallel. Postocular sides of cranium contour frontal view shape: straight; feebly convex; convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugoso-reticulate, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging; strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: absent. Eye length vs. absolute cephalic size (EL/CS): 0.260 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.409 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.659 . Facial area of the scape absolute setal angle: 15\u201330\u00b0. Median clypeal notch: absent. Ground sculpture of submedian area of clypeus: present. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 20\u201327\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.310 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.369 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.377 . Propodeal spine shape: triangular, blunt. Anterolateral pronotal corner: absent. Metanotal depression: present, inconspicuous. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.407 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.470 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Etymology. This name fragilis (=fragile) refers to the small size of this species.Diagnosis. Workers of N. fragilis differ from those of N. clypeatus by having no median clypeal notch .a region . A singlNesomyrmex gracilis Cs\u0151sz & Fisher sp. n..Type material investigated.Holotype worker: MADAGASCAR: Prov. Antsiranana, For\u00eat Ambato, 26.6 km 33\u00b0 Ambanja, 13\u00b027.87\u2032S, 48\u00b033.10\u2032E, 150 m, 8-11.xii.2004, collection code: BLF11548; CASENT0107191, Fisher et al. ;Paratypes: three workers, three gynes, and a male with the same locality data under CASENT codes: CASENT0763758, BLF11548, ; CASENT0107710, BLF11539, ; CASENT0107026, BLF11624, ; CASENT0107027, BLF11624, ;Description of workers. Body color: yellow; brown. Body color pattern: concolorous. Absolute cephalic size (\u00b5m): 620 , (n = 44). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.199 . Postocular distance vs. cephalic length (PoOc/CL): 0.387 . Postocular sides of cranium contour frontal view orientation: parallel; converging anteriorly. Postocular sides of cranium contour frontal view shape: straight; feebly convex; convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugose, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging; strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: absent. Eye length vs. absolute cephalic size (EL/CS): 0.252 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.413 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.647 . Facial area of the scape absolute setal angle: 0\u201315\u00b0. Median clypeal notch: absent. Ground sculpture of submedian area of clypeus: present. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 40\u201345\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.399 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.393 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.489 . Propodeal spine shape: straight; slightly bent. Anterolateral pronotal corner: absent. Metanotal depression: present. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.454 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.500 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Etymology. This name gracilis refers to the small, tiny appearance of this species.Diagnosis. Workers of N. gracilis differ from those of N. clypeatus by having no median clypeal notch offers 94.5% success in distinguishing between this species and N. exiguus, and a combination of two ratios (PoOC/SPTI and CWb/ML) yields a safe determination ;Paratypes: Twenty six workers and three gynes with the same locality data under CASENT codes:CASENT0457483, BLF6155, ; CASENT0457482, BLF6155, ; CASENT0457476, BLF6155, ; CASENT0457481, BLF6155, ; CASENT0457480, BLF6155, ; CASENT0457478, BLF6155, ; CASENT0457479, BLF6155, ; CASENT0457477, BLF6155, ; CASENT0439545, BLF6118, ; CASENT0439552, BLF6118, ; CASENT0439546, BLF6118, ; CASENT0439555, BLF6118, ; CASENT0439551, BLF6118, ; CASENT0439547, BLF6118, ; CASENT0439553, BLF6118, ; CASENT0439548, BLF6118, ; CASENT0439550, BLF6118, ; CASENT0439549, BLF6118, ; CASENT0439554, BLF6118, ; CASENT0457598, BLF6119, ; CASENT0457596, BLF6119, ; CASENT0457599, BLF6119, ; CASENT0457597, BLF6119, ;Description of workers. Body color: yellow; brown. Body color pattern: concolorous. Absolute cephalic size (\u00b5m): 592 , (n = 75). Cephalic length vs. maximum width of head capsule (CL/CWb): 1.187 . Postocular distance vs. cephalic length (PoOc/CL): 0.387 . Postocular sides of cranium contour frontal view orientation: parallel; converging anteriorly. Postocular sides of cranium contour frontal view shape: straight; feebly convex; convex. Vertex contour line in frontal view shape: straight; feebly convex. Vertex sculpture: main sculpture rugose, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging; strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: absent. Eye length vs. absolute cephalic size (EL/CS): 0.272 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.412 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.667 . Facial area of the scape absolute setal angle: ca. 15\u00b0. Median clypeal notch: absent. Ground sculpture of submedian area of clypeus: present. Median carina of clypeus: present. Lateral carinae of clypeus: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 37\u201342\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.375 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.389 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.460 . Propodeal spine shape: straight; slightly bent. Anterolateral pronotal corner: absent. Metanotal depression: present. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.460 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.525 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Etymology. The name hirtellus: hirtus (=hairy) + -ellus (diminutive) refers to the workers having short hairs.Diagnosis. Workers of N. hirtellus differ from those of N. clypeatus by having no median clypeal notch offers 92.2% success in distinguishing between this species and N. devius and a combination of two ratios (PoOC/SPST and MW/PPH) yields a safe determination and Multivariate Ratio Extractor, MRA in decimal format, altitude (Elevation) in meters a.s.l., collector\u2019s name, date and number of specimens investigated bearing the given CASENT number are provided. HT, Holotype; PT, paratype(s).Click here for additional data file.10.7717/peerj.1796/supp-2Table S2Hymenoptera-specific terminology of morphological statements used in descriptions, identification key, and diagnoses are mapped to classes in phenotype-relevant ontologies.Click here for additional data file.10.7717/peerj.1796/supp-3Table S3Morphometric data of 21 continuous morphometric traits of 378 individuals, plus two others applied to a small fragment of samples, is given in \u00b5m. CASENT code (casent), final species hypothesis (species), geographic coordinates and the name format as samples appear on the dendrogram (dendro-name) are also provided in the table. HT, Holotype; PT, paratype(s).Click here for additional data file.10.7717/peerj.1796/supp-4Supplemental Information 1R script of NC clustering and method PART implementing cluster methods \u201chclust\u201d and \u201ckmeans\u201d. Mark dendrogram function mapping the results of partitioning algorithm PART on the dendrogram is also added.Click here for additional data file."} {"text": "Moral philosophy and psychology have sought to define the nature of right and wrong, and good and evil. The industrial turn of the twentieth century fostered increasingly technological approaches that conjoined philosophy to psychology, and psychology to the natural sciences. Thus, moral philosophy and psychology became ever more vested to investigations of the anatomic structures and physiologic processes involved in cognition, emotion and behavior - ultimately falling under the rubric of the neurosciences. Since 2002, neuroscientific studies of moral thought, emotions and behaviors have become known as \u2013 and a part of \u2013 the relatively new discipline of neuroethics. Herein we present Part 2 of a bibliography of neuroethics from 2002\u20132013 addressing the \u201cneuroscience of ethics\u201d \u2013 studies of putative neural substrates and mechanisms involved in cognitive, emotional and behavioral processes of morality and ethics.RefWorks citation management program.A systematic survey of the neuroethics literature was undertaken. Bibliographic searches were performed by accessing 11 databases, 8 literature depositories, and 4 individual journal searches, and employed indexing language for National Library of Medicine (NLM) Medical Subject Heading databases. All bibliographic searches were conducted using the This bibliography lists 397 articles, 65 books, and 52 book chapters that present (1) empirical/experimental studies, overviews, and reviews of neural substrates and mechanisms involved in morality and ethics, and/or (2) reflections upon such studies and their implications. These works present resources offering iterative descriptions, definitions and criticisms of neural processes involved in moral cognition and behaviors, and also provide a historical view of this field, and insights to its developing canon. Throughout much of recorded history, humans have sought to define the nature of right and wrong, and good and evil. Since antiquity, such questions have been the focus of moral philosophy. However, empirical and experimental movements of the late nineteenth century drew scientific attention to philosophical questions, and the queries of moral philosophy became the focus of the then nascent discipline of psychology. The industrial turn of the twentieth century fostered increasingly technological approaches that conjoined psychology to the natural sciences. Philosophical speculation, and psychological observation and experimentation became ever more rooted in, and vested to investigations of the anatomic structures and physiologic processes involved in cognition, emotion and behavior. Thus, studies of moral philosophy and moral psychology became the province of brain research, ultimately falling under the rubric of the neurosciences, which became firmly established as a titular field in the middle-to-late 1970s \u2009CR Seances Soc Biol Fil 1998, 192(6):1041-1049.Changeux JP: Rev Neurol 1994, 150(8-9):555-563.Laplane D. Paris: Association Decartes and J. Libbey Eurotext 1996.Huber G: The Significance of Free Will. New York: Oxford University Press 1996.Kane R: The Man with a Shattered World: The History of a Brain Wound. New York: Basic Books 1972.Luria AR: The Society of Mind. New York: Simon and Schuster 1986.Minsky M: Equality and Partiality. Oxford and New York: Oxford University Press 1991.Nagel T: Computation and Cognition: Toward a Foundation for Cognitive Science. Cambridge, Mass.: MIT Press 1984.Pylyshyn ZW: The Brain and Emotion. Oxford: Oxford University Press 1999.Rolls ET: Sources of the Self: The Making of Modern Identity. Cambridge, Mass.: Harvard University Press 1989.Taylor C: Since 2002, neuroscientific studies of moral thought, emotions and behaviors have become known as \u2013 and a part of \u2013 the relatively new discipline of neuroethics . How canThe late William Safire concluded his introductory remarks to the 2002 Dana Foundation conference \u201cNeuroethics \u2013Mapping the Field\u201d by congratulating the attendees for tackling \u201c\u2026the challenge of carving out a new territory for an old philosophical discipline\u201d by examihttp://www.ncbi.nlm.nih.gov/mesh/) indexing terms were used for generating bibliographies from PubMed and National Library of Medicine (NLM) Catalog. MeSH includes ethics-related terms developed for BIOETHICSLINE, a specialty database devoted to bioethical issues produced for NLM by the Kennedy Institute of Ethics from 1975\u20132000. Other databases were searched using descriptors specific to those databases. The searches were limited to work published from 2002 to 2013.Methods for systematically searching relevant literature devoted to neuroethics are identical to those utilized in Part 1 of this bibliography . Search http://pubmed.gov):PubMed )http://www.ncbi.nlm.nih.gov/nlmcatalog):The NLM Catalog )Academic Search Premier:Search Strategy: TX morality AND SU neurosciences AND SU philosophyProquest Research Library:Search Strategy: su AND su (neurosciences)JSTOR:Search Strategy: ab: AND ab:(neuroscience)http://www.worldcat.org).:WorldCat Philosopher's Index:Search Strategy: su AND su(neuroscience)Embase:Search Strategy: neuroscience:de AND morality:dehttp://www.drze.de/belit/).:BELIT :Search Strategy: [topic] morality neuroscienceshttp://dp.la/):Digital Public Library of America (DPLA) :Directory of Open Access Journals (DOAJ) :Hathi Trust Digital Library :European Library :Internet Archive :Globethics.net :Neuroethics-Wikiography ;Journal of Mental Health Ethics from McMaster University (http://www.jemh.ca/);Journal of Practical Ethics (http://www.jpe.ox.ac.uk/) from the Oxford Uehiro Centre for Practical Ethics at the University of Oxford; andPhilosophers\u2019 Imprint from the University of Michigan (http://www.philosophersimprint.org/).As previously noted , open acRefWorks citation manager program was utilized to eliminate duplicate reference citations.As in Part 1 of this bibliography , the RefThick concepts and the moral brain.Euro J Soc 2011, 52(1):143\u2013172. doi:10.1017/s0003975611000051.Abend G: What the science of morality doesn\u2019t say about morality.Philos Soc Sci 2013, 43(2):157\u2013200. doi:10.1177/0048393112440597.Abend G: The social brain: neural basis of social knowledge.Annu Rev Psychol 2009, 60: 693:716. doi:10.1146/annurev.psych.60.110707.163514.Adolphs R: Cognitive neuroscience of human social behaviour.Nat Rev Neurosci 2003, 4(3): 165\u2013178. doi:10.1038/nrn1056.Adolphs R: Still afraid of needy post-persons.J Med Ethics 2013, 39(2):81\u201383. doi:10.1136/medethics-2012-101095.Agar N: Why is it possible to enhance moral status and why doing so is wrong?J Med Ethics 2013, 39(2):67\u201374. doi:10.1136/medethics-2012-100597.Agar N: Pr\u00e9cis of breakdown of will.Behav Brain Sci 2005, 28(5):635\u2013673. doi:10.1017/S0140525X05000117.Ainslie G: Ethical concepts and future challenges of neuroimaging: an Islamic perspective.Sci Eng Ethics 2012, 18(3):509\u2013518. doi:10.1007/s11948-012-9386-3.Al-Delaimy WK: Neuroscience, free will and moral responsibility.TRAMES-J Humanit Soc 2011, 15(2):147\u2013155. doi:10.3176/tr.2011.2.03.\u00c1rnason G: Neuroimaging, uncertainty, and the problem of dispositions.Camb Q Healthc Ethics 2010, 19(2):188\u2013195. doi:10.1017/S0963180109990454.\u00c1rnason G: Neurofunctional correlates of esthetic and moral judgments.Neurosci Lett 2013, 534:128\u2013132. doi:10.1016/j.neulet.2012.11.053.Avram M et al.: The biological foundations of culture and morality.Rendiconti Lincei 2008, 19 (2):189\u2013204.doi:10.1007/s12210-008-0011-y.Azzone GF: Neurosciences et neuro\u00e9thique: qui se ressemble s\u2019assemble.Rev Med Suisse 2005, 1(34):2225\u20132229.Baertschi B: Neurosciences et responsabilit\u00e9 morale: un argument en faveur du compatibilisme.Revue de Theologie et de Philosophie 2011, 143(3):257\u2013272.Baertschi B: Sociotopy in the temporoparietal cortex: common versus distinct processes.Soc Cogn Affect Neurosci 2010, 5(1):48\u201358. doi:10.1093/scan/nsp045.Bahnemann M et al.: Virtue essentialism, prototypes, and the moral conservative opposition to enhancement technologies: a neuroethical critique.AJOB Neurosci 2011, 2(2):31\u201338. doi:10.1080/21507740.2011.556918.Banja J: Modelling autonomy: simulating the essence of life and cognition. Introduction.Biosystems 2008, 91(2):295\u2013304. doi:10.1016/j.biosystems.2007.07.001.Barandiaran X, Ruiz-Mirazo K: An evolutionarily adaptive neural architecture for social reasoning.Trends Neurosci 2009, 32(12):603\u2013610. doi:10.1016/j.tins.2009.09.001.Barbey AK, Krueger F, Grafman J. Oxytocin infusion increases charitable donations regardless of monetary resources.Horm Behav 2011, 60(2):148\u2013151. doi:10.1016/j.yhbeh.2011.04.008.Barraza JA, McCullough ME, Ahmadi S, Zak PJ: Principled moral sentiment and the flexibility of moral judgment and decision making.Cognition 2008, 108(2):381\u2013417. doi:10.1016/j.cognition.2008.03.001.Bartels DM: Deontological and altruistic guilt: evidence for distinct neurobiological substrates.Hum Brain Mapp 2011, 32(2):229\u2013239. doi:10.1002/hbm.21009.Basile B et al.: Free will in the eye of neuroscientific reductionism: the need for a philosophical foundation of moral neuropsychology.History & Philosophy of Psychology 2009, 11(1):12\u201316.Bellino RM: Neural and genetic correlates of antidepressant response to sleep deprivation: a functional magnetic resonance imaging study of moral valence decision in bipolar depression.Arch Gen Psychiatry 2007, 64(2):179\u2013187. doi:10.1001/archpsyc.64.2.179.Benedetti F et al.: The normative insignificance of neuroscience.Philos Public Aff 2009, 37(4):293\u2013329. doi:10.1111/j.1088-4963.2009.01164.x.Berker S: The biology of cultural conflict.Philos Trans R Soc Lond B Biol Sci 2012, 367(1589):633\u2013639. doi:10.1098/rstb.2011.0307.Berns GS, Atran S: Neurobiological correlates of social conformity and independence during mental rotation.Biol Psychiatry 2005, 58(3):245\u2013253. doi:10.1016/j.biopsych.2005.04.012.Berns GS et al.: The price of your soul: neural evidence for the non-utilitarian representation of sacred values.Philos Trans R Soc Lond B Biol Sci 2012, 367(1589):754\u2013762. doi:10.1098/rstb.2011.0262.Berns GS et al.: Affective response to one\u2019s own moral violations.Neuroimage 2006, 31(2):945\u2013950. doi:10.1016/j.neuroimage.2005.12.039.Berthoz S et al.: An fMRI study of intentional and unintentional (embarrassing) violations of social norms.Brain 2002, 125 (Pt. 8):1696\u20131708. doi:10.1093/brain/awf190.Berthoz S, Armony JL, Blair RJ, Dolan RJ: Autonomy: an information theoretic perspective.Biosystems 2008, 91(2):331\u2013345.doi:10.1016/j.biosystems.2007.05.018.Bertschinger N, Olbrich E, Ay N, Jost J: Ethics on the brain.Science & Spirit 2006, 17(4):65\u201367.Bird S: The amygdala and ventromedial prefrontal cortex in morality and psychopathy.Trends Cogn Sci 2007, 11(9):387\u2013392. doi:10.1016/j.tics.2007.07.003.Blair RJR: Neuro-cognitive systems involved in morality.Philosophical Explorations: An International Journal for the Philosophy of Mind and Action 2006, 9(1):13\u201327. doi:10.1080/13869790500492359.Blair J et al.: Autonomy: what is it? Introduction.Biosystems 2008, 91(2):305\u2013308. doi:10.1016/j.biosystems.2007.07.003.Boden MA: The implications of advances in neuroscience for freedom of the will.Neurotherapeutics 2007, 4(3):555\u2013559. doi:10.1016/j.nurt.2007.04.001.Bok H: Neuroethics in Spain: neurological determinism or moral freedom?Neuroethics 2013, 6(1):225\u2013232. doi:10.1007/s12152-012-9151-y.Bonete E: Consequences, action, and intention as factors in moral judgments: an fMRI investigation.J Cogn Neurosci 2006, 18(5):803\u2013817. doi:10.1162/jocn.2006.18.5.803.Borg JS et al.: Neural basis of moral verdict and moral deliberation.Soc Neurosci 2011, 6(4):398\u2013413. doi:10.1080/17470919.2011.559363.Borg JS, Sinnott-Armstrong W, Calhoun VD, Kiehl KA: Infection, incest, and iniquity: investigating the neural correlates of disgust and morality.J Cogn Neurosci 2008, 20(9):1529\u20131546. doi:10.1162/jocn.2008.20109.Borg JS, Lieberman D, Kiehl KA: The body, its emotions, the self, and consciousness.Perspect Biol Med 2012, 55(3):362\u2013377. doi:10.1353/pbm.2012.0031.Boyd GW: Neurocognitive mechanisms underlying value-based decision-making: from core values to economic value.Front Hum Neurosci 2013, 7:398. doi:10.3389/fnhum.2013.00398.Brosch T, Sander D: An evolutionary perspective on morality.Journal of Economic Behavior & Organization 2011, 77(1):23\u201330. doi:10.1016/j.jebo.2010.04.008.Brosnan SF: Ventromedial prefrontal cortex lesions and motivational internalism.AJOB Neurosci 2012, 3(3):19\u201323. doi:10.1080/21507740.2012.694389.Bruni T: Neuroscience and moral reliability.AJOB Neurosci 2011, 2(2):15\u201317. doi:10.1080/21507740.2011.559913.Bruni T: Neuroscience and metaphysics.Am J Bioeth 2005, 5(2):34\u201336. doi:10.1080/15265160590960258.Buford C, Allhoff F: Neuroscience and metaphysics (redux). Am J Bioeth 2007, 7(1):58\u201360. doi:10.1080/15265160601064272.Buford C, Allhoff F: Morality in a blur.Am J Bioeth 2008, 8(5):21\u201323. doi:10.1080/15265160802180018.Buller T: Rationality, responsibility, and brain function.Camb Q Healthc Ethics 2010, 19(2):196\u2013204. doi:10.1017/S0963180109990466.Buller T: The neurobiology of positive emotions.Neurosci Biobehav Rev 2006, 30(2):173\u2013187. doi:10.1016/j.neubiorev.2005.06.001.Burgdorf J, Pankseep J: Decision making and free will: a neuroscience perspective.Behav Sci Law 2007, 25(2):263\u201380. doi:10.1002/bsl.751.Burns K, Bechara A: Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy.Brain Struct Funct 2012, 217(4):783\u2013796. doi:10.1007/s00429-012-0380-y.Bzdok D et al.: Mode of effective connectivity within a putative neural network differentiates moral cognitions related to care and justice ethics.PLoS One 2011, 6(2):e14730. doi:10.1371/journal.pone.0014730.C\u00e1ceda R et al.: Just because you're imaging the brain doesn't mean you can stop using your head: a primer and set of first principles.J Pers Soc Psychol 2003, 85(4):650\u2013661. doi:10.1037/0022-3514.85.4.650.Cacioppo JT et al. Neuronas y valores.Rev Neurol 2013, 57(5):230\u2013234.Camps V: Neuroimaging of emotion and personality: scientific evidence and ethical considerations.Brain Cogn 2002, 50(3):414\u2013431.Canli T, Amin Z: Moral cognition and its neural constituents.Nat Rev Neurosci 2003, 4(10):840\u2013846. doi:10.1038/nrn1223.Casebeer WD: The neural mechanisms of moral cognition: a multiple-aspect approach to moral judgment and decision-making.Biol Philos 2003, 18(1):169\u2013194. doi:10.1023/A:1023380907603.Casebeer WD, Churchland PS: Moral concepts set decision strategies to abstract values.PLoS One 2011, 6(4):e18451. doi:10.1371/journal.pone.0018451.Caspers S et al.: An online neural substrate for a sense of agency.Cereb Cortex 2013, 23(5):1031\u20131037. doi:10.1093/cercor/bhs059.Chambon V et al.: Leader or follower? Involvement of the inferior parietal lobule in agency.Neuroreport 2002, 13(15):1975\u20131978. doi:10.1097/00001756-200210280-00029.Chaminade T, Decety J: Triangulating the neural, psychological, and economic bases of guilt aversion.Neuron 2011, 70(3):560\u2013572. doi:10.1016/j.neuron.2011.02.056.Chang LJ, Smith A, Dufwenberg M, Sanfey AG: Contemporary naturalism and human ontology: towards a different essentialism.Forum Philosophicum: International Journal for Philosophy 2011, 16(1):59\u201372.Charmetant E: Ethicists urge caution over emotive power of brain scans.Nature 2005, 435(7040):254\u2013255. doi:10.1038/435254a.Check E: The origami brain: from neural folds to neuroethics.Ethics Med 2011, 27(2):79\u201383.Cheshire WP: Can grey voxels resolve neuroethical dilemmas?Ethics Med 2007, 23(3):135\u2013140.Cheshire WP: The self: from philosophy to cognitive neuroscience.Neurocase 2011, 17(3):190\u2013200. doi:10.1080/13554794.2010.532808.Chiong W: Moral dilemmas in cognitive neuroscience of moral decision-making: a principled review.Neurosci Biobehav Rev 2012, 36(4):1249\u20131264. doi:10.1016/j.neubiorev.2012.02.008.Christensen JF, Gomila A: Into the brain: where philosophy should go from here.Topoi-Int Rev Philos 2006, 25(1\u20132):29\u201332. doi:10.1007/s11245-006-0024-z.Churchland PM: The impact of neuroscience on philosophy.Neuron 2008, 60(3):409\u2013411. doi:10.1016/j.neuron.2008.10.023.Churchland PS: Neurophilosophy: the early years and new directions.Funct Neurol 2007, 22(4):185\u2013195.Churchland PS: Free will matters.AJOB Neurosci 2011, 2(3):1\u20132. doi:10.1080/21507740.2011.588905.Churchland PS: Ventromedial prefrontal cortex and the future of morality.Emotion Review 2011, 3(3):308\u2013309. doi:10.1177/1754073911402381.Ciaramelli E, di Pellegrino G: Damage to the ventromedial prefrontal cortex reduces interpersonal disgust. Soc Cogn Affect Neurosci 2013, 8(2):171\u2013180. doi:10.1093/scan/nss087.Ciaramelli E, Sperotto RG, Mattioli F, di Pellegrino G: The intentional network: how the brain reads varieties of intentions.Neuropsychologia 2007, 45(13):3105\u20133113. doi:10.1016/j. neuropsychologia.2007.05.011.Ciaramidaro A, et al.: On the wrong side of the trolley track: neural correlates of relative social valuation.Soc Cogn Affect Neurosci 2010, 5(4):404\u2013413. doi:10.1093/scan/nsq011.Cikara M, Farnsworth RA, Harris LT, Fiske ST: The free brain?Tijdschr Psychiatr 2011, 53(7):389\u2013391.Claes SJ: Holding mechanisms responsible.Med Ethics (Burlingt Mass) 2006, 13(3):10\u201311.Clark TW: The cognitive and affective dimensions of moral conviction: implications for attitudinal and behavioral measures of interpersonal tolerance.Pers Soc Psychol Bull 2008, 34(11):1461\u20131476. doi:10.1177/0146167208322557.Cole Wright J, Cullum J, Schwab N: Deontological and utilitarian inclinations in moral decision making: a process dissociation approach.J Pers Soc Psychol 2013, 104(2):216\u2013235. doi:10.1037/a0031021.Conway P, Gawronski B: Detecting cheaters.Trends Cogn Sci 2005, 9(11):505\u2013506. doi:10.1109/msp.2011.28.Cosmides L, Tooby J, Fiddick L, Bryant GA: Images of difficulty.IIOAB Journal 2013, 4(3):3\u20138.Costa AN: Serotonin selectively influences moral judgment and behavior through effects on harm aversion.Proc Natl Acad Sci USA 2010, 107(40):17433\u201317438. doi:10.1073/pnas.1009396107.Crockett MJ, Clark L, Hauser MD et al.: Neuroscience and subjectivity.Subjectivity 2011, 4:215\u2013226. doi:10.1057/sub.2011.13.Cromby J, Newton T, Williams SJ: Neuroscience. Brain stimulation sparks \u2018Machiavellian\u2019 choices.Science 2013, 342(6154):25. doi:10.1126/science.342.6154.25.Culotta E: Moral appraisals affect doing/allowing judgments.Cognition 2008, 108(1):281\u2013289. doi:10.1016/j.cognition.2008.02.005.Cushman F, Knobe J, Sinnott-Armstrong W: Action, outcome, and value: a dual-system for morality.Pers Soc Psychol Rev 2013, 17(3):273\u2013292. doi:10.1177/1088868313495594.Cushman F: The role of conscious reasoning and intuition in moral judgment: testing three principles of harm.Psychol Sci 2006, 17(12):1082\u20131089. doi:10.1111/j.1467-9280.2006.01834.x.Cushman F, Young L, Hauser M: Finding faults: how moral dilemmas illuminate cognitive structure.Soc Neurosci 2012, 7(3):269\u2013279. doi:10.1080/17470919.2011.614000.Cushman F, Greene JD: Neuroscience and ethics: intersections.Am J Bioeth 2007, 7(1):3\u20137. doi:10.1080/1526516060103910.Damasio A: Moral dilemma judgment revisited: a Loreta analysis.J Behav Brain Sci 2013, 3(8):624\u2013640. doi:10.4236/jbbs.2013.38066.da Rocha AF, Rocha FT, Massad E: Wired for autonomy.Am J Bioeth 2008, 8(5):23\u201325. doi:10.1080/15265160802180042.da Rocha AC, Bergareche AM: Neural basis of egalitarian behavior.Proc Natl Acad Sci 2012, 109(17):6479\u20136483. doi:10.1073/pnas.1118653109.Dawes CT et al.: Activation of brain areas concerned with social cognition during moral decisions is abnormal in schizophrenia patients and unaffected siblings.J Psychiatr Res 2013, 47(6):774\u2013782. doi:10.1016/j.jpsychires.2012.12.018.de Ach\u00e1val D et al.: Does neuroscience undermine deontological theory?Neuroethics 2010, 3(1):43\u201360. doi:10.1007/s12152-009-9052-x.Dean R: The developmental neuroscience of moral sensitivity.Emot Rev 2011, 3(3):305\u2013307. doi:10.1177/1754073911402373.Decety J, Michalska KJ, Kinzler KD: The role of affect in the neurodevelopment of morality.Child Dev Perspect 2013, 7(1):49\u201354. doi:10.1111/cdep.12020.Decety J, Howard LH: The speed of morality: a high-density electrical neuroimaging study.J Neurophysiol 2012, 108(11):3068\u20133072. doi:10.1152/jn.00473.2012.Decety J, Cacioppo S: Neurodevelopmental changes in the circuits underlying empathy and sympathy from childhood to adulthood.Dev Sci 2010, 13(6):886\u2013899. doi:10.1111/j.1467-7687.2009.00940.x.Decety J, Michalska, KJ: Imagining being the agent of actions that carry different moral consequences: an fMRI study.Neuropsychologia 2011, 49(11):2994\u20133001. doi:10.1016/j.neuropsychologia.2011.06.024.Decety J, Porges EC: The neurodevelopment of empathy in humans.Dev Neurosci 2010, 32(4):257\u2013267. doi:10.1159/000317771.Decety J: The contribution of emotion and cognition to moral sensitivity: a neurodevelopmental study.Cereb Cortex 2012, 22(1):209\u2013220. doi:10.1093/cercor/bhr111.Decety J, Michalska KJ, Kinzler KD:A cognitive-intuitionist model of moral judgment. J Bus Ethics 2013 (online). doi:10.1007/s10551-013-1965-y.Dedeke A: Neurology of widely embedded free will.Cortex 2011, 47(10):1160\u20131065. doi:10.1016/j.cortex.2011.06.011.de Jong BM: Perceptions of moral character modulate the neural systems of reward during the trust game.Nat Neurosci 2005, 8(11):1611\u20131618. doi:10.1038/nn1575.Delgado MR, Frank RH, Phelps EA: Morality: incomplete without the cerebellum? Brain 2013, 136(8):e244. doi:10.1093/brain/awt070.Demirtas-Tatlidede A, Schmahmann JD: The neural basis of altruistic punishment.Science 2004, 305(5688):1254\u20131258. doi:10.1126/science.1100735.de Quervain DJ et al.: The animal roots of human morality.New Sci 2006, 192(2573):60\u201361. doi: 10.1016/S0262-4079(06)60737-9.de Waal F: The psychobiology of aggression and violence: bioethical implications.Int Soc Sci J 2010, 61(200\u2013201):233\u2013245. doi:10.1111/j.1468-2451.2011.01760.x.D\u00edaz JL: In search of the neurobiological basis of decision making: explanation, reduction and emergence.Funct Neurol 2007, 22(4):197\u2013204.Di Francesco M, Motterlini M, Colombo M: Neurofilosofia, naturalismo e statuto dei giudizi morali.Etica e Politica 2007, 9(2):126\u2013143.Di Francesco M: Current trends in moral research: what we know and where to go from here.Curr Dir Psychol Sci 2013, 22(5):380\u2013385. doi:10.1177/0963721413486147.Dinh JE, Lord RG: How (not) to model autonomous behavior.Biosystems 2008, 91(2):409\u2013423. doi:10.1016/j.biosystems.2007.05.016.Di Paolo EA, Iizuka H: Experiential, autonomic, and neural responses during threat anticipation vary as a function of threat intensity and neuroticism.Neuroimage 2011, 55(1):401\u2013410. doi:10.1016/j.neuroimage.2010.11.040.Drabant EM et al.: Neurobiology of behavior.Curr Opin Neurobiol 2009, 19(6):634\u2013636. doi:10.1016/j.conb.2009.10.009.Dulac C, Rizzolatti G: Universal moral grammar: a critical appraisal.Trends Cogn Sci 2007, 11(9):373\u2013378. doi:10.1016/j.tics.2007.07.001.Dupoux E, Jacob P: Dupoux and Jacob\u2019s moral instincts: throwing out the baby, the bathwater and the bathtub.Trends Cogn Sci 2008, 12(1):1\u20132. doi:10.1016/j.tics.2007.10.006.Dwyer S, Hauser MD: Is it better to be moral than smart? The effects of morality and competence norms on the decision to work at a group status improvement.J Pers Soc Psychol 2008, 95(6):1397\u20131410. doi:10.1037/a0012628.Ellemers N: Critique of moral judgment: sociology versus neuroscience.AJOB Neurosci 2011, 2(2):26\u201328. doi:10.1080/21507740.2011.559916.Epstein M: Introduction to this issue: the neuroscience and psychology of moral decision making and the law.Behav Sci Law 2009, 27(2):119\u2013121. doi:10.1002/bsl.858.Erickson SK, Felthous AR: Towards a philosophy for neuroethics: an informed materialist view of the brain might help to develop theoretical frameworks for applied neuroethics.EMBO Rep 2007, 8:S48-S51. doi:10.1038/sj.embor.7401014.Evers K: Neuroscience and the soul.Science 2009, 323(5918):1168. doi:10.1126/science.323.5918.1168a.Farah MJ, Murphy N: Personhood and neuroscience: naturalizing or nihilating?Am J Bioeth 2007, 7(1):37\u201348. doi:10.1080/15265160601064199.Farah MJ, Heberlein AS: Experiencing oneself vs. another person as being the cause of an action: the neural correlates of the experience of agency.Neuroimage 2002, 15(3):596\u2013603. doi:10.1006/nimg.2001.1009.Farrer C, Frith CD: Domains of deontic reasoning: resolving the discrepancy between the cognitive and moral reasoning literatures.QJ Exp Psychol A 2004, 57(3):447\u2013474. doi:10.1080/02724980343000332.Fiddick L: What is the \u201ccognitive\u201d in cognitive neuroscience?Neuroethics 2013, 6(1):105\u2013114. doi:10.1007/s12152-012-9157-5.Figdor C: Neuroethics: reflections on the latent principles of morals in medicine.Rev Med Chil 2012, 140(8):1078\u20131084. doi:10.4067/S0034-98872012000800018.Figueroa G: Caught in the act: the impact of audience on the neural response to morally and socially inappropriate behavior.NeuroImage 2006, 33(1):414\u2013421. doi:10.1016/j.neuroimage.2006.06.011.Finger EC et al.: Lessons from the injured brain: a bioethicist in the vineyards of neuroscience.Camb Q Healthc Ethics 2009, 18(1):7\u201313. doi:10.1017/S0963180108090038.Fins JJ: Universal dimensions of social cognition: warmth and competence.Trends Cogn Sci 2007, 11(2):77\u201383. doi:10.1016/j.tics.2006.11.005.Fiske ST, Cuddy AJ, Glick P: Can morality ever become a science?Dialogue-J Phi Sigma54(2\u20133):138\u2013154.Fitzpatrick M: One enchanted being: neuroexistentialism and meaning.Zygon 2009, 44(1):41\u201349. doi:10.1111/j.1467-9744.2009.00984.x.Flanagan O: The role of the human prefrontal cortex in social cognition and moral judgment.Annu Rev Neurosci 2010, 33:299\u2013324. doi:10.1146/annurev-neuro-060909-153230.Forbes CE, Grafman J: Chemical imbalance or moral weakness? Personal responsibility in a time of brain science.Med Health R I 2006, 89(3):88.Friedman JH: The ethics of neuroscience and the neuroscience of ethics: A phenomenological\u2013existential approach.Sci Eng Ethics 2012, 18(3):457\u2013474. doi:10.1007/s11948-012-9388-1.Frost CJ, Lumia AR: Functional and clinical neuroanatomy of morality.Brain 2012, 135(7):2006\u20132021. doi:10.1093/brain/awr334.Fumagalli M, Priori A: Conflict-dependent dynamic of subthalamic nucleus oscillations during moral decisions.Soc Neurosci 2011, 6(3):243\u2013256. doi:10.1080/17470919.2010.515148.Fumagalli M et al.: Gender-related differences in moral judgments.Cogn Process 2010, 11(3):219\u2013226. doi:10.1007/s10339-009-0335-2.Fumagalli M et al.: Brain switches utilitarian behavior: does gender make a difference?PloS One 2010, 5(1):e8865. doi:10.1371/journal.pone.0008865.Fumagalli M et al.: Orbitofrontal cortex and morality.Brain and Nerve/Shinkei Kenkyu no Shinpo 2012, 64(10):1121\u20131129.Funayama M, Mimura M: The functional brain architecture of human morality.Curr Opin Neurobiol 2009, 19(6):678\u2013681. doi:10.1016/j.conb.2009.09.011.Funk CM, Gazzaniga MS: Is there a neurobiology of the free will?EMBO Rep 2011, 13(1):17\u201319. doi:10.1038/embor.2011.229.Gerber B: Neurosentimentalism and moral agency.Mind 2010, 119(475):585\u2013614. doi:10.1093/mind/fzq037.Gerrans P, Kennett J: Neuroscience and morality.Hastings Cent Rep 2012, 42(3):22\u201328. doi:10.1002/hast.36.Gert B: Determinism and advances in neuroscience.Virtual Mentor 2012, 14(6):489\u2013493. doi:10.1001/virtualmentor.2012.14.6.msoc1-1206.Giligorov N: The subjective brain, identity, and neuroethics.Am J Bioeth 2009 9(9):5\u201313. doi:10.1080/15265160903090058.Gillett GR: Free will and moral responsibility in the age of neuroscience.Med Ethics (Burlingt Mass) 2006, 13(2):1\u20132.Glannon W: The role of social cognition in moral judgment in frontotemporal dementia.Soc Neurosci 2011, 6(2):113\u2013122. doi:10.1080/17470919.2010.506751.Gleichgerrcht E et al.: The neural correlates of moral decision-making is psychopathy.Mol Psychiatry 2009, 14(1):5\u20136. doi:10.1038/mp.2008.104.Glenn AL, Raine A, Schug RA: Determinism and advances in neuroscience.Virtual Mentor 2012, 14(6):489\u2013493. doi:10.1001/virtualmentor.2012.14.6.msoc1-1206.Gligorov N: Neuroeconomics: the consilience of brain and decision.Science 2004, 306(5695):447\u2013452. doi:10.1126/science.1102566.Glimcher PW, Rustichini A: Neuroscience as cultural intervention: reconfiguring the self as moral agent.AJOB Neurosci 2010, 1(4):53\u201355. doi:10.1080/21507740.2010.514884.Gold I, Kirmayer LJ: Understanding brain circuits and their dynamics.Behav Brain Sci 2010, 33(4):274\u2013275. doi:10.1017/S0140525X10001238.Gomila A, Calvo P: From biology to consciousness to morality.Zygon 2003, 38(4):801\u2013819. doi:10.1111/j.1467-9744.2003.00540.x.Goodenough U, Deacon TW: Mapping the moral domain.J Pers Soc Psychol 2011, 101(2):366\u2013385. doi:10.1037/a0021847.Grahm J, Nosek BA, Haidt J, IyerR et al.: Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation.Neuroimage 2010, 52(4):1720\u20131726. doi:10.1016/j.neuroimage.2010.05.038.Green S et al.: The neural bases of cognitive conflict and control in moral judgment.Neuron 2004, 44(2):389\u2013400. doi:10.1016/j.neuron.2004.09.027.Greene JD et al.: Cognitive load selectively interferes with utilitarian moral judgment.Cognition 2008, 107(3):1144\u20131154. doi:10.1016/j.cognition.2007.11.00.4.Greene JD et al.: Opinion: from neural \u2018is\u2019 to moral \u2018ought\u2019: what are the moral implications of neuroscientific moral psychology?Nat Rev Neurosci 2003, 4:846\u2013850. doi:10.1038/nrn1224.Greene J: How (and where) does moral judgment work? Trends Cog Sci 2002, 6(12):517\u2013523. doi:10.1016/s1364-6613(02)02011-9.Greene J, Haidt J: : Emotion and morality: A tasting menu.Emot Rev 2011, 3(3):1\u20133. doi:10.1177/1754073911409629.Greene JDWhy are VMPFC patients more utilitarian? A dual-process theory of moral judgment explains.Trends Cogn Sci 2007, 11(8):322\u2013323. doi:10.1016/j.tics.2007.06.004.Greene JD: Dual-process morality and the personal/impersonal distinction: a reply to McGuire, Langdon, Coltheart, and Mackenzie.J Exp Soc Psychol 2009, 45(3):581\u2013584. doi:10.1016/j.jesp.2009.01.003.Greene JD: Pushing moral buttons: the interaction between personal force and intention in moral judgment.Cognition 2009, 111(3):364\u2013371. doi:10.1016/j.cognition.2009.02.001.Greene JD et al.: Biological indeterminacy.Sci Eng Ethics 2012, 18(3):447\u2013452. doi:10.1007/s11948-012-9379-2.Greenspan RJ: Unfair? It depends: a neural correlates of fairness in social context.Soc Cogn Affect Neurosci 2010, 5(4):414\u2013423. doi:10.1093/scan/nsq013.G\u00fcro\u011flu B, van den Bos W, Rombouts SA, Crone EA: Finding the self in self-transcendent emotions.Proc Natl Acad Sci USA 2009, 106(19):7687\u20137688. doi:10.1073/pnas.0903076106.Haidt J, Morris JP: The new synthesis in moral psychology.Science 2007, 316(5827):998\u20131002. doi:10.1126/science.1137651.Haidt J: Intuitive ethics: how innately prepared intuitions generate culturally variable virtues.Daedalus 2004, 133(4):55\u201366. doi:10.1162/0011526042365555.Haidt J, Joseph C: Morality.Perspect Psychol Sci 2008, 3(1):65\u201372. doi:10.1111/j.1745-6916.2008.00063.x.Haidt J: Gender differences in neural mechanisms underlying moral sensitivity.Soc Cogn Affect Neurosci 2008, 3(4):313\u2013321. doi:10.1093/scan/nsn026.Harenski CL, Antonenko O, Shane MS, Kiehl KA: Neural correlates of regulating negative emotions related to moral violations.Neuroimage 2006, 30(1):313\u2013324. doi:10.1016/j.neuroimage.2005.09.034.Harenski CL, Hamann S: A functional imaging investigation of moral deliberation and moral intuition.Neuroimage 2010, 49(3):2707\u20132716. doi:10.1016/j.neuroimage.2009.10.062.Harenski CL, Antonenko O, Shane MS, Kiehl KA: Neural correlates of forgiveness for moral transgressions involving deception.Brain Res 2010, 1332:90\u201399. doi:10.1016/j.brainres.2010.03.045.Hayashi A et al.: Neuroethical theories.Camb Q Healthc Ethics 2010, 19(2):165\u2013178. doi:10.1017/S0963180109990430.H\u00e4yry M: Influence of bodily harm on neural correlates of semantic and moral decision-making.Neuroimage 2005, 24(3):887\u2013897. doi:10.1016/j.neuroimage.2004.09.026.Heekeren HR et al.: An fMRI study of simple ethical decision-making.Neuroreport 2003, 14(9):1215\u20131219. doi:10.1097/00001756-200307010-00005.Heekeren HR et al.: Pragmatic implications of empirically studying moral decision-making.Front Neurosci 2012, 6:94. doi:10.3389/fnins.2012.00094.Heinzelmann N, Ugazio G, Tobler PN: The right and the good: distributive justice and neural encoding of equity and efficiency.Science 2008, 320(5879):1092\u20131095. doi:10.1126/science.1153651.Hsu M, Anen C, Quartz SR: From a homeostatic to homeodynamic self.Biosystems 2008, 91(2):388\u2013400. doi:10.1016/j.biosystems.2007.05.014.Ikegami T, Suzuki K: : Empirical neuroethics: can brain imaging visualize human thought? Why is neuroethics interested in such a possibility?EMBO Rep 2007, 8(Suppl 1):S48-S51. doi:10.1038/sj.embor.7401007.Illes JSeeing human: distinct and overlapping neural signatures associated with two forms of dehumanization.Neuroimage 2013, 79:313\u2013328. doi:10.1016/j.neuroimage.2013.04.109.Jack AI, Dawson AJ, Norr ME: Neuroethics, reductionism, and dualism.Trends Cogn Sci 2005, 9(4):172. doi:10.1016/j.tics.2005.02.010.Jedlicka P: Morality as a science?Filos Cas 2013, 61(4):581\u2013590.Jirsa J: Neuro\u00e9tica: o c\u00e9rebro como \u00f3rg\u00e3o da \u00e9tica e da moral.Revista Bio\u00e9tica 2010, 18(1):109\u2013120.J\u00fanior RM: The neural basis of intuitive and counterintuitive moral judgment. Soc Cogn Affect Neurosci 2012, 7(4):393\u2013402. doi:10.1093/scan/nsr005.Kahane G et al.: Methodological issues in the neuroscience of moral judgment.Mind Lang 2010, 25(5):561\u2013582. doi:10.1111/j.1468-0017.2010.01401.x.Kahane G, Shackel N: Mind and morality.New Dir Child Adolesc Dev 2004, 103:73\u201383. doi:10.1002/cd.99.Kahn PH Jr: Neuroscience and moral reasoning: a note on recent research.Philos Public Aff 2009, 37(4):330\u2013345. doi:10.1111/j.1088-4963.2009.01165.x.Kamm FM: Will neuroscientific discoveries about free will and selfhood change our ethical practices?Neuroethics 2009, 2(1):51\u201359. doi:10.1007/s12152-008-9020-x.Kaposy C: Psychiatry, neuroscience and free will.Nord J Psychiatry 2005, 59(1):5. doi:10.1080/08039480510018869.Karlsson H: : Can science determine moral values? a reply to Sam Harris.Neuroethics 2012, 5(1):55\u201365. doi:10.1007/s12152-010-9096-y.Kaufman WRPMoral internalism and the brain.Soc Theory Pract 2008, 34(1):1\u201324. doi:10.5840/soctheorpract20083411.Kauppinen A: Free will: reconciling German civil law with Libet\u2019s neuropsychological studies on the readiness potential.Behav Sci Law 2007, 25(2):309\u2013320. doi:10.1002/bsl.752.Kawohl W, Habermeyer E: Understanding perspectives and emotions in contract violation: development of deontic and moral reasoning.Child Dev 2004, 75(2):614\u2013635. doi:10.1111/j.1467-8624.2004.00696.x.Keller M, Gummerum M, Wang XT, Lindsey S: Moral judgment and moral neuroscience: intersections, definitions, and issues.Child Dev Perspect 2008, 2(1):1\u20136. doi:10.1111/j.1750-8606.2008.00033.x.Killen M, Smetana J: The accidental transgressor: morally-relevant theory of mind.Cognition 2011, 119(2):197\u2013215. doi:10.1016/j.cognition.2011.01.006.Killen M et al.: The biology of morality: human development and moral neuroscience.Human Development 2007, 50(5):241\u2013243. doi:10.1159/000106413.Killen M, Smetana J: At the margins of moral personhood.Ethics 2005, 116(1):100\u2013131. doi:10.1086/454366.Kittay EF: Subjective experience and neuroscience.Fortschr Neurol Psychiatr 2006, 74(11):619\u2013620. doi:10.1055/s-2006-944286.Klosterk\u00f6tter J: Neuroscience, moral reasoning, and the law.Behav Sci Law 2009, 27(2):219\u2013236. doi:10.1002/bsl.854.Knabb JJ, Welsh RK, Ziebell JG, Reimer KS: Theory of mind and moral cognition: exploring the connections.Trends Cogn Sci 2005, 9(8):357\u2013359. doi:10.1016/j.tics.2005.06.011.Knobe J: Damage to the prefrontal cortex increases utilitarian moral judgments.Nature 2007, 446(7138):908\u2013911. doi:10.1038/nature05631.Koenigs M et al.: The neuropsychology of disgust.Soc Cogn Affect Neurosci 2013, 8(2):121\u2013122. doi:10.1093/scan/nss134.Koenigs M: The human amygdala is necessary for developing and expressing normal interpersonal trust.Neuropsychologia 2011, 49(4):602\u2013611. doi:10.1016/j.neuropsychologia.2010.09.023.Koscik TR, Tranel D: Oxytocin increases trust in human.Nature 2005, 435(7042):673\u2013676. doi:10.1038/nature03701.Kosfeld M et al.: Decoding moral judgments from neural represents of intentions. Proc Natl Acad Sci USA 2013, 110(14):5648\u20135653. doi:10.1073/pnas.1207992110.Koster-Hale J, Saxe R, Dungan J, Young LL: Contributions of the prefrontal cortex to the neural basis of human decision making.Neurosci Biobehav Rev 2002, 26(6):631\u2013664. doi:10.1016/S0149-7634(02)00021-0.Krawczyk DC: Explanatory limitations of cognitive-developmental approaches to morality.Psychol Rev 2006, 113(3):672\u2013675. doi:10.1037/0033-295x.113.3.672.Krebs DL, Denton K:The effect of analytic and experiential modes of thought on moral judgment.Prog Brain Res 2013, 202:187\u2013196. doi:10.1016/B978-0-444-62604-2.00011-3.Kvaran T, Nichols S, Sanfey A: Toward an integrated neuroscience of morality: the contribution of neuroeconomics to moral cognition.Top Cog Sci 2010, 2(3):579\u2013595.doi:10.1111/j.1756-8765.2010.01086.x.Kvaran T, Sanfey AG: An event-related potential study of adolescents\u2019 and young adults\u2019 judgments of moral and social conventional violations.Child Dev 2013, 84(3):955\u2013969. doi:10.1111/cdev.12001.Lahat A, Helwig CC, Zelazo PD: Science, human nature, and a new paradigm for ethics education.Sci Eng Ethics 2012, 18(3):543\u2013549. doi:10.1007/s11948-012-9373-8.Lampe M: Theory of mind and emotion understanding predict moral development in early childhood.Br J Dev Psychol 2010, 28(4):871\u2013889. doi:10.1348/026151009x483056.Lane JD, Wellman HM, Olson SL, LaBounty J, Kerr DC: Cognitive neuroscience and moral decision-making: guide or set aside? Neuroethics 2011, 4(2):163\u2013174. doi:10.1007/s12152-010-9087-z.Leben D: Self-determined, but not non-self-determined, motivation predicts activations in the anterior insular cortex: an fMRI study of personal agency.Soc Cogn Affect Neurosci 2013, 8(5):538\u2013545. doi:10.1093/scan/nss029.Lee W, Reeve J: Self-determination, self-regulation, and the brain: autonomy improves performance by enhancing neuroaffective responsiveness to self-regulation failure.J Pers Soc Psychol 2013, 105(1):123\u2013138. doi:10.1037/a0030426.Legault L, Inzlicht M: Enhancing the capacity for moral agency.AJOB Neurosci 2012, 3(4):20\u201322. doi:10.1080/21507740.2012.721462.Lev O: Neural holism and free will.Philos Psychol 2003, 16(2):205\u2013228. doi:10.1080/09515080307765.Levy DA: Cognitive scientific challenges to morality.Philos Psychol 2006, 19(5):567\u2013587. doi:10.1080/09515080600901863.Levy N: Empirically informed moral theory: a sketch of the landscape.Ethical Theory Moral Pract 2009, 12(1):3\u20138. doi:10.1007/s10677-008-9146-2.Levy N: Rethinking neuroethics in the light of the extended mind thesis.Am J Bioeth 2007, 7(9):3\u201311. doi:10.1080/15265160701518466.Levy N: Moral values are associated with individual differences in regional brain volume.J Cogn Neurosci 2012, 24(8):1657\u20131663. doi:10.1162/jocn_a_00239.Lewis GJ, Kanai R, Bates TC, Rees G: The influence of the diffusion of responsibility effect on outcome evaluations: electrophysiological evidence from an ERP study.Neuroimage 2010, 52(4):1727\u20131733. doi:10.1016/j.neuroimage.2010.04.275.Li P, Jia S, Feng T, Liu Q, Suo T, Li H: \u201cI\u201d and the brain.Psychol Res 2012, 76(2):220\u2013228. doi:10.1007/s00426-011-0382-z.Longuenesse B: The moral brain.Brain and Mind 2002, 3(1):133\u2013150. doi:10.1023/A:1016561925565.Loye D: Ethical intelligence from neuroscience: is it possible? AJOB 2007, 7(5):18\u201320. doi:10.1080/15265160701290280.Lunstroth J, Goldman J: No strangers: medicine, neuroscience, and philosophy.Am J Bioeth 2008, 8(1):59\u201361. doi:10.1080/15265160701839680.Lunstroth J: The neural basis of implicit moral attitude\u2014an IAT study using event-related MRI. Neuroimage 2006, 30(4):1449\u20131457. doi:10.1016/j.neuroimage.2005.11.005.Luo Q et al.: The human factor: behavioral and neural correlates of humanized perception in moral decision making.PLoS One 2012, 7(10):e47698. doi:10.1371/journal.pone.0047698.Majdand\u017ei\u0107 J et al.: Moral emotions and moral cognitions.Int J Dev Sci 2008, 2(3):203\u2013205. doi:10.3233/DEV-2008-2301.Malti T, Gummerum M, Keller M: Dilemmi e scelte morali, oltre Greene?BrainFactor 2013, 5(3):005.Margoni F: Emozioni diverse per giudizi morali diversi?BrainFactor 2013, 5(4):010.Margoni F: Fattori irrilevanti e giudizio morale.BrainFactor 2013, 5(2):006.Margoni F: Nevroetika: vprasanje moralne odgovornosti.Casopis za Kritiko Znanosti 2011, 39(246):15\u201325, 223, 229.Markic O: The pleasures of revenge.Journal of Mind and Behavior 2010, 31(3\u20134):195\u2013235.McClelland RT: The spirituality of human consciousness: a Catholic evaluation of some current neuro-scientific interpretations.Sci Eng Ethics 2012, 18(3):483\u2013501. doi:10.1007/s11948-012-9387-2.McGoldrick TA: A reanalysis of the personal/impersonal distinction in moral psychology research.J Exp Soc Psychol 2009, 45(3):581\u2013584.McGuire J, Langdon R, Coltheart M, Mackenzie C: Voles, vasopressin, and infidelity: a molecular basis for monogamy, a platform for ethics, and more?Biol Philos 2012, 27(4):521\u2013543. doi:10.1007/s10539-011-9303-1.McKaughan DJ: Neurobiology of wisdom: a literature overview.Arch Gen Psychiatry 2009, 66(4):355\u2013365. doi:10.1001/archgenpsychiatry.2009.8.Meeks TW, Jeste DV: Free will and neuroscience.Philos Exch 2013, 43(1):3. http://digitalcommons.brockport.edu/phil_ex/vol43/iss1/3.Mele A: Unconscious decisions and free will.Philos Psychol 2013, 26(6):777\u2013789. doi:10.1080/09515089.2012.724395.Mele A: Moralizing biology: the appeal and limits of the new compassionate view of nature.Hist Human Sci 2013, 26(3):82\u2013106. doi:10.1177/0952695113492163.Meloni M: Diagnostic value underlies asymmetric updating impressions in the morality and ability domains.J Neurosci 2013, 33(50):19406\u201319415. doi:10.1523/jneurosci.2334-13.2013.Mende-Siedlecki P, Baron SG, Todorov A: The neurobiology of moral behavior: review and neuropsychiatric implications.CNS Spectr 2009, 14(11):608\u2013620.Mendez MF: Violence and compassion: a bioethical insight into their cognitive bases and social manifestations.Int Soc Sci J 2010, 61(200\u2013201):221\u2013232. doi:10.1111/j.1468-2451.2011.01759.x.Mercadillo RE, Arias NA: Neurobiolog\u00eda de las emociones morales.Salud Ment (Mex) 2007, 30(3):1\u201311.Mercadillo RE, Diaz JL, Barrios FA: Universal moral grammar: theory, evidence, and the future.Trends Cogn Sci 2007, 11(4):143\u2013152. doi:10.1016/j.tics.2006.12.007.Mikhail J: Emotion, neuroscience, and law: A comment on Darwin and Greene.Emot Rev 2011, 3(3):293\u2013295.doi:10.1177/1754073911406150.Mikhail J: The roots of morality.Science 2008, 320(5877):734\u2013737. doi:10.1126/science.320.5877.734.Miller G: Role of orbitofrontal cortex in moral judgment.Rinsho Shinkeigaku 2010, 50(11):1007\u20131009. doi:10.5692/clinicalneurol.50.1007.Mimura M: Endogenous inhibition and the neural basis of \u201cfree won\u2019t.\u201d J Neurosci 2007, 27(51):13919\u201313920. doi:10.1523/jneurosci.4943-07.2007.Mirabella G: Neurophilosophical considerations on decision making: pushing-up the frontiers without disregarding their foundations. Front Neurosci 2013, 7: 261. doi:10.3389/fnins.2013.00261.Mograbi GJC: Social attachment and aversion in human moral cognition.Neurosci Biobehav Rev 2009, 33(3):456\u2013465. doi:10.1016/j.neubiorev.2008.12.001.Moll J, Schulkin J: The neural basis of moral cognition: sentiments, concepts, and values.Ann N Y Acad Sci 2008, 1124:161\u2013180. doi:10.1196/annals.1440.005.Moll J, De Oliveira-Souza R, Zahn R: The moral affiliations of disgust: a functional MRI study.Cogn Behav Neurol 2005, 18(1):68\u201378. doi:10.1097/01.wnn.0000152236.46475.a7.Moll J et al.: Moral judgments, emotions and the utilitarian brain.Trends Cogn Sci 2007, 11(8):319\u2013321. doi:10.1016/j.tics.2007.06.001.Moll J, de Oliveira-Souza R: Morals and the human brain: a working model.Neuroreport 2003, 14(3):299\u2013305. doi:10.1097/00001756-200303030-00001.Moll J, de Oliveira-Souza R, Eslinger PJ: Social attachment and aversion in human moral cognition.Neurosci Biobehav Rev 2009, 33(3):456\u2013465. doi:10.1016/j.neubiorev.2008.12.001.Moll J, Schulkin J. When morality is hard to like.Sci Am Mind 2008, 19(1):30\u201335. doi:10.1038/scientificamericanmind0208-30.Moll J, De Oliveira-Souza R: Functional networks in emotional moral and nonmoral social judgments.Neuroimage 2002, 16(3):696\u2013703. doi:10.1006/nimg.2002.1118.Moll J, de Oliveira-Souza R, Bramati IE, Grafman J: The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions.J Neurosci 2002, 22(7):2730\u20132736. doi:10.1001/archpsyc.64.2.179.Moll J et al.: Opinion: the neural basis of human moral cognition.Nat Rev Neurosci 2005, 6(10):799\u2013809. doi:10.1038/nrn1768.Moll J et al.: The self as a moral agent: link-ling the neural bases of social agency and moral sensitivity.Soc Neurosci 2007, 2(3\u20134):336\u2013352. doi:10.1080/17470910701392024.Moll J et al.: Impaired theory of mind for moral judgment in high-functioning autism.Proc Natl Acad Sci USA 2011, 108(7):2688\u20132692. doi:10.1073/pnas.1011734108.Moran JM et al.: The autonomy of biological individuals and artificial models.Biosystems 2008, 91(2):309\u2013319. doi:10.1016/j.biosystems.2007.05.009.Moreno A, Etxeberria A, Umerez J: Society and the reception of imaging technology: the American experience. Cortex 2011, 47(10):1256\u20131258. doi:10.1016/j.cortex.2011.04.024.Moreno J: A psychophysiological investigation of moral judgment after ventromedial prefrontal damage.J Cogn Neurosci 2010, 22(8):1888\u20131899. doi:10.1162/jocn.2009.21367.Moretto G, L\u00e0davas E, Mattioli F, di Pellegrino G: Neuroscience and the free will conundrum.Am J Bioeth 2007, 7(5):20\u201322. doi:10.1080/15265160701290298.Morris SG: Toward a biological framework for morality.NeuroQuantology 2005, 3(4). doi:10.14704/nq.2005.3.4.78.Morrison NK, Severino SK: Libertad, responsabilidad moral y neurociencia.Pasajes: Revista de Pensamiento Contemporaneo 2012, 37:109\u2013118.Moya CJ: vidence for a close relationship between conscious effort and anterior cingulate cortex activity.Int J Psychophysiol 2005, 56(1):65\u201380. doi:10.1016/j.ijpsycho.2004.10.002.Mulert C et al.: EReview autonomy: Implications of the neurosciences and the free will debate for the principle of respect for the patient\u2019s autonomy.Camb Q Healthc Ethics 2010, 19(2):205\u2013217. doi:10.1017/s0963180109990478.M\u00fcller S, Walter H: Assessing the automaticity of moral processing: efficient coding of moral information during narrative comprehension.QJ Exp Psychol (Hove) 2009, 62(1):41\u201349. doi:10.1080/17470210802254441.Murphy FC et al.: Whatever happened to the soul? Theological perspectives on neuroscience and the self.Ann NY Acad Sci 2003, 1001:51\u201364. doi:10.1196/annals.1279.004.Murphy N: Socio-cognitive conflict, emotions, and complexity of thought in real-life morality.Scand J Psychol 2007, 48(3):247\u2013259. doi:10.1111/j.1467-9450.2007.00579.x.Myyry L, Helkama K: The neural processes underlying self-agency.Cereb Cortex 2011, 21(1):48\u201355. doi:10.1093/cercor/bhq059.Nahab FB et al.: Neuroscience of ethics: the state of art and the promises for the future.Ethic@Revista Internacional de Filosofia da Moral 2011, 10(1):109\u2013132. doi:10.5007/1677-2954.2011v10n1p109.Nahra C: An integrated view of empathy: psychology, philosophy, and neuroscience.Integr Psychol Behav Sci 2009, 43(1):42\u201352. doi:10.1007/s12124-008-9066-7.Nakao H, Itakura S: Distinction between externally vs. internally guided decision-making: operational differences, meta-analytical comparisons and their theoretical implications.Front Neurosci 2012, 6:31. doi:10.3389/fnins.2012.00031.Nakao T, Ohira H, Northoff G: Triune ethics: the neurobiological roots of our multiple moralities.New Ideas Psychol 2008, 26(1):95\u2013119.Narvaez D: Moral development and behaviour under the spotlight of the neurobiological sciences.J Moral Educ 2008, 37(3):289\u2013312. doi:10.1080/03057240802227478.Narvaez D, Vaydich JL: Submissive mind exploration of ethical questions.Rev Med Suisse 2008, 4(152):935.Nau JY:Amygdala involvement in self-blame regret.Soc Neurosci 2011, 6(2):178\u2013189. doi:10.1080/17470919.2010.506128.Nicolle A, Bach DR, Frith C, Dolan RJ: Neuroscience of decision making and informed consent: an investigation in neuroethics.J Med Ethics 2006, 32(2):70\u201373. doi:10.1136/jme.2005.011858.Northoff G: Subjective experience and neuronal integration in the brain: do we need a first-person neuroscience?Fortschr Neurol Psychiatr 2006, 74(11):627\u2013634. doi:10.1055/s-2005-915610.Northoff G, Boeker H, Bogerts B: Contemplation of moral dilemmas eliminates sex differences on the Iowa gambling task.Behav Neurosci 2006, 120(4):817\u2013825. doi:10.1037/0735-7044.120.4.817.Overman W et al.: Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust.J Cogn Neurosci 2011, 23(10):3162\u20133180. doi:10.1162/jocn_a_00017.Parkinson C et al.: How does morality work in the brain? A functional and structural perspective of moral behavior.Front Integr Neurosci 2013, 7:65. doi:10.3389/fnint.2013.00065.Pascual L, Rodrigues P, Gallardo-Pujol D: Seria a moralidade determinada pelo cerebro? Neuronios-espelhos, empatia e neuromoralidade. .Physis 2011, 21(2):471\u2013490.Passos-Ferreira C: To push or not to push? Affective influences on moral judgment depend on decision frame.Cognition 2013, 126(3):373\u2013377. doi:10.1016/j.cognition.2012.11.003.Past\u00f6tter B, Gleixner S, Neuhauser T, B\u00e4uml KH: Reasoning, cognitive control, and moral intuition.Front Integr Neurosci 2012, 6:114. doi:10.3389/fnint.2012.00114.Patterson R, Rothstein J, Barbey AK: : Mechanisms underlying an ability to behave ethically.Am J Bioeth 2008, 8(5):10\u201319. doi:10.1080/15265160802179994.Pfaff DW, Kavaliers M, Choleris EThe neuroscience of a person network.Am J Bioeth 2007, 7(1):49\u201350. doi:10.1080/15265160601064223.Phelps EA: The concept of free will: philosophy, neuroscience and the law.Behav Sci Law 2007, 25(2):281\u2013293. doi:10.1002/bsl.743.Pockett S: : The biomedical enhancement of moral status.J Med Ethics 2013, 39(2):65\u201366. doi:10.1136/medethics-2012-101312.Powell RIndividual differences in moral judgment competence influence neural correlates of socio-normative judgments. Soc Cogn Affect Neurosci 2008, 3(1):33\u201346. doi:10.1093/scan/nsm037.Prehn K et al.: Neuroscience and the soul: competing explanations for the human experience.Cognition 2013, 127(1):31\u201337. doi:10.1016/j.cognition.2012.12.003.Preston JL, Ritter RS, Hepler J: Free will versus survival: brain systems that underlie intrinsic constraints on behavior.J Comp Neurol 2005, 493(1):132\u2013139. doi:10.1002/cne.20750.Price JL: The emotional basis of moral judgments.Philos Explor 2006, 9(1):29\u201343. doi:10.1080/13869790500492466.Prinz J: The origins of religion: evolved adaptation or by-product?Trends Cogn Sci 2010, 14(3):104\u2013109. doi:10.1016/j.tics.2009.12.007.Pyysi\u00e4inen I, Hauser M: The ethical mind: an outline.Synth Philos 2006, 21(2):385\u2013394.Radman Z: Neural foundations to moral reasoning and antisocial behavior.Soc Cogn Affect Neurosci 2006, 1(3):2-3-213. doi:10.1093/scan/nsl03.3.Raine A, Yang Y: Mentality or morality? Membership categorization, multiple meanings and mass murder.Br J Soc Psychol 2003, 42(3):427\u2013444. doi:10.1348/014466603322438242.Rapley M, McCarthy D, McHoul A: Neuroethics as a brain-based philosophy of life: the case of Michael S. Gazzaniga.Neuroethics 2009, 2(1):3\u201311. doi:10.1007/s12152-008-9024-6.Rasmusson A: Spinoza\u2019s anticipation of contemporary affective neuroscience.Consciousness & Emotion 2003, 4(2):257\u2013290.Ravven HM: The challenges of neuroethics.Funct Neurol 2007, 22(4):219\u2013234.Reichlin M: \u201cLa responsabilidad del sujeto\u201d.Desde el Jardin de Freud 2005, 5:144\u2013155.Rengifo FJ: Moral decision-making, ToM, empathy and the default mode network.Biol Psychol 2012, 90(3):202\u2013210. doi:10.1016/j.biopsycho.2012.03.009.Reniers RL et al.: A neurocognitive model of the ethical decision-making process: implications for study and practice.J Appl Psychol 2006, 91(4):737\u2013748. doi:10.1037/0021-9010.91.4.737.Reynolds SJ: A neural basis for social cooperation.Neuron 2002, 35(2):395\u2013405. doi:10.1016/S0896-6273(02)00755-9.Rilling JK et al.: The neural processing of moral sensitivity to issues of justice and care.Neuropsychologia 2007, 45(4):755\u2013766. doi:10.1016/j.neuropsychologia.2006.08.014.Robertson D et al.: Big brains and Boskops: phrenology lives!Theory Psychol 2013, 23(3):391\u2013396. doi:10.1177/0959354312471741.Robinson DN: Where should we look for mental representations? On the need for epistemic ethics.Account Res 2013, 20(1):42\u201356. doi:10.1080/08989621.2013.749746.Rockwell T: Ascriptional and \u2018genuine\u2019 autonomy.Biosystems 2008, 91(2):424\u2013433. doi:10.1016/j.biosystems.2007.05.017.Rohde M, Stewart J: Screen and intervene: governing risky brains.Hist Human Sci 2010, 23(1):79\u2013105. doi:10.1177/0952695109352415.Rose N: Neuroscientific challenges to free will and responsibility.Trends Cogn Sci 2006, 10(9):419\u2013423. doi:10.1016/j.tics.2006.07.011.Roskies AL: How does the neuroscience of decision making bear on our understanding of moral responsibility and free will?Curr Opin Neurobiol 2012, 22(6):1022\u20131026. doi:10.1016/j.conb.2012.05.009.Roskies AL: Response to Sie and Wouters: a neuroscientific challenge to free will and responsibility?Trends Cogn Sci 2008, 12(1):4. doi:10.1016/j.tics.2007.10.003.Roskies, AL: A puzzle about empathy.Emot Rev 2011, 3(3):278\u2013280. doi:10.1177/1754073911402395.Roskies AL: Are ethical judgments intrinsically motivational? Lessons from \u201cacquired sociopathy\u201d.Philos Psychol 2003, 16(1):51\u201366. doi:10.1080/0951508032000067743.Roskies A: The ghost of the free will.An R Acad Nac Med (Madr) 2009, 126(3):377\u2013387.Rubia-Vila FJ. Ethics and intuitions: a reply to Singer.J Ethics 2011, 15(3):209\u2013226. doi:10.1007/s10892-010-9088-5.Sandberg J, Juth N: Temporal dynamics of cognitive-emotional interplay in moral decision-making.J Cogn Neurosci 2012, 24(4):1018\u20131029. doi:10.1162/jocn_a_00146.Sarlo M et al.: What is the goal of moral engineering? AJOB Neurosci 2011, 2(4):10\u201311.doi:10.1080/21507740.2011.620593.Schaefer GO: Philosophical implications and multidisciplinary challenges of moral physiology.TRAMES-J Humanit Soc 2011, 15(2):127\u2013146. doi:10.3176/tr.2011.2.02.Schleim S, Schirmann F: Moral physiology, its limitations and philosophical implications.Jahr Wiss Ethik 2008, 13:51\u201380.Schleim S: Invoking the brain in studying morality: a theoretical and historical perspective on the neuroscience of morality.Theory Psychol 2013, 23(3):289\u2013304. doi:10.1177/0959354313478479.Schirmann F: Willensfreiheit und Verantwortung zwischen Philosophie und Hirnforschung [Free will and responsibility between philosophy and brain research].Ethica 2012, 20(3):237\u2013253.Schoenherr-Mann HM: Neuroscience, moral sentimentalism, and Confucian philosophy: moral psychology of the body and emotion.APA Newsl: Asian Phil 2013, 13(1):2\u20139.Seok B: Free will according to John Duns Scotus and neuroscience.Zygon 2012, 47(1):156\u2013174. doi:10.1111/j.1467-9744.2011.01244.x.Severino SK: The neurobiology of decision-making and responsibility: reconciling mechanism and mindedness.Front Neurosci 2012, 6:56. doi:10.3389/fnins.2012.00056.Shadlen MN, Roskies AL: Honesty requires time (and lack of justifications).Psychol Sci 2012, 23(10):1264\u20131270. doi:10.1177/0956797612443835.Shalvi S, Eldar O, Bereby-Meyer Y: Moral judgments recruit domain-general valuations mechanisms to integrate representations of probability and magnitude.Neuron 2010, 67(4):667\u2013677. doi:10.1016/j.neuron.2010.07.020.Shenhav A, Greene JD: The science of right and wrong. Can data determine moral values?Sci Am 2011, 304(1):83.Shermer M: The social brain network and human moral behavior.Zygon 2012, 47(4):806\u2013820. doi:10.1111/j.1467-9744.2012.01295.x.Shoemaker WJ: The BCN challenge to compatibilist free will and personal responsibility.Neuroethics 2010, 3(2):121\u2013133. doi:10.1007/s12152-009-9054-8.Sie M, Wouters A: The real challenge to free will and responsibility.Trends Cogn Sci 2008, 12(1):3\u20134. doi:10.1016.j.tics.2007.10.005.Sie M, Wouters A: Moral agency, conscious control, and deliberative awareness.Inquiry52(5):516\u2013531. doi:10.1080/00201740903302642Sie M: Neural systems involved in \u201ctheory of mind.\u201dNat Rev Neurosci 2002, 3(6):463\u2013471. doi:10.1038/nrn844.Siegal M, Varley R: Ethics and intuitions.J Ethics 2005, 9(3\u20134):331\u2013352. doi:10.1007/s10892-005-3508-y.Singer P: Empathic neural responses are modulated by the perceived fairness of others.Nature 2006, 439(7075):466\u2013469. doi:10.1038/nature04271.Singer T et al.: Brain responses to the acquired moral status of faces.Neuron 2004, 41(4):653\u2013662. doi:10.1016/s0896-6273(04)00014-5.Singer T et al.: The neuronal basis of empathy and fairness.Novartis Found Symp 2007, 278:20\u201330.Singer T: Does morality have an essence?Psychol Inq 2012, 23(2):194\u2013197. doi:10.1080/1047840x.2012.666653.Sinnott-Armstrong W: The disunity of morality and why it matters to philosophy.The Monist 2012, 95(3):355\u2013377. doi:10.5840/monist201295319.Sinnott-Armstrong W, Wheatley T: The contribution of neuroscience to the understanding of moral behavior.Rev Med Chil 2009, 137(3):419\u2013425. doi:/S0034-98872009000300015.Slachevsky A, Silva JR, Prenafeta ML, Novoa F: \u201cOf what use are the odes?\u201d cognitive science, virtue ethics, and early Confucian ethics.Philos East West 2011, 61(1):80\u2013109.Slingerland E: Moral cognition, emotions, and neuroscience: An integrative developmental view.International Journal of Developmental Science 2008, 2(3):324\u2013339. doi:10.3233/DEV-2008-2309.Smetana JG, Killen M: Neuroscience vs. philosophy: taking aim at free will.Nature 2011, 477(7362):23\u201325. doi:10.1038/477023a.Smith K: Conceptualizing the \u201cself\u201d in neuroethics: an appeal to philosophy of mind.AJOB Neurosci 2010, 1(3):16\u201317. doi:10.1080/21507740.2010.485271.Smith MJ: From mechanical to autonomous agency: the relationship between children\u2019s moral judgments and their developing theories of mind.New Dir Child Adolesc Dev 2004, 103:19\u201336. doi:10.1002/cd.95.Sokol BW, Chandler MJ, Jones C: How should I decide? the neural correlates of everyday moral reasoning.Neuropsychologia 2010, 48(7):2018\u20132026. doi:10.1016/j.neuropsychologia.2010.03.023.Sommer M et al.: The morality of harm.Cognition 2009, 113(1):80\u201392. doi:10.1016/j.cognition.2009.06.015.Sousa P, Holbrook C, Piazza J: The neuroscience of emotion and reasoning in social contexts: implications for moral theology.Mod Theol 2011, 27(2):339\u2013356. doi:10.1111/j.1468-0025.2010.01680.x.Spezio M: Can innate, modular \u201cfoundations\u201d explain morality? challenges for Haidt's moral foundations theory.J Cogn Neurosci 2011, 23(9):2103\u20132116. doi:10.1162/jocn.2011.21637.Suhler CL, Churchland P: A natural science approach to the study of morality: recent developments in the study of morality through the cooperation between cognitive neuroscience and evolutionary biology.Studies in Moralogy: The Forum for Ethical and Moral Studies, 2013, 71:39\u201349.Tachiki N: Neural grafting: implications for personal identity and personality.TRAMES-J Humanit Soc, 2011, 15(2):168\u2013178. doi:10.3176/tr.2011.2.05.T.Takala T, Buller T: Neurobiology: feeling right about doing right.Nature 2007, 446(7138):865\u2013866. doi:10.1038/446865a.Talmi D, Frith C: The neuroscience of \u201cfree will\u201d.Behav Sci Law 2007, 25(2):295\u2013308. doi:10.1002/bsl.749.Tancredi LR: Psychopathology, neuroscience, and moral theory.Philos Psychiatr Psychol 2011, 18(4):349\u2013357. doi:10.1353/ppp.2011.0044.Tankersley D: Neuromorality.Philos Psychiatr Psychol 2011, 18(4):367\u2013369. doi:10.1353/ppp.2011.0053.Tankersley D: On the necessity to distinguishing judgment from subjective choice in the cognitive neuroscience of morality].Med Sci (Paris) 2011, 27(10):889\u2013894. doi:10.1051/medsci/20112710018.Tassy S: Current knowledge in moral cognition can improve medical ethics.J Med Ethics 2008, 34(9):679\u2013682. doi:10.1136/jme.2006.018812.Tassy S, Le Coz P, Wicker B: Responsibility rewarded: ethics, engagement, and scientific autonomy in the labyrinth of the minotaur.Neuron 2011, 70(4):577\u2013581. doi:10.1016/j.neuron.2011.05.009.Taylor PL: The reliability of moral intuitions: a challenge from neuroscience.Australas J Philos 2008, 86(3):389\u2013405. doi:10.1080/00048400802002010.Tersman F: The moral psychology of conflicts of interest: insights from affective neuroscience.J Appl Philos 2007, 24(4):367\u2013380. doi:10.1111/j.1468-5930.2007.00382.x.Thagard P: Harming kin to save strangers: further evidence for abnormally utilitarian moral judgments after ventromedial prefrontal damage.J Cogn Neurosci 2011, 23(9):2186\u20132196. doi:10.1162/jocn.2010.21591.Thomas BC, Croft KE, Tranel D: Mortality salience and morality: thinking about death makes people less utilitarian.Cognition 2012, 124(3):379\u2013384. doi:10.1016/j.cognition.2012.05.011.Tr\u00e9moli\u00e8re B, Neys WD, Bonnefon JF: Compassion, ethics and neuroscience: neuroethics through Buddhist eyes.Sci Eng Ethics 2012, 18(3):529\u2013537. doi:10.1007/s11948-012-9369-4.Tsomo KL: Shared brain activity for aesthetic and moral judgments: implications for the Beauty-is-Good stereotype.Soc Cogn Affect Neurosci 2011, 6(1):138\u2013148. doi:10.1093/scan/nsq025.Tsukiura T, Cabeza R: Reinventing morality: evolutionary biology and neuroscience are adding to our understanding of a historically unscientific area.Futurist 2009, 43(1):20.Tucker P: Right or wrong? The brain\u2019s fast response to morally objectionable statements.Psychol Sci 2009, 20(9):1092\u20131099. doi:10.1111/j.1467-9280.2009.02411.x.Van Berkum JJ et al.: From morality to moral emotions.Int J Psychol 2006, 41(5):348\u2013354. doi:10.1080/00207590500345898.Velez Garcia AE, Ostrosky-Solis F: Autonomy, decisions, and free will.Cogn Process 2011, 12(3):311\u2013313. doi:10.1007/s10339-011-0409-9.von Lautz A, Maier S: Executive functions in morality, religion, and paranormal beliefs.Int J Neurosci 2007, 117(1):135\u2013146. doi:10.1080/00207450500534068.Wain O, Spinella M: \u201cIs\u201d and \u201cought\u201d: moral judgments about the world as understood.New Dir Child Adolesc Dev 2004, 103:3\u201318. doi:10.1002/cd.94.Wainryb C: Beyond button presses: the neuroscience of free and morally appraisable actions.Monist 2012, 95(3):441\u2013462. doi:10.5840/monist201295323.Waller RR: Emotional dysfunction, psychopathy, and cognitive neuroscience. What is new and what are the consequences.Nervenarzt 2005, 76(5):557\u2013568.Walter H: Moral intuition: its neural substrates and normative significance.J Physiol Paris 2007, 101(4\u20136):179\u2013202. doi:10.1016/j.jphysparis.2007.12.003.Woodward J, Allman J: Brain activity in fairness consideration during asset distribution: does the initial ownership play a role?PLoS One 2012, 7(6):e39627. doi:10.1371/journal.pone.0039627.Wu Y et al.: Personal and impersonal stimuli differentially engage brain networks during moral reasoning.Brain Cogn 2013, 81(1):24\u201328. doi:10.1016/j.bandc.2012.09.004.Xue SW, Wang Y, Tang YY: Investigating emotion in moral cognition: a review of evidence from functional neuroimaging and neuropsychology.Br Med Bull 2007, 84:69\u201379. doi:10.1093/bmb/ldm031.Young L, Koenigs M: Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments.Proc Natl Acad Sci USA 2010, 107(15):6753\u20136758. doi:10.1073/pnas.0914826107.Young L et al.: The neural basis of the interaction between theory of mind and moral judgment.Proc Natl Acad Sci USA 2007, 104(20):8235\u20138240. doi:10.1073/pnas.0701408104.Young L, Cushman F, Hauser M, Saxe R: Where in the brain is morality? Everywhere and maybe nowhere.Soc Neurosci 2012, 7(1):1\u201310. doi:10.1080/17470919.2011.569146.Young L, Dungan J: An fMRI investigation of spontaneous mental state inference for moral judgment.J Cogn Neurosci 2009, 21(7):1396\u20131405. doi:10.1162/jocn.2009.21137.Young L, Saxe R: It\u2019s not just what you do, but what\u2019s on your mind: a review of Kwame Anthony Appiah\u2019s \u201cExperiments in Ethics\u201d.Neuroethics 2010, 3(3): 201\u2013207. doi:10.1007/s12152-010-9066-4.Young L, Saxe R: The neural basis of belief encoding and integration in moral judgment.Neuroimage 2008, 40(4):1912\u20131920. doi:10.1016/j.neuroimage.2008.01.057.Young L, Saxe R: Stress alters personal moral decision making.Psychoneuroendocrinology 2012, 37(4):491\u2013498. doi:10.1016/j.psyneuen.2011.07.017.Youssef FF et al.: Brain intersections of aesthetics and morals: perspectives from biology, neuroscience, and evolution.Perspect Bio Med 2011, 54(3):367\u2013380. doi:10.1353/pbm.2011.0032.Zaidel DW, Nadal M: The neurobiology of trust.Ann NY Acad Sci 2004, 1032:224\u2013227. doi:10.1196/annals.1314.025.Zak PJ, Kurzban R, Matzner WT: Oxytocin is associated with human trustworthiness.Horm Behav 2005, 48(5):522\u2013527. doi:10.1016/j.yhbeh.2005.07.009.Zak PJ, Kurzban R, Matzner WT: Neuroactive hormones and interpersonal trust: international evidence.Econ Hum Biol 2006, 4(3):412\u2013429. doi:10.1016/j.ehb.2006.06.004.Zak PJ, Fakhar A: The neurobiology of trust.Sci Am 2008, 298(6):88\u201395. doi:10.1038/scientificamerican0608-88.Zak PJ: The neurobiology of collective action.Front Neurosci 2013, 7:211. doi:10.3389/fnins.2013.00211.Zak PJ, Barraza JA: Neuroethics and the complexity of moral psychology.AJOB Neurosci 2011, 2(2):12\u201313. doi:10.1080/21507740.2011.559920.Zarpentine, C: Moral judgment under perspective of neuroethics.Zi ran bian zheng fa tong xun\u2009=\u2009Journal of Dialectics of Nature 2008, 3:15.Zhang L: The following reference citations provide a listing of 397 articles, 65 books, and 52 book chapters that afford (1) empirical/experimental studies, overviews, and reviews of neural substrates and mechanisms involved in morality and ethics, and/or (2) reflections upon such studies and their implications.La Neuro\u00e9thique: Ce que les Neurosciences font \u00e0 Nos Conceptions Morales. Paris: D\u00e9couverte; 2009.Baertschi B: Understanding Other Minds: Perspectives from Developmental Social Neuroscience. Oxford, U.K.: Oxford University Press; 2013.Baron-Cohen S, Lombardo M, Tager-Flusberg H: (Eds): : The Oxford Handbook of Philosophy of Neuroscience. New York: Oxford University Press; 2009.Bickle J: (Ed)Philosophy and Neuroscience: A Ruthlessly Reductive Account. Amsterdam: Kluwer; 2003.Bickle J: Neuroetica: La Morale Prima della Morale. Milano: Raffaello Cortina; 2008.Boella L: Advances in Neuroscience: Social, Moral, Philosophical, Theological Implications: Proceedings of the ITEST Workshop, September, 2002. St. Louis, Mo.: ITEST Faith/Science Press; 2003.Brugs R, Issa AM, Postiglione M: A Skeptic's Guide to the Mind: What Neuroscience Can and Cannot Tell Us about Ourselves. New York: St. Martin's Press; 2013.Burton RA: Foundations in Social Neuroscience. Cambridge, Mass.: MIT Press; 2002.Cacioppo JT et al.: (Eds): Free Will and Responsibility: A Guide for Practitioners. Oxford, U.K.: Oxford University Press; 2010.Callender JS: Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition. Cambridge, Mass.: MIT Press; 2003.Casebeer WD: Neurobiology of Human Values. Berlin: Springer; 2005.Changeux JP: (Ed): Neurophilosophy at Work. Cambridge: Cambridge University Press; 2007.Churchland PM: Braintrust: What Neuroscience Tells Us about Morality. Princeton: Princeton University Press; 2011.Churchland PS: : Brain-Wise: Studies in Neurophilosophy. Cambridge, Mass.: MIT Press; 2002.Churchland PSDie 'Natur des Menschen' in Neurowissenschaft und Neuroethik. W\u00fcrzburg, Germany: K\u00f6nigshausen & Neumann; 2007.Clausen J, Maier G, M\u00fcller O: Evolution and Ethics: Human Morality in Biological and Religious Perspective. Grand Rapids, Mich.: W. B. Eerdmans Publishing Company; 2004.Clayton P, Schloss J: (Eds): The Social Neuroscience of Empathy. Cambridge, Mass.: MIT Press; 2009.Decety J, Ickes W: (Eds): Human Capacities and Moral Status. Dordrecht: Springer; 2010.DiSilvestro R: From DNA to Social Cognition. Hoboken, N.J.: Wiley-Blackwell; 2011.Ebstein R, Shamay-Tsoory S, Chew SH: (Eds): Neurowissenschaften und Menschenbild. Paderborn: Mentis; 2005.Engels EM, Hildt E: Neurosociology: The Nexus between Neuroscience and Social Psychology. New York: Springer; 2010.Franks DD: How the Body Shapes the Mind. Oxford, U.K.: Clarendon Press; 2005.Gallagher S: The Ethical Brain: The Science of Our Moral Dilemmas. New York: Harper Perennial; 2005.Gazzaniga, MS: Wann ist der Mensch ein Mensch? Antworten der Neurowissenschaft auf ethische Fragen. D\u00fcsseldorf: Patmos-Verl; 2007.Gazzaniga, MS: El Cerebro \u00c9tico. Barcelona: Paid\u00f3s; 2006.Gazzaniga MS: Hirnforschung und Willensfreiheit: zur Deutung der neuesten Experimente. Frankfurt: Suhrkamp; 2004.Geyer C: Subjectivity and Being Somebody: Human Identity and Neuroethics. Exeter, UK: Imprint Academic; 2008.Gillett G: . De la Neurociencia a la Neurolog\u00eda: Narrativa Cient\u00edfica y Reflexi\u00f3n Filos\u00f3fica. Pamplona: Eunsa; 2010.Gim\u00e9nez Amaya JM, S\u00e1nchez-Migall\u00f3n Granados SDecisions, Uncertainty, and the Brain: The Science of Neuroeconomics. Cambridge, Mass.: MIT Press; 2003.Glimcher PW: Morality: Reasoning on Different Approaches. Amsterdam: Rodopi, 2013.Gluchman V: (Ed): Moral Tribes: Emotion, Reason, and the Gap Between Us and Them. New York: The Penguin Press; 2013.Greene JD: Geniale Gehirne: Zur Geschichte der Elitegehirnforschung. G\u00f6ttingen: Wallstein Verlag; 2004.Hagner M: The Moral Landscape: How Science Can Determine Human Values. New York: Free Press; 2010.Harris S: Moral Minds: How Nature Designed Our Universal Sense of Right and Wrong. New York: Ecco; 2006.Hauser MD: Hirnforschung als dialektische Sozialwissenschaft. M\u00fcnster: Wien Lit; 2005.Heintel P, Broer K: Mind, Morality, and Explanation: Selected Collaborations. Oxford, U.K.: Oxford University Press; 2004.Jackson F, Pettit P, Smith M: Neuromania: On the Limits of Brain Science. Translated by Frances Anderson. Oxford, U.K.: Oxford University Press; 2011.Legrenzi P, Umilt\u00e0 C: How We Decide. Boston: Houghton Mifflin Harcourt; 2009.Lehrer J: The Ego Tunnel: The Science of the Mind and the Myth of the Self. New York: Basic Books; 2009.Metzinger T: Downward Causation and the Neurobiology of Free Will. Berlin: Springer Verlag; 2009.Murphy NC, Ellis GFR, O\u2019Connor T: Out of Our Heads: Why You Are Not Your Brain, and Other Lessons from the Biology of Consciousness. New York: Hill and Wang; 2009.No\u00eb A: The Neuroscience of Fair Play: Why We Follow the Golden Rule. New York: Dana Press; 2007.Pfaff DW: he Emotional Construction of Morals. Oxford, U.K.: Oxford University Press; 2007.Prinz JJ. TLiars, Lovers and Heroes: What the New Brain Science Reveals About How We Become Who We Are. New York: William Morrow; 2002.Quartz SR, Sejnowski TJ: The New Brain Sciences: Perils and Prospects. New York: Cambridge University Press; 2004.Rees DA, Rose SPR: . The Cognitive Neuroscience of Mind: A Tribute to Michael S. Gazzaniga. Cambridge, Mass.: MIT Press, 2010.Reuter-Lorenz PA, Baynes K, Mangun GR, Phelps EA: (Eds): Memory, Attention, and Decision-Making: A Unifying Computational Neuroscience Approach. Oxford, U.K.: Oxford University Press; 2008.Rolls ETBrauchen wir eine neue Ethik?: Herausforderungen der Ethik durch die Neurowissenschaft. Paderborn: Mentis; 2011.Scharifi G: Brauchen Moral Motivation. Oxford, U.K.: Oxford University Press; 2010.Schroeder P, Roskies AL, Nichols S: Behold Our Moral Body. Psychiatry, Duns Scotus, and Neuroscience. Berlin: De Gruyter; 2013.Severino SK: Moral Psychology, Volume 1: The Evolution of Morality\u2014Adaptations and Innateness. Cambridge, Mass.: MIT Press; 2007.Sinnott-Armstrong W: (Ed): Moral Psychology, Volume 2: The Cognitive Science of Morality: Intuition and Diversity. Cambridge, Mass.: MIT Press; 2008.Sinnott-Armstrong W: (Ed): Moral Psychology, Volume 3: The Neuroscience of Morality: Emotion, Brain Disorders, and Development. Cambridge, Mass.: MIT Press; 2008.Sinnott-Armstrong W: (Ed): Free Will and the Human Sciences in Britain, 1870\u20131910. London: Pickering & Chatto; 2013.Smith R: My Brain Made Me Do It: The Rise of Neuroscience and the Threat to Moral Responsibility. Amherst, N.Y.: Prometheus Books; 2010.Sternberg EJ: The Meaning of Mind: Language, Morality, and Neuroscience. Syracuse, N.Y.: Syracuse University Press; 2002.Szasz TS: Hardwired Behavior: What Neuroscience Reveals about Morality. Cambridge: Cambridge University Press; 2005.Tancredi LR: The Brain Supremacy: Notes from the Frontiers of Neuroscience. Oxford, U.K.: Oxford University Press; 2012.Taylor KE: : The Heart of Judgment: Practical Wisdom, Neuroscience, and Narrative. New York: Cambridge University Press; 2006.Thiele LPMind in Life: Biology, Phenomenology, and the Sciences of Mind. Cambridge, Mass.: Belknap Press; 2007.Thompson E: The Self-Conscious Emotions: Theory and Research. New York: Guilford Press; 2007.Tracy JL, Robins RW, Tangney JP: (Eds): The Moral Brain: Essays on the Evolutionary and Neuroscientific Aspects of Morality. New York: Springer; 2009.Verplaetse J, De Schrijver J, Vanneste S, Braeckman, J: (Eds): Localizing the Moral Sense: Neuroscience and the Search for the Cerebral Seat of Morality, 1800\u20131930. Dordrecht: Springer; 2009.Verplaetse J: Het Morele Brein: Een Geschiedenis Over de Plaats van de Moraal in Onze Hersenen. Antwerp: Garant; 2006.Verplaetse J: Social Brain Matters: Stances on the Neurobiology of Social Cognition. Amsterdam: Rodopi; 2007.Vilarroya O, i Argimon FF: (Eds): Neurobiology of Violence. Washington, DC: American Psychiatric Publishing; 2002.Volavka J: Neuroscience and morality. In her Hard Science, Hard Choices: Facts, Ethics, and Policies Guiding Brain Science Today. New York: Dana Press; 2006:17\u201320.Ackerman S: Moral decision making in the brain. In her Hard Science, Hard Choices: Facts, Ethics, and Policies Guiding Brain Science Today. New York: Dana Press; 2006:48\u201351.Ackerman S: The varieties of moral experience. In his Experiments in Ethics. Boston: Harvard University Press; 2008:121\u2013163.Appiah A: Eine zwei-quellen-theorie der Moral: spekulative Gedanken vor dem hintergrund einer neurologischen Fallstudie. In Zeithorizonte des Ethischen: zur Bedeutung der Temporalit\u00e4t in der Fundamental- und Bioethik. Edited by Georg Pfleiderer; Christoph Rehmann-Sutter (Hrsg.). . Stuttgart: Kohlhammer; 2006:191\u2013200.Au C: Contributions of neuroscience to the understanding of moral reasoning and its development. In Developmental Social Cognitive Neuroscience. Edited by Philip D. Zelazo, Michael Chandler, Eveline Crone. New York: Psychology Press; 2010:269\u2013288.Blair RJ: Brains, lies, and psychological explanations. In Neuroethics: Defining the Issues in Theory, Practice, and Policy. Edited by Judy Illes. Oxford, U.K.: Oxford University Press; 2006:51\u201360.Buller S: Moral cognition and its neural constituents. In Defining Right and Wrong in Brain Science: Essential Readings in Neuroethics. Edited by Walter Glannon. New York: Dana Press; 2007:206\u2013220.Casebeer WD: Toward a cognitive neurobiology of the moral virtues. In Scientific and Philosophical Perspectives in Neuroethics. Edited by James Giordano, Bert Gordijn. Cambridge: Cambridge University Press; 2010:146\u2013171.Churchland PM: Neuroscience: reflections on the neural basis of morality. In Defining Right and Wrong in Brain Science: Essential Readings in Neuroethics. Edited by Walter Glannon. New York: Dana Press; 2007:179\u2013182.Churchland PS: Moral decision making and the brain. In Neuroethics: Defining the Issues in Theory, Practice, and Policy. Edited by Judy Illes. Oxford, U.K.: Oxford University Press; 2006:3\u201316.Churchland PS: Inference to the best decision. In The Oxford Handbook of Philosophy and Neuroscience. Edited by John Bickle. Oxford, U.K.: Oxford University Press; 2009:419\u2013430.Churchland PS: Human dignity from a neurophilosophical perspective. In Human Dignity and Bioethics: Essays Commissioned by the President's Council on Bioethics. Washington, DC: President\u2019s Council on Bioethics; 2008:99\u2013121.Churchland PS: The neural basis of social behavior: ethical implications. In Defining Right and Wrong in Brain Science: Essential Readings in Neuroethics. Edited by Walter Glannon. New York: Dana Press; 2007:175\u2013178.Damasio A: A neurodevelopmental perspective on morality. In Handbook of Moral Development. Edited by Melanie Killen, Judith G. Smetana. New York: Psychology Press; 2013:454\u2013474.Decety J, Howard LH: Empathy and morality: integrating social and neuroscience approaches. In The Moral Brain: Essays on the Evolutionary and Neuroscientific Aspects of Morality. Edited by Jan Verplaetse, Jelle De Schrijver, Sven Vanneste, Johan Braeckman. Netherlands: Springer; 2009:109\u2013127.Decety J, Batson CD. The definition of human nature. In The New Brain Sciences: Perils and Prospects. Edited by Dai Rees, Steven Rose. New York: Cambridge University Press; 2004:34\u201358.Donald MW: Personhood: an illusion rooted in brain function? In Neuroethics: An Introduction with Readings. Edited by Martha J. Farah. Cambridge, MA: MIT Press; 2010:321\u2013338.Farah MJ, Heberlein AS: The brain produces a poor autobiography. In his The Ethical Brain: The Science of Our Moral Dilemmas. New York: Harper Perennial; 2006:120\u2013144.Gazzaniga MS: My brain made me do it. In Defining Right and Wrong in Brain Science: Essential Readings in Neuroethics. Edited by Walter Glannon. New York: Dana Press; 2007: 183\u2013194.Gazzaniga M: The moral subject. In his Subjectivity and Being Somebody: Human Identity and Neuroethics. Charlottesville: Imprint Academic; 2008:84\u2013106.Gillett G: On method in moral science. In his Subjectivity and Being Somebody: Human Identity and Neuroethics. Charlottesville: Imprint Academic; 2008:253\u2013255.Gillet G: Brain, body, and self. In his Bioethics and the Brain. New York: Oxford University Press; 2007:13\u201344.Glannon W: : Our brains are not us. In his Brain, Body, and Mind: Neuroethics with a Human Face. New York: Oxford University Press; 2011:11\u201340.Glannon WNeuroscience, free will, and moral responsibility. 41(31); In his Brain, Body, and Mind: Neuroethics with a Human Face. New York: Oxford University Press; 2011:41\u201371.Glannon W: Neuroscience and moral reasoning. In his Brain, Body, and Mind: Neuroethics with a Human Face. New York: Oxford University Press; 2011:93\u2013114.Glannon W: From neural \u2018is\u2019 to moral \u2018ought\u2019: what are the moral implications of neuroscientific moral psychology? In Defining Right and Wrong in Brain Science: Essential Readings in Neuroethics. Edited by Walter Glannon. New York: Dana Press; 2007:221\u2013236.Greene J: Cognitive nuroscience and the structure of the moral mind. In The Innate Mind, Vol. 1. Edited by Peter Carruthers, Stephen Laurence, Stephen Stich. New York: Oxford University Press; 2005:338\u2013352.Greene J: The secret joke of Kant\u2019s soul. In Moral Psychology, Vol. 3: The Neuroscience of Morality: Emotion, Disease, and Development. Edited by W. Sinnott-Armstrong. Cambridge, Mass.: MIT Press; 2007:35\u201380.Greene JD: The cognitive neuroscience of moral judgment. In The Cognitive Neurosciences. Edited by Michael S. Gazzaniga et al. Cambridge, Mass.: MIT Press; 2009:987\u20131002.Greene JD: Neuroethics of free will. In The Oxford Handbook of Neuroethics. Edited by Judy Illes, Barbara J. Sahakian. Oxford, U.K.: Oxford University Press; 2013:219\u2013226.Haggard P: The moral emotions. In Handbook of Affective Sciences. Edited by Richard J. Davidson, Klaus R. Scherer, and H. Hill Goldsmith. Oxford, U.K.: Oxford University Press; 2003:852\u2013870.Haidt J: What neuroscience can (and cannot) contribute to metaethics. In Moral Psychology, Vol. 3: The Neuroscience of Morality: Emotion, Disease, and Development. Edited by W Sinnott-Armstrong. Singapore: Wiley-Blackwell; 2007:371\u2013394.Joyce R: Emotion and moral cognition. In From DNA to Social Cognition. Hoboken, N.J.: Wiley-Blackwell; 2012:111\u2013122.Koenigs M: Mind metaphors, neurosciences and ethics. In The New Brain Sciences: Perils and Prospects. Edited by Dai Rees, Steven Rose. New York: Cambridge University Press; 2004:71\u201387.Kollek R: The emerging theory of motivation. In The Oxford Handbook of Philosophy and Neuroscience. Edited by John Bickle. Oxford, U.K.: Oxford University Press; 2009:381\u2013418.Landreth A: The neuroscience of free will. In his Neuroethics: Challenges for the 21st Century. New York: Cambridge University Press; 2007:222\u2013257.Levy N: Commentary on Churchland. In Human Dignity and Bioethics: Essays Commissioned by the President's Council on Bioethics. Washington, DC: President\u2019s Council on Bioethics; 2008: 122\u2013125.Meilaender G: Free will and neuroscience. In his Free Will and Luck. Oxford, U.K.: Oxford University Press, 2006:30\u201348.Mele A: Do we ever really act? In The New Brain Sciences: Perils and Prospects. Edited by Dai Rees, Steven Rose. New York: Cambridge University Press; 2004:17\u201333.Midgley M: Neuroscience and morality: moral judgments, sentiments, and values. In Personality, Identity, and Character. Edited by Darcia Narvaez, Daniel K. Lapsley. New York: Cambridge University Press; 2009:106\u2013135.Moll J, de Oliveira-Souza R, Zahn R: How can evolution and neuroscience help us understand moral capacities? In The Moral Brain: Essays on the Evolutionary and Neuroscientific Aspects of Morality. Edited by Jan Verplaetse, Jelle De Schrijver, Sven Vanneste, Johan Braeckman. Netherlands: Springer; 2009 New York: Springer; 2009:201\u2013209.Nesse RM: Consciousness and the limits of neurobiology. In The New Brain Sciences: Perils and Prospects. Edited by Dai Rees, Steven Rose. New York: Cambridge University Press; 2004:59\u201370.Rose H: Having a brain, being a mind. In his The Future of the Brain: The Promise and Perils of Tomorrow's Neuroscience. Oxford, U.K.: Oxford University Press; 2006:137\u2013168.Rose S: What\u2019s \u201cneu\u201d in neuroethics. In The Oxford Handbook of Philosophy and Neuroscience. Edited by John Bickle. Oxford, U.K.: Oxford University Press; 2009:454\u2013472.Roskies A: A case study in neuroethics: the nature of moral judgment. In Neuroethics: Defining the Issues in Theory, Practice, and Policy. Edited by Judy Illes. Oxford, U.K.: Oxford University Press; 2006:17\u201332.Roskies A: \u00dcber einen m\u00f6glichen normativen beitrag der Moralphysiologie. In: Brauchen wir eine neue Moral?: Herausforderungen der Ethik durch die Neurowissenschaft. Edited by Gilbert Scharifi. Paderborn: Mentis; 2011:181\u2013198.Schleim S: The neurobiological basis of morality. In The Oxford Handbook of Neuroethics. Edited by Judy Illes, Barbara J. Sahakian. Oxford, U.K.: Oxford University Press; 2013:33\u201358.Suhler C, Churchland PS: Neuroscience and morality. In his Hardwired Behavior: What Neuroscience Reveals about Morality. New York: Cambridge University Press; 2005:1\u201311.Tancredi L: Morality and the mind. In his Hardwired Behavior: What Neuroscience Reveals about Morality. New York: Cambridge University Press; 2005:12\u201324.Tancredi L: The moral brain. In his Hardwired Behavior: What Neuroscience Reveals about Morality. New York: Cambridge University Press; 2005:34\u201345.Tancredi L: Creating a moral brain. In Hardwired Behavior: What Neuroscience Reveals about Morality. New York: Cambridge University Press; 2005:162\u2013176.Tancredi L: The bad brain: biology of moral thinking. In The Variables of Moral Capacity. Edited by David C. Thomasma and David N. Weisstub. Dordrecht: Kluwer; 2004:235\u2013257.Tancredi LR: Being in the world: neuroscience and the ethical agent. In Neuroethics: Defining the Issues in Theory, Practice, and Policy. Edited by Judy Illes. Oxford, U.K.: Oxford University Press; 2006:61\u201374.Zoloth L: bioethics@georgetown.edu for subsequent inclusion as commentary/addenda to this work.Despite our best efforts to amass as complete a bibliography of the past 10\u00a0years\u2019 neuroethics literature as possible, automated indexing and other technical issues can affect the retrieval of documents. However, this need not constrain the capability of this document to provide a valuable nexus in, and for the discipline. As consistent with Part 1 of this series, we conceive of this bibliography as a participatory endeavor, and request that the readership contribute to this effort by adding any missing citations to the online comments section of this bibliography. Citations also can be emailed directly to the bibliographic manager at: To be sure, with advances in neuroscientific capabilities and expanding use of neuroscientific techniques and technologies in medicine, arguments are being made to address ethical issues generated by brain research , promptiIn addition to implications for clinical care, neuroscientific studies of cognition, emotion and behavior can be \u2013 and are increasingly \u2013 leveraged in legal and social contexts, which must be considered on an international scale ,10. How,"} {"text": "There are errors in the Author Contributions. The publisher apologizes for the errors. The correct contributions are:Conceived and designed the experiments: JLi X-zS. Performed the experiments: WZ JWL RX CZ QP XC LH YC. Analyzed the data: WZ JLi X-zS. Contributed reagents/materials/analysis tools: SL YC JY XL. Wrote the manuscript: JLi X-zS. Supervision of research: SL LH JY JLi X-zS."} {"text": "The third author\u2019s name is spelled incorrectly. The correct name is: Khek Yu Ho. The correct citation is:10.1371/journal.pone.0148035Do TN, Seah TET, Ho KY, Phee SJ (2016) Development and Testing of a Magnetically Actuated Capsule Endoscopy for Obesity Treatment. PLoS ONE 11(1): e0148035. doi:"} {"text": "References 32, 33, 36, and 41 are incomplete. Please view the corrected references here.http://209.61.208.233/LinkFiles/Dengue_CFR_Dengue_85-06.pdf.32. WHO SEARO. [cited 2014 January 3]; Available from: http://apps.who.int/gho/data/node.main.692.33. WHO Global Health Observatory Data Repository: Life expectancy. [cited 2014 January 14]; Available from: http://thailand.prd.go.th/view_news.php?id=6594&a=2.36. Office of the Prime Minister In: Thailand, editor. Thailand. [cited 2014 February 11]; Available from: http://www.uis.unesco.org/DataCentre/Pages/country-profile.aspx?code=THA®ioncode=4051541. UNESCO Institute for Statistics. [cited 2014 March 20]; Available from:"} {"text": "Regarding the article \"A multiprofessional perspective on the principal barriers touniversal health coverage and universal access to health in extremely poor territories: thecontributions of nursing\", with DOI number: 10.1590/1518-8345.1042.2688, published in theRev. Latino-Am. Enfermagem. 2016;24:e2688, page 1:Where was written:\"Rev. Latino-Am. Enfermagem. 2016;24:e2688\"Now Read:\"Rev. Latino-Am. Enfermagem. 2016;24:e2795\"Regarding the article \"Access the Unified Health System actions and services from theperspective of judicialization\", with DOI number: 10.1590/1518-8345.1012.2689, published inthe Rev. Latino-Am. Enfermagem. 2016;24:e2689, page 1:Where was written:\"Rev. Latino-Am. Enfermagem. 2016;24:e2689\"Now Read:\"Rev. Latino-Am. Enfermagem. 2016;24:e2797\"Regarding the article \"Health-related quality of life as a predictor of mortality inpatients on peritoneal dialysis\", with DOI number: 10.1590/1518-8345.0786.2687, publishedin the Rev. Latino-Am. Enfermagem. 2016;24:e2687, page 1:Where was written:\"Rev. Latino-Am. Enfermagem. 2016;24:e2687\"Now Read:\"Rev. Latino-Am. Enfermagem. 2016;24:e2794\""} {"text": "In the crystal there no inter\u00admolecular hydrogen bonds.In the title compound, C DOI: 10.1107/S2056989015010476/zs2333Isup2.hklStructure factors: contains datablock(s) I. DOI: Click here for additional data file.10.1107/S2056989015010476/zs2333Isup3.cmlSupporting information file. DOI: Click here for additional data file.10.1107/S2056989015010476/zs2333fig1.tif. DOI: Mol\u00adecular configuration and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.Click here for additional data file.10.1107/S2056989015010476/zs2333fig2.tif. DOI: Crystal packing diagram of the title compound.Click here for additional data file.10.1107/S2056989015010476/zs2333fig3.tif. DOI: Synthetic scheme for the title compound (I).1062075CCDC reference: crystallographic information; 3D view; checkCIF reportAdditional supporting information:"} {"text": "Data is presented in support of model-based total evidence (MBTE) phylogenetic reconstructions of the Neotropical clade of Gymnotiformes \u201cModel-based total evidence phylogeny of Neotropical electric knifefishes \u201d Specifications TableValue of the data\u2022Data summary for the most comprehensive phylogenetic study of Gymnotiformes to date, including an ingroup taxon sampling of 33 (94%) recognized genera and 120 (57%) of all valid species.\u2022New molecular sequences for 149 specimens and descriptions of morphological characters for 166 specimens.\u2022Supermatrix comprised of six genes (5277\u00a0bp) and 223 morphological characters used to reappraise relationships of GymnotiformesDataThe data provided below include supporting information to replicate phylogenetic analyses of Tagliacollo et al. Experimental design, materials and methodsCarassius auratus, Erythrinus erythrinus, Serrasalmus rhombeus, Cyphocharax festivus, Charax tectifer, Pseudostegophilus nemurus, Brachyplatystoma juruense, Dianema longibarbis, Pterygoplichthys multiradiatus. Ingroup taxon samples were chosen by using a clade-based approach to maximize the representation of phylogenetic diversity in Gymnotiformes.Outgroups were chosen to cover a broad spectrum of ostariophysan diversity in terms of clade representation. Outgroups included nine major lineages of Otophysi represented by: Ingroup species are comprised of representatives of all major gymnotiform clades, including 33 of 35 (94%) recognized genera and 120 of 218 (55%) of all currently valid species. Voucher specimens for tissue samples were identified either directly by the authors, directly by curators and collection managers at contributing institutions, or by exchange of photographs. Species identifications of Genbank sequences were not reevaluated. Molecular vouchers and GenBank accession numbers are presented in \u00ae 96 Tissue kit (Macherey-Nagel). Fragments of the mitochondrial genes 16S rRNA (16S-mit), Cytochrome Oxidase subunit I (COI-mit), Cytochrome B (CytB-mit), and the nuclear gene Zic family member 1 (ZIC-nuc) were amplified by one round of polymerase chain reaction (PCR), which was carried out in a volume of 25.0\u00a0\u03bcl consisting of: 2.5\u00a0\u03bcl of 10x Taq Buffer, 2.0\u00a0\u03bcl of dNTP mixture at 10\u00a0mM each, 1.5\u00a0\u03bcl of 50\u00a0mM MgCl2, 1.0\u00a0\u03bcl of each primer at 5\u00a0\u03bcM, 0.2\u00a0\u03bcl of Platinum\u00ae Taq DNA Polymerase, 2.0\u00a0\u03bcl of template DNA (~50\u00a0ng), and 15.8\u00a0\u03bcl of double-distilled H2O. Fragments of the nuclear gene Recombination-Activating gene 2 (RAG2-nuc) and Recombination-Activating gene 1 (RAG1-nuc) were amplified by nested-PCRs. Each round of the two PCR was carried out in a volume of 25.0\u00a0\u03bcl consisting of: 2.5\u00a0\u03bcl of 10x Taq Buffer, 2.0\u00a0\u03bcl of dNTP mixture at 10\u00a0mM each, 2.0\u00a0\u03bcl of 50\u00a0mM MgCl2, 1.5\u00a0\u03bcl of each primer at 5\u00a0\u03bcM, 0.2\u00a0\u03bcl of Platinum\u00ae Taq DNA Polymerase, 2.0\u00a0\u03bcl of template DNA (~50\u00a0ng), and 14.8\u00a0\u03bcl of double-distilled H2O. Cycles of PCR for the mitochondrial genes consisted of five steps: (1) 60s for enzyme activation at 94\u00a0\u00b0C, (2) 30s of denaturation at 94\u00a0\u00b0C, (3) 60s of annealing at 56\u00a0\u00b0C (16S-mit), 54\u201358\u00a0\u00b0C (COI-mit), or 50\u201352\u00a0\u00b0C (CytB-mit), (4) 80s of extension at 72\u00a0\u00b0C, and (5) 300\u00a0s of extension at 72\u00a0\u00b0C. The steps 2\u20134 were repeated 35 times. Cycles of PCR for the nuclear genes consisted of six steps: (1) 60s for enzyme activation at 94\u00a0\u00b0C, (2) 30s of denaturation at 94\u00a0\u00b0C, (3) two start cycles of 60s each at 56\u00a0\u00b0C, 50\u00a0\u00b0C, 52\u00a0\u00b0C, 54\u00a0\u00b0C and 54\u00a0\u00b0C, 50\u00a0\u00b0C 52\u00a0\u00b0C, 56\u00a0\u00b0C (ZIC-nuc), (4) 60s of annealing at 50\u00a0\u00b0C and 52\u00a0\u00b0C (ZIC-nuc) and (5) 80s of extension at 72\u00a0\u00b0C, and (6) 300s of extension at 72\u00a0\u00b0C. The steps 2, 4 and 5 were repeated 35 times. PCR products were visually identified on a 1% agarose gel. Sequencing was held at Beckman Coulter Genomics Facility. The list of primers is shown in Genomic DNA was extracted from tissues, fins or livers of specimens preserved in pure ethanol with the NucleoSpinForward and reverse sequences were assembled in Geneious 5.5.6. The IUPAC ambiguity code of nucleotides was applied in cases where nucleotide identity was dubious. We combined newly generated data with available sequences from previous studies 1.Body shape 1.0: body laterally compressed, body width at pectoral fin base less than 70% its depth. 1: Body cylindrical or subcylindrical, roughly circular in cross section, body depth at pectoral girdle approximately equal to its width.2.Body shape 2.0: body laterally compressed. 1: Body dorsoventrally flattened. Newly coded herein.3.Body shape profile. \u201cBody Depth,\u201d character 2 in Albert, 2001. 0: Body relatively deep in profile, depth at pectoral girdle more than 11% total length. 1: Body elongate, slender, depth less than 11% total length.4.Snout length short. 0: preorbital length about one-third total head length in mature specimens. 1: Snout short, preorbital length less than one-third total head length -Fig. 13.5.Snout long. 0: Length of the snout about one-third total head length in mature specimens. 1: Snout elongate, frontal, vomer and anterior portion of parasphenoid elongate; preorbital length longer than one-third total head length or greater in mature specimens pale bands with straight margins of alternating high and low melanophore density along lateral surface of body, oriented at an oblique angle to longitudinal body axis -Fig. 1. 17.Vertical pigment lines. 0: Vertical pigment lines absent along longitudinal body axis. 1: Thin vertical pigment lines present along longitudinal body axis. Newly coded herein.18.Vertical pigment bars. \u201cSaddle-shaped bars\u201d, character 5 in 19.Caudal Peduncle Spot. 0: Pale spot absent from base of caudal region. 1: Pale spot present at base of caudal region. Newly coded herein.20.Longitudinal lines. 0: Absent. 1: 2\u20133 thin dark lines extending posteriorly along the lateral body surface . 2: A wh21.Pigment contrast. 0: Body surface yellow or pale brown, lacking high contrast dark brown or black and white pigments. 1: High contrast dark brown or black and white pigments on body surface.22.Apteronotus albifrons species group. Newly coded herein.White posterior bars. 0: White or pale bars absent from caudal region. 1: White or pale bars present on caudal region as observed in members of the 23.White mid-sagittal pigments. 0: All mid-sagittal surfaces brown. 1: Mid-sagittal region of dorsal and mental surfaces bright white.24.Antorbital stripe. 0: Melanophores on snout distributed evenly. 1: Melanophores absent from narrow band passing lateral to nares -Fig. 90.25.Pigment distribution. 0: Pigments distributed homogeneously over body surface. 1: Black and white pigments distributed unevenly over body surface, darker and paler areas grading into one another; integument with a marbled or mottled appearance.26.Body translucence. 0: Body opaque in living and formalin-fixed specimens, lateral body surface covered with brown melanophores. 1: Body translucent in living specimens, yellow or pink hue in living specimens, yellow or hyaline in formalin-fixed specimens, melanophores sparse or absent on lateral body surface.27.Branchial opening. 0: Branchial opening extends along entire posterior margin of opercle, from isthmus to pectoral fin insertion. 1: Vertical extent of branchial opening restricted to region around pectoral fin base; ventral portion reduced by a dorsolateral continuation of epidermis from isthmus .28.Pseudotympanum. 0: Sixth vertebra partially covered by superior oblique. 1: Sixth vertebra not covered by superior oblique.29.Body squamation. 0: Scales present on body and head. 1: Body devoid of scales . 1: Tips of teeth directed anteriorly (recurved). 39.Premaxilla size. 0: Large. Lateral margin of premaxilla longer than lateral margin of maxilla, premaxilla extends posterodorsal to articulation of maxilla with autopalatine; articular surface of maxilla with autopalatine oriented anterodorsally. 1: Small. The anterodorsal orientation of the articular surface of the maxilla with the autopalatine is a consequence of the large size of the premaxilla and the associated posterior position of the maxilla.40.Premaxillary teeth. 0: Teeth present on premaxilla of adults. 1: Premaxillary dentition reduced or lost.41.Maxillary dentition. 0: A single row of 6\u201310 conical teeth in along outer margin of maxilla. 1: No teeth on maxilla.42.Maxilla size. \u201cOrientation and Shape of Maxilla\u201d-character 30 in 43.Anterior maxillary process. 0: Anterior process of maxilla absent. 1: Anterior process of maxilla extends anterior to articulation of maxilla and autopalatine, forming a tapered process, its ventral margin continuous with descending blade of maxilla; maxilla forked in lateral view. 2: Anterior process of maxilla cartilaginous; ventral margin of descending blade extends to articulation of maxilla with autopalatine, forming anterior border of maxilla; maxilla crescent shaped in lateral view , ventral margin concave.Dentary gracile. 0: Dentary robust, posterodorsal process rounded, ventral margin straight or slightly convex in lateral view. 1: Dentary gracile, posterodorsal process tapering to a point , a ventral extension of the medial surface of dentary where it covers the anterior portion of Meckel\u05f3s cartilage -Fig. 66.55.Dentary teeth size. 0: Teeth on posterior half of dentary roughly equal in size to anterior teeth. 1: Teeth on posterior half of dentary twice the size of anterior teeth. Newly coded herein, see de 56.M. Adductor mandibulae. 0: Belly of Adductor mandibulae muscle composed of muscle fibers and tendons. 1: Belly of Adductor mandibulae muscle with ossified intermuscular bones, oriented parallel to main axis of muscle fibers inserts exclusively on maxilla; two discrete muscle bundles insert on oral jaws; A1 inserts exclusively on maxilla, and A2 on dentary. 1: Additional insertion of A1 on first infraorbital broad and concave, with a medial groove located between two large anterolateral processes (forming articulation with premaxillae). 1: Anterior tip of mesethmoid small, anterodorsal surface narrow, with a median knob-shaped process directed anteriorly between two small lateral processes .68.Median septum of ventral ethmoid. 0: Portion of ventral ethmoid ossified within medial nasal septum approximately as long as deep; posterior margins of median septum and lateral process of ventral ethmoid approximately equal. 1: Ossified median septum of ventral ethmoid elongate in mature specimens, longer than deep, extending posterior to posterior margin of lateral process.69.Ventral ethmoid-Vomer. 0: Ventral ethmoid fused with vomer during growth. 1: Ventral ethmoid and vomer not fused in adults .70.Dermal vomer. 0: Dermal vomer extends from posterior margin of ventral ethmoid to parasphenoid. 1: Dermal vomer not ossified.71.Ethmoid cartilage. 0: Ethmoid cartilage anterior to lateral ethmoid longer than deep; antorbital region of snout longer than deep. 1: Ethmoid cartilage deeper than long; antorbital region of snout about as deep as long .72.Lateral ethmoid size. 0: Lateral ethmoid a large endochondral ossification in the antorbital region, arching laterally over Profundus (V1) nerve, with four margins; anterolateral process contacting ventral ethmoid, posteromedial process contacting parasphenoid, dorsomedial margin contacting frontal, and anteromedial margin contacting mesethmoid in 83.Sphenotic process. 0: Dorsolateral margin of sphenotic straight, anterior margin underlies frontal. 1: Dorsolateral margin of sphenotic bearing a transversely oriented crest or process exposed on dorsolateral edge, anterior margin not underlying frontal . 1: Accessory optic tract reduced or absent; discrete accessory optic nucleus not visible in sections .107.Integumental taste buds. 0: Taste buds present on head in characiforms, and over entire integumental surface in siluriforms; diameters of nerves V and VII equal to or larger than that of other cranial nerves in isthmal region; primary facial and vagal sensory nuclei larger than medial octaval nucleus. 1: Taste buds entirely absent from extra-oral integument; nerves V and VII smaller than other cranial nerves of isthmal region; primary facial and vagal sensory nuclei smaller than medial octaval nucleus.108.Schreckstoff/club cells. 0: Schreckstoff , club cells, and fright response present in Ostariophysi. 1: Schreckstoff, club cells, and fright response absent and central nervous systems 110.Ampullary organ rosettes. 0: Ampullary organs distributed individually in integument. 1: Ampullary organs clustered in rosettes 111.Active electroreception. 0: Passive, low frequency electroreception, used in predation; neural apparatus for detecting low frequency electric currents. 1: Electrogeneration and high frequency electroreception, used in communication and navigation (in addition to predation); neural apparatus for producing and detecting high frequency electric currents 112.Tuberous electroreceptors. 0: One class of tuberous electroreceptor organs. 1: Two classes of morphologically distinct tuberous electroreceptor organs 113.Preotic lateralis ganglia. 0: All preotic lateral line nerve ganglia form from separate placodes, their axonal bundles entering brain separately. 1: Anterodorsal, anteroventral, and preopercular\u2013mandibular lateral line nerve ganglia fused during ontogeny, their axons entering brain in a single bundle 114.Posterior lateral line nerve. 0: Posterior lateral line nerve with no accessory rami. 1: Posterior lateral line nerve with dorsal ramus 115.Lateral line afferents. 0: Lateral line afferents from electrosensory periphery intermingled as they course into the electrosensory lateral line lobe (ELL); fibers from different lateral line nerves not segregated. 1: Lateral line afferents fasciculated into discrete bundles; fibers from each lateral line nerve segregated from those of other lateral line nerves 116.Anterior extent of eminentia granularis. 0: Eminentia granularis (EG) of dorsal medulla well developed, extending to posterior pole of optic tectum. 1: EG small, its anterior margin not extending to contact optic tectum 117.Posterior EG. 0: Posterior margin of EG not extending to posterior margin of ELL. 1: Posterior lobe of EG well developed, wrapped around caudal lobe of cerebellum, its posterior margin extending to a vertical with posterior margin of ELL 118.Anterior corpus cerebellum. 0: Anterior lobe of corpus cerebellum large, extending anterior to midlength of optic tectum; cerebellum overlying commissure of optic tectum. 1: Anterior lobe of corpus cerebellum extending to midlength of optic tectum; commissure of optic tectum exposed on dorsal surface.119.Pacemaker nucleus. 0: Pacemaker nucleus of medulla oblongata small, positioned on midline of neuraxis, adjacent to medial longitudinal fasciculus; its ventral margin not contacting ventral aspect of medulla. 1: Pacemaker nucleus large, visible as a median, ovoid eminence on ventral surface of medulla; its ventral margin extending to medullary surface 120.Palatines. 0: Autopalatine totally or partially ossified, straight. 1: Autopalatine unossified, arched.121.Ectopterygoid. 0: Ectopterygoid ossified as a dentigerous element in membrane overlying ventral portion of endopterygoid. 1: Ectopterygoid and associated teeth absent . 1: Ascending process on lateral surface of endopterygoid; pterygocranial ligament ossified; base of ascending process situated approximately dorsal to articulation of quadrate with anguloarticular 123.Endopterygoid ascending process. 0: Ascending process of endopterygoid developed in juvenile stages of growth and retained into adult. 1: Small ascending process of endopterygoid in juveniles obliterated by growth along dorsal margin of bone; no endopterygoid process in adults.124.Endopterygoid anterior process. 0: Dorsal portion of pterygocranial ligament not ossified; base of ascending process of endopterygoid broader than its tip. 1: Entire extent of ligament ossified, forming a bony strut anterior to orbit; process equally as wide along most of its length125.Mesopterygoid dentition. 0: Numerous small teeth distributed in an irregular field on anterior portion of ventral surface of endopterygoid. 1: Few or no teeth on endopterygoid not attached to gill arches ossified, articulating with parasphenoid -Fig. 13.144.Pharyngobranchials. 0: Pharyngobranchials of third and fourth arches cartilaginous. 1: Pharyngobranchials of third and fourth arches ossified.145.Pharyngobranchial plates. 0: Four dentigerous plates present on posterior gill arches. 1: One dentigerous plate present on posterior gill arch of Albert, 2001. 0: Posterior surface of second ceratobranchial smooth. 1: Posterior surface of second ceratobranchial with a medially oriented process in Albert, 2001. 0: Lateral surface of fourth ceratobranchial smooth. 1: Lateral surface of fourth ceratobranchial with an anterolaterally oriented process ossified. 1: All five elements of basibranchial series unossified.159.Basibranchial one. 0: First (anterior) basibranchial elongate, width at midlength about same as at anterior and posterior ends. 1: First basibranchial foreshortened and broad, hourglass shaped, breadth at midlength narrower than at either end160.Urohyal head. 0: Anterior head of urohyal narrow, lateral surfaces flat. 1: Anterior head of urohyal large, with lateral ridges 161.Urohyal blade. 0: Posterior blade of urohyal ossified, extending posterior to fourth basibranchial. 1: Posterior blade of urohyal unossified, anterior head of urohyal positioned ventral to second basibranchial.162.Urohyal blade hyperossified. 0: Urohyal blade short, ossified to level of third basibranchial. 1: Urohyal blade long, ossified to level of fourth basibranchial.163.Posttemporal. 0: Posttemporal independent from supracleithrum in mature specimens. 1: Posttemporal fused with supracleithrum in mature specimens . 0: All hemal spines medial, fused with hemal arches in adult specimens; one to one correspondence between caudal vertebrae and associated hemal spines. 1: Three additional hemal spines positioned in hypaxial musculature posterior to body cavity, often lateral to unmodified hemal spines, rarely fused with hemal arches or parapophyses; irregular association with posterior thoracic and anterior caudal vertebrae.178.DHS anterior series. 0: Three DHSs in hypaxial musculature immediately posterior to body cavity. 1: Anterior series of 8\u201314 DHSs in hypaxial musculature lateral to body cavity.179.DHS 1. 0: Anterior DHS approximately as straight and as wide as other hemal spines. 1: Anterior DHS large, two to three times as broad as other hemal spines, often exhibiting additional distal tips. In the derived state the anterior DHS is curved and scythe shaped.180.DHS 1 proximal surface. 0: Proximal surface of first DHS narrower than descending blade. 1: Proximal surface of first DHS broad as blade.181.DHS 2 shape. 0: Second posterior DHS straight. 1: Second posterior DHS curved 182.Number posterior DHS. 0: Two or three DHSs posterior to large anterior spine. 1: A single DHS posterior to large anterior spine.183.Dorsal organ. 0: Posterodorsal margin of body without a longitudinal fleshy organ. 1: Posterodorsal margin of body with a median flap or bar of fleshy tissue, extending parallel to the dorsal margin of epaxial musculature 184.Dorsal organ length. 0: Dorsal organ extending along dorsal margin posterior to midlength of body. 1: Dorsal organ extends along entire dorsal margin of body, from nape to caudal peduncle length. 0: Anal-fin pterygiophores shorter than hemal spines at midbody; less than one-third total body depth . 1: Anal-fin pterygiophores longer than hemal spines at midbody; more than one-third total body depth .191.Shape of AFP blades. 0: Descending blades of proximal anal-fin pterygiophores slender, approximately cylindrical in cross section. 1: Descending blades of anal-fin pterygiophores broad, anterior and posterior margins extending into ventral median septum in cross section.192.Shape of AFP tips. 0: Anal-fin pterygiophores tapering smoothly to tips. 1: Tips of pterygiophores shaped like an arrow-head; axial series of pterygiophores providing the ventral margin of the anal-fin base a scalloped appearance 193.Anal-fin ray articulation. 0: Anal-fin rays articulate with distal anal-fin pterygiophores. 1: Anal-fin rays articulate with proximal anal-fin pterygiophores . 1: Body cavity associated with 23\u201329 precaudal vertebrae. 2: Body cavity associated with 30\u201339 precaudal vertebrae. 3: Body cavity associated with 40 or more precaudal vertebrae.197.Body cavity short. 0: Body cavity associated with 16\u201319 vertebrae. 1: Body cavity short; associated with 12\u201315 precaudal vertebrae. 2: Body cavity very short; associated with 11 or fewer precaudal vertebrae vertebrae bearing hemal spines present. 1: Hemal spines absent, body cavity extending almost to tip of the tail; no caudal (post-coelomic) vertebrae.199.Number of pleural ribs. 0: Eight or more pairs of pleural ribs. 1: Seven or fewer pairs of pleural ribs . 0: All axial muscle fibers unmodified; no organs capable of generating rhythmic electric discharges. 1: Paired electrogenic organs developing in larval hypaxial musculature; electric organ composed of rows of modified elongate myofibrils .216.Main EO electrocyte morphology. 0: Electrocytes cigar shaped, elongate; longitudinal axis parallel with neuraxis. 1: Electrocytes barrel shaped, cylindrical; long axis oriented vertically. 2: Electrocytes coin-shaped (new character state).217.Hypaxial EO ontogeny. 0: Main electric organ of mature specimens developing from a medial portion of hypaxial musculature, extending along ventral margin of hypaxial musculature. 1: Hypaxial electric organ replaced during development, adult organ not derived from hypaxial musculature 218.Mental accessory EO. 0: absent. 1: present 219.Mental accessory EO configuration. 0: Mental accessory organ absent or short with few electrocytes. 1: Mental accessory EO long, threadlike with many electrocytes 220.Humeral accessory EO. 0: No humeral electric organ. 1: Humeral electric organ extending dorsally from pectoral fin base, and then posteriorly along horizontal myoseptum a distance less than length of pectoral fin 221.Neural EO. 0: Main electric organ of mature specimens ontogenetically derived from hypaxial musculature. 1: Main electric organ of mature specimens derived from electromotor neurons which innervate larval hypaxial organ 222.EOD form. 0: EOD of mature specimens produced as discrete non-overlapping pulses with alternating periods of current flow and no current flow; capacity for EOD frequency modulations present; cells of pacemaker nucleus organized into two separate clusters. 1: EOD produced as a continual series of discharges to form a quasi-sinusoidal pattern of current emission; no capacity for EOD frequency modulations; relay and pacemaker cells mingled in a single medullary nucleus 223.EOD monophasic in adults. 0: EOD of mature specimens with two (sometimes three or four) phases; EOD characterized by both head-positive and head-negative depolarizations. 1: Monophasic EOD of juveniles retained into maturity; EOD characterized exclusively by head-positive depolarizations. 2: Monophasic hyperpolarization from negative baseline Mkv model MBTE-ML analyses datasets were conducted in Mkv model 3). Each run was comprised of 5.0\u00d7107 generations with model parameter values and a single tree sampled every 5\u00d7103 generation. All other parameters were set as default. To ensure adequate mixing of the MCMC, effective sample size values (ESS>200) were inspected for parameter estimates in Tracer 1.5. The two independent runs were summarized with \u201csump\u201d and \u201csumt\u201d commands in MrBayes 3.2 MBTE-BI analyses were conducted in MrBayes 3.2 Node 175: GYMNOTIFORMESch. 3-Body shape profile. \u201cBody Depth,\u201d character 2 in Albert, 2001. / 1: Body elongate, slender, depth less than 11% total length.ch. 7-Gape short. / 1: Rictus extends to a vertical with mental symphysis, gape very small, less than twice diameter of eye, oriented oblique to long axis of head.ch. 14-Position of eye. / 1: Eye completely covered by epidermis in adults; orbital margin not free.ch. 72-Lateral ethmoid size. / 1: Lateral ethmoid reduced in size; four peripheral margins not contacting other bony surfaces.ch. 84-Parasphenoid lateral process. / 1: Lateral margins of parasphenoid not extending to a horizontal with trigeminal foramen.ch. 106-Accessory optic system. / 1: Accessory optic tract reduced or absent; discrete accessory optic nucleus not visible in sections.ch. 107-Integumental taste buds. / 1: Taste buds entirely absent from extra-oral integument; nerves V and VII smaller than other cranial nerves of isthmal region; primary facial and vagal sensory nuclei smaller than medial octaval nucleus.ch. 108-Schreckstoff/club cells. / 1: Schreckstoff, club cells, and fright response absent.ch. 110-Ampullary organ rosettes. / 1: Ampullary organs clustered in rosettes.ch. 111-Active electroreception. / 1: Electrogeneration and high frequency electroreception, used in communication and navigation (in addition to predation); neural apparatus for producing and detecting high frequency electric currents.ch. 112-Tuberous electroreceptors. / 1: Two classes of morphologically distinct tuberous electroreceptor organs.ch. 120-Palatines. / 1: Autopalatine unossified, arched.ch. 121-Ectopterygoid. / 1: Ectopterygoid and associated teeth absent.ch. 125-Mesopterygoid dentition. / 1: Few or no teeth on endopterygoid.ch. 127-Metapterygoid shape. / 1: Metapterygoid triangular in lateral view.ch. 141-Gill raker configuration. / 1: Base of gill rakers not mineralized, rakers (when present) not attached to gill arches.ch. 148-Shape of 4th epibranchial. / 1: Fourth epibranchial with an elongate ascending process.ch. 165-Mesocoracoid. / 1: Mesocoracoid not ossified.ch. 169-Pelvic girdle and fin. / 1: No pelvic girdles or fins.ch. 170-Claustrum. / 1: Claustrum absent as an ossified element.ch. 185-Dorsal fin. / 1: Dorsal fin absent.ch. 186-Adipose fin. / 1: Adipose fin absent.ch. 188-Number anal-fin rays. / 2: 160\u2013199 rays.ch. 193-Anal-fin ray articulation. / 1: Anal-fin rays articulate with proximal anal-fin pterygiophores.ch. 194-Distal AFP. / 1: No distal anal-fin pterygiophores.ch. 213-Caudal fin. / 1: Caudal fin absent.ch. 214-Electric organs (EO). / 1: Paired electrogenic organs developing in larval hypaxial musculature; electric organ composed of rows of modified elongate myofibrils.ch. 215-Number of hypaxial EO. / 1: Three anatomically distinct hypaxial electric organs .Node 176: GYMNOTIDAE cladech. 8-Oral opening in adults. / 0: Upper and lower jaws of equal length, oral aperture terminal.ch. 64-Mesethmoid, tip size. / 1: Portion of mesethmoid anterior to ventral ethmoid flexed ventrally in mature specimens; its dorsal surface anterior and posterior to ventral ethmoid at an oblique angle; its ventral surface oblique to dorsal surface. terminal.ch. 74-Base lateral ethmoid. / 1: Lateral ethmoid narrow or tubular; length of its base less than one-third length of its anterior margin.ch. 79-Cranial fontanels. / 1: Frontals in contact with each other along the entire extent of their medial margins in mature specimens.ch. 140-Branchiostegal ray morphology. / 0: Anterior 1\u20132 rays broad.ch. 163-Posttemporal. / 0: Posttemporal independent from supracleithrum in mature specimens.ch. 196-Body cavity long. / 2: Body cavity associated with 30\u201339 precaudal vertebrae.ch. 204-Post. chamber gas bladder. / 1: Posterior chamber of gas bladder elongate, passing between hemal arches of postcoelomic axial skeleton and musculature.ch. 210-Tail length. / 1: Tail short, 0\u201316% total length.Gymnotus cladeNode 177: ch. 8-Oral opening in adults. / 1: Lower jaw extends anterior to upper, oral aperture superior.ch. 10-Position of anterior nares. / 1: Anterior nares located very close to or within gape, narial opening oriented anteroventrally.ch. 11-Anterior narial pore. / 1: Anterior narial opening sessile, its rim flush with surrounding integument.ch. 33-Lateral line pores. / 1: Posterior lateral line pores tubular; tube length more than three times pore diameter.ch. 34-Lateral line ventral rami. / 1: Numerous ventral rami extending parallel with lateral line.ch. 37-Tooth shape. / 1: Teeth in both jaws villiform, each tooth a long cylindrical shaft with a narrow base.ch. 47-Maxilla descending blade. / 2: Anteroventral margin of descending blade not ossified; distal half of blade extending as a narrow process with a sharp point at its distal tip.ch. 66-Ventral ethmoid lateral process. / 1: No lateral process of ventral ethmoid; ventral ethmoid not contacting lateral ethmoid cartilage.ch. 67-Ventral ethmoid lateral process shape. / 1: Lateral process of ventral ethmoid robust, posterior surface forming articulation with lateral ethmoid cartilage broad and rounded, covered by a cartilage cap.ch. 68-Median septum of ventral ethmoid. / 1: Ossified median septum of ventral ethmoid elongate in mature specimens, longer than deep, extending posterior to posterior margin of lateral process.ch. 71-Ethmoid cartilage. / 1: Ethmoid cartilage deeper than long; antorbital region of snout about as deep as long.ch. 87-Parasphenoid process. / 1: Parasphenoid with anteroventral process.ch. 91-Nasal loop. / 1: Commissure between infraorbital and supraorbital canals extended anteriorly, forming a loop ventrolateral to nasal capsule; antorbital and first infraorbital bones situated near anterior nares.ch. 92-Infraorbital subnasal extension. / 1: Anterior extension of infraorbital canal shorter than width of canal pore; anterior canal pore of infraorbital canal situated near first infraorbital.ch. 122-Endopterygoid ascending process. / 1: Ascending process on lateral surface of endopterygoid; pterygocranial ligament ossified; base of ascending process situated approximately dorsal to articulation of quadrate with anguloarticular.ch. 143-Anterior pharyngobranchial. / 1: Anterior pharyngobranchial unossified.ch. 158-Basibranchials. / 1: All five elements of basibranchial series unossified.ch. 195-Free neural and hemal spines. / 1: Capacity to generate series of free neural and hemal spines associated with regenerated cartilaginous rod.ch. 201-Size of anterior ribs. / 1: Anterior ribs broad, breadth two to three times width.Gymnotus pantherinus cladeNode 178: No diagnostic character in matrix.Gymnotus coatesi+G. anguillaris+G. tigre+G. cylindricus+G. carapo cladesNode 180: ch. 16-Oblique pigment bands. / 1: Multiple (13\u201350) pale bands with straight margins of alternating high and low melanophore density along lateral surface of body, oriented at an oblique angle to longitudinal body axis. Bands sometimes interrupted by patches of depigmented integument, resulting in a distribution of blotches arranged in oblique bands along the lateral surface of body.ch. 35-No. ventral rami. / 1: Median 15 or more.Gymnotus coatesi cladeNode 181: No diagnostic character in matrix. See Maxime (2014).Gymnotus anguillaris+G. tigre+G. cylindricus+G. carapo cladeNode 187: ch. 188-Number anal-fin rays. / 3: 200\u2013299 rays. Taxa coded by modal number of anal-fin rays.ch. 196-Body cavity long. / 3: Body cavity associated with 40 or more precaudal vertebrae.Gymnotus cataniapo cladeNode 188: No diagnostic character in matrix.Gymnotus tigre+G. cylindricus species groups+G. carapo cladeNode 190: ch. 16-Oblique pigment bands. / 2: Oblique pigment bands along longitudinal axis with wavy margins.ch. 37-Tooth shape. / 0: Teeth in both jaws conical, with a broad base tapering toward the cusp.ch. 135-Preopercular pores. / 1: Two pores at dorsoposterior corner of preopercle.ch. 165-Mesocoracoid. / 0: Mesocoracoid ossified within scapulocoracoid cartilage, forming a bridge between medial surface of coracoid and cleithrum.ch. 190-Anal-fin pterygiophore (AFP) length. / 1: Anal-fin pterygiophores longer than hemal spines at midbody; more than one-third total body depth .ch. 201-Size of anterior ribs. / 0: Anterior pair of pleural ribs narrow; breadth approximately equal to width.Gymnotus tigre cladeNode 191: ch. 15-Anal fin membrane. / 2: Anal fin membrane striped.ch. 38-Tooth tip shape. / 1: Tips of teeth directed anteriorly (recurved).Gymnotus cylindricus+G. carapo cladeNode 192: ch. 196-Body cavity long. / ch.196-Body cavity long. / 2: Body cavity associated with 30\u201339 precaudal vertebrae.Gymnotus cylindricus cladeNode 193: ch. 16-Oblique pigment bands. / 0: Body pigmentation evenly distributed along longitudinal axis.ch. 35-No. ventral rami. / 0: Median 14 or less.ch. 135-Preopercular pores. / 0: One pore at dorsoposterior corner of preoperculum.ch. 188-Number anal-fin rays. / 2: 160\u2013199 rays.ch. 190-Anal-fin pterygiophore (AFP) length. / 0: Anal-fin pterygiophores shorter than hemal spines at midbody; less than one-third total body depth .G. carapo cladeNode 196: ch. 15-Anal fin membrane. / 1: With pale posterior patch.ch. 37-Tooth shape. / 2: Teeth with triangular, arrow-head shape.Gymnotus carapo species-complex cladeNode 201: ch. 1-Body shape 1. / 0: Body laterally compressed, body width at pectoral fin base less than 70% its depth.ch. 3-Body shape profile. / 0: Body relatively deep in profile, depth at pectoral girdle more than 11% total length.ch. 157-Basihyal dorsal groove. / 1: Dorsal surface of basihyal concave along its long axis, forming a shallow trough.ch. 166-Anterior coracoid process. / 1: Anterior coracoid process not extending to a vertical with contact of dorsomedial limb of coracoid with cleithrum.Node 216: STERNOPYGOIDEI cladech. 1-Body shape 1. / 0: Body laterally compressed, body width at pectoral fin base less than 70% its depth.ch. 27-Branchial opening. / 1: Vertical extent of branchial opening restricted to region around pectoral fin base; ventral portion reduced by a dorsolateral continuation of epidermis from isthmus.ch. 28-Pseudotympanum. / 1: Sixth vertebra not covered by superior oblique.ch. 39-Premaxilla size. / 1: Small. The anterodorsal orientation of the articular surface of the maxilla with the autopalatine is a consequence of the large size of the premaxilla and the associated posterior position of the maxilla.ch. 62-Mesethmoid, tip size. / 1: Anterior tip of mesethmoid small, anterodorsal surface narrow, with a median knob-shaped process directed anteriorly between two small lateral processes.ch. 63-Mesethmoid, tip shape. / 1: Portion of mesethmoid anterior to ventral ethmoid flexed ventrally in mature specimens; its dorsal surface anterior and posterior to ventral ethmoid at an oblique angle; its ventral surface oblique to dorsal surface.ch. 115-Lateral line afferents. / 1: Lateral line afferents fasciculated into discrete bundles; fibers from each lateral line nerve segregated from those of other lateral line nerves.ch. 139-Branchiostegal rays. / 1: 5\u20136 rays.ch. 160-Urohyal head. / 1: Anterior head of urohyal large, with lateral ridges.ch. 177-Displaced hemal spines (DHS). / 1: Three additional hemal spines positioned in hypaxial musculature posterior to body cavity, often lateral to unmodified hemal spines, rarely fused with hemal arches or parapophyses; irregular association with posterior thoracic and anterior caudal vertebrae.ch. 187-Anal fin origin. / 1: Anal-fin origin ventral to posterior margin of cleithrum.ch. 197-Body cavity short. / 1: Body cavity short; associated with 12\u201315 precaudal vertebrae.ch. 206-Anal position. / 1: Position of anus changing allometrically during ontogeny, starting near posterior end of coelomic cavity and growing anterior to pectoral girdle; anus located near isthmus.ch. 211-Elongate caudal rod. / 1: cartilaginous bar or rod, regenerated in place of caudal vertebrae.Node 217: RHAMPHICHTHYOIDEA cladech. 36-Adult dentition. / 1: Oral teeth present in juveniles, lost and not replaced during development.ch. 66-Ventral ethmoid lateral process. / 1: No lateral process of ventral ethmoid; ventral ethmoid not contacting lateral ethmoid cartilage.ch. 81-Orbitosphenoid shape. / 1: Anterior margin of orbitosphenoid not ossified, orbitosphenoid narrow, its ventral margin about as long or shorter than its dorsal margin.ch. 87-Parasphenoid process. / 1: Parasphenoid with anteroventral process.ch. 95-Antorbital size. / 1: Antorbital large; its ventral portion larger than maxilla; expanded dorsal portion contacts autopalatine.ch. 98-Infraorbital canal tube. / 1: Infraorbital canal a single, lightly ossified continuous tube.ch. 99-First infraorbital. / 1: First infraorbital not present as a separate ossification.ch. 118-Anterior corpus cerebellum. / 0: Anterior lobe of corpus cerebellum large, extending anterior to midlength of optic tectum; cerebellum overlying commissure of optic tectum.ch. 128-Metapterygoid posterior wing. / 1: Metapterygoid elongate and narrow, longer than wide at its midlength.ch. 134-Preopercular orientation. / 1: Long axis of preopercle horizontal, roughly parallel with main axis of neurocranium.ch. 137-Shape of opercle. / 0: Outline of opercle approximately rectangular; dorsal margin shorter than posterior margin, and interrupted by a pronounced angle.ch. 181-DHS 2 shape. / 1: Second posterior DHS curved.ch. 208-Urogenital papilla. / 1: Urogenital pore elevated onto a papilla in sexually mature specimens.Akawaio, Hypopomus, Microsternarchini, Brachyhypopomus) cladeNode 218: Hypopomidae cladeNode 221: Microsternarchini ch. 140-Branchiostegal ray morphology. / 0: Anterior 1\u20132 rays broad.ch. 158-Basibranchials. / 1: All five elements of basibranchial series unossified.Procerusternarchus+MicrosternarchusNode 222: ch. 139-Branchiostegal rays. / 0: 3\u20134 rays.Brachyhypopomus cladeNode 224: ch. 8-Oral opening in adults. / 0: Upper and lower jaws of equal length, oral aperture terminal.ch. 74-Base lateral ethmoid. / 1: Lateral ethmoid narrow or tubular; length of its base less than one-third length of its anterior margin.ch. 171-Os suspensorium. / 1: Anterior ramus short, reaching second vertebra.ch. 188-Number anal-fin rays. / 3: 200\u2013299 rays. Taxa coded by modal number of anal-fin rays.ch. 212-Caudal appendage. / 1: Caudal appendage elongate in sexually mature males.Node 234: RHAMPHICHTHYIDAE cladech. 210-Tail length. / 2: Tail long, more than 45% total length.ch. 218-Mental accessory EO. / 1: present.Steatogenys, Hypopygus) cladeNode 235: Steatogenae , a ventral extension of the medial surface of dentary where it covers the anterior portion of Meckel\u05f3s cartilage.ch. 55-Dentary teeth size. / 1: Teeth on posterior half of dentary twice the size of anterior teeth.ch. 71-Ethmoid cartilage. / 1: Ethmoid cartilage deeper than long; antorbital region of snout about as deep as long.ch. 73-Lateral ethmoid. / 1: Lateral ethmoid not ossified.ch. 86-Parasphenoid dorsal margin. / 1: Dorsal margin narrow.ch. 140-Branchiostegal ray morphology. / 0: Anterior 1\u20132 rays broad.ch. 143-Anterior pharyngobranchial. / 1: Anterior pharyngobranchial unossified.ch. 149-Epibranchial 5. / 1: Fifth epibranchial with posterior process.ch. 153-Hypobranchial 1. / 2: First hypobranchial rounded or pentagonal in dorsal view; anterior margin interrupted by a sharp angle.ch. 162-Urohyal blade hyperossified. / 1: Urohyal blade long, ossified to level of fourth basibranchial.ch. 188-Number anal-fin rays. / 1: Anal fin long, extending along majority of ventral body margin; 100\u2013159 rays.ch. 197-Body cavity short. / 2: Body cavity very short; associated with 11 or fewer precaudal vertebrae.ch. 208-Urogenital papilla. / 0: Urogenital pore sessile, opening flush with ventral margin of body wall in sexually mature specimens.ch. 220-Humeral accessory EO. / 1: Humeral electric organ extending dorsally from pectoral fin base, and then posteriorly along horizontal myoseptum a distance less than length of pectoral fin.Steatogenys cladeNode 238: ch. 18-Vertical pigment bars. \u201cSaddle-shaped bars\u201d. / 1\u201310 dark bars across mid-dorsal surface extending as vertical bands onto lateral surfaces.ch. 165-Mesocoracoid. / 0: Mesocoracoid ossified within scapulocoracoid cartilage, forming a bridge between medial surface of coracoid and cleithrum.ch. 166-Anterior coracoid process. / 1: Anterior coracoid process not extending to a vertical with contact of dorsomedial limb of coracoid with cleithrum.ch. 167-Proximal pectoral radials. / 1: Proximal radials three and four co-ossified in adult specimens.ch. 219-Mental accessory EO configuration. / 1: Mental accessory EO long, threadlike with many electrocytes.Hypopygus cladeNode 236: ch. 10-Position of anterior nares. / 1: Anterior nares located very close to or within gape, narial opening oriented anteroventrally.ch. 12-Posterior narial pore. / 1: Posterior narial pore absent.ch. 17-Vertical pigment lines. / 1: Thin vertical pigment lines present along longitudinal body axis.ch. 32-Lateral line. / 1: Lateral line incomplete.ch. 70-Dermal vomer. / 1: Dermal vomer not ossified.ch. 163-Posttemporal. / 0: Posttemporal independent from supracleithrum in mature specimens.Node 240: Rhamphichthyinae cladech. 5-Snout long. / 1: Snout elongate, frontal, vomer and anterior portion of parasphenoid elongate; preorbital length longer than one-third total head length or greater in mature specimens.ch. 9-Position of nasal capsule. / 1: Anterior position of nasal capsule; located closer to tip of snout than to eye; posterior nares closer to anterior nares than to anterior margin of eye.ch. 30-Scales on middorsum. / 1: Scales absent from head, anterior portion of dorsal midline, and area dorsal to pectoral fins.ch. 33-Lateral line pores. / 1: Posterior lateral line pores tubular; tube length more than three times pore diameter.ch. 59-Posterior limb anguloarticular. / 1: Posterior limb of anguloarticular large; its ventral margin longer than that of retroarticular.ch. 61-Mesethmoid length. / 1: Mesethmoid elongate, its length greater than antorbital region of frontal.ch. 87-Parasphenoid process. / 0: Anteroventral margin of parasphenoid smooth.ch. 116-Anterior extent of eminentia granularis. / 1: EG small, its anterior margin not extending to contact optic tectum.ch. 124-Endopterygoid anterior process. / 1: Entire extent of ligament ossified, forming a bony strut anterior to orbit; process equally as wide along most of its length.ch. 129-Size of symplectic. / 1: Length of symplectic greater than hyomandibula.ch. 130-Orientation of hyomandibula. / 1: Main axis of hyomandibula oriented horizontally, parallel to main axis of neurocranium.ch. 138-Opercular dorsal margin. / 1: Dorsal margin of opercle straight.ch. 178-DHS anterior series. / 1: Anterior series of 8\u201314 DHSs in hypaxial musculature lateral to body cavity.ch. 181-DHS 2 shape. / 0: Second posterior DHS straight.ch. 187-Anal fin origin. / 2: Anal fin origin near branchial isthmus.ch. 189-Anal-fin rays unbranched. / 2: 30\u201360 unbranched anal-fin rays.ch. 190-Anal-fin pterygiophore (AFP) length. / 1: Anal-fin pterygiophores longer than hemal spines at midbody; more than one-third total body depth .Gymnorhamphichthys cladeNode 241: ch. 30-Scales on middorsum. / 2: Scales absent along entire middorsum.ch. 43-Anterior maxillary process. / 1: Anterior process of maxilla extends anterior to articulation of maxilla and autopalatine, forming a tapered process, its ventral margin continuous with descending blade of maxilla; maxilla forked in lateral view.ch. 51-Dentary dorsal margin. / 1: Dorsal margin of dentary concave.ch. 69-Ventral ethmoid-Vomer. / 1: Ventral ethmoid and vomer not fused in adultsch. 82-Orbitosphenoid margin. \u201cSphenoid fenestra\u201d / 1: Posterior margin of orbitosphenoid not contacting pterosphenoid, except between dorsal portion of their common margin; presence of an unmineralized fenestra between orbitosphenoid and pterosphenoid.Iracema, Rhamphichthys) cladeNode 249: Rhamphichthyini .ch. 88-Posttemporal fossa. / 1: Epioccipital, pterotic, and parietal bones not contacting one another along their mutual margins, forming a fossa in posttemporal region; lateral surface of otic capsule exposed.ch. 94-Antorbital. / 1: Infraorbital canal extending onto antorbital.ch. 117-Posterior EG. / 1: Posterior lobe of EG well developed, wrapped around caudal lobe of cerebellum, its posterior margin extending to a vertical with posterior margin of ELL.ch. 122-Endopterygoid ascending process. / 1: Ascending process on lateral surface of endopterygoid; pterygocranial ligament ossified; base of ascending process situated approximately dorsal to articulation of quadrate with anguloarticular.ch. 146-Epibranchial 4. / 1: Fourth epibranchial with short posterior process.ch. 173-Position of neural spines. / 1: Neural spine inserting on posterior margin of caudal vertebral centra.ch. 174-Vertebral fenestrae. / 1: Lateral walls of neural arches with several small fenestrae; dorsal margin uneven, with several evaginations.ch. 179-DHS 1. / 1: Anterior DHS large, two to three times as broad as other hemal spines, often exhibiting additional distal tips. In the derived state the anterior DHS is curved and scythe shaped.ch. 180-DHS 1. / 1: Proximal surface of first DHS broad as blade.ch. 188-Number anal-fin rays. / 3: 200\u2013299 rays. Taxa coded by modal number of anal-fin rays.ch. 189-Anal-fin rays unbranched. / 1: Anterior 15\u201325 rays anal-fin rays unbranched to their tips.ch. 194-Distal AFP. / 0: Distal anal-fin pterygiophores present.ch. 217-Hypaxial EO ontogeny. / 1: Hypaxial electric organ replaced during development, adult organ not derived from hypaxial musculature.ch. 222-EOD form. / 1: EOD produced as a continual series of discharges to form a quasi-sinusoidal pattern of current emission; no capacity for EOD frequency modulations; relay and pacemaker cells mingled in a single medullary nucleus.ch. 223-EOD monophasic in adults. / 1: Monophasic EOD of juveniles retained into maturity; EOD characterized exclusively by head-positive depolarizations.Node 260: STERNOPYGIDAE cladech. 8-Oral opening in adults. / 0: Upper and lower jaws of equal length, oral aperture terminal.ch. 13-Eye size. / 0: Eye and optic tract large; about two eye diameters into postorbital head length.ch. 37-Tooth shape. / 1: Teeth in both jaws villiform, each tooth a long cylindrical shaft with a narrow base.ch. 57-M. Adductor mandibulae. / 1: Additional insertion of A1 on first infraorbital.ch. 72-Lateral ethmoid size. / 0: Lateral ethmoid a large endochondral ossification in the antorbital region, arching laterally over Profundus (V1) nerve, with four margins; anterolateral process contacting ventral ethmoid, posteromedial process contacting parasphenoid, dorsomedial margin contacting frontal, and anteromedial margin contacting mesethmoid.ch. 75-Nasal. / 1: Nasal broad.ch. 77-Antorbital process frontals. / 1: Lateroventral process of frontals anterior to orbit.ch. 97-Infraorbital canal plates. / 1: Antorbital and infraorbitals 1\u20134 large, partial cylinders with slender osseous arches.ch. 100-Mandibular canal. / 0: Canal bearing bones of preopercular\u2013mandibular laterosensory canal long and slender ossifications embedded in dermis; diameter of canal slender.ch. 106-Accessory optic system. / 0: Accessory optic tract large, easily visible in histological sections; neurons of tract organized into a distinct tegmental cell cluster .ch. 133-Mandibular canal size. / 1: Mandibular canal ossicles dumbbell-shaped.ch. 152-Ceratobranchial 4. \u201cLateral process of sixth ceratobranchial\u201d. / 1: Lateral surface of fourth ceratobranchial with an anterolaterally oriented process.ch. 172-Anterior vertebrae. / 1: Parapophyses of second vertebrae separated by distinct gap from the os suspensorium.ch. 176-Caudal intermusculars. / 1: Capacity to regenerate ossified intermuscular bones.ch. 197-Body cavity short. / 0: Body cavity associated with 16\u201319 vertebrae.Sternopygus cladeNode 261: ch. 14-Position of eye. / 0: Surface of eye not covered by epidermis in adults; free orbital margin.ch. 20-Longitudinal lines. / 2: A white narrow stripe extending parallel to the base of the anal-fin pterygiophores, and then posteriorly along the lateral midline.ch. 27-Branchial opening. / 0: Branchial opening extends along entire posterior margin of opercle, from isthmus to pectoral fin insertion.ch. 63-Mesethmoid, tip shape. / 0: Portion of mesethmoid anterior to ventral ethmoid horizontal; its dorsal surface anterior and posterior to ventral ethmoid approximately parallel; its ventral surface parallel with dorsal surface.ch. 68-Median septum of ventral ethmoid. / 1: Ossified median septum of ventral ethmoid elongate in mature specimens, longer than deep, extending posterior to posterior margin of lateral process.ch. 125-Mesopterygoid dentition. / 0: Numerous small teeth distributed in an irregular field on anterior portion of ventral surface of endopterygoid.ch. 163-Posttemporal. / 0: Posttemporal independent from supracleithrum in mature specimens.ch. 189-Anal-fin rays unbranched. / 3: all anal-fin rays unbranched.ch. 216-Main EO electrocyte morphology. / 0: Electrocytes cigar shaped, elongate; longitudinal axis parallel with neuraxis.Node 265: Eigenmanninae cladech. 4-Snout length short. / 1: Snout short, preorbital length less than one-third total head length.ch. 26-Body translucence. / 1: Body translucent in living specimens, yellow or pink hue in living specimens, yellow or hyaline in formalin-fixed specimens, melanophores sparse or absent on lateral body surface.ch. 83-Sphenotic process. / 1: Dorsolateral margin of sphenotic bearing a transversely oriented crest or process exposed on dorsolateral edge, anterior margin not underlying frontal.ch. 146-Epibranchial 4. / 0: Posterior margin of fourth epibranchial flat.ch. 148-Shape of 4th epibranchial. / 0: Fourth epibranchial with short ascending process.ch. 164-Scapular foramen. / 1: Unossified region of scapulocoracoid cartilage included entirely within the scapula, forming a large foramen.ch. 167-Proximal pectoral radials. / 1: Proximal radials three and four co-ossified in adult specimens.ch. 175-Shape anterior intermusculars. / 1: Intermusculars highly branched.ch. 180-DHS 1 proximal surface. / 0: Proximal surface of first DHS narrower than descending blade.ch. 188-Number anal-fin rays. / 2: 160\u2013199 rays.ch. 197-Body cavity short. / 2: Body cavity very short; associated with 11 or fewer precaudal vertebrae.ch. 199-Number of pleural ribs. / 1: Seven or fewer pairs of pleural ribs.ch. 200-Length of anterior ribs. / 1: Length of anterior two ribs greater than 80% body depth at pectoral girdle.Rhabdolichops cladeNode 266: ch. 30-Scales on middorsum. / 1: Scales absent from head, anterior portion of dorsal midline, and area dorsal to pectoral fins.ch. 43-Anterior maxillary process. / 0: Anterior process of maxilla absent.ch. 46-Maxilla descending blade. / 1: Descending blade of maxilla broad, connective tissue membrane along its anteroventral margin ossified to form a thin shelf; anterior portion of maxilla rhomboid in lateral view.ch. 86-Parasphenoid dorsal margin. / 1: Dorsal margin narrow.ch. 87-Parasphenoid process. / 1: Parasphenoid with anteroventral process.ch. 182-Number posterior DHS. / 1: A single DHS posterior to large anterior spine.ch. 190-Anal-fin pterygiophore (AFP) length. / 1: Anal-fin pterygiophores longer than hemal spines at midbody; more than one-third total body depth .Distocyclus, Archolaemus, Japigny, Eigenmannia) cladeNode 270: Eigenmannini length. / 1: Anal-fin pterygiophores longer than hemal spines at midbody; more than one-third total body depth .ch. 202-Posterior parapophyses. / 1: Parapophyses of posterior precaudal vertebra longer than wide, their ventral margins parallel with long axis of body, abutting at midline.ch. 203-Shape last precaudal parapophyses. / 1: Parapophyses of last precaudal vertebra slender and sinuous, their tips pointed.ch. 210-Tail length. / 1: Tail short, 0\u201316% total length.ch. 211-Elongate caudal rod. / 0: Caudal fin present with hypural plate and segmented rays.ch. 213-Caudal fin. / 0: Caudal fin present.ch. 221-Neural EO. / 1: Main electric organ of mature specimens derived from electromotor neurons which innervate larval hypaxial organ.Orthosternarchus, Sternarchorhamphus) cladeNode 280: Sternarchorhamphinae .ch. 123-Endopterygoid ascending process. / 1: Small ascending process of endopterygoid in juveniles obliterated by growth along dorsal margin of bone; no endopterygoid process in adults.ch. 128-Metapterygoid posterior wing. / 1: Metapterygoid elongate and narrow, longer than wide at its midlength.ch. 165-Mesocoracoid. / 0: Mesocoracoid ossified within scapulocoracoid cartilage, forming a bridge between medial surface of coracoid and cleithrum.ch. 184-Dorsal organ length. / 1: Dorsal organ extends along entire dorsal margin of body, from nape to caudal peduncle.ch. 187-Anal fin origin. / 2: Anal fin origin near branchial isthmus.ch. 189-Anal-fin rays unbranched. / 3: all anal-fin rays unbranched.ch. 191-Shape of AFP blades. / 1: Descending blades of anal-fin pterygiophores broad, anterior and posterior margins extending into ventral median septum in cross section.ch. 192-Shape of AFP tips. / 1: Tips of pterygiophores shaped like an arrow-head; axial series of pterygiophores providing the ventral margin of the anal-fin base a scalloped appearance.Node 281: Apteronotinae cladech. 67-Ventral ethmoid lateral process shape. / 1: Lateral process of ventral ethmoid robust, posterior surface forming articulation with lateral ethmoid cartilage broad and rounded, covered by a cartilage cap.ch. 153-Hypobranchial 1. / 1: First hypobranchial triangular in dorsal view. 2: First hypobranchial rounded or pentagonal in dorsal view; anterior margin interrupted by a sharp angle.ch. 188-Number anal-fin rays. / 1: Anal fin long, extending along majority of ventral body margin; 100\u2013159 rays.ch. 201-Size of anterior ribs. / 1: Anterior ribs broad, breadth two to three times width.ch. 223-EOD monophasic in adults. / 0: EOD of mature specimens with two (sometimes three or four) phases; EOD characterized by both head-positive and head-negative depolarizations.Adontosternarchus cladeNode 282: ch. 4-Snout length short. / 1: Snout short, preorbital length less than one-third total head length.ch. 8-Oral opening in adults. / 0: Upper and lower jaws of equal length, oral aperture terminal.ch. 36-Adult dentition. / 1: Oral teeth present in juveniles, lost and not replaced during development.ch. 40-Snout length short. / 1: Snout short, preorbital length less than one-third total head length.ch. 47-Maxilla descending blade. / 2: Anteroventral margin of descending blade not ossified; distal half of blade extending as a narrow process with a sharp point at its distal tip.ch. 50-Dentary gracile. / 1: Dentary gracile, posterodorsal process tapering to a point (except in Adontosternarchus sachsi), ventral margin concave.ch. 71-Ethmoid cartilage. / 1: Ethmoid cartilage deeper than long; antorbital region of snout about as deep as long.ch. 81-Orbitosphenoid shape. / 1: Anterior margin of orbitosphenoid not ossified, orbitosphenoid narrow, its ventral margin about as long or shorter than its dorsal margin.ch. 85-Parasphenoid ventral margin. / 1: Ventral margin of parasphenoid flexed sharply on either side of the basicranial region; ventral margin of sphenoid region oblique relative to long axis of neurocranium.ch. 115-Lateral line afferents. / 0: Lateral line afferents from electrosensory periphery intermingled as they course into the electrosensory lateral line lobe (ELL); fibers from different lateral line nerves not segregated.ch. 138-Opercular dorsal margin. / 0: Dorsal margin of opercle convex. 1: Dorsal margin of opercle straight.ch. 139-Branchiostegal rays. / 1: 5\u20136 rays.ch. 161-Urohyal blade. / 1: Posterior blade of urohyal unossified, anterior head of urohyal positioned ventral to second basibranchial.ch. 202-Posterior parapophyses. / 0: Parapophyses of posterior precaudal vertebra small, their ventral margins oblique to long axis of body, not contacting one another along midline.Node 286: Apteronotini+Sternarchorhynchini+Navajini cladech. 64-Mesethmoid, tip size. / 1: Portion of mesethmoid anterior to ventral ethmoid flexed ventrally in mature specimens; its dorsal surface anterior and posterior to ventral ethmoid at an oblique angle; its ventral surface oblique to dorsal surface. terminal.ch. 92-Infraorbital subnasal extension. / 0: Anterior portion of infraorbital canal extending anterior from first infraorbital ventral to nasal capsule; anterior canal pore of infraorbital canal situated anterior to first infraorbital.ch. 203-Shape last precaudal parapophyses. / 0: Parapophyses of last precaudal vertebra broad and triangular, their tips rounded.Parapteronotus, Megadontognathus, Apteronotus) cladeNode 287: Apteronotini length. / 0: Anal-fin pterygiophores shorter than hemal spines at midbody; less than one-third total body depth .Megadontognathus+Apteronotus cladeNode 289: ch. 21-Pigment contrast. / 1: High contrast dark brown or black and white pigments on body surface.ch. 58-Anterior limb anguloarticular. / 1: Anterior limb of anguloarticular shorter than posterior limb.ch. 90-Cranial skeleton texture. / 0: Surface of endochondral and dermal ossifications of cranial skeleton composed of lamellar or cancellous bone.ch. 197-Body cavity short. / 0: Body cavity associated with 16\u201319 vertebrae.ch. 210-Tail length. / 0: Length of tail posterior to anal-fin 17\u201345% total length.Apteronotus cladeNode 290: ch. 19-Caudal Peduncle Spot. / 1: Pale spot present at base of caudal region. Newly coded herein.ch. 23-White mid-sagittal pigments. / 1: Mid-sagittal region of dorsal and mental surfaces bright white.ch. 154-Hypobranchial 2. / 1: Anterior tip of second hypobranchial with a large medially oriented process, contacting contralateral third hypobranchial across midline by means of a cartilaginous bridge.Apteronotus magdalenensis+A. leptorhynchus cladeNode 291: ch. 5-Snout long. / 1: Snout elongate, frontal, vomer and anterior portion of parasphenoid elongate; preorbital length longer than one-third total head length or greater in mature specimens.ch. 80-Sphenoid region. / 1: Sphenoid region of neurocranium more than one-third total head length, combined axial length of the orbitosphenoid and pterosphenoid bones greater than preorbital region.Apteronotus magdalenensis cladeNode 292: ch. 6-Gape large. / 0: Rictus of mouth extends ventral to nasal capsule, gape forming less than one-third total head length.ch. 25-Pigment distribution. / 1: Black and white pigments distributed unevenly over body surface, darker and paler areas grading into one another; integument with a marbled or mottled appearance.ch. 122-Endopterygoid ascending process. / 0: Lateral surface of endopterygoid smooth; no ascending process ossified in pterygocranial ligament (connecting endopterygoid with neurocranium).ch. 123-Endopterygoid ascending process. / 1: Small ascending process of endopterygoid in juveniles obliterated by growth along dorsal margin of bone; no endopterygoid process in adults.Apteronotus leptorhynchus cladeNode 293: ch. 55-Dentary teeth size. / 1: Teeth on posterior half of dentary twice the size of anterior teeth.Apteronotus albifrons cladeNode 294: ch. 22-White posterior bars. / 1: White or pale bars present on caudal region as observed in members of the Apteronotus albifrons species group. Newly coded herein.ch. 197-Body cavity short. / 1: Body cavity short; associated with 12\u201315 precaudal vertebrae.Node 298: Sternarchorhynchini+Navajini cladeNo known diagnostic character.Platyurosternarchus, Sternarchorhynchus) cladeNode 299: Sternarchorhynchini .ch. 123-Endopterygoid ascending process. / 1: Small ascending process of endopterygoid in juveniles obliterated by growth along dorsal margin of bone; no endopterygoid process in adults.ch. 128-Metapterygoid posterior wing. / 1: Metapterygoid elongate and narrow, longer than wide at its midlength.ch. 153-Hypobranchial 1. / 0: First hypobranchial rectangular in dorsal view; anterior margin straight.ch. 187-Anal fin origin. / 2: Anal fin origin near branchial isthmus.ch. 188-Number anal-fin rays. / 2: 160\u2013199 rays.ch. 191-Shape of AFP blades. / 1: Descending blades of anal-fin pterygiophores broad, anterior and posterior margins extending into ventral median septum in cross section.ch. 202-Posterior parapophyses. / 0: Parapophyses of posterior precaudal vertebra small, their ventral margins oblique to long axis of body, not contacting one another along midline.Platyurosternarchus cladeNode 300: ch. 6-Gape large. / 1: Rictus extends posterior to a vertical through eye, gape forming more than one-third total head length.ch. 7-Gape short. / 0: Rictus extends ventral to nasal capsule, gape more than three times eye diameter, oriented parallel with long axis of head.ch. 125-Mesopterygoid dentition. / 0: Numerous small teeth distributed in an irregular field on anterior portion of ventral surface of endopterygoid.ch. 182-Number posterior DHS. / 0: Two or three DHSs posterior to large anterior spine.ch. 188-Number anal-fin rays. / 3: 200\u2013299 rays. Taxa coded by modal number of anal-fin rays.Sternarchorhynchus cladeNode 301: ch. 8-Oral opening in adults. / 0: Upper and lower jaws of equal length, oral aperture terminal.ch. 9-Position of nasal capsule. / 1: Anterior position of nasal capsule; located closer to tip of snout than to eye; posterior nares closer to anterior nares than to anterior margin of eye.ch. 23-White mid-sagittal pigments. / 1: Mid-sagittal region of dorsal and mental surfaces bright white.ch. 45-Anterior maxillary shelf. / 0: Anterior process of maxilla extending as a shelf of bone less than one-third the length of the descending blade.ch. 53-Dentary filamentous. / 1: Dentary elongate and filamentous, more than four times as long as deep.ch. 81-Orbitosphenoid shape. / 1: Anterior margin of orbitosphenoid not ossified, orbitosphenoid narrow, its ventral margin about as long or shorter than its dorsal margin.ch. 94-Antorbital. / 0: Infraorbital canal not extending onto antorbital.ch. 139-Branchiostegal rays. / 1: 5\u20136 rays.ch. 146-Epibranchial 4. / 0: Posterior margin of fourth epibranchial flat.Node 312: Navajini cladech. 26-Body translucence. / 1: Body translucent in living specimens, yellow or pink hue in living specimens, yellow or hyaline in formalin-fixed specimens, melanophores sparse or absent on lateral body surface.ch. 30-Scales on middorsum. / 2: Scales absent along entire middorsum.ch. 31-Scale shape. / 1: Scales dorsal to lateral line rhomboid, their long axis oriented oblique to long axis of body, their dorsoventral axes longer than their longitudinal axes.ch. 49-Rows of dentary teeth. / 1: Teeth on dentary arranged in two to three rows at its midlength.ch. 101-Mandibular canal ossicles. / 1: Canal bearing bones of mandibular laterosensory canal ossified as short, broad, dumbbell-shaped ossicles.Pariosternarchus, Sternarchella, Magosternarchus) cladeNode 313: Sternarchellini nerve, with four margins; anterolateral process contacting ventral ethmoid, posteromedial process contacting parasphenoid, dorsomedial margin contacting frontal, and anteromedial margin contacting mesethmoid.ch. 101-Mandibular canal ossicles. / 0: Canal bearing bones of mandibular laterosensory canal long and slender tubes.ch. 155-Hypobranchial teeth. / 1: Seven or fewer teeth present on sixth hypobranchial.Sternarchogiton, Compsaraia, Porotergus, \"Apteronotus\" bonapartiiNode 316: clade comprised of ch. 19-Caudal Peduncle Spot. / 1: Pale spot present at base of caudal region. Newly coded herein.ch. 46-Maxilla descending blade. / 1: Descending blade of maxilla broad, connective tissue membrane along its anteroventral margin ossified to form a thin shelf; anterior portion of maxilla rhomboid in lateral view.ch. 161-Urohyal blade. / 1: Posterior blade of urohyal unossified, anterior head of urohyal positioned ventral to second basibranchial.ch. 168-Pectoral fin. / 1: Pectoral fin, less than 43% head length.ch. 210-Tail length. / 0: Length of tail posterior to anal-fin 17\u201345% total length.Sternarchogiton cladeNode 317: ch. 4-Snout length short. / 1: Snout short, preorbital length less than one-third total head length .ch. 40-Snout length short. / 1: Snout short, preorbital length less than one-third total head length .ch. 47-Maxilla descending blade. / 1: Ventral margin of descending blade with a sharp angle about two-thirds distance to its tip; ventral margin posterior to this angle relatively straight.ch. 49-Rows of dentary teeth. / 0: A single row of teeth on dentary.ch. 50-Dentary gracile. / 1: Dentary gracile, posterodorsal process tapering to a point (except in Adontosternarchus sachsi), ventral margin concave.ch. 74-Base lateral ethmoid. / 1: Lateral ethmoid narrow or tubular; length of its base less than one-third length of its anterior margin.ch. 81-Orbitosphenoid shape. / 1: Anterior margin of orbitosphenoid not ossified, orbitosphenoid narrow, its ventral margin about as long or shorter than its dorsal margin.ch. 85-Parasphenoid ventral margin. / 1: Ventral margin of parasphenoid flexed sharply on either side of the basicranial region; ventral margin of sphenoid region oblique relative to long axis of neurocranium.ch. 93-Infraorbital\u2013supraorbital prenasal commissure. / 1: Infraorbital\u2013supraorbital prenasal commissure present.ch. 163-Posttemporal. / 0: Posttemporal independent from supracleithrum in mature specimens.ch. 191-Shape of AFP blades. / 1: Descending blades of anal-fin pterygiophores broad, anterior and posterior margins extending into ventral median septum in cross section.ch. 197-Body cavity short. / 2: Body cavity very short; associated with 11 or fewer precaudal vertebrae.Compsaraia+Porotergus gimbeli+\"Apteronotus\" bonapartii species group cladeNode 322: ch. 6-Gape large. / 1: Rictus extends posterior to a vertical through eye, gape forming more than one-third total head length.ch. 7-Gape short. / 0: Rictus extends ventral to nasal capsule, gape more than three times eye diameter, oriented parallel with long axis of head.ch. 9-Position of nasal capsule. / 1: Anterior position of nasal capsule; located closer to tip of snout than to eye; posterior nares closer to anterior nares than to anterior margin of eye.ch. 154-Hypobranchial 2. / 1: Anterior tip of second hypobranchial with a large medially oriented process, contacting contralateral third hypobranchial across midline by means of a cartilaginous bridge.ch. 159-Basibranchial one. / 1: First basibranchial foreshortened and broad, hourglass shaped, breadth at midlength narrower than at either end.Compsaraia cladeNode 323: ch. 5-Snout long. / 1: Snout elongate, frontal, vomer and anterior portion of parasphenoid elongate; preorbital length longer than one-third total head length or greater in mature specimens.ch. 24-Antorbital stripe. / 1: Melanophores absent from narrow band passing lateral to nares.ch. 78-Dorsal margin of frontals. / 1: Portion of frontal anterior to orbit concave in lateral profile.ch. 102-Supratemporal lateralis canal. / 1: Supratemporal laterosensory canal curved at a sharp angle on surface of parietal, extending posterior onto epaxial surface of body; terminal canal pore oriented posteriorly; epidermis overlying supratemporal canal depigmented, forming a pale inverted L shaped patch.ch. 133-Mandibular canal size. / 1: Mandibular canal ossicles dumbbell-shaped.Porotergus+\u201cApteronotus\u201d bonapartii cladeNode 324: ch. 161-Urohyal blade. 0: Posterior blade of urohyal ossified, extending posterior to fourth basibranchial.Apteronotus\u201d bonapartii cladeNode 325: \u201cch. 30-Scales on middorsum. / 1: Scales absent from head, anterior portion of dorsal midline, and area dorsal to pectoral fins.ch. 47-Maxilla descending blade. / 1: Ventral margin of descending blade with a sharp angle about two-thirds distance to its tip; ventral margin posterior to this angle relatively straight.ch. 84-Parasphenoid lateral process. / 0: Lateral margins of parasphenoid extending as broad dorsolateral processes anterior to prootic, extending to a horizontal with trigeminal foramen.ch. 168-Pectoral fin. / 0: Pectoral fin large, more than 43% head length."} {"text": "Sensors [http://www.mdpi.com/1424-8220/15/5/11769.The authors wish to update the Acknowledgments in their paper published in Sensors , doi:10."} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceived and designed the experiments: LM MD MES BP ES BS WDH. Performed the experiments: LM MD MES ESC TD KTW. Analyzed the data: LM MD MES ESC BP ES BS TD KTW. Contributed reagents/materials/analysis tools: KTW TD. Wrote the paper: LM WDH. Computational analysis: CL RRR."} {"text": "From 2001 to 2011, the percentage of children aged <18 years who were receiving special educational or early intervention services increased overall and among Hispanic and non-Hispanic white children, no change was observed among non-Hispanic black children. In 2001 and 2011, Hispanic children were less likely than non-Hispanic white and non-Hispanic black children to receive these services.Sources: Barnes PM, Adams PF, Schiller JS. Summary health statistics for the U.S. population: National Health Interview Survey, 2001. Vital Health Stat 2003;10(217). Available at http://www.cdc.gov/nchs/data/series/sr_10/sr10_217.pdf.http://www.cdc.gov/nchs/data/series/sr_10/sr10_255.pdf.Adams PF, Kirzinger WK, Martinez ME. Summary health statistics for the U.S. population: National Health Interview Survey, 2011. Vital Health Stat 2012;10(255). Available at"} {"text": "The name of the fourth author was spelled incorrectly. The correct name is: Patrice M. Amb\u00fchl. The correct citation is: Tomonaga Y, Risch L, Szucs TD, Amb\u00fchl PM (2013) The Prevalence of Chronic Kidney Disease in a Primary Care Setting: A Swiss Cross-Sectional Study. PLoS ONE 8(7): e67848. doi:10.1371/journal.pone.0067848."} {"text": "Nesomyrmex sikorai species-group was assessed via hypothesis-free nest-centroid-clustering combined with recursive partitioning to estimate the number of morphological clusters and determine the most probable boundaries between them. This combination of methods provides a highly automated and objective species delineation protocol based on continuous morphometric data. Delimitations of clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis (LDA) and Multivariate Ratio Analysis (MRA). The final species hypotheses are corroborated by many qualitative characters, and the recognized species exhibit different spatial distributions and occupy different ecological regions. We describe and redescribe eight morphologically distinct species including six new species: Nesomyrmex excelsiorsp. n., N. modestussp. n., N. reticulatussp. n., N. retusispinosus , N. rugosussp. n., N. sikorai , N. striatussp. n., and N. tamatavensissp. n. An identification key for their worker castes using morphometric data is provided.Madagascar is one of the world\u2019s greatest biodiversity hotspots, meriting special attention from biodiversity scientists. It is an excellent testing ground for novel techniques in taxonomy that aim to increase classification objectivity and yield greater taxonomic resolving power. Here we reveal the diversity of a unique and largely unexplored fragment of the Malagasy ant fauna using an advanced combination of exploratory analyses on quantitative morphological data allowing for increased objectivity in taxonomic workflow. The diversity of the The main objective of taxonomy is to document the diversity of flora and fauna. It provides fundamental information for endeavors dealing with biodiversity by addressing a crucial question: \u201chow many species are there?\u201d Unfortunately, the rapidly accelerating rate of biodiversity loss we face today , 2 posesIn recent years a number of promising new algorithmic approaches has been developed and introduced in insect taxonomy for the purpose of recognizing complex patterns in continuous morphometric data \u20137. TheseNesomyrmex sikorai group is inferred via a highly automated protocol involving a fusion of two algorithms, Nest Centroid clustering .CW: Maximum width of the head including compound eyes, [R = 0.999] .CWb: Maximum width of head capsule without the compound eyes. Measured just posterior to the eyes, [R = 0.998] .PoOC: Postocular distance. Use a cross-scaled ocular micrometer and adjust the head to the measuring position of CL. Caudal measuring point: median occipital margin; anterior measuring point: median head at the level of the posterior eye margin, [R = 0.997] .SL: Scape length. Maximum straight line scape length excluding the basal neck and the articular condyle, [R = 0.998] .CS: Absolute cephalic size. The arithmetic mean of CL and CWb.EL: Maximum diameter of the compound eye, [R = 0.929].FRS: Frontal carina distance. Distance of the frontal carinae immediately caudal of the posterior intersection points between frontal carinae and torular lamellae. If these dorsal lamellae do not laterally surpass the frontal carinae, the deepest point of scape corner pits may be taken as the reference line. These pits take up the inner corner of the scape base when the scape is directed fully caudally and produces a dark, triangular shadow in the lateral frontal lobes immediately posterior to the dorsal lamellae of the scape joint capsule, [R = 0.982] .MW: Mesosoma width. In workers MW is defined as the longest width of the pronotum in dorsal view excluding the pronotal spines, [R = 0.998] .PSTI: Apical distance of pronotal spines in dorsal view; if spine tips are rounded or thick take the centers of spine tips as reference points, [R = 0.994] .PEW: Maximum width of petiole in dorsal view. Nodal spines are not considered, [R = 0.996] .PPW: Postpetiole width. Maximum width of postpetiole in dorsal view, [R = 0.994] .SPBA: Minimum propodeal spine distance. The smallest distance of the lateral margins of the propodeal spines at their base. This should be measured in antero-dorsal view, since the wider parts of the ventral propodeum do not interfere with the measurement in this position. If the lateral margins of propodeal spines diverge continuously from the tip to the base, a smallest distance at base is not defined. In this case, SPBA is measured at the level of the bottom of the interspinal meniscus, [R = 0.993] .SPTI: Apical propodeal spine distance. The distance of propodeal spine tips in dorsal view; if spine tips are rounded or truncated, the centers of spine tips are taken as reference points, [R = 0.994] .ML (Weber\u2019s length): Mesosoma length from caudalmost point of propodeal lobe to transition point between anterior pronotal slope and anterior pronotal shield , [R = 0.998] .MPST: Maximum distance from the center of the propodeal spiracle to the posteroventral corner of the ventrolateral margin of the metapleuron, [R = 0.989] .NOH: Maximum height of the petiolar node, measured in lateral view from the uppermost point of the petiolar node perpendicular to a reference line set from the petiolar spiracle to the imaginary midpoint of the transition between the dorso-caudal slope and dorsal profile of caudal cylinder of the petiole, [R = 0.958] .NOL: Length of the petiolar node. Measured in lateral view from the center of the petiolar spiracle to the dorso-caudal corner of caudal cylinder. Do not erroneously take as the reference point the dorso-caudal corner of the helcium, which is sometimes visible, [R = 0.981] .PPL: Postpetiole length. The longest anatomical line that is perpendicular to the posterior margin of the postpetiole and is between the posterior postpetiolar margin and the anterior postpetiolar margin, [R = 0.975] .SPST: Propodeal spine length. Distance between the center of the propodeal spiracle and spine tip. The spiracle center refers to the midpoint defined by the outer cuticular ring but not to the center of the actual spiracle opening, which may be positioned eccentrically, [R = 0.994] .PEH: Maximum petiole height. The longest distance measured from the ventral petiolar profile at node level (perpendicular to the chord length of the petiolar sternum) to the distalmost point of the dorsal profile of the petiolar node, [R = 0.989] .PEL: Diagonal petiolar length in lateral view; measured from anterior corner of subpetiolar process to dorso-caudal corner of caudal cylinder, [R = 0.991] .PPH: Maximum height of the postpetiole in lateral view measured perpendicularly to a line defined by the linear section of the segment border between postpetiolar tergite and sternite, [R = 0.991] .http://purl.org/NET/mx-database). Taxonomic history and descriptions of taxonomic treatments were rendered from this software. Hymenoptera-specific terminology of morphological statements used in descriptions, the identification key, and diagnoses are mapped to classes in phenotype-relevant ontologies (Hymenoptera Anatomy Ontology (HAO) we we12] weNest-centroid clustering (NC-clustering), and linear discriminant analysis (LDA) do not require special data preparation (e.g. standardization), hence raw data were applied for each of the statistical analyses. Data, however, are standardized for the multivariate ratio analysis (MRA) to prevent variables that are larger from dominating the analysis . Variablcluster , petiolar node longer: NOH/CS 0.3 > \u2026 2Scapes very short: SL/CS < 0.73 , petiolar node very short: NOL/CS < 0.3 \u2026 N. reticulatus sp. n.-Propodeal spines triangular, acute, and shorter: SPST/CS < 0.36 \u2026 4Propodeal spines curving downward, blunt, and very long: SPST/CS > 0.36 \u2026 3N. retusispinosus -N. tamatavensis sp. n.Vertex smooth, main sculpture absent, ground sculpture inconspicuously areolate, shiny. In full-face view, compound eyes positioned in the middle of the longitudinal axis of head or closer to the posterior occipital border: PoOC/CL < 0.455 \u2026 Vertex rugose, ground sculpture areolate, dull. In full-face view, compound eyes positioned forward and closer to the anterior clypeal border: PoOC/CL > 0.455 \u2026 -Workers yellow to light brown. Eyes non-protuberant in full-face view: CW/ML: < 0.73 , \u2026 7Black species. Eyes protuberant in full-face view: CW/ML: > 0.73 , \u2026 5N. modestus sp. n.-Main sculpture on vertex and on the dorsum of mesosoma present and coarse areolate or costate, ground sculpture inconspicuously areolate or absent. Eyes strongly protuberant in full-face view: CL/CW < 1.09 \u2026 6Main sculpture on vertex and on the dorsum of mesosoma inconspicuously areolate or absent partly, ground sculpture smooth and shiny. Eyes moderately protuberant in full-face view: CL/CW > 1.09 \u2026 N. sikorai -N. striatus sp. n.Main sculpture on vertex longitudinal costate, ground sculpture inconspicuously areolate. Dorsum of petiolar node smooth and shiny. The best morphometric ratio PSTI/SPTI > 2.5 \u2026 Main sculpture on vertex coarse areolate, ground sculpture inconspicuously areolate. Dorsum of petiolar node rugoso-reticulate, dull. The best morphometric ratio PSTI/SPTI \u2264 2.5 \u2026 N. excelsior sp. n.-N. rugosus sp. n.Postpetiole shorter, anterolateral angles of mesosoma widely distant: PSTI/PPW 1.84 , . Occurs on lower elevations < 500 m. \u2026 Postpetiole longer, anterolateral angles of mesosoma less distant: PSTI/PPW > 1.84 , . Occurs on higher ground > 500 m. \u2026 N. sikorai species-group are described including biogeographic information. The basic statistics of body size ratios are given in In this section, eight species of the urn:lsid:zoobank.org:act:540D306B-7EAC-4AD9-B072-842AC26F91F7Figs .Holotype worker: MADGAGASCAR: Prov. Toliara, For\u00eat Class\u00e9e d'Analavelona, 29.2 km 343\u00b0 NNW Mahaboboka, Madagascar, 1100 m, -22.675 N, 44.19 E, 18.ii.2003, collection code: BLF07826; CASENT0498265, Fisher et al., ex dead twig above ground montane rainforest ;Paratypes: 8 workers and a single gyne with the same label data with the holotype under CASENT codes: CASENT0763558, BLF07826, ; CASENT0498263, BLF07826, ; CASENT0498264, BLF07826, ; CASENT0498266, BLF07826, ;The list of 83 worker individuals belonging to 58 nest samples morphometrically investigated is given in See in key.Body color: yellow; brown. Body color pattern: Body concolorous. Absolute cephalic size: 726 \u03bcm . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.281 . Postocular distance vs. cephalic length (PoOc/CL): 0.457 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: convex. Vertex contour line in anterior view shape: straight; feebly convex. Vertex sculpture: main sculpture rugoso-reticulate, ground sculpture smooth. Gena contour line in anterior view shape: convex. Genae contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.233 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.289 . Longitudinal carinae on median region of frons count: present. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.822 . Median clypeal notch count: present. Median carina of clypeus count: absent. Spine length vs. absolute cephalic size (SPST/CS): 0.275 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.225 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.252 . Propodeal spine shape: straight; triangular, blunt. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.607 . Metanotal depression count: present. Dorsal region of mesosoma sculpture: rugose with smooth ground sculpture. Lateral region of pronotum sculpture: inconspicuously areolate ground sculpture, main sculpture rugoso-reticulate. Mesopleuron sculpture: smooth ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.233 . Dorsal region of petiole sculpture: ground sculpture inconspicuously areolate, main sculpture rugoso-reticulate. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.354 . Dorsal region of postpetiole sculpture: ground sculpture smooth, main sculpture dispersed rugose.The name refers to the typically montane occurrence of this species.This species is known to occur in smaller, isolated montane rainforests between elevation of 520 m and 1325 m (mean: 1007 m) in the western and central part of Madagascar .urn:lsid:zoobank.org:act:A8B6069A-2FD3-4CEA-AC0D-DB36127037B0Figs .Holotype worker: MADGAGASCAR: Prov. Toliara, Anosy Region, Anosyenne Mts, 29.33 km NW Manantenina, Madagascar, 540 m, -24.13993 N, 47.07418 E, 21.ii.2015, collection code: BLF36218; CASENT0393175, B.L.Fisher, F.A.Esteves et al. ;Paratypes: 13 workers with the same label data with the holotype under CASENT codes: CASENT0393167, BLF36224, ; CASENT0393168, BLF36224, ; CASENT0393169, BLF36224, ; CASENT0393170, BLF36224, ; CASENT0393171, BLF36224, ; CASENT0393172, BLF36224, ; CASENT0393173, BLF36224, ; CASENT0393176, BLF36218, ; CASENT0393177, BLF36218, ; CASENT0393178, BLF36218, ; CASENT0393179, BLF36218, ; CASENT0393180, BLF36218, ; CASENT0393181, BLF36218, ;The list of 18 worker individuals belonging to 18 nest samples morphometrically investigated is given in See in key.Body color: black. Body color pattern: concolorous. Absolute cephalic size: 796 \u03bcm . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.216 . Postocular distance vs. cephalic length (PoOc/CL): 0.453 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: convex. Vertex contour line in anterior view shape: straight; feebly convex. Vertex sculpture: main sculpture areolate, ground sculpture smooth. Gena contour line in anterior view shape: convex. Gena contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture; rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: present. Eye length vs. absolute cephalic size (EL/CS): 0.234 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.295 . Longitudinal carinae on median region of frons count: present. Smooth median region on frons count: present. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.771 . Median clypeal notch: present. Median carina of clypeus count: absent. Spine length vs. absolute cephalic size (SPST/CS): 0.236 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.236 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.251 . Propodeal spine shape: triangular, blunt. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.657 . Metanotal depression count: present. Dorsal region of mesosoma sculpture: smooth ground sculpture superimposed by feeble areolate main sculpture. Lateral region of pronotum sculpture: inconspicuous areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: smooth ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.223 . Dorsal region of petiole sculpture: ground sculpture smooth, main sculpture absent. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.341 . Dorsal region of postpetiole sculpture: ground sculpture smooth, main sculpture absent.The name (modestus = moderate) refers to the moderately coarse surface sculpturing of this species.This species is known to occur in rainforests between elevation of 520 m and 1325 m (mean: 514 m) in the southwestern part of Madagascar .urn:lsid:zoobank.org:act:3E5E26A6-6795-45AA-A051-2AFDAF57E6E5Figs .Holotype worker: MADGAGASCAR: Prov. Toliara, For\u00eat de Kirindy, 15.5 km 64\u00b0 ENE Marofandilia, 100 m, -20.045 N, 44.66222 E, 28.xi.2001, collection code: BLF04604; CASENT0418497, Fisher-Griswold Arthropod Team, beating low vegetation tropical dry forest ;Paratypes: 3 workers and a gyne with the same label data with the holotype under CASENT codes: CASENT0473935, BLF04605, ; CASENT0418443, BLF04604, ; CASENT0418447, BLF04604, ; CASENT0418482, BLF04604, ;The list of 7 worker individuals belonging to 7 nest samples morphometrically investigated is given in See in key.Body color: yellow; brown. Body color pattern: concolorous. Absolute cephalic size: 511 \u03bcm . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.151 . Postocular distance vs. cephalic length (PoOc/CL): 0.462 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: strongly convex. Vertex contour line in anterior view shape: slightly concave. Vertex sculpture: main sculpture homogeneously forked costate, ground sculpture areolate. Gena contour line in anterior view shape: convex. Gena contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: present. Eye length vs. absolute cephalic size (EL/CS): 0.238 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.322 . Longitudinal carinae on median region of frons: absent. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.704 . Median clypeal notch: present. Median carina of clypeus: absent. Spine length vs. absolute cephalic size (SPST/CS): 0.236 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.254 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.267 . Propodeal spine shape: straight; triangular, blunt. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.629 . Metanotal depression: present. Dorsal region of mesosoma sculpture: areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.235 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture absent. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.37 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture absent.The name refers to the fine, micro-reticulate body sculpturing.This species is known to occur in dry forests in lowlands between 50 m and 130 m (mean: 94 m) of the western and southern coasts of Madagascar .Figs .Holotype worker: \u201cL. retusispinosus, type, Forel, For d' andrangoloaca , Madagascar (Sikora)\u201d, ;The list of 9 worker individuals belonging to 9 nest samples morphometrically investigated is given in See in key.Body color: yellow; brown. Body color pattern: concolorous. Absolute cephalic size: 812 \u03bcm . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.17 . Postocular distance vs. cephalic length (PoOc/CL): 0.483 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: convex. Vertex contour line in anterior view shape: straight; feebly convex. Vertex sculpture: main sculpture rugoso-reticulate, ground sculpture areolate. Gena contour line in anterior view shape: convex. Gena contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: present. Eye length vs. absolute cephalic size (EL/CS): 0.237 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.294 . Longitudinal carinae on median region of frons: present. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.838 . Median clypeal notch: present. Median carina of clypeus: present or absent. Spine length vs. absolute cephalic size (SPST/CS): 0.43 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.24 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.322 . Propodeal spine shape: slightly or strongly bent. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.659 . Metanotal depression: present. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture rugoso-reticulate. Mesopleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.24 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.39 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.This species is known to occur in rain forests and montane forests in lowlands between 918 m and 1080 m in central Madagascar .urn:lsid:zoobank.org:act:C39EB560-EC60-4720-B6D8-95CE88C75A4DFigs .Holotype worker: MADGAGASCAR: Prov. Antsisarana, Masoala National Park, 250 m, -15.33058 N, 50.30279 E, 13.iii.2014, collection code: BLF33157; CASENT0374465, Fisher et al. ;Paratypes: 2 workers, a gyne and a male with the same label data with the holotype under CASENT codes: CASENT763560, BLF33157, , CASENT0374466, BLF33157, ; CASENT0377059, BLF32874, ;The list of 24 worker individuals belonging to 23 nest samples morphometrically investigated is given in See in key.Body color: yellow to brown. Body color pattern: concolorous. Absolute cephalic size: 747 \u03bcm . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.239 . Postocular distance vs. cephalic length (PoOc/CL): 0.467 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: convex. Vertex contour line in anterior view shape: straight or feebly convex. Vertex sculpture: main sculpture rugoso-reticulate, ground sculpture smooth. Gena contour line in anterior view shape: convex. Genae contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: present. Eye length vs. absolute cephalic size (EL/CS): 0.226 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.292 . Longitudinal carinae on median region of frons: present. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.816 . Median clypeal notch count: present. Median carina of clypeus: absent. Spine length vs. absolute cephalic size (SPST/CS): 0.288 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.221 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.257 . Propodeal spine shape: straight. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.635 . Metanotal depression: present. Dorsal region of mesosoma sculpture: rugose with smooth ground sculpture. Lateral region of pronotum sculpture: inconspicuously areolate ground sculpture, main sculpture rugoso-reticulate. Mesopleuron sculpture: smooth ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.231 . Dorsal region of petiole sculpture: ground sculpture inconspicuously areolate, main sculpture rogoso-reticulate. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.345 . Dorsal region of postpetiole sculpture: ground sculpture smooth, main sculpture dispersed rugose.The name refers to the coarse, rugose body sculpturing.This species is known to occur in rainforests between elevation of 200 m and 520 m (mean: 390 m) of the eastern and southern coasts of Madagascar .Figs .Holotype worker: \u201cLeptothorax sikorai n. sp., Imerina , Sikora\u201d TYPUS . Note: the type was not available for morphometric investigation; high-quality AntWeb images were used for comparison.The list of 36 worker individuals belonging to 28 nest samples morphometrically investigated is given in See in key.Body color: black. Body color pattern: concolorous. Absolute cephalic size: 822 \u03bcm . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.169 . Postocular distance vs. cephalic length (PoOc/CL): 0.488 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: strongly convex. Vertex contour line in anterior view shape: straight to feebly convex. Vertex sculpture: main sculpture areolate, ground sculpture areolate. Gena contour line in anterior view shape: convex. Gena contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: present. Eye length vs. absolute cephalic size (EL/CS): 0.212 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.292 . Longitudinal carinae on median region of frons: present. Smooth median region on frons: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.828 . Median clypeal notch: present. Median carina of clypeus: present or absent. Spine length vs. absolute cephalic size (SPST/CS): 0.269 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.253 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.299 . Propodeal spine shape: straight; triangular, blunt. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.665 . Metanotal depression: present. Dorsal region of mesosoma sculpture: areolate main sculpture, interstices areolate. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture areolate. Mesopleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by coarse rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.269 . Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture rugoso-reticulate. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.37 . Dorsal region of postpetiole sculpture: ground sculpture smooth, main sculpture absent.This species is known to occur in montane rainforests between elevations of 200 m and 520 m in central Madagascar .urn:lsid:zoobank.org:act:538BA1CB-262A-492E-86E5-035513668BE9Figs .Holotype worker: MADGAGASCAR: Prov. Toliara, Anosy Region, Anosyenne Mts., 31.2 km NW Manantenina, 1125 m, -24.13894 N, 47.06804 E, 26.ii.2015, collection code: BLF36533; CASENT0393121, Fisher et al. ;Paratypes: 5 workers and a male with the same label data with the holotype under CASENT codes: CASENT0393116, BLF36533, ; CASENT0393117, BLF36533, ; CASENT0393118, BLF36533, ; CASENT0393119, BLF36533, ; CASENT0393120, BLF36533, ;The list of 9 worker individuals belonging to 9 nest samples morphometrically investigated is given in See in key.Body color: black. Body color pattern: concolorous. Absolute cephalic size: 842 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.155 . Postocular distance vs. cephalic length (PoOc/CL): 0.460 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: convex. Vertex contour line in anterior view shape: straight to feebly convex. Vertex sculpture: main sculpture parallel costate, ground sculpture smooth. Gena contour line in anterior view shape: convex. Gena contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: present. Eye length vs. absolute cephalic size (EL/CS): 0.219 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.288 . Longitudinal carinae on median region of frons: present. Smooth median region on frons: present. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.794 . Median clypeal notch count: present. Median carina of clypeus: absent. Spine length vs. absolute cephalic size (SPST/CS): 0.241 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.242 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.244 . Propodeal spine shape: curving upward. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.666 . Metanotal depression: present. Dorsal region of mesosoma sculpture: costate with smooth ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture areolate. Mesopleuron sculpture: smooth ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: fine areolate ground sculpture, superimposed by coarse rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.243 . Dorsal region of petiole sculpture: ground sculpture smooth, main sculpture absent. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.362 . Dorsal region of postpetiole sculpture: ground sculpture smooth, main sculpture absent.The name refers to the coarse, striate/costate surface sculpturing on the head and mesosoma.This species is known to occur in montane rainforests between elevations of 900 m and 1125 m (mean: 1054 m) of the southeastern part of Madagascar .urn:lsid:zoobank.org:act:A67F58B6-502A-4798-B638-6FB35C78BD27Figs .Holotype worker: MADGAGASCAR: Prov. Toamasina, Montagne d'Akirindro 7.6 km 341\u00b0 NNW Ambinanitelo, 600 m, -15.28833 N, 49.54833 E, 17.iii.2003, collection code: BLF8390; CASENT0496292, Fisher et al., ex dead twig above ground, rainforest ;Paratypes: 5 workers and a male with the same label data with the holotype with CASENT codes: CASENT0763559, BLF8390, ; CASENT0496293, BLF8390, ; CASENT0496294, BLF8390, ; CASENT0496295, BLF8390, ;The list of 41 worker individuals belonging to 32 nest samples morphometrically investigated is given in See in key.Body color: yellow to brown. Body color pattern: concolorous. Absolute cephalic size: 699 \u03bcm . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.155 . Postocular distance vs. cephalic length (PoOc/CL): 0.433 . Postocular sides of cranium contour, anterior view orientation: converging posteriorly. Postocular sides of cranium contour, anterior view shape: convex. Vertex contour line in anterior view shape: straight to feebly convex. Vertex sculpture: main sculpture inconspicuous, ground sculpture smooth. Gena contour line in anterior view shape: convex. Gena contour from anterior view orientation: strongly converging. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen: present. Eye length vs. absolute cephalic size (EL/CS): 0.258 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.329 . Longitudinal carinae on median region of frons: present or absent. Smooth median region on frons: present. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.798 . Median clypeal notch: present. Median carina of clypeus: absent. Spine length vs. absolute cephalic size (SPST/CS): 0.388 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.244 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.303 . Propodeal spine shape: strongly bent. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.739 . Metanotal depression: present. Dorsal region of mesosoma sculpture: rugose with smooth ground sculpture. Lateral region of pronotum sculpture: inconspicuously areolate ground sculpture, main sculpture rugoso-reticulate. Mesopleuron sculpture: smooth ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Petiole width vs. absolute cephalic size (PEW/CS): 0.243 . Dorsal region of petiole sculpture: ground sculpture inconspicuously areolate, main sculpture rugoso-reticulate. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.363 . Dorsal region of postpetiole sculpture: ground sculpture smooth, main sculpture dispersed rugose.Tamatave is the French name of Toamasina, the capital of the Atsinanana region, where this species is abundant.This species is known to occur in rainforests from sea level to 1100 m predominantly in the northeastern part of Madagascar . The onlS1 Appendix(NEX)Click here for additional data file.S2 AppendixMark dendrogram function mapping the results of partitioning algorithm PART on the dendrogram is also added.(TXT)Click here for additional data file.S1 TableUnique CASENT number for pinned samples, locality, geographic coordinates in decimal format, altitude (ALT) in meters a.s.l., collector\u2019s name, date and number of specimens investigated bearing the given CASENT number are provided. HT = Holotype, PT = paratype(s). All samples collected in Toliara administrative region, Madagascar, and deposited at the California Academy of Sciences (CAS).(XLSX)Click here for additional data file.S2 Table(DOCX)Click here for additional data file.S3 TableCASENT code (casent), final species hypothesis (species), geographic coordinates and the name format as samples appear on the dendrogram (dendro-name) are also provided in the table. HT = Holotype, PT = paratype(s).(CSV)Click here for additional data file."} {"text": "Caenorhabditis elegans Fast Bioassay. PLoS ONE 10(6): e0128898. doi:10.1371/journal.pone.0128898. The publisher apologizes for this error.The third author\u2019s name is spelled incorrectly. The correct name is: Lucila Ines Buzzi. The correct citation is: Bianchi JI, Stockert JC, Buzzi LI, Bl\u00e1zquez-Castro A, Simonetta SH (2015) Reliable Screening of Dye Phototoxicity by Using a"} {"text": "Aging (Albany NY) 2015; 8(3): 521-538.PMCID: PMC 833143 PMID: 26946062http://www.impactaging.com/papers/v8/n3/pdf/100913.pdf. The correct corresponding authors are provided here:In this Article, the information on corresponding author is wrong: wdzhangy@hotmail.com; shanleicn@126.comCorrespondence: Weidong Zhang, PhD; Lei Shan, PhD; E-mail:"} {"text": "Service, imaging, open source, archive, image sharing, clinical trials.http://www.xnat.org) ; documentation of RSNA CTP [http://mircwiki.rsna.org/index.php?title=CTP_Articles].Documentation and links to both XNAT instances and Puppet installation scripts ["} {"text": "Drosophila\u00a0Microbiota Modulates Host Metabolic Gene Expression via IMD/NF-\u03baB Signaling. PLoS ONE 9(4): e94729. doi:10.1371/journal.pone.0094729The abbreviation of the first author\u2019s name is incorrect in the citation. The correct abbreviation is: Erkosar B. The correct citation is: Erkosar B, Defaye A, Bozonnet N, Puthier D, Royet J, et al. (2014)"} {"text": "Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents. PLoS ONE 11(3): e0151432. doi:10.1371/journal.pone.0151432The second author\u2019s last name is spelled incorrectly. The correct name is: Samiddhi L. Senaratne. The correct citation is: Goodger JQD, Senaratne SL, Nicolle D, Woodrow IE (2016) Foliar Essential Oil Glands of"} {"text": "Nature Communications7: Article number: 11311 10.1038/ncomms11311 (2016); Published: 04182016; Updated: 06032016The author Yueh-Hsiung Kuo was incorrectly omitted from the list of corresponding authors in this Article. The correct information for correspondence is: \u2018Correspondence and requests for materials should be addressed to Y.-H.K. kuoyh@mail.cmu.edu.tw) or to N.S.Y. nsyang@gate.sinica.edu.tw)'."} {"text": "Nature Communications7: Article number: 1211210.1038/ncomms12112 (2016); Published: 06292016; Updated: 08032016.The present address for Ioana C. G\u00e2rlea is incorrect in this Article. The correct present address for this author is given below:Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.The name of this author is also incorrect in the \u2018How to cite this article' section. This section should read:et al. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals. Nat. Commun. 7:12112 doi: 10.1038/ncomms12112 (2016).G\u00e2rlea, I. C."} {"text": "Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses.Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence.The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.The online version of this article (doi:10.1186/s13742-014-0038-1) contains supplementary material, which is available to authorized users. Here we present FASTA files of loci, sequence alignments, indels, transposable elements, and Newick files of gene trees and species trees used in the Avian Phylogenomics Project -4. We alHere we describe each locus data set in brief. Additional details are provided in Jarvis et al. .This is an exon-coding sequence data set of 8295 genes based on synteny-defined orthologs we identified and selected from the assembled genomes of chicken and zebra finch [These are alignments of the translated peptide sequences for the 8295 protein-coding gene data set.This is an orthologous subset of introns from the 8295 protein-coding genes among 52 species (includes outgroups). Introns with conserved annotated exon-intron boundaries between chicken and another species (\u00b11 codon) were chosen. We filtered out introns with length\u2009<\u200950\u00a0bp or intron length ratio\u2009>\u20091.5 between chicken and another species or another species and chicken. This filtering resulted in a conservative subset of introns that could be reliably identified and aligned.This is the ultraconserved element (UCE) data set with 1000\u00a0bp flanking sequence at the 3\u2032 and 5\u2032 ends. The UCE dataset was filtered to remove overlap with the above exon and intron data sets, other exons and introns in the chicken genome assembly version 3, and overlapping sequences among the UCEs. The source UCE sequences used to search the genomes were determined from sequence capture probes aligned These four data sets represent the 10% subsets of the 8295 exons and their associated introns when available (i.e. from the same genes) that had the highest and lowest variance in GC3 (third codon position) content across species. To calculate GC3 variance, we first calculated GC3 for each ortholog in each species, and then we used the correlation coefficient R to calculate variance in GC3 for each species. Orthologs were ranked by their GC3 variance and we selected the top and bottom 10% for analyses.These are the concatenated sets of loci from various partitions of the TENT dataset , brought together using the statistical binning approach. The statistical binning approach put together sets of loci that were deemed \u201ccombinable\u201d. Two genes were considered combinable if their respective gene trees had no pairs of incompatible branches that had bootstrap support above a 50% threshold. Alignments of genes in the same bin were concatenated to form supergenes, but boundaries of genes were kept so that a gene-partitioned phylogenetic analysis could be performed on each supergene.http://www.bx.psu.edu/miller_lab/) across all 48 bird species and outgroups using individual chromosomes of the chicken genome as the reference . They were filtered for segments with fewer than 42 avian species (>5 missing bird species) and aberrant sequence alignments. The individual remaining segments of the MULTIZ alignment were realigned with MAFFT. We did not use SAT\u00e9\u2009+\u2009MAFFT due to computational challenges (too much input/output was required).Whole genome alignments were first created by a LASTZ\u2009+\u2009MULTIZ alignment ,14 (http5.7 million insertions and deletions (indels) were scored as binary characters locus by locus from the same intron, exon, and UCE alignments as used in the TENT data set on the principle of simple indel coding using 2Xread ,16 and tThese are 61 manually curated presence/absence loci of transposable elements (TEs) present in the Barn Owl genome that exhibit presence at orthologous positions in one or more of the other avian species. The TE markers were identified by eye after a computational screening of 3,671 TguLTR5d retroposon insertions from the Barn Owl. For each TguLTR5d locus, we conducted BLASTn searches of TE-flanking sequences (1\u00a0kb per flank) against the remaining avian species and generated multispecies sequence alignments using MAFFT . RedundaWe provide the above loci data sets as FASTA files of both unfiltered and filtered sequence alignments. The alignments were filtered for aberrant over- and under-aligned sequences, and for the presence of the loci in 42 of the 48 avian species. All multiple sequence alignments were performed in two rounds. The first round was used to find contiguous portions of sequences that we identified as aberrant, and the second round was used to realign the filtered sequences. We used SAT\u00e9 ,23 combiThese are filtered alignments of exons from 8295 genes. Of these 8295, there were 42 genes that were identified to have annotation issues and we removed them from the phylogenetic analyses . Two more genes were removed because a gene tree could not be estimated for them. The first round of alignment was performed using SAT\u00e9\u2009+\u2009PRANK, and the second round was performed using SAT\u00e9\u2009+\u2009MAFFT. Before alignment, the nucleotide sequences were converted to amino acid sequences, and then reverted back to nucleotide sequences afterwards.42-exon-genes-removed.txt: list of 42 genes removed due to various issuespep2cds-filtered-sate-alignments-noout.tar.gz: DNA alignments without outgroupspep2cds-filtered-sate-alignments-original.zip: DNA alignments with outgroups included8295 Exonspep-filtered-sate-alignments-noout.tar.gz: Amino acid alignments with outgroups removedpep-filtered-sate-alignments-original.zip: Amino acid alignments with outgroups included8295 Amino AcidsThese are filtered alignments of introns from 2516 genes. Both rounds of alignment were performed using SAT\u00e9\u2009+\u2009MAFFT, because SAT\u00e9\u2009+\u2009PRANK was too computationally expensive on long introns.introns-filtered-sate-alignments-with-and-without-outgroups.tar.gz: Includes both alignments with and without outgroups2516 IntronsThese are alignments of UCEs and their surrounding 1000\u00a0bp from 3769 loci after filtering. Both rounds of alignment were performed using SAT\u00e9\u2009+\u2009MAFFT.uce-probes-used.fasta.gz: Probes targeting UCE loci shared among vertebrate taxa.uce-raw-genome-slices-of-probe-matches.tar: Probe\u2009+\u2009flank slices around locations matching probes targeting UCE loci.uce-raw-lastz-results-of-probe-matches.tar: LASTZ results of mapping probes onto genome assemblies.uce-assembled-loci-from-probe-matches.tar: UCE loci assembled from probe\u2009+\u2009flank slices from each genome.uce-filtered-alignments-w-gator.tar.gz: UCE individual alignments without outgroupsuce-filtered-alignments-without-gator.tar.gz: UCE individual alignments with outgroups3769 UCE\u2009+\u20091000 flanking bpsupergene-alignments.tar.bz2: supergene alignments with partition files showing genes put in each bin and their boundaries in the concatenated alignmentThese are concatenated alignments for each of our 2022 supergene alignments. We note that although supergenes are concatenated loci, we estimated supergene trees using partitioned analyses where each gene was put in a different partition. Thus, we also provide the boundaries between genes in text files (these can be directly used as partition input files to RAxML).These are individual loci alignments of the above data sets, before filtering.pep-unfiltered-alignments-original.zip: unfiltered SAT\u00e9\u2009+\u2009Prank alignments used for the filtering stepAmino.Acid.unfilteredpep2cds-unfiltered-alignemtns-original.zip: unfiltered SAT\u00e9\u2009+\u2009Prank alignments used for the filtering stepExon.c123.unfiltered:introns-unfiltered-alignments-original.zip: intron SAT\u00e9 alignments before filtering with outgroups includedintrons-unfiltered-alignments-noout.zip: intron SAT\u00e9 alignments before filtering with outgroups includedIntron.unfiltereduce-unfiltered-alignments-w-gator.tar.gz: UCE alignments before filtering with alligator outgroupUCE.unfilteredhttps://github.com/gigascience/paper-zhang2014.These are uploaded as part of the comparative genomics paper data notWGT.unfilteredWe provide FASTA files of concatenated sequence alignments of the above filtered loci datasets. These are concatenated alignments that were used in the ExaML and RAxML analyses .Exon.AminoAcid.ExaML.partitionedExon.c123. ExaML.partitionedExon.c123. ExaML.unpartitionedExon.c1.ExaML.unpartitionedExon.c2.ExaML.unpartitionedExon.c12.ExaML.unpartitionedExon.c123-RY.ExaML.unpartitionedExon.c3.ExaML.unpartitionedIntronTEIT.RAxMLTENT\u2009+\u2009c3.ExaMLTENT\u2009+\u2009outgroup.ExaMLTENT.ExaML.100%TENT.ExaML.25%TENT.ExaML.50%TENT.ExaML.75%WGT.ExaMLuce-filtered-alignments-w-gator-concatenated.phylip.gzuce-filtered-alignments-without-gator-concatenated.phylip.gzUCE concatenated alignments with and without the alligatorc12.DNA.alignment.1156.clocklike.zipc12.DNA.alignment.1156.clocklike.txtc12.DNA.alignment.clocklike.readme.txtc12.DNA.alignment.clocklike.txt.zipConcatenated c12 (1st\u2009+\u20092nd codons) DNA sequence alignments from the 1156 clocklike genes were used for the dating analyses. These are alignments of the first and second codon positions of clock-like genes among the 8295 exon orthologs:High variance exons:Exon.heterogeneous.c123Exon.heterogenous.c12Low variance exons:Exon.homogeneous.c123.Exon.homogenous.c12High variance introns: These are heterogenous intronsconcatIntronNooutMSAlow.fasta.gzLow variance introns: These are homogenous intronsconcatIntronNooutMSAhigh.fasta.gzThis is a concatenated alignment of indels from exons, introns, and UCEs. A README file describes the content.owl_TE_marker_Table.txtSpecies trees (Newick format) were generated with either RAxML, an improved ExaML version for handling large alignments, or MP-EST* . We depoExon.AminoAcid.ExaML.partitioned.treExon.c123.ExaML.partitioned.treExon.c123.ExaML.unpartititoned.treExon.c123-RY.ExaML.unpartitioned.treExon.c12.ExaML.partitioned.treExon.c12.ExaML.unpartitioned.treExon.c1.ExaML.unpartitioned.treExon.c2.ExaML.unpartitioned.treExon.c3.ExaML.unpartitioned.treExon.RAxML.heterogenous.c123.treExon.RAxML.heterogenous.c12.treExon.RAxML.homogenous.c123.treExon.RAxML.homogenous.c12.treIntron.RAxML.heterogenous.tre.txtIntron.RAxML.homogenous.tre.txtIntron.RAxML.partitioned.treIntron.RAxML.unpartitioned.treIntron.MP-EST.binned.treIntron.MP-EST.unbinned.treTEIT.RAxML.treTENT\u2009+\u2009c3.ExaML.treTENT\u2009+\u2009outgroup.ExaML.treTENT.ExaML.100%.treTENT.ExaML.25%.treTENT.ExaML.50%.treTENT.ExaML.75%.treUCE.RAxML.unpartitioned.treWGT.ExaML.alternative.treWGT.ExaML.best.treeChronogram01.TENT.ExAML.treChronogram02.TENT.ExAML.max865.treChronogram03.TENT.ExAML.Allig247.treChronogram04.TENT.ExAML.no-outgroup.treChronogram05.TENT.ExAML.no-outgroup.max865.treChronogram06.TENT.MP-EST.treChronogram07.WGT.ExAML.alternative.treChronogram08.WGT.ExAML.best.treChronogram09.Intron.ExAML.unpartitioned.treChronogram10.UCE.RAxML.treChronogram11.Exon.c123.RaXML.partitioned.treML (bestML) gene treesBootstrap replicates of ML gene treesML (bestML) supergene trees used in MP-EST analysesBootstrap replicates of supergene trees used in MP-EST analysesPartition files showing which loci make up which bins for MP-EST analysesScript for filtering amino acid alignmentsScript for filtering nucleotide sequence alignmentsScript for mapping names from 5-letter codes to full namesScripts related to indel analysesWe also deposit the key scripts used in this project in GigaDB, which include:We provide readme files in the script directories describing the usage of the scripts.Project name: Avian Phylogenomic Project scriptshttps://github.com/gigascience/paper-jarvis2014; also see companion paper home page for related data https://github.com/gigascience/paper-zhang2014Project home page: Operating system: UnixProgramming language: R, Perl, pythonLicense: GNU GPL v3.Any restrictions to use by non-academics: noneGigaScience repository, GigaDB [http://avianbase.narf.ac.uk/index.html UCSC: CoGe: (https://genomevolution.org/wiki/index.php/Bird_CoGe).Other data files presented in this data note for the majority of genomes are available in the , GigaDB (Table\u00a01"} {"text": "Temnothorax nylanderi species-group of myrmicine ants is characterized. Eighteen species belonging to this group in the Ponto-Mediterranean region are described or redefined based on an integrative approach that combines exploratory analyses of morphometric data and of a 658bp fragment of the mitochondrial gene for the cytochrome c oxidase subunit I (CO I). The species group is subdivided into five species complexes: T. angustifrons complex, T. lichtensteini complex, T. nylanderi complex, T. parvulus complex, T. sordidulus complex, and two species, T. angulinodissp. n. and T. flavicornis form their own lineages. We describe seven new species , raise T. tergestinus stat.n. to species level, and propose a new junior synonymy for T. saxonicus syn.n. (junior synonym of T. tergestinus). We describe the worker caste and provide high quality images and distributional maps for all eighteen species. Furthermore, we provide a decision tree as an alternative identification key that visually gives an overview of this species-group. We make the first application to Formicidae of the Semantic Phenotype approach that has been used in previous taxonomic revisions.In the current revisionary work, the Temnothorax (formerly synonymized with Leptothorax) is one of the most speciose ant genera on earth, with 380 valid species and 47 subspecies worldwide (http://www.antcat.org). It is especially well represented in the European fauna. Members of the genus occur in a great variety of habitats and display a considerable range of social behavior , ne, neTemnon making , 10], d, dTemnotn making , the regn making , 13], , , , , , , 25] th th25] thic areas , 27], . T. TTemnothodology , 31], . I. ITemnoter group , 35]..TemnothoT. nylanderi species-group in the Ponto-Mediterranean region is coupled with a large number of cryptic species , w, wT. nyl species , using mIn our study we initially recognized morphological patterns using the exploratory data analysis tool NC-clustering , which aTemnothorax and help to better understand the biogeographic patterns of this genus in the Ponto-Mediterranean region.Our data reveal cryptic diversity in this species-group of the genus type material investigated. Non-type material that was morphometrically examined in this revision is listed in GRE:Levidi-10S-20000427-123) generated from the original label information as follows:In the present study, we recorded 22 continuous morphometric traits in 1693 worker individuals belonging to 526 nest samples. Specimens for the present study were borrowed from public and private collections, see the list of institutions below. Our study did not involve endangered or protected species. Label information of type material is given for each taxon in the section A three-letter country code , the nearest settlement given in the label (separated from the following parts by hyphens), the distance and direction from it, the sampling date in alpha-numeric format and a final unique field sample identifier.http://www.antweb.org) and can be uniquely identified by their specimen-level codes affixed to each pin. Information about the taxonomic history of the taxa redefined below is based on B. Bolton in AntCat (http://www.antcat.org). Distribution maps were generated by QGIS 2.4.0 software http://prHereby we propose two new template EQ expression as an expansion of the semantic statement types described by Balhoff et al. and Mik\u00f3Angle between anatomical linesAngles between anatomical lines are often used in taxonomic treatments of Formicidae:NL: Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 72\u201382\u00b0\u201dWe expressed angle value between anatomical lines using PATO\u2019s angle and UO\u2019s degree with the combination of our previously proposed relative and absolute measurement phenotypes:SP: \u2018has part' some and ))) and (towards some 'anterior profile of petiolar node contour line'))))ColorationWe present color hue and intensity as separated entity attributes:NL: Body color: brownSP: 'has part' some (body and ('bearer of' some brown))andNL: Body color pattern: mesosoma, antenna and legs excluding femora, waist and anterior region of 1st gastral tergite lighter than head, femora and posterior region of gaster.SP: ('has part' some (cranium and ('bearer of' some ('color brightness' and (similar_in_magnitude_relative_to some ('color brightness' and ('inheres in' some femur))))))) and ('has part' some (cranium and ('bearer of' some ('color brightness' and (similar_in_magnitude_relative_to some ('color brightness' and ('inheres in' some ('posterior region' and ('part of' some gaster))))))))) and ('has part' some (mesosoma and ('bearer of' some ('color brightness' and (increased_in_magnitude_relative_to some ('color brightness' and ('inheres in' some cranium))))))) and )))))) and ('has part' some (mesosoma and ('bearer of' some ('color brightness' and (similar_in_magnitude_relative_to some('color brightness' and ('inheres in' some antenna))))))) and ('has part' some (mesosoma and ('bearer of' some ('color brightness' and (similar_in_magnitude_relative_to some ('color brightness' and ('inheres in' some ('anterior region' and ('part of' some gaster))))))))) and ('has part' some ((not (femur)) and ('part of' some (leg and ('bearer of' some ('color brightness' and (similar_in_magnitude_relative_to some ('color brightness' and ('inheres in' some mesosoma)))))))))Temnothorax nylanderi species-group required a complex work flow for morphometric pattern recognition. Combined stepwise analyses were done to achieve the best results. Iterated confirmatory analyses (Steps 2 and 3) helped to support the position of various samples predicted by prior steps (Step 1).The complexity of the Temnothorax nylanderi species-group. A hierarchical, agglomerative nesting method, Nest Centroid Clustering (NC clustering) was employed to reveal complex patterns in the complete dataset . \u2026Temnothorax lichtensteini - Spine length vs. absolute cephalic size (SPST/CS) < 0.384 . \u2026Temnothorax subtilis sp. n.4. Spine length vs. absolute cephalic size (SPST/CS) < 0.219 . \u2026- Spine length vs. absolute cephalic size (SPST/CS) > 0.219 \u202655. Postocular distance vs. Maximum height of the petiolar node (PoOC/NOH) > 2.678 \u20266- Postocular distance vs. Maximum height of the petiolar node (PoOC/NOH) < 2.678 \u202696. Spine length vs. absolute cephalic size (SPST/CS) < 0.283 . Turkey)\u2026- Spine length vs. absolute cephalic size (SPST/CS) > 0.283 . \u20267Temnothorax angustifrons sp. n.7. Frontal carina distance vs. absolute cephalic size (FRS/CS) < 0.334 . \u2026- Frontal carina distance vs. absolute cephalic size (FRS/CS) < 0.334 \u20268Temnothorax similis sp. n.8. Mesosoma longer ML/CS > 1.228 . Brown species. Head dorsum smooth and shiny. Ground sculpture inconspicuously areolate, smooth and shiny superimposed by feeble costulae only South Anatolia, Turkey\u2026Temnothorax helenae sp. n.- Mesosoma longer ML/CS < 1.228 . Yellow to light brown species. Whole head dorsum areolate superimposed be feeble costulae, occasionally narrow median strip inconspicuously areolate, shiny. Greek mainland, Crete and a single record known from North Anatolia, Turkey\u2026T. helenae sp. n. from T. ariadnae sp. n. may be difficult if only a single diagnostic feature is considered, more accurate option for separation is given under given in differential diagnosis under T. ariadnae sp. n.Note: Perfect separation of 9. Propodeal spines longer: SPST/CL > 0.294 \u202610- Propodeal spines shorter: SPST/CL < 0.294 \u202611Temnothorax angulinodis sp. n.10. Petiole higher: PEH/CS > 0.402 . In lateral view frontal profile of petiolar node meeting dorso-caudal plate in an acute angle (72\u201382\u00b0) with a sharp ridge. Endemic to Peloponnese peninsula, Greece\u2026Temnothorax crassispinus .- Petiole lower: PEH/CS < 0.380 . Petiolar node in lateral view with a concave frontal profile meeting truncate dorsum in an obtuse angle (100\u2013115\u00b0) with a narrowly rounded transition, without a conspicuous sharp fronto-dorsal ridge on the petiolar node. Central-East Europe and the Balkans\u2026T. crassispinus from T. crasecundus may be difficult based on a single diagnostic feature, more accurate option for their separation is given in differential diagnosis of T. crassispinus.Note: Separation of 11. Head considerably longer than broad: CL/CWb > 1.179 with straight sides\u202612- Head shorter: CL/CWb < 1.179 sides remarkably convex\u20261612. Known from mainland of Europe only\u202613- Known from Anatolian Turkey and Crete Island\u202614Temnothorax sordidulus (see note under T. tergestinus)13. Petiole longer: PL/CS > 0.422 . Black species. Main sculpture on head dorsum coarse, longitudinally rugulose and/or carinulate, ground sculpture conspicuously areolate, always dull. Endemic to Dinaran Alps\u2026Temnothorax tergestinus stat.n.- Petiole shorter: PL/CS < 0.422 . Dark brown to black species. Main sculpture on head dorsum coarse, longitudinally rugulose and/or carinulate, ground sculpture conspicuously areolate, always dull. Central and South Europe excluding Dinaran Alps\u2026T sordidulus may be difficult if only a single diagnostic feature is considered. A more accurate way for separation is suggested in\u201ddifferential diagnosis\u201d under T sordidulus.Note: Perfect separation of this species from 14. From dorsal view base of propodeal spines less distant: SPBA/CWb < 0.30 .Temnothorax lucidus sp. n.Yellow species. Head dorsum smooth and shiny. Ground sculpture inconspicuously areolate, smooth and shiny superimposed by feeble costulae only. Anatolia, Turkey\u2026- From dorsal view base of propodeal spines more distant: SPBA/CWb > 0.30 \u202615Temnothorax artvinensis Seifert, 200615. Petiolar node longer: NOL/CS > 0.251 . Black species. Main sculpture on head dorsum coarse, longitudinally rugulose and/or carinulate, ground sculpture conspicuously areolate, always dull. North Anatolia, Turkey\u2026 Temnothorax ariadnae sp. n. (see note under T. helenae sp. n.)-Petiolar node shorter: NOL/CS < 0.251 . Brown to dark brown species. Whole head dorsum uniformly areolate, narrow median strip occasionally inconspicuously areolate, shiny. Endemic to Crete\u202616. From dorsal view base of propodeal spines less distant: SPBA/CS < 0.283 \u202617- From dorsal view base of propodeal spines more distant: SPBA/CS > 0.283 \u202618Temnothorax nylanderi 17. Propodeal spines longer: SPST/CS > 0.262 . Yellow to brown species. Head dorsum with areolate ground sculpture always superimposed by parallel costulate main sculpture, dull. Central and West Europe: Italy, Austria, Germany and westward\u2026Temnothorax lucidus sp. n.- Propodeal spines shorter: SPST/CS < 0.262 . Yellow species. Head dorsum smooth and shiny. Ground sculpture inconspicuously areolate, smooth and shiny superimposed by feeble costulae only. Anatolia, Turkey\u2026Temnothorax schoedli Seifert, 200618. Postocular area shorter: PoOC/CL < 0.375 . Brown species. Main sculpture of head dorsum heterogeneous: on sides areolate ground sculpture always superimposed by parallel costulate main sculpture, dull, median part of head dorsum shiny. South-Central Anatolia, Turkey\u2026- Postocular area longer: PoOC/CL > 0.375 \u202619Temnothorax crasecundus Seifert & Cs\u0151sz, 201419. Known from East Europe, the Balkans, Turkey and the Caucasus. Yellow to brown species. Whole head dorsum areolate superimposed by feeble costulae, occasionally narrow median strip inconspicuously areolate, shiny\u2026Temnothorax nylanderi - Known from Central and West Europe: Italy, Austria, Germany and further west. Yellow to brown species. Head dorsum with areolate ground sculpture always superimposed by parallel costulate main sculpture, dull\u2026Temnothorax nylanderi species-group can be found following the diagnoses of species complexes to which they belong. Species complexes are defined based on morphological similarities, but not fully supported by molecular (mtDNA) data. Patterns formerly recognized by NC-clustering were tested by confirmatory Linear Discriminant Analysis (Steps 2 and 3). The results of complex-wise analyses (Step 3) are displayed in scatterplots for each species-complex defined below.The description and redefinition of species belonging to the Ponto-Mediterranean Temnothorax taxa , ;Paratypes: Greece_27, Peloponnesus, 22 km NNW Tripolis, Menalo Oros, 37.6539N, 22.2676E, 1500-1700mH, 29.IV.2011, leg. A. Schulz \u201e256\u201d, , [GRE:Tripolis-22NNW-20110429-256]; Greece, Peloponnesus, Melanos Oros, 20 km NNW. Tripolis, 5 km SW. Levidion, 37.6607N, 22.2546E, 1700mH, 03.06.1994, leg. A. Schulz \u201e1380\u201d, (3## HNHM), [GRE:Levidion-5SW-19940603-1380]; Greece, Peloponnesus, Melanos Oros, 20 km NNW. Tripolis, 5 km SW. Levidion, 37.6607N, 22.2546E, 1700mH, 03.06.1994, leg. A. Schulz \u201e1383\u201d (2## HNHM), [GRE:Levidion-5SW-19940603-1383];The list of 15 non-type individuals belonging to 5 nest samples of other material investigated is given in Body color: brown. Body color pattern: mesosoma, antenna and legs excluding femora, waist and anterior region of 1st gastral tergite lighter than head, femora and posterior region of gaster. Absolute cephalic size: 594\u2013657 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.171\u20131.222 (mean = 1.203). Postocular distance vs. cephalic length (PoOc/CL): 0.356\u20130.378 (mean = 0.368). Eye length vs. absolute cephalic size (EL/CS): 0.257\u20130.274 (mean = 0.265). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.366\u20130.388 (mean = 0.374). Median region of antennal rim vs. frontal carina in frontal view: not fully overlapped by frontal carina. Concentric carinae lateral to antennal foramen count: present. Carinae on medial region of frons shape: branched. Smooth median region on frons count: absent. Longitudinal carinae on median region of frons count: present. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Sculpture of submedian area of clypeus: smooth. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Gena frontal view shape: feebly convex. Genae contour from anterior view orientation: converging. Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular side of cranium shape: feebly convex. Vertex sculpture: main sculpture homogenously forked costate, ground sculpture areolate; main sculpture dispersed forked costate sculpture, ground sculpture areolate. Posterior margin of vertex in frontal view shape: straight. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.797\u20130.816 (mean = 0.808). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.610\u20130.636 (mean = 0.621). Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Metanotal depression count: present. Metanotal depression shape: shallow. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Spine length vs. absolute cephalic size (SPST/CS): 0.332\u20130.369 (mean = 355). Median anatomical line of propodeal spine vs. to Weber length angle value in lateral view: 32\u201338\u00b0. Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.366\u20130.398 (mean = 0.386). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.390\u20130.419 (mean = 0.409). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.262\u20130.304 (mean = 0.285). Anterodorsal rim of petiole count: present. Anterodorsal edge of petiole dorsal view shape: semicircular. Truncate dorsum of petiolar node count: absent. Truncate dorsum dorsal side contour lateral view: absent. Frontal profile of petiolar node in lateral view shape: straight. Anterodorsal edge of petiole count: present. Anterodorsal edge of petiole angle value: 72\u201382\u00b0. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed costulate. Posterodorsal edge of petiole count: absent. Caudal petiolar profile shape: straight; convex. Caudal petiolar profile angle value to ventral margin of petiole: more than 80\u00b0. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed costulate.Due to the unique combination of the long spine, high petiole, and sharp transversal crest on the dorsum of the petiolar node this species is easily distinguishable from related taxa even by simple visual inspection.This species is known only from the Peloponnese peninsula.the Temnothorax angustifrons species-complex can be distinguished from those of other complexes by the combination of the following salient features: light yellow to light brown color; moderately longer than broad head , sculpture of head dorsum shiny, with inconspicuously areolate ground sculpture combined with feeble costulate main sculpture; short to moderately long propodeal spines , deviating from longitudinal axis of mesosoma by 47\u201352\u00b0; petiolar node in lateral view with a weakly concave frontal profile meeting dorso-caudal plate in an obtuse angle (95\u2013105\u00b0) with a moderately sharp ridge, in dorsal view appearing as a visible anterior-lateral rim.Workers of Temnothorax angustifrons sp. n., T. lucidus sp. n., T. similis sp. n., T. subtilis sp. n.) within this complex, which was confirmed by LDA relative to other Temnothorax species treated in this revision.The species name refers to the frons, which is narrow , [TUR:Edremit-Kalkun-20030510-072];Paratypes: Turkey, Road Edremit to Kalkun, Kaz Da\u011fi Mountain, 39.411 N, 27.093 E, 752mH, 10.05.2003, leg. A. Schulz, \u201e072\u201d (1# HNHM), [TUR:Edremit-Kalkun-20030510-072]; Turkey, Road Edremit to Kalkun, Kaz Da\u011fi Mountain, 39.411 N, 27.093 E, 752mH, 10.05.2003, leg. A. Schulz, \u201e076\u201d (2## HNHM), [TUR:Edremit-Kalkun-20030510-076];The list of 59 non-type individuals belonging to 17 nest samples of other material investigated is given in Body color: yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antennomere count: 12. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 500\u2013590 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.193\u20131.254 (mean = 1.224). Postocular distance vs. cephalic length (PoOc/CL): 0.377\u20130.401 (mean = 0.389). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture dispersed forked costate, ground sculpture inconspicuous areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.247\u20130.263 (mean = 0.254). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.320\u20130.349 (mean = 0.328). Longitudinal carinae on median region of frons count: present; absent. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: present. Scape length vs. absolute cephalic size (SL/CS): 0.807\u20130.832 (mean = 0.821). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 50\u201355\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.200\u20130.264 (mean = 0.231). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.242\u20130.275 (mean = 0.259). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.282\u20130.319 (mean = 0.298). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.265\u20130.298 (mean = 0.284). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.588\u20130.620 (mean = 0.601). Metanotal depression count: present. Metanotal depression shape: deep. Dorsal region of mesosoma sculpture: areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: straight; concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 90\u2013100\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax angustifrons sp. n. strikingly resembles other members of this complex in Turkey. Therefore, the above specified characters may slightly overlap, but a simple ratio of their combination (FRS/SL) provides an excellent tool to separate this species from its relatives with an error rate of less than 5% for single individuals:This species has the longest scape (SL/CS) and the narrowest frons (FRS/CS) of all species treated in this revision . TemnothT. angustifrons sp.n. (n 67) = 0.398 , T. lucidus sp.n., T. similis sp.n. and T. subtilis sp.n. (n 284) = 0.461 , Combined pool of T. angustifrons sp. n. from other species belonging to other species complexes in Turkey (Simple ratios of the above-mentioned morphometric traits (SL/CS and FRS/CS) also separate n Turkey .This species is known from Western Anatolia, Turkey . Its occurn:lsid:zoobank.org:act:3C96E879-7FB4-4D94-8AC7-805CE9EF187Fm) yellow surface sculpturing of the worker caste.The species epithet \u201clucidus\u201d refers to the shiny light , [TUR:Arslank\u00f6y-3W-20111106-492];Paratypes: TUR:492 Turkey, Taurus Mt., 3 km W. Arslank\u00f6y, 37.0024 N, 34.2151 E, 1900mH, 06.11.2011, leg. A. Schulz, , [TUR:Arslank\u00f6y-3W-20111106-492]; TUR:493 Turkey, Taurus Mt., 3 km W. Arslank\u00f6y, 37.0024 N, 34.2151 E, 1900mH, 06.11.2011, leg. A. Schulz, , [TUR:Arslank\u00f6y-3W-20111106-493];The list of 65 non-type individuals belonging to 22 nest samples of other material investigated is given in Body color: yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 560\u2013670 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.139\u20131.221 (mean = 1.173). Postocular distance vs. cephalic length (PoOc/CL): 0.368\u20130.400 (mean = 0.380). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture dispersed forked costate, ground sculpture inconspicuous areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.247\u20130.276 (mean = 0.262). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.356\u20130.389 (mean = 0.370). Longitudinal carinae on median region of frons count: present; absent. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: present. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.767\u20130.832 (mean = 0.796). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 45\u201350\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.190\u20130.259 (mean = 0.236). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.241\u20130.280 (mean = 0.258). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.272\u20130.339 (mean = 0.304). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.261\u20130.318 (mean = 0.290). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.599\u20130.636 (mean = 0.621). Metanotal depression count: present. Metanotal depression shape: deep. Dorsal region of mesosoma sculpture: fine areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: inconspicuous areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: straight; concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 95\u2013100\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.T. angustifrons complex: T. angustifrons sp. n., T. subtilis sp. n. and T. similis sp. n. Nest samples of T. lucidus sp. n. can be separated from those of T. angustifrons sp. n. by their shorter scape (SL/CS) and wider frons (FRS/CS). Their simple ratio (FRS/SL) provides an excellent tool to separate workers with less than 5% of error rate . Ratios of NOH/CS and PEH/CS help to distinguish this species from T. similis sp. n. on the level of nest samples. A discriminant (D4) function, including discriminant scores for separating single individuals with acceptably low error rate, is given in the differential diagnosis of the latter.This species differs from members of other species complexes treated in this revision by its smooth and shiny head dorsum and the relatively short propodeal spines. This character combination is shared with other species belonging to T. lucidus sp. n. from those of T. subtilis sp. n., but in single workers this character may broadly overlap between the two species. A discriminant function with reduced character number (D4) yields 98.6% classification success rate .The spine length ratio is recommended to separate nest samples of these specie. The same function yields 97.9% classification success rate between single individuals of these species.D3 scores for single individuals:T. helenae sp. n. (n 169) = -1.982 , T. lucidus sp. n. (n 70) = +1.982 , This species is known from South and Central Anatolia, Turkey, and Crete .urn:lsid:zoobank.org:act:3BED5669-17A6-479B-9236-DA4FA22E2180m, f = similar) refers to the superficial similarity of this species to T. schoedli.Species epithet , [TUR:Antakya-22NW-20111107-512];Paratypes: TUR:512 Turkey, Nur Da\u011flari, 22 km NW. Antakya, 36.3050 N, 36.0098 E, 1600-1800mH, 07.11.2011, leg. A. Schulz, (2## HNHM), [TUR:Antakya-22NW-20111107-512]; TUR:515 Turkey, Nur Da\u011flari, 22 km NW. Antakya, 36.3050 N, 36.0098 E, 1600-1800mH, 07.11.2011, leg. A. Schulz, (4## HNHM), [TUR:Antakya-22NW-20111107-515]; TUR:520 Turkey, Nur Da\u011flari, 22 km NW. Antakya, 36.3050 N, 36.0098 E, 1600-1800mH, 07.11.2011, leg. A. Schulz, , [TUR:Antakya-22NW-20111107-520]; TUR:547 Turkey, Nur Da\u011flari, 10 km NW. Hassa, 36.8459 N, 36.4330 E, 1500mH, 08.11.2011, leg. A. Schulz, (4## HNHM), [TUR:Hassa-10NW-20111108-547]; TUR:552 Turkey, Nur Da\u011flari, 10 km NW. Hassa, 36.8459 N, 36.4330 E, 1500mH, 08.11.2011, leg. A. Schulz, , [TUR:Hassa-10NW-20111108-552];The list of 23 non-type individuals belonging to 8 nest samples of other material investigated is given in Body color: yellow; brown. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 505\u2013635 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.145\u20131.233 (m = 1.183). Postocular distance vs. cephalic length (PoOc/CL): 0.371\u20130.398 (m = 0.386). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture dispersed forked costate, ground sculpture inconspicuous areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.245\u20130.270 (m = 0.263). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.352\u20130.369 (m = 0.361). Longitudinal carinae on median region of frons count: present; absent. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: present. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.775\u20130.830 (m = 0.802). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 10\u201315\u00b0; 35\u201340\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 47\u201352\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.220\u20130.267 (m = 0.245). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.261\u20130.290 (m = 0.277). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.299\u20130.347 (m = 0.321). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.291\u20130.326 (m = 0.321). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.606\u20130.641 (m = 0.624). Metanotal depression count: present. Metanotal depression shape: deep. Dorsal region of mesosoma sculpture: fine areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: inconspicuous areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 95\u2013105\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax similis sp. n. differs from the superficially similar T. schoedli by non-overlapping ranges of PEH/CS and NOH/CS ratios on the level of nest sample means.This species can be distinguished from other species belonging to different species complexes by its inconspicuously sculptured or smooth head and/or its shorter propodeal spines (SPST/CS). T. similis sp. n. differ from those of other species in this complex by having a wider frons (FRS/CS) than T. angustifrons sp. n., a lower petiole (NOH/CS) than T. lucidus sp. n., and longer propodeal spines (SPST/CS) than T. subtilis sp. n. is provided, that yields 98.6% classification success rate for single individuals.Though workers of . n. see , nest saD4 scores for single individuals:T. angustifrons sp.n. (n 67) = -0.732 , T. lucidus sp. n. (n 70) = -1.442, T. subtilis sp. n. (n 176) = -1.658 , T. similis sp. n. (n 38) = +1.597 , This species is known from South and Central Anatolia, Turkey . Accordiurn:lsid:zoobank.org:act:20A78840-7999-41A0-A525-CE36346A5E14The species epithet \u201esubtilis\u201d refers to the fine, tiny appearance of this species.Holotype worker labelled: TUR:431 Turkey, Taurus Mt., 5 km SW. Akseki, 37,0257 N, 31,7518 E, 950 mH, 02.11.2011, leg. A. Schulz, , [TUR:Akseki-5SW-20111102-431];Paratypes: TUR:431 Turkey, Taurus Mt., 5 km SW. Akseki, 37,0257 N, 31,7518 E, 950 mH, 02.11.2011, leg. A. Schulz, (1# HNHM), [TUR:Akseki-5SW-20111102-431]; TUR:430 Turkey, Taurus Mt., 5 km SW. Akseki, 37,0257 N, 31,7518 E, 950mH, 02.11.2011, leg. A. Schulz, (3## HNHM), [TUR:Akseki-5SW-20111102-430]; TUR:438 Turkey, Taurus Mt., 5 km SW. Akseki, 37,0257 N, 31,7518 E, 950 mH, 02.11.2011, leg. A. Schulz, (2## HNHM), [TUR:Akseki-5SW-20111102-438]; TUR:441 Turkey, Taurus Mt., 5 km SW. Akseki, 37,0257 N, 31,7518 E, 950 mH, 02.11.2011, leg. A. Schulz, (2## HNHM), [TUR:Akseki-5SW-20111102-441]; Turkey_08 Antalya, 2 km N. Imrasan Ge\u00e7idi, 12 km N. Akseki, 37,0924 N, 31,803 E, 1400mH, 03.05.1997. leg. A. Schulz, K. Vock, M. Sanetra, , [TUR:Imrasan-Ge\u00e7idi-2N-19970503-117];The list of 158 non-type individuals belonging to 50 nest samples of other material investigated is given in Body color: yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 499\u2013628 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.135\u20131.238 (mean = 1.189). Postocular distance vs. cephalic length (PoOc/CL): 0.374\u20130.408 (mean = 0.388). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture dispersed forked costate, ground sculpture inconspicuous areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with feeble areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.228\u20130.268 (mean = 0.249). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.335\u20130.375 (mean = 0.360). Longitudinal carinae on median region of frons count: present; absent. Smooth median region on frons count: present. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.735\u20130.810 (mean = 0.782). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 47\u201352\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.159\u20130.230 (mean = 0.192). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.247\u20130.300 (mean = 0.272). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.266\u20130.336 (mean = 0.282). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.256\u20130.322 (mean = 0.282). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.592\u20130.648 (mean = 0.623). Metanotal depression count: present. Metanotal depression shape: deep. Dorsal region of mesosoma sculpture: fine areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: inconspicuous areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Metapleuron sculpture: fine areolate ground sculpture, superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 95\u2013105\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.T. angustifrons complex yielding 94.5% success in distinguishing nest samples .This species has the shortest propodeal spines of all species treated in this revision, and therefore can be separated from other species complexes by the non-overlapping SPST/CS ratio and its smooth and shiny head. Spine length ratio slightly overlaps with that of other species belonging to samples from T. T. subtilis sp. n. and T. similis sp. n. .A discriminant function with reduced character number (D4) arrives at 98.6% classification success between single individuals and complete success for nest sample means of T. subtilis sp. n. from those of T. lucidus sp. n., this character may broadly overlap in single individuals of these two species. In order to determine single workers with high success, a discriminant function with reduced character number (D4 = +0.0717*EL +0.0778*NOH +0.0404*SPST -0.0824*SPBA -10.321) yielding 98.6% classification success rate can be used.Though the SPST/CS ratio see providesD4 scores for single individuals:T. subtilis sp. n. (n 176) = -2.056 , T. lucidus sp. n. (n 70) = +2.098, Temnothorax subtilis sp. n. can be easily separated from two additional species of the T. parvulus complex that occur in Crete, T. ariadnae sp. n. and T. helenae sp. n., based on the shiny surface of the head dorsum. In exceptional cases or if dust cover obstructs a clear view of the surface sculpture, several ratios help to separate T. subtilis sp. n. from T. ariadnae sp. n.: it has a longer head (CL/CWb), larger eyes (EL/CS) and longer propodeal spines (SPST/CS), and a discriminant function with two characters (D2 = -0.0928*SPST +0.0215*ML -2.811) separates workers of T. subtilis sp. n. from T. helenae sp. n. if surface characteristics are not sufficient.D2 scores for single individuals:T. helenae sp. n. (n 169) = -1.760 , T. subtilis sp. n. (n 176) = 1.690 , This species is known from South Anatolia, Turkey, and Crete .Temnothorax flavicornis species-complex can be distinguished from those of other complexes treated in this revision by the combination of the following salient features: antennae 11 segmented, yellow to light brown color, head rectangular, significantly longer than broad head , sculpture of head dorsum dull: with smooth, or inconspicuously areolate ground sculpture combined with longitudinally rugulose or reticulate main sculpture; long to very long propodeal spines , deviating from longitudinal axis of mesosoma by 40\u201345\u00b0; petiolar node in lateral view with a concave frontal profile meeting conspicuously developed truncate dorsum in an obtuse angle (105\u2013115\u00b0) with a narrowly rounded transition, without a conspicuous sharp fronto-dorsal ridge on the petiolar node. This peculiar species-complex consists of a single species, Temnothorax flavicornis Emery, 1870. Separation of this species is revealed by NC-clustering corroborated by LDA ITALY.Temnothorax: Bolton, 2003: 271.Combination in Lectotype worker: \u201eLeptothorax flavicornis Em.\u201d, \u201ePortrei\u201d [\u2011] Lectotype Leptothorax flavicornis Emery, 1870 \u201eTop specimen\u201d, det. A. Schulz & M. Verhaagh 1999 (CASENT0904761) (MSNG);The list of 44 non-type individuals belonging to 12 nest samples of other material investigated is given in Body color: yellow. Body color pattern: head, mesosoma, antenna and legs excluding femora, waist and anterior region of 1st gastral tergite lighter than femora and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 465\u2013516 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.226\u20131.299 (mean = 1.266). Postocular distance vs. cephalic length (PoOc/CL): 0.370\u20130.394 (mean = 0.384). Postocular sides of cranium contour frontal view orientation: parallel. Postocular sides of cranium contour frontal view shape: straight. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture homogenously forked costate, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture; rugoso-reticulate with feeble areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.244\u20130.271 (mean = 0.262). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.351\u20130.373 (mean = 0.364). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 11. Scape length vs. absolute cephalic size (SL/CS): 0.784\u20130.817 (mean = 0.803). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 40\u201345\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.303\u20130.420 (mean = 0.358). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.322\u20130.358 (mean = 0.338). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.402\u20130.506 (mean = 0.458). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.373\u20130.482 (mean = 0.432). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.622\u20130.653 (mean = 0.637). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 105\u2013115\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: concave. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.T. flavicornis might be confused with other long-spined species, i.e., T. laconicus, T. lichtensteini and T. parvulus, but the coarse rugulose or rugulo-reticulate main sculpture on the head dorsum combined with a shiny ground sculpture help to distinguish T. flavicornis from related species by simple visual inspection. In case specimens are covered by dust, a simple ratio (SPBA/CWb) provides perfect separation of T. flavicornis and similar species at the level of nest sample means , sculpture of head dorsum dull: with areolate ground sculpture combined with longitudinally rugulose or ruguloso-reticulate main sculpture; long to very long propodeal spines , deviating from longitudinal axis of mesosoma by 20\u201325\u00b0; petiolar node in lateral view with a concave frontal profile meeting truncate dorsum in a right angle to an obtuse angle (110\u2013120\u00b0) with a narrowly rounded transition, without a conspicuous sharp fronto-dorsal ridge on the petiolar node.Workers of the Temnothorax laconicus Cs\u0151sz & al., 2014 and T. lichtensteini Bondroit, 1918) within this complex GREECE.Holotype worker: Taygetos Oros, Street to Profitis Ilias \u201eno. GRE:S_342\u201d, 36.968 N, 22.404 E, 800 mH, 01.05.2011, leg. A. Schulz (HNHM), [GRE:Profitis-Ilias-20110501-342];Paratype workers: Taygetos Oros, Street to Profitis Ilias \u201eno. GRE:S_342\u201d, 36.968 N, 22.404 E, 800 mH, 01.05.2011, leg. A. Schulz , [GRE:Profitis-Ilias-20110501-342]; W Taygetos Oros, Pigadia Canyon \u201eno. GRE:S_358\u201d, 36.984 N, 22.262 E, 700\u2013800 mH, 01.05.2011, leg. A. Schulz (2## HNHM), [GRE:Pigadia-Canyon-20110501-358]; W Taygetos Oros, Pigadia Canyon \u201eno. GRE:2011:0356\u201d 36.984 N, 22.262 E, 700\u2013800 mH, 01.05.2011, leg. A. Schulz (3## HNHM), [GRE:Pigadia-Canyon-20110501-356]; Taygetos Oros, Street to Profitis Ilias \u201eno. GRE:2011:0336\u201d, 36.968 N, 22.404 E, 800 mH, 01.05.2011, leg. A. Schulz , [GRE:Profitis-Ilias-20110501-336]; Taygetos Oros, Street to Profitis Ilias \u201eno. GRE:2011:0345\u201d 36.968 N, 22.404 E, 800 mH, 01.05.2011, leg. A. Schulz , [GRE:Profitis-Ilias-20110501-345];The list of 41 non-type individuals belonging to 10 nest samples of other material investigated is given in Body color: brown. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 500\u2013590 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.199\u20131.258 (mean = 1.228). Postocular distance vs. cephalic length (PoOc/CL): 0.383\u20130.403 (mean = 0.396). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: strongly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture homogenously forked costate, ground sculpture areolate; main sculpture absent, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.229\u20130.265 (mean = 0.244). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.329\u20130.360 (mean = 0.342). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.766\u20130.804 (mean = 0.785). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0; 35\u201345\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 20\u201325\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.391\u20130.429 (mean = 0.411). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.257\u20130.311 (mean = 0.283). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.401\u20130.485 (mean = 0.438). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.381\u20130.462 (mean = 0.413). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.587\u20130.629 (mean = 0.610). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 110\u2013120\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax laconicus can be distinguished easily from other species by its very long propodeal spines and its low deviation (20\u201325\u00b0) from the mesosomal axis.T. lichtensteini. The simple ratio SPST/CS does not overlap between the two species at the level of nest sample means : -0.656 , T. laconicus sp.n. (n 64) +3.085 , This species is known to occur in the Peloponnese peninsula and Kerkira .Leptothorax lichtensteini Bondroit, 1918: 123 (w.q.m.) FRANCE.Temnothorax: Bolton, 2003: 271.Combination in Lectotype and paralectotypes: 4 workers labeled \"Montpellier Jean Lichtenstein\", \"Leptoth. lichtensteini Type Bondr.\" and \"Lectotype Leptothorax lichtensteini Bondroit, 1918 Top specimen det. A.Schulz & M.Verhaagh 1999\"; IRSNB Bruxelles; lectotype with CS 546.6. 4 workers labeled \"Menton de Dalmas\" and \"Leptoth. lichtensteini Type Bondr.\"; IRSNB Bruxelles. (4## IRSNB), [FRA:lichtensteini-type:montpellier];The list of 298 non-type individuals belonging to 84 nest samples of other material investigated is given in Body color: brown. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 474\u2013585 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.181\u20131.261 (mean = 1.225). Postocular distance vs. cephalic length (PoOc/CL): 0.386\u20130.418 (mean = 0.401). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: strongly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture homogenously forked costate, ground sculpture areolate; main sculpture absent, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.232\u20130.270 (mean = 0.248). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.336\u20130.380 (mean = 0.356). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.763\u20130.809 (mean = 0.787). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 35\u201345\u00b0; 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 20\u201325\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.324\u20130377 (mean = 0.346). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.250\u20130.302 (mean = 0.272). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.335\u20130.428 (mean = 0.391). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.318\u20130.411 (mean = 0.371). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.570\u20130.631 (mean = 0.608). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 110\u2013120\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: concave. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax lichtensteini complex (T. lichtensteini and T. laconicus) can be easily distinguished from other species treated in this revision by the very long propodeal spines and their low deviation (20\u201325\u00b0) from the mesosomal axis. Other species with long spines have more erect propodeal spines deviating from the mesosomal axis by >35\u00b0. How T. lichtensteini and T. laconicus can be separated is described under the latter (see above).Members of the Temnothorax lichtensteini is distributed throughout the Northern coast of the Mediterranean basin from Spain to Turkey and \u201cWest Mediterranean cluster\u201d ;The list of 167 non-type individuals belonging to 56 nest samples of other material investigated is given in Body color: yellow; brown. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 539\u2013719 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.121\u20131.196 (mean = 1.155). Postocular distance vs. cephalic length (PoOc/CL): 0.378\u20130.405 (mean = 0.374). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: strongly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture dispersed forked costate sculpture, ground sculpture areolate; main sculpture parallel costate, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex; convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.236\u20130.280 (mean = 0.255). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.359\u20130.397 (mean = 0.374). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: not forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.763\u20130.836 (mean = 0.791). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 32\u201335\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.253\u20130.322 (mean = 0.289). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.279\u20130.321 (mean = 0.298). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.311\u20130.392 (mean = 0.350). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.300\u20130.369 (mean = 0.331). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.612\u20130.662 (MEAN = 0.631). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 88\u2013104\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.T. crassispinus. The D4 function that separates these two species is given under the latter.This species is easily confused with its parapatric relative, Temnothorax crasecundus shares most of its surface sculpturing and general shape characteristics with T. helenae sp. n., despite the fact that they belong to different species complexes based on molecular phylogeny and morphometrics. In addition, the distribution of these species broadly overlaps in Bulgaria, Greece, and Turkey. A simple ratio (PoOC/NOH) yields a rather reliable discrimination with minor overlap between them (T. crasecundus is larger (CS), has a wider frons (FRS/CS), higher petiolar node (NOH/CS), and longer propodeal spines (SPST/SC) than T. helenae sp. n. UKRAINE.Temnothorax: Bolton, 2003: 271.Combination in Temnothorax slavonicus: Radchenko, 2000: 44.Senior synonym of Leptothorax nylanderi var. crassispina Karavajev, 1926:Syntype workers of Golossev near Kiev, Leg. Karawajew, \"No. 3057 Col. Karawajew\" [UKR:Golossev-crassispinus-TYPE];Leptothorax nylanderi slavonicus Seifert, 1995:Paratype workers of Germany, Kr. G\u00f6rlitz, Hutberg Sch\u00f6nau-Berzdorf, 19.03.1993. Seifert (4## SMNG) [GER:Hutberg-slavonicus-TYPE];The list of 119 non-type individuals belonging to 40 nest samples of other material investigated is given in Body color: brown; yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 544\u2013688 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.100\u20131.180 (mean = 1.140). Postocular distance vs. cephalic length (PoOc/CL): 0.379\u20130.403 (mean = 0.390). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: strongly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture parallel costate, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.247\u20130.268 (mean = 0.256). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.362\u20130.399 (mean = 0.377). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: not forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.756\u20130.811 (mean = 0.784). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 32\u201342\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.288\u20130.356 (mean = 0.329). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.282\u20130.339 (mean = 0.312). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.362\u20130.421 (mean = 0.389). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.342\u20130.397 (mean = 0.366). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.509\u20130.662 (mean = 0.626). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 100\u2013115\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax crassispinus may be confused with other long-spined species treated in this revision: T. angulinodis sp.n., T. laconicus, T. lichtensteini and T. parvulus. Temnothorax angulinodis sp.n. clearly differs from T. crassispinus by its sharply angulate petiolar node in lateral view (72\u201382\u00b0). In T. crassispinus, the frontal profile and the truncate dorsum of the petiole meet in an obtuse angle (100\u2013115\u00b0). The deviation of the propodeal spines from longitudinal mesosomal axis helps to separate T. crassispinus (32\u201342\u00b0) from T. laconicus and T. lichtensteini (20\u201325\u00b0). Temnothorax parvulus differs from T. crassispinus in the surface sculpturing on the head dorsum. If the samples are dust-covered, other measures can also help: T. crassispinus is considerably larger (CS), has a higher petiolar node (SPST/CS), and a wider head (CL/CWb) than T. parvulus helps to separate nest samples of T. crassispinus from those of T. nylanderi without error, but the same character overlaps between nest sample means of T. crassispinus and T. crasecundus. The shortest discriminant formula (D4) that separates T. crassispinus from T. crasecundus with a classification success rate 95% in single individuals and 97% in nest sample means is D4 = +0.0392*SL -0.0746*SPST +0.0933*SPL -0.0295*SPWI -7.2179.D4 scores for single individuals:T. crassispinus (n 139) = -1.458 , T. crasecundus (n 161) = +1.458 , D4 scores for nest sample means:T. crassispinus (n 45) = -1.440 , T. crasecundus (n 54) = +1.479 , Temnothorax crassispinus lays between the ranges of its two parapatric relatives, T. nylanderi in the West and T. crasecundus in the East.This species is distributed from the Balkans to Central Europe . The disMyrmica nylanderi Foerster, 1850: 53 (m.) GERMANY.Temnothorax: Bolton, 2003: 271.Combination in Leptothorax nylanderi Foerster, 1852Type material of is not available and most probably lost. Altogether 6 workers belonging to two nest series from the type locality \u201eAachen\u201d were investigated: Germany, vic. Aachen-Brand, 5km SE Aachen, 50.7506 N, 6.1202 E, 200 mH, 21.06.1999. leg. A. Schulz, , [GER:Aachen-5SE-19990621-1]; and , [GER:Aachen-5SE-19990621-2] with the same label data;The list of 60 non-type individuals belonging to 20 nest samples of other material investigated is given in Body color: brown; yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 587\u2013678 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.121\u20131.160 (mean = 1.140). Postocular distance vs. cephalic length (PoOc/CL): 0.379\u20130.402 (mean = 0.391). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: strongly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture parallel costate, ground sculpture areolate; main sculpture absent, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.245\u20130.268 (mean = 0.254). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.354\u20130.383 (mean = 0.373). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: not forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.757\u20130.798 (mean = 0.777). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 35\u201342\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.265\u20130.297 (mean = 0.280). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.263\u20130.294 (mean = 0.280). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.321\u20130.362 (mean = 0.343). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.298\u20130.339 (mean = 0.320). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.610\u20130.646 (mean = 0.624). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 100\u2013115\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax nylanderi has moderately long spines (SPST/CS) and therefore cannot be confused with long-spined T. lichtensteini. Non-overlapping SPBA/CS ratios help to distinguish it from T. flavicornis reliably separate these species on the level of nest sample means , sculpture of head dorsum dull: with uniformly areolate ground sculpture combined with inconspicuous (or the lack of) main sculpture; short to long propodeal spines , deviating from longitudinal axis of mesosoma by 38\u201342\u00b0; petiolar node in lateral view with a concave frontal profile meeting truncate dorsum in a right angle to an obtuse angle (100\u2013110\u00b0) with a narrowly rounded transition, without a conspicuous sharp fronto-dorsal ridge on the petiolar node.Workers of the Temnothorax ariadnae sp. n., T. helenae sp. n., and T. parvulus , which was corroborated by confirmatory analyses , [GRE:Crete-Ano-Vianos-5N-20110417-024];Paratypes: GER:024 Greece, Crete, 5 km N Ano Vianos, Vic. Katofigi, 35.0922 N, 25.4165 E, 60 mH, 17.04.2011, leg. A. Schulz, , [GRE:Crete-Ano-Vianos-5N-20110417-024]; GRE:092 Greece, Crete, 3 km E Ag. Vasilios, 25 km S Rethimnon, 35.2408 N, 24.4652 E, 300mH, 24.04.2011, leg. A. Schulz, (5## HNHM), [GRE:Crete-Ag-Vasilios-3E-20110424-092]; GRE:093 Greece, Crete, 3 km E Ag. Vasilios, 25 km S Rethimnon, 35.2408 N, 24.4652 E, 300mH, 24.04.2011, leg. A. Schulz, , [GRE:Crete-Ag-Vasilios-3E-20110424-093]; GRE:037 Greece, Crete, Lassithi Plateau, 16 km S Malia, 35.1623 N, 25.4560 E, 1000mH, 18.04.2011, leg.A. Schulz, , [GRE:Crete-Malia16S-20110418-037];Locality data of the single non-type sample with 3 individuals investigated is given in Body color: brown; yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 533\u2013557 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.196\u20131.293 (mean = 1.223). Postocular distance vs. cephalic length (PoOc/CL): 0.373\u20130.393 (mean = 0.386). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: strongly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture absent, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.260\u20130.266 (mean = 0.263). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.346\u20130.369 (mean = 0.356). Longitudinal carinae on median region of frons count: absent. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.758\u20130.795 (mean = 0.775). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0; 35\u201345\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 45\u201350\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.220\u20130.249 (mean = 0.237). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.248\u20130.287 (mean = 0.278). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.303\u20130.336 (mean = 0.314). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.289\u20130.322 (mean = 0.300). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.602\u20130.618 (mean = 0.611). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: strongly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.T. helenae sp. n. and T. parvulus. Values of the propodeal spine length ratio (SPST/CL) for nest sample means perfectly separate T. parvulus and T. ariadnae sp. n. . The geographical range of T. ariadnae sp. n. and T. parvulus function is the shortest formula that yields reliable separation for single individuals (99.4%) and nest sample means (100%) of T. ariadnae sp. n. and T. helenae sp. n.The separation of D4 scores for single individuals:T. ariadnae sp. n. (n 15) = +1.607 , T. helenae sp. n. (n 169) = -1.607 , D4 scores for nest sample means:T. ariadnae sp.n. (n 5) = +1.607 T. helenae sp.n. (n 53) = -1.678 Temnothorax ariadnae sp. n. can be easily separated from two additional species whose distributional range expands to Crete, T. lucidus sp. n. and T. subtilis sp. n., based on the shiny surface of the head dorsum of the two latter. In exceptional cases, or if dust cover obstructs a clear view of the surface sculpture, body ratios help to distinguish T. ariadnae sp. n. from T. subtilis sp. n. by the longer head (CL/CWb), the larger eyes (EL) and the longer propodeal spines (SPST/CS) and from T. lucidus sp. n. by the non-overlapping NodL/CS, lower NOL/CS ratio and the longer head , [GRE:Taigetos-Oros-20110501-344];Paratypes: GRE:344 Greece, Peloponnesus, Taygetos Oros, Street to Profitis Elias, 36.968 N, 22.404 E, 800mH, 01.05.2011, leg. A. Schulz, (6## HNHM), [GRE:Taigetos-Oros-20110501-344]; GRE:267 Greece, Peloponnesus, Taygetos Oros, Trail to Profitis Elias, 36.960 N, 22.396 E, 1000-1200mH, 30.04.2011, leg. A. Schulz, , [GRE:Taigetos-Oros-20110430-267]; GRE:280 Greece, Peloponnesus, Taygetos Oros, Trail to Profitis Elias, 36.960 N, 22.396 E, 1000-1200mH, 30.04.2011, leg. A. Schulz, (5## HNHM), [GRE:Taigetos-Oros-20110430-280]; GRE:287 Greece, Peloponnesus, Taygetos Oros, Trail to Profitis Elias, 36.948 N, 22.377 E, 1400-1600mH, 30.04.2011, leg. A. Schulz, , [GRE:Taigetos-Oros-20110430-287]; GRE:348 Greece, Peloponnesus, Taygetos Oros, Street to Profitis Elias, 36.968 N, 22.404 E, 800mH, 01.05.2011, leg. A. Schulz, , [GRE:Taigetos-Oros-20110501-348]; GRE:350 Greece, Peloponnesus, Taygetos Oros, Street to Profitis Elias, 36.968 N, 22.404 E, 800mH, 01.05.2011, leg. A. Schulz, (5## HNHM), [GRE:Taigetos-Oros-20110501-350];The list of 154 individuals belonging to 43 nest samples of other material investigated is given in Body color: brown; yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 510\u2013627 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.152\u20131.242 (mean = 1.197). Postocular distance vs. cephalic length (PoOc/CL): 0.384\u20130.424 (mean = 0.400). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: feebly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture absent, ground sculpture areolate; main sculpture dispersed forked costate sculpture, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.238\u20130.270 (mean = 0.251). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.335\u20130.373 (mean = 0.357). Longitudinal carinae on median region of frons count: absent; present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: present; absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.758\u20130.808 (mean = 0.783). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 45\u201350\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.205\u20130.299 (mean = 0.255). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.255\u20130.319 (mean = 0.281). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.290\u20130.387 (mean = 0.334). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.277\u20130.370 (mean = 0.320). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.580\u20130.634 (mean = 0.611). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 100\u2013110\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex to conspicuously rounded. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax helenae sp. n. shares characters with T. ariadnae sp. n. and T. parvulus, differential diagnoses between these species are given under these taxa.T. helenae sp. n. from T. crasecundus can be difficult if only sculpture and shape characteristics are considered, but a single ratio (PoOC/NOH) yields >95% classification success for nest sample means function yields 97% classification success for individuals and 100% for nest sample means.The geographical distribution of D5 scores for nest sample means:T. helenae sp. n. (n = 53) = -2.209 T. lucidus sp. n. (n = 23) = +1.410 T. subtilis sp. n. (n = 55) = +1.579 This species mostly occurs in Greek mainland, but a few localities are also known in Southern Bulgaria, Western Turkey and Crete .Myrmica parvula Schenck, 1852: 103 (w.) GERMANY. PalearcticTemnothorax: Bolton, 2003: 271.Combination in Lectotype: \"L. parvulus # Sch\" and \"Lectotype Leptothorax parvulus Schenck, 1852 det. A. Schulz & M. Verhaagh 1999\" (1# / SMF), [GER:parvulus-TYPE];The list of 103 individuals belonging to 27 nest samples of other material investigated is given in Body color: brown; yellow. Body color pattern: mesosoma, antenna and legs, waist and anterior region of 1st gastral tergite lighter than head dorsum and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 488\u2013586 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.147\u20131.214 (mean = 1.184). Postocular distance vs. cephalic length (PoOc/CL): 0.392\u20130.413 (mean = 0.405). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: strongly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture absent, ground sculpture areolate; main sculpture dispersed forked costate sculpture, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.237\u20130.262 (mean = 0.250). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.353\u20130.376 (mean = 0.361). Longitudinal carinae on median region of frons count: absent. Smooth median region on frons count: present. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.763\u20130.796 (mean = 0.778). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 38\u201342\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.278\u20130.331 (mean = 0.306). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.273\u20130.312 (mean = 0.292). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.353\u20130.415 (mean = 0.384). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.332\u20130.395 (mean = 0.364). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.599\u20130.636 (mean = 0.618). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 105\u2013110\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.Temnothorax parvulus can be separated easily from members of other species-complexes by its homogenously areolate microsculpture on the head dorsum. The head sculpture of other species complexes may vary from smooth to coarsely rugulo-reticulate but is never homogenously areolate. In exceptional cases, long-spined species of the T. lichtensteini complex might exhibit a homogenous areolate sculpture on an extended area of the head dorsum, but T. parvulus is distinguished from T. lichtensteini and T. laconicus by its more erect propodeal spines (38\u201342\u00b0 vs. ca. 20\u201325\u00b0). Temnothorax parvulus can also be safely separated from weakly sculptured, lightly colored T. tergestinus samples using slightly overlapping NOH/CS, SPTI/CS and SPWI/CS ratios helps distinguish Temnothorax parvulus from T. ariadnae sp. n. and T. helenae sp. n.T. parvulus ; and T. ariadnae sp. n. provide a prefect means of separation. As 5% of nest samples of T. parvulus and T. helenae sp. n. formula, which separates 97.1% of single individuals and all nest samples of T. parvulus and T. helenae sp. n.Non-overlapping values of SPST/CL for nest sample means of D5 scores for single individuals:T. parvulus (n 107) = -1.624 T. helenae sp.n. (n 169) = +1.647 D5 scores for nest sample means:T. parvulus (n 29) = -1.723 T. helenae sp.n. (n 53) = +1.684 The known distribution of this species ranges from Western Europe to the Black see coast and Turkey and from Italy and the Balkans to Central Europe .Temnothorax sordidulus species-complex can be distinguished from those of other complexes treated in this revision by the combination of the following salient features: brown to black color; slightly longer than broad head ], sculpture of head dorsum dull: with areolate ground sculpture combined with conspicuous parallel costulate or irregular reticulate main sculpture; moderately long to long propodeal spines , deviating from longitudinal axis of mesosoma by 40\u201350\u00b0; petiolar node in lateral view with a concave frontal profile meeting occasionally indistinct truncate dorsum in an obtuse angle (110\u2013120\u00b0) with a narrowly rounded transition, without a conspicuous sharp fronto-dorsal ridge on the petiolar node. Four species consist of this complex: Temnothorax artvinensis Seifert, 2006, T. schoedli Seifert, 2006, T. sordidulus and T. tergestinus stat.n.Workers of the Temnothorax angustifrons sp. n., T. lucidus sp. n., T. similis sp. n., T. subtilis sp. n.) within this complex, which was confirmed by LDA TURKEY.Paratypes: 9 paratype workers of 3 nest samples were investigated from the type locality: Turkey, Artvin, 5 km SW. Artvin, 41.1445 N, 41.8537 E, 1000 mH, 27.06.1993, leg. A. Schulz \u201eno. 1162\u201d (3## ASPC) [TUR:Artvin-5SW-19930627-1162]; \u201eno. 1164\u201d (3## ASPC) [TUR:Artvin-5SW-19930627-1164]; \u201eno. 1165\u201d (3## ASPC) [TUR:Artvin-5SW-19930627-1165];The list of 39 individuals belonging to 12 nest samples of other material investigated is given in Body color: brown; black. Body color pattern: head, mesosoma, waist and anterior region of 1st gastral tergite lighter than antenna and legs and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 540\u2013634 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.206\u20131.263 (mean = 1.240). Postocular distance vs. cephalic length (PoOc/CL): 0.375\u20130.389 (0.384). Postocular sides of cranium contour frontal view orientation: parallel; converging posteriorly. Postocular sides of cranium contour frontal view shape: feebly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture homogenously forked costate, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.239\u20130.260 (mean = 0.247). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.357\u20130.375 (mean = 0.367). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.776\u20130.813 (mean = 0.794). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: carinate. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 42\u201348\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.227\u20130.288 (mean = 0.265). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.265\u20130.301 (mean = 0.278). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.296\u20130.350 (mean = 0.331). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.280\u20130.337 (mean = 0.313). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.598\u20130.626 (mean = 0.612). Metanotal depression count: present. Metanotal depression shape: deep. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 110\u2013120\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: concave; straight. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.T. artvinensis prevents confusion of this species with any other Turkish Temnothorax treated in this revision.The very dark color of T. artvinensis is geographically well isolated from other dark brown or black species of the T. sordidulus complex, it is unlikely that this this species is confused with its siblings. However, for doubtful cases, or if anthropochory is suspected, a discriminant function after character reduction (D4 = +0.114*EL -0.124*PEW +0.098*NOH -0.068*PPL +3.69209) separates 97.9% of T. artvinensis workers and each nest sample from that of Turkish T. schoedli and European brownish-black T. sordidulus and T. tergestinus.Due to the fact that D4 scores for nest sample means:T. artvinensis (n 15) = -1.620 T. schoedli (n 11) = +2.044 T. tergestinus (n 49) = +1.575 T. sordidulus (n 15) = +2.218 This species occurs in a restricted area of North-East Turkish high mountains .Temnothorax schoedli Seifert, 2006: 8 (w.q.) TURKEY.Paratypes: 20 paratype workers of 7 nest samples were investigated from the type locality: Turkey, Antakya, Nur Da\u011flari, 14 rkm W. Hassa 36.8414 N, 36.4309 E, 1600 mH, 11.05.1997, leg. A. Schulz, K. Vock, M. Sanetra: \u201eno. 287\u201d (2## SMNK) [TUR:Hassa-14W-19970511-287]; \u201eno. 289\u201d (3## SMNK) [TUR:Hassa-14W-19970511-289]; \u201eno. 290\u201d (3## SMNK) [TUR:Hassa-14W-19970511-290]; \u201eno. 292\u201d (3## ASPC) [TUR:Hassa-14W-19970511-292]; \u201eno. 293\u201d (3## ASPC) [TUR:Hassa-14W-19970511-293]; \u201eno. 295\u201d (3## ASPC) [TUR:Hassa-14W-19970511-295]; \u201eno. 299\u201d (3## ASPC) [TUR:Hassa-14W-19970511-299];The list of 12 non-type individuals belonging to 4 nest samples of other material investigated is given in Body color: brown. Body color pattern: mesosoma, antenna and legs excluding femora, waist and anterior region of 1st gastral tergite lighter than head, femora and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 572\u2013696 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.143\u20131.196 (mean = 1.172). Postocular distance vs. cephalic length (PoOc/CL): 0.360\u20130.385 (mean = 0.368). Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: broadly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture dispersed forked costate, ground sculpture inconspicuous areolate; main sculpture dispersed forked costate sculpture, ground sculpture areolate; main sculpture homogenously forked costate, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.255\u20130.282 (mean = 0.268). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.363\u20130.379 (mean = 0.372). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.764\u20130.805 (mean = 0.784). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 40\u201345\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.232\u20130.282 (mean = 0.261). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.282\u20130.298 (mean = 0.288). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.305\u20130.342 (mean = 0.327). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.293\u20130.328 (mean = 0.310). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.613\u20130.650 (mean = 0.632). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: widely rounded or slightly angulate area. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.T. sordidulus species-complex, Temnothorax schoedli has the lightest color. In addition to color it can be separated safely from other members of the complex by its very restricted geographical occurrence in the southern ranges of Taurus Mountains in Turkey. Temnothorax schoedli can be separated from T. artvinensis, which in geographical terms is the most closely situated relative of this species, by the coarse dull head sculpture and the very dark brown to black color of the latter and its significantly shorter head. The non-overlapping CL/CWb ratio ; from T. similis sp. n. by PEH/CS and NOH/CS ratios; from T. lucidus sp. n. by SPBA/CS; and from T. angustifrons sp. n. by the FRS/CS ratio.In its relatively lighter color and occasionally smooth head dorsum this species may superficially resemble species of g ratios : T. schoThis species occurs in a restricted area of South-Eastern Turkish lowlands .Leptothorax sordidulus M\u00fcller, 1923: 96 (w.) ITALY.Temnothorax: Bolton, 2003: 271.Combination in Temnothorax carinthiacus: Schulz, 1991: 121.Senior synonym of Leptothorax sordidulus M\u00fcller, 1923:Type material of not investigated, most probably lost, see also Seifert (2006).Leptothorax carinthiacus Bernard, 1957:Lectotype and Paralectotype of Carinthia Viktring H\u00f6lzler leg. [on reverse side: \u201eV/55\u201d], Lectotype Leptothorax carinthiacus Bernard 1957 desig. B. Seifert 2006 (2# LMK), [AUT:Viktring-carinthiacus-TYPE] (CASENT0913637);The list of 43 individuals belonging to 14 nest samples of other material investigated is given in Body color: brown; black. Body color pattern: head, mesosoma, waist and anterior region of 1st gastral tergite lighter than antenna and legs and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 518\u2013607\u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.192\u20131.278 (mean = 1.238). Postocular distance vs. cephalic length (PoOc/CL): 0.363\u20130.390 (mean = 0.374). Postocular sides of cranium contour frontal view orientation: parallel; converging posteriorly. Postocular sides of cranium contour frontal view shape: feebly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture homogenously forked costate, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.258\u20130.280 (mean = 0.266). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.353\u20130.378 (mean = 0.366). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.763\u20130.809 (mean = 0.785). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0. Ground sculpture of submedian area of clypeus: smooth; carinate. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 42\u201348\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.227\u20130.281 (mean = 0.258). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.257\u20130.291 (mean = 0.273). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.280\u20130.331 (mean = 0.306). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.266\u20130.312 (mean = 0.288). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.599\u20130.640 (mean = 0.615). Metanotal depression count: present. Metanotal depression shape: deep. Dorsal region of mesosoma sculpture: rugulose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture forked costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 110\u2013120\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.T. tergestinus. The other black species belonging to this complex, T. artvinensis is endemic to Turkey. Though T. sordidulus seems endemic to the Dinaran Alps, its distribution slightly overlaps with that of T. tergestinus in Slovenia and Austria. The darker, often black color of T. sordidulus in contrast to the brown color of Central European populations of T. tergestinus, its shorter spines (SPST/CS), shorter scapes (SL/CS), longer petioles (PL/CS) and petiolar nodes (NOL/CS) may help to separate T. sordidulus from Central European populations of T. tergestinus. If these ratios overlap and do not clearly separate between the two taxa, or if T. sordidulus shall be separated from Bulgarian or Greek populations of T. tergestinus, a discriminant function (D7 = +0.0323*SPTI -0.0594*NOL +0.0859*SL -0.0490*ML +0.0867*CWb -0.1167*EL -0.0414*CL -1.2164) yields 99% classification success rate in single individuals and 100% in nest sample means.Due to its dark brown to black color this species can only be confused with its European sibling, D7 scores for single individuals:T. sordidulus (n 47) = -1.872 , T. tergestinus (n 139) = +1.872 , D7 scores for nest sample means:T. sordidulus (n 16) = -1.885 T. tergestinus (n 49) = +1.868 T. sordidulus cannot be confused with any other species treated in this revision.In its restricted distributional area This species has a relatively restricted distributional area and is occurs in the Dinaran Alps of Austria, Croatia and Slovenia .Leptothorax sordidulus var. tergestina Finzi, 1928: 129 (w) ITALY.Temnothorax: Bolton, 2003: 271.Combination in Temnothorax saxonicus : [synonymy proposed hereby]Senior synonym of Leptothorax sordidulus var. tergestina Finzi, 1928:Syntype workers of \u201eS.Croze\u201d Ven. Giulia [Trieste] B. Finzi \u201e6.27\u201d, FinziColl. purch 1950, M. C. Z. \u201eco\u201dtype \u201e28840\u201d, \u201eSyntypus Leptothorax sordidulus var tergestinus Finzi\u201d, [on the reverse side: \u201eSP Cover 98\u201d], MCZ Museum of Comparative Zoology (4## MCZ), [ITA:Ven-Giulia-tergestinus-TYPE];Leptothorax sordidulus saxonixus Seifert, 1995:Nest sample of the holotype of GER: 51.0895 N, 14.6927 E L\u00f6bauer Berg 415m Basaltklippen mit Quercus, B. Seifert 1983.07.28\u2013473 aus Holotypus-Nest (3## HNHM), [GER:Lobauer-Berg-saxonicus-TYPE];The list of 132 non-type individuals belonging to 46 nest samples of other material investigated is given in Body color: brown. Body color pattern: head, mesosoma, waist and anterior region of 1st gastral tergite lighter antenna and legs except femora lighter than femora and posterior region of gaster. Antenna color pattern: clava concolorous funicle. Absolute cephalic size: 523\u2013665 \u03bcm . Cephalic length vs. Maximum width of head capsule (CL/CWb): 1.169\u20131.253 (mean = 1.206). Postocular distance vs. cephalic length (PoOc/CL): 0.373\u20130.400 (mean = 0.384). Postocular sides of cranium contour frontal view orientation: parallel; converging posteriorly. Postocular sides of cranium contour frontal view shape: broadly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture homogenously forked costate, ground sculpture areolate. Genae contour from anterior view orientation: converging. Gena contour line in frontal view shape: feebly convex. Gena sculpture: rugoso-reticulate with areolate ground sculpture. Median region of antennal rim vs. frontal carina in frontal view structure: not fully overlapped by frontal carina. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.237\u20130.280 (mean = 0.258). Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.347\u20130.380 (mean = 0.361). Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.781\u20130.824 (mean = 0.799). Facial area of the scape absolute setal angle: 0\u201315\u00b0. External area of the scape absolute setal angle: 30\u00b0; 35\u201345\u00b0. Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 45\u201350\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.220\u20130.335 (mean = 0.276). Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.248\u20130.295 (mean = 0.273). Maximum spine distance vs. absolute cephalic size (SPWI/CS): 0.283\u20130.372 (mean = 0.333). Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.270\u20130.346 (mean = 0.312). Maximum mesosoma width vs. absolute cephalic size (MW/CS): 0.588\u20130.652 (mean = 0.620). Metanotal depression count: present. Metanotal depression shape: shallow. Dorsal region of mesosoma sculpture: areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: areolate ground sculpture, main sculpture dispersed costate. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Metapleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae. Frontal profile of petiolar node contour line in lateral view shape: concave. Dorsal profile of petiolar node contour line angle value to frontal profile of petiole contour line in lateral view: 110\u2013120\u00b0. Anterodorsal rim of petiole count: absent medially. Dorsal profile of petiolar node contour line in lateral view shape: slightly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Dorso-caudal petiolar profile contour line in lateral view shape: straight; concave. Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent.T. parvulus and T. nylanderi, particularly if the body surface is covered by diffuse dust.This species can be separated from members of other species complexes by the ruguloreticulate main sculpture on head dorsum that turns irregular on the vertex and the sides of the head. In some Western and Central European populations, the surface sculpturing might be less conspicuous, which may lead to possible confusion with T. tergestinus can be safely separated from T. nylanderi using PoOC/CL and non-overlapping SPWI/CS ratios . A discriminant function (D7) that helps separating T. tergestinus from T. sordidulus is given in differential diagnosis under the latter.on range and by dT. sordidulus and T. saxonicus . Our results, however, differ from the earlier [T. sordidulus, but grouped in a cluster that was formerly referred to as T. saxonicus is nested in the T. saxonicus fell in the same cluster with a posterior probability of p = 0.99. Therefore, we propose a new junior synonymy for Temnothorax saxonicus with Temnothorax tergestinus stat. n.A multivariate analyses of 22 continuous characters in 186 individuals of 64 nest samples and 29 c earlier view in Seifert ); b) in Seifert ) clusterT. tergestinus and T. sordidulus , in contrast to the 18 characters that was used to require earlier [The newly outlined species boundaries allow a considerably easier separation of lus Figs and 29, earlier .T. tergestinus spreads from France to Bulgaria and Greece .All samples can be uniquely distinguished by sample-specific abbreviations Click here for additional data file.S2 TableTemnothorax nylanderi species-complex.GenBank accession number of CO I sequences of ants of (FAS)Click here for additional data file.S3 TableTemnothorax nylanderi species-complex. Data are given in \u03bcm.Morphometric characters of worker individuals of (CSV)Click here for additional data file.S4 TableTemnothorax nylanderi species-complex treated in this revision. Mean of indices, \u00b1SD are provided in the upper row, minimum and maximum values are given in parentheses in the lower row.Nest sample means of continuous morphometric data are calculated for the eighteen species of (XLSX)Click here for additional data file.S5 TableTemnothorax nylanderi species-complex investigated in this revisionary work is shown.Identification matrix calculated by Linear Discriminant Analysis and Leave One Out Cross Validation for 1693 workers of (XLSX)Click here for additional data file.S6 TableTemnothorax nylanderi species-group is provided with their semantic representations in Manchester Syntax format.The list of natural language phenotypes used in the species descriptions of (XLSX)Click here for additional data file."} {"text": "Sensors [http://www.mdpi.com/1424-8220/15/3/5251.The authors wish to update the Acknowledgments in their paper published in Sensors , doi:10."} {"text": "The second author\u2019s last name is misspelled. The correct name is: Alexis C. Frazier-Wood. The correct citation is given below.Cheung CHM, Frazier-Wood AC, Asherson P, Rijsdijk F, Kuntsi J (2014) Shared Cognitive Impairments and Aetiology in ADHD Symptoms and Reading Difficulties. PLoS ONE 9(6): e98590. doi:10.1371/journal.pone.0098590"} {"text": "PLoS ONE 9(3): e91694. doi:10.1371/journal.pone.0091694The second author\u2019s name is incorrect. The correct name is Robin Fortt. The correct citation is: Witney TH, Fortt R, Aboagye EO (2014) Preclinical Assessment of Carboplatin Treatment Efficacy in Lung Cancer by"} {"text": "The fourth author\u2019s name is spelled incorrectly. The correct name is: Alex Lu. The correct citation is: Debruin EJ, Hughes MR, Sina C, Lu A, Cait J, et al. (2014) Podocalyxin Regulates Murine Lung Vascular Permeability by Altering Endothelial Cell Adhesion. PLoS ONE 9(10): e108881. doi:10.1371/journal.pone.0108881"} {"text": "Dr. Yusuke Naito is the third author and also a corresponding author for this article. His affiliation is:2Sanofi-aventis K.K., Tokyo, Japan. His contributions are as follows: analyzed the data and wrote the paper.The correct citation and contact information of the corresponding authors are:Kadowaki T, Ohtani T, Naito Y, Odawara M (2012) Potential Formula for the Calculation of Starting and Incremental Insulin Glargine Doses: ALOHA Subanalysis. PLoS ONE 7(8): e41358. doi:10.1371/journal.pone.0041358Corresponding Authorskadowaki-3im@h.u-tokyo.ac.jp)Takashi Kadowaki (yusuke.naito@sanofi.com)Yusuke Naito ("} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceived and designed the experiments: AC AJW A. Mondino AAM PRQ. Performed the experiments: AC GC ER VB MV A. Monno. Analyzed the data: AC GF ER AJW A. Mondino AAM PRQ. Contributed reagents/materials/analysis tools: AJW A. Mondino AAM PRQ. Wrote the paper: AC GF AEA A. Mondino AJW AAM PRQ.The following information is missing from the Funding section: AIRC\u2014Associazione Italiana per la Ricerca sul Cancro (IG 11970/2011 to A.M.).The publisher apologizes for these errors."} {"text": "The third author\u2019s name is spelled incorrectly. The correct name is Eric Vatikiotis-Bateson. The correct citation is: Latif N, Barbosa AV, Vatikiotis-Bateson E, Castelhano MS, Munhall KG (2014) Movement Coordination during Conversation. PLoS ONE 9(8): e105036. doi:10.1371/journal.pone.0105036"} {"text": "Opisthorchis felineus Acquired in Italy , author Wouter Rozemeijer\u2019s name was spelled incorrectly. The article has been corrected online (http://wwwnc.cdc.gov/eid/article/20/1/13-0476_article).In the article Foodborne Trematodiasis and"} {"text": "The fifth author\u2019s name is spelled incorrectly. The correct name is: Justin I. Odegaard. The correct citation is: Richardson ML, Fu C-L, Pennington LF, Honeycutt JD, Odegaard JI, et al. (2014) A New Mouse Model for Female Genital Schistosomiasis. PLoS Negl Trop Dis 8(5): e2825. doi:10.1371/journal.pntd.0002825"} {"text": "Recent tastases . Preclintastases -5. As a tastases to a protastases . Paralletastases . In humatastases . Dranofflearance . Decreaslearance . Since Rlearance biopsies"} {"text": "Arabidopsis thaliana Using TAL-Effector-Nucleases. PLoS ONE 10(3): e0121056. doi:10.1371/journal.pone.0121056The fourth author\u2019s name is spelled incorrectly. The correct name is: Pablo A. Manavella. The correct citation is: Forner J, Pfeiffer A, Langenecker T, Manavella PA, Lohmann JU (2015) Germline-Transmitted Genome Editing in"} {"text": "The second author\u2019s name is spelled incorrectly. The correct name is: \u015e. Utku Yavuz. The correct citation is: Negro F, Yavuz \u015eU, Farina D (2014) Limitations of the Spike-Triggered Averaging for Estimating Motor Unit Twitch Force: A Theoretical Analysis. PLoS ONE 9(3): e92390. doi:10.1371/journal.pone.0092390"} {"text": "P. aureofaciens LMG 2145 should be P. aureofaciens 1245. P. amygdali LMG1384 should be P. amygdali 13184. P. resinovorans LMG 2774 should be P. resinovorans LMG 2274. P. mandelii LMG 2210 should be P. mandelii LMG 21607. P. luteola LMG 21607 should be P. luteola LMG 7041. Please see the corrected Figs There are errors in the names of type strains appearing in Figs S1 FiggyrB, rpoD and rpoB genes from 451 sequenced genomes and 107 type strains (bold), ML method and Tamura-Nei model. C. japonicus Ueda 107 was used as outgroup. Only bootstrap values above 75% over 1000 replicates are shown. Bold and T indicates type strain.MLSA based on partial sequences of 16S rDNA, (PDF)Click here for additional data file."} {"text": "Aging (Albany NY) 2015; 7(2): 97-109.PMCID: PMC4359692 PMID: 25701668http://www.impactaging.com/papers/v7/n2/pdf/100718.pdf.In this Article, the error was found in Figure 5: The correct Figure is provided here."} {"text": "Cryptococcus gattii Populations, Vancouver Island, Canada, 2002\u20132004 . The article has been corrected online (http://wwwnc.cdc.gov/eid/article/21/11/14-1161_article).Cryptococcus was misspelled in the title of Climatic Influences on"} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceived and designed the experiments: HO VT SS RL MNP LK JA. Performed the experiments: HO VT MW. Analyzed the data: HO VT SS RL MNP LK JA. Contributed reagents/materials/analysis tools: RL MNP LK JA. Wrote the paper: HO VT."} {"text": "Following the publication of the original article , it was \u201820. Freire SM, Sundvall E, Karlsson D, Lambrix P. Performance of XML Databases for Epidemiological Queries in Archetype-Based EHRs. 2012:51\u201357.\u2019However, it should instead read as:http://www.ep.liu.se/ecp/070/009/ecp1270009.pdf\u2019\u201820. Freire SM, Sundvall E, Karlsson D, Lambrix P. Performance of XML Databases for Epidemiological Queries in Archetype-Based EHRs. Scandinavian Conference on Health Informatics 2012:51\u201357."} {"text": "The matrix for FTIR spectra is available under the DOI: http://dx.doi.org/10.6084/m9.figshare.1300167. The report of S/G ratio in thirteen Cactaceae species studie by HPLC is available under the DOI: http://dx.doi.org/10.6084/m9.figshare.1300168. Supporting Information of the S/G ratio in thirteen Cactaceae species studied by HPLC is available under the DOI: http://dx.doi.org/10.6084/m9.figshare.1300165. Supporting Information of the percentage of syringyl-size plant graphic is available under the DOI: http://dx.doi.org/10.6084/m9.figshare.1300166.The Data Availability statement for this paper is incorrect. The correct statement is: All relevant data are available from Figshare. The complete dataset of chemical composition in Cactaceae wood is available under the DOI:"} {"text": "Nucl. Acids Res. 43 (12): e80. doi: 10.1093/nar/gkv242Johan den Dunnen's middle initial was omitted. The author's full name should be Johan T. den Dunnen.The publisher apologises to the authors for this error."} {"text": "Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics. PLoS ONE 11(6): e0156588. doi:10.1371/journal.pone.0156588The second author's name is spelled incorrectly. The correct name is: Keith M. Bayha. The correct citation is: Chiaverano LM, Bayha KM, Graham WM (2016) Local versus Generalized Phenotypes in Two Sympatric"} {"text": "AbstractNesomyrmex is reviewed and (1) subdivided into four major groups based on salient morphological features corroborated by numeric morphology: angulatus-, hafahafa-, madecassus- and sikorai-groups, and (2) the hafahafa species-group endemic to Madagascar is revised. Diversity within hafahafa species-group was assessed via hypothesis-free nest-centroid-clustering combined with gap statistic to assess the number of clusters and to determine the most probable boundaries between them. This combination of methods provides a highly automatized, objective species delineation protocol based on continuous morphometric data. Delimitations of clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis. These results suggest the existence of four morphologically distinct species, Nesomyrmexcapricornissp. n., Nesomyrmexhafahafasp. n., Nesomyrmexmedusussp. n. and Nesomyrmexspinosussp. n.; all are described and an identification key for their worker castes using morphometric data is provided. Two members of the newly outlined hafahafa species-group, Nesomyrmexhafahafasp. n., Nesomyrmexmedusussp. n., are distributed along the southeastern coast Madagascar and occupy rather large ranges, but two other species, Nesomyrmexcapricornissp. n. and Nesomyrmexspinosussp. n., are only known to occur in small and isolated forest, highlighting the importance of small forest patches for conserving arthropod diversity.Madagascar and its surrounding islands are among the world\u2019s greatest biodiversity hotspots, harboring predominantly endemic and threatened communities meriting special attention from biodiversity scientists. Building on the considerable efforts in recent years to inventory the Malagasy ant fauna, the myrmicine genus The Malagasy zoogeographical region, i.e. Madagascar and surrounding islands , is consNesomyrmex have never been the subject of focused research. To date, only four valid Nesomyrmex species have been recorded to occur in Madagascar makes the appearance of this group extremely unique; no similar species group has been found either in the Malagasy region or on the African continent. Multivariate evaluation of morphological data has revealed that the unique-looking Nesomyrmexhafahafa species-group comprises four well-outlined clusters, or species, that are endemic to Madagascar. The four new species outlined, Nesomyrmexcapricornis sp. n., Nesomyrmexhafahafa sp. n., Nesomyrmexmedusus sp. n., and Nesomyrmexspinosus sp. n., are described here based on worker caste, and both a key that includes both a numeric identification tool that helps readers to resolve the most problematic cases and a traditional character based key. Distribution maps are also provided. Our research PageBreakhas also revealed that two of the four species, Nesomyrmexcapricornis sp. n. and Nesomyrmexspinosus sp. n., occur in small, highly isolated forests, leaving them at a high risk of extinction from continuing environmental destruction or climatic changes.In the present paper, the Malagasy California Academy of Sciences (CAS), San Francisco, USA. The full list of non-type material morphometrically examined in this revision is listed in Table CASENT0460666). Designation of type material with detailed label information is given in relevant sections type material investigated for each taxon. All images and specimens used in this study are available online on AntWeb (http://www.antweb.org). Images are linked to their specimens via their unique specimen code affixed to each pin (CASENT0002660). Online specimen identifiers follow this format: http://www.antweb.org/specimen/CASENT0002660.In the present study, 21 continuous morphometric traits were recorded in 177 worker individuals belonging to 100 nest samples collected in the Malagasy region , or a Leica DFC 425 camera in combination with the Leica Application Suite software (version 3.8). Distribution maps were generated by using QGIS 2.4.0 software .The measurements were taken with a Leica MZ 12.5 stereomicroscope equipped with an ocular micrometer at a magnification of 100\u00d7. Measurements and indices are presented as arithmetic means with minimum and maximum values in parentheses. Body size dimensions are expressed in \u00b5m. Due to the abundance of worker individuals in contrast to the limited number of queen and male specimens available the present revision is based on worker caste only. Worker-based revision is further facilitated by the fact that name-bearing type specimens of the vast majority of existing ant taxa were designated from worker caste. All measurements were made by the first author. For the definition of morphometric characters, earlier protocols were con Maximum cephalic length in median lineCL. The head must be carefully tilted to the position providing the true maximum. Excavations of hind vertex and/or clypeus reduce CL Mesosoma length from caudalmost point of propodeal lobe to transition point between anterior pronotal slope and anterior pronotal shieldML . In gynes: length from caudalmost point of propodeal lobe to the most distant point of steep anterior pronotal face phenotypes were compiled in mx (http://purl.org/NET/mx-database). Taxonomic history and descriptions of taxonomic treatments were rendered from this software. Hymenoptera-specific terminology of morphological statements used in descriptions, identification key, and diagnoses are mapped to classes in phenotype-relevant ontologies (Hymenoptera Anatomy Ontology (HAO) via a URgy (HAO) ; see SelIn verbal descriptions of taxa based on external morphological traits, recent taxonomic papers were conHypothesis formation by exploratory analyses. Our hypothesis of the number of clusters and classification of samples was formulated by an exploratory data analysis technique, NC-clustering ( (Unweighted Pair Group Method with Arithmetic Mean)UPGMA distance method. This method is able to tackle large datasets with high dimensionality is computed by multiscale bootstrap resampling, and the raw Bootstrap Probabilities (BP) that is calculated before statistical adjustments by normal bootstrap resampling.ustering using coionality , providi were given to samples that were incongruently classified by the two methods. The confirmative LDA was run as an iterative process to achieve the lowest number of characters necessary to achieve the desired level (>97%) of classification success angulatus ilgii = latinodis = angulatus concolor = hafahafa groupcapricornis Cs\u0151sz & Fisher,sp. n.hafahafa Cs\u0151sz & Fisher,sp. n.medusus Cs\u0151sz & Fisher,sp. n.spinosus Cs\u0151sz & Fisher,sp. n.PageBreakmadecassus groupgibber madecassus sikorai groupretusispinosus sikorai Absolute cephalic size (CS): 591 \u00b5m . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.218 . Postocular distance vs. cephalic length (PoOc/CL): 0.40 . Scape length vs. absolute cephalic size (SL/CS): 0.676 . Eye length vs. absolute cephalic size (EL/CS): 0.260 . Petiole width vs. absolute cephalic size (PEW/CS): 0.431 . Postpetiole width vs. absolute cephalic size (PPW/CS): 0.496 . Petiolar node height vs. absolute cephalic size (PEW/CS): 0.250 . Nesomyrmexangulatus and ca. four undescribed species belong to this group in the Malagasy zoogeographical region.Pronotal spines present or absent. Anterodorsal spines on petiolar node absent. Propodeal spines short to long and acute. Vertex ground sculpture areolate. Main sculpture on vertex not defined. Metanotal depression present or absent. Median clypeal notch present or absent. Median clypeal notch shape/depth: 0\u201323 \u00b5m. Antennomere count: 12. PageBreakPageBreakCS): 1059 \u00b5m . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.074 . Postocular distance vs. cephalic length (PoOc/CL): 0.378 . Scape length vs. absolute cephalic size (SL/CS): 0.890 . Eye length vs. absolute cephalic size (EL/CS): 0.232 . Petiole width vs. absolute cephalic size (PEW/CS): 0.267 . Postpetiole width vs. absolute cephalic size (PPW/CS): 0.523 . Petiolar node height vs. absolute cephalic size (PEW/CS): 0.142 . Four species, Nesomyrmexcapricornis sp. n., Nesomyrmexhafahafa sp. n., Nesomyrmexmedusus sp. n. and Nesomyrmexspinosus sp. n. are known to constitute this species group in Madagascar.Pronotal spines present. Anterodorsal spines on petiolar node present. Propodeal spines long and acute. Vertex ground sculpture areolate. Vertex main sculpture rugulose. metanotal depression absent. Median clypeal notch present. Median clypeal notch shape/depth: 15\u201331 \u00b5m. Antennomere count: 12. Absolute cephalic size (CS): 571 \u00b5m . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.231 . Postocular distance vs. cephalic length (PoOc/CL): 0.479 . Scape length vs. absolute cephalic size (SL/CS): 0.718 . Eye length vs. absolute cephalic size (EL/CS): 0.249 . Petiole width vs. absolute cephalic size (PEW/CS): 0.217 . Postpetiole width vs. absolute cephalic size (PPW/CS): 0.331 . Petiolar node height vs. absolute cephalic size (PEW/CS): 0.122 . Nesomyrmexmadecassus and ca. seven other taxa from the Malagasy zoogeographical region will be revised in the forthcoming revisionary work.Pronotal spines absent. Anterodorsal spines on petiolar node absent. Propodeal spines short, lamelliform to absent. Vertex ground sculpture smooth. Vertex main sculpture not defined. Metanotal depression present. Median clypeal notch present or absent. Median clypeal notch shape/depth 0\u201315 \u00b5m. Antennomere count: 12. Absolute cephalic size (CS): 750 \u00b5m . Cephalic length vs. maximum width of head capsule (CL/CWb): 1.218 . Postocular distance vs. cephalic length (PoOc/CL): 0.461 . Scape length vs. absolute cephalic size (SL/CS): PageBreak0.816 . Eye length vs. absolute cephalic size (EL/CS): 0.232 . Petiole width vs. absolute cephalic size (PEW/CS): 0.243 . Postpetiole width vs. absolute cephalic size (PPW/CS): 0.359 . Petiolar node height vs. absolute cephalic size (PEW/CS): 0.175 . Nesomyrmexsikorai , Nesomyrmexretusispinosus plus ca. ten more Malagasy species will be revised in a forthcoming revisionary work.Pronotal spines present or absent. Anterodorsal spines on petiolar node absent. Propodeal spines short to long and acute. Vertex ground sculpture not defined. Vertex main sculpture areolate. Metanotal depression present. Median clypeal notch present or absent. Median clypeal notch shape/depth 0\u201315 \u00b5m. Antennomere count: 12. Absolute cephalic size +(0.0121\u00d7SPST)-(0.0023\u00d7PSTI)+(0.0281\u00d7NSTI) +1.6LD1= -(0.0324\u00d7PEL)+(0.0258\u00d7SPST)-(0.0328\u00d7PSTI)+(0.0049\u00d7NSTI)-2.9LD2= + obtained here can either be compared to the values given in Table Though all species defined in this revisionary work proved to be highly separable via descriptive morphology, or by using simple indices, the application of classification functions LD1 and LD2 provides a foolproof, numeric morphology-based identification tool when decisions based on conventional diagnostic traits fail.PageBreakNesomyrmexhafahafa species-group are described, and a key to these species is provided. Diagnoses are given in the key, the basic statistics of body size ratios are given in Table hafahafa group is detailed in the discussion. The diagnoses and a key to the four Malagasy Nesomyrmex species groups defined here are followed by the descriptions of species belonging to the hafahafa group.In this section, four new species of the PageBreakNesomyrmexhafahafa group differ in body ratios. The following dichotomous identification key for the worker caste was generated based on ratios of morphological features that allow quick identification. Minimum and maximum values for each character is given in parentheses. The reliability of all characters has been tested and calculated classification success was always higher than 95% for each node. Where classification error was detected (i.e. the range of a given trait overlaps between two species) a percentile range 5\u201395% was also provided in brackets.The species of the Taxon classificationAnimaliaHymenopteraFormicidaeCs\u0151sz & Fishersp. n.http://zoobank.org/EC84BA51-2D96-4084-AB2B-8B19AF1DEEDCHolotype worker.CASENT0452741, collection code: BLF05245; MADGAGASCAR: Prov. Toliara, For\u00eat Mahavelo, Isantoria Riv., 5.2 km 44\u00b0NE Ifotaka, 24\u00b046'S, 46\u00b009'E , 110 m, 28.iii.2002 Fisher et al. (CAS);Paratypes. Ten workers, a single gyne and two males with the same label data with the holotype under CASENT codes: CASENT0452715, \u201c5245\u201d, ; CASENT0452716, \u201c5245\u201d, ; CASENT0452717, \u201c5245\u201d, ; CASENT0452720, BLF05245, ; CASENT0452721, BLF05245, ; CASENT0452722, BLF05245, ; CASENT0452725, BLF05245, ; CASENT0452726, BLF05245, ; CASENT0452726, BLF05245, ; CASENT0452727, BLF05245, ; CASENT0452728, BLF05245, ; CASENT0452729, BLF05245, ; CASENT0452730, BLF05245, ; CASENT0452731, BLF05245, ; CASENT0452732, BLF05245, ; CASENT0452733, BLF05245, ; CASENT0452734, BLF05245, ; CASENT0452735, BLF05245, ; CASENT0452736, BLF05245, ; CASENT0452737, BLF05245, ; CASENT0452738, BLF05245, ; CASENT0452739, BLF05245, ; CASENT0452742, BLF05245, ; CASENT0452743, BLF05245, ; CASENT0452744, BLF05245, ; CASENT0452745, BLF05245, ; CASENT0452746, BLF05245, ; CASENT0452747, BLF05245, ; CASENT0452748, BLF05245, ; CASENT0452750, BLF05245, ; CASENT0452751, BLF05245, ; CASENT0452752, BLF05245, ; CASENT0452753, BLF05245, ;The list of 21 non-type individuals belonging to 14 nest samples of other material investigated is given in Table In key.CL/CWb): 1.079 . Postocular distance vs. cephalic length (PoOc/CL): 0.390 . Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: broadly convex. Vertex contour line in frontal view shape: straight. Vertex sculpture: main sculpture rugose, ground sculpture areolate. Gena contour line in frontal view shape: convex. Genae contour from anterior view orientation: converging. Gena sculpture: rugo-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen count: absent; present. Eye length vs. absolute cephalic size (EL/CS): 0.241 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.315 . Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.927 . Facial area of the scape absolute setal angle: setae absent, pubescence only. Median clypeal notch count: present. Median clypeal notch depth vs. absolute cephalic size (Cdep/CS): 0.023 . Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 65\u201370\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.397 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.260 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.455 . Propodeal spine shape: straight; slightly bent. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.658 . Metanotal depression count: absent. Dorsal region of mesosoma sculpture: areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.265 . Anterodorsal spines on petiolar node angle of deviation from each other: 60\u00b0. Apical distance of anterodorsal spines on petiolar node vs. absolute cephalic size (NSTI/CS): 0.265 . Frontal profile of petiolar node contour line in lateral view shape: straight; concave. Dorso-caudal petiolar profile contour line in lateral view shape: strongly convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.558 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture absent; ground sculpture areolate, main sculpture dispersed rugose.Body color: yellow. Body color pattern: Body concolorous, only clava darker. Absolute cephalic size: 1024 \u00b5m (n=27). Cephalic length vs. maximum width of head capsule in the southern part of Madagascar Fig. .Taxon classificationAnimaliaHymenopteraFormicidaeCs\u0151sz & Fishersp. n.http://zoobank.org/C2249F7A-0FFE-4C76-A2E8-905A4B1EA754This Malagasy word \u201chafahafa\u201d means weird, and refers to the unusual morphology of this species.Holotype worker.CASENT0460666, collection code: BLF06010; MADG\u2019R: Prov. Toliara, For\u00eat de Tsinjoriaky, 6.2 km 84\u00b0 E Tsifota, 22\u00b048'S, 43\u00b025'E , 70 m, 6\u201310.iii.2002 Fisher et al. (CAS)Paratypes. Ten workers, a single gyne and two males with the same label data as the holotype under CASENT codes: CASENT0746771, BLF06010, ; CASENT0460667, BLF06010, ; CASENT0460668, BLF06010, ; CASENT0460669, BLF06010, ; CASENT0451364, \u201c6019\u201d, ; CASENT0451364, \u201c6019\u201d, ;The list of 44 non-type individuals belonging to 25 nest samples of other material investigated is given in Table In key.CL/CWb): 1.224 [1.193-1.254]. Postocular distance vs. cephalic length (PoOc/CL): 0.388 . Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: broadly convex. Vertex contour line in frontal view shape: straight; slightly concave. Vertex sculpture: main sculpture PageBreakrugose, ground sculpture areolate. Gena contour line in frontal view shape: feebly convex. Genae contour from anterior view orientation: converging. Gena sculpture: rugo-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.230 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.316 . Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.895 . Facial area of the scape absolute setal angle: setae absent, pubescence only. Median clypeal notch count: present. Median clypeal notch depth vs. absolute cephalic size (Cdep/CS): 0.022 . Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine anPageBreakgle value to Weber length in lateral view: 55\u201360\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.398 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.287 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.543 . Propodeal spine shape: strongly bent. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.724 . Metanotal depression count: absent. Dorsal region of mesosoma sculpture: areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture superimposed by dispersed rugulae; areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.307 . Anterodorsal spines on petiolar node angle of deviation from each other: 80\u00b0. Apical distance of anterodorsal spines on petiolar node vs. absolute cephalic size (NSTI/CS): 0.514 . Frontal profile of petiolar node contour line in lateral view shape: convex. Dorso-caudal petiolar profile contour line in lateral view shape: convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.538 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture dispersed rugose.Body color: yellow; brown. Body color pattern: body concolorous, only clava darker. Absolute cephalic size: 1062 \u00b5m (n = 48). Cephalic length vs. maximum width of head capsule ;Paratypes. Ten workers, a single gyne and two males with the same label data as the holotype under CASENT codes: CASENT0746770, BLF06201, ; CASENT0455429, BLF06201, ; CASENT0455430, BLF06201, ; CASENT0455431, BLF06201, ; CASENT0455432, BLF06201, ; CASENT0455433, BLF06201, ; CASENT0455434, BLF06201, ; CASENT0455435, BLF06201, ; CASENT0455437, BLF06201, ; CASENT0455438, BLF06201, ; CASENT0455439, BLF06201, ; CASENT0455440, BLF06201, ;The list of 54 non-type individuals belonging to 28 nest samples of other material investigated is given in Table In key.CL/CWb): 1.046 . Postocular distance vs. cephalic length (PoOc/CL): 0.391 . Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: broadly convex. Vertex contour line in frontal view shape: straight; slightly concave. Vertex sculpture: main sculpture rugose, ground sculpture areolate. Gena contour line in frontal view shape: feebly convex. Genae contour from anterior view orientation: converging. Gena sculpture: rugo-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.232 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.313 . Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.907 . Facial area of the scape absolute setal angle: setae absent, pubescence only. Median clypeal notch count: present. Median clypeal notch depth vs. absolute cephalic size (Cdep/CS): 0.022 . Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 65\u201372\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.385 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.266 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.443 . Propodeal spine shape: straight; slightly bent. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.757 . Metanotal depression count: absent. Dorsal region of mesosoma sculpture: areolate ground sculpture, superimposed by dispersed rugae. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.268 . Anterodorsal spines on petiolar node angle of deviation from each other: 70\u00b0. Apical distance of anterodorsal spines on petiolar node vs. absolute cephalic size (NSTI/CS): 0.354 . Frontal profile of petiolar node contour line in lateral view shape: straight. Dorso-caudal petiolar profile contour line in lateral view shape: straight; convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture dispersed rugose; ground sculpture areolate, main sculpture absent. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.543 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture absent; ground sculpture areolate, main sculpture dispersed rugose.Body color: brown. Body color pattern: body concolorous, only clava darker. Absolute cephalic size: 1069 \u00b5m (n=56). Cephalic length vs. maximum width of head capsule of Madagascar Fig. between Taxon classificationAnimaliaHymenopteraFormicidaeCs\u0151sz & Fishersp. n.http://zoobank.org/D3643DB1-75EB-415A-9220-9F255A5FCB21Name \u201cspinosus\u201d refers to the short, strong antero-dorsal spines on the petiolar node.Holotype worker.CASENT0443515, BLF05489; MADGAGASCAR: Prov. Toliara, R\u00e9serve Priv\u00e9 Berenty, For\u00eat d\u2019Anjapolo, 21.4 km 325\u00b0 NW Amboasary, 24\u00b056'S, 46\u00b013'E , 65 m, 7.iii.2002 Fisher et al. (CASCASENT0443515);Paratypes. 24 workers and three males with the same label data with the holotype under CASENT codes: CASENT0443515, BLF05489, ; PageBreakCASENT0443516, BLF05489, ; CASENT0443517, BLF05489, ; CASENT0443518, BLF05489, ; CASENT0443519, BLF05489, ; CASENT0443520, BLF05489, ; CASENT0443521, BLF05489, ; CASENT0443522, BLF05489, ; CASENT0443523, BLF05489, ; CASENT0443524, BLF05489, ; CASENT0443525, BLF05489, ; CASENT0443526, BLF05489, ; CASENT0443527, BLF05489, ; CASENT0443530, BLF05489, ; CASENT0443531, BLF05489, ; CASENT0443532, BLF05489, ; CASENT0443533, BLF05489, ; CASENT0443534, BLF05489, ; CASENT0443535, BLF05489, ; CASENT0443536, BLF05489, ; CASENT0443537, BLF05489, ;The list of 44 non-type individuals belonging to 26 nest samples of other material investigated is given in Table In key.PageBreakCL/CWb): 1.056 . Postocular distance vs. cephalic length (PoOc/CL): 0.374 . Postocular sides of cranium contour frontal view orientation: converging posteriorly. Postocular sides of cranium contour frontal view shape: broadly convex. Vertex contour line in frontal view shape: slightly concave. Vertex sculpture: main sculpture rugose, ground sculpture areolate. Gena contour line in frontal view shape: feebly convex. Genae contour from anterior view orientation: converging. Gena sculpture: rugo-reticulate with areolate ground sculpture. Concentric carinae laterally surrounding antennal foramen count: present. Eye length vs. absolute cephalic size (EL/CS): 0.239 . Frontal carina distance vs. absolute cephalic size (FRS/CS): 0.315 . Longitudinal carinae on median region of frons count: present. Longitudinal carinae on medial region of frons shape: forked. Smooth median region on frons count: absent. Antennomere count: 12. Scape length vs. absolute cephalic size (SL/CS): 0.880 . Facial area of the scape absolute setal angle: setae absent, pubescence only. Median clypeal notch count: present. Median clypeal notch depth vs. absolute cephalic size (Cdep/CS): 0.021 . Ground sculpture of submedian area of clypeus: smooth. Median carina of clypeus count: present. Lateral carinae of clypeus count: present. Median anatomical line of propodeal spine angle value to Weber length in lateral view: 65\u00b0. Spine length vs. absolute cephalic size (SPST/CS): 0.300 . Minimum spine distance vs. absolute cephalic size (SPBA/CS): 0.212 . Apical spine distance vs. absolute cephalic size (SPTI/CS): 0.307 . Propodeal spine shape: straight; slightly bent. Apical distance of pronotal spines vs. absolute cephalic size (PSTI/CS): 0.677 . Metanotal depression count: absent. Dorsal region of mesosoma sculpture: rugose with areolate ground sculpture. Lateral region of pronotum sculpture: areolate ground sculpture, superimposed by dispersed rugae. Mesopleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Metapleuron sculpture: areolate ground sculpture, superimposed by dispersed rugae. Petiole width vs. absolute cephalic size (PEW/CS): 0.237 . Anterodorsal spines on petiolar node angle of deviation from each other: 60\u00b0. Apical distance of anterodorsal spines on petiolar node vs. absolute cephalic size (NSTI/CS): 0.216 . Frontal profile of petiolar node contour line in lateral view shape: straight. Dorso-caudal petiolar profile contour line in lateral view shape: convex. Dorsal region of petiole sculpture: ground sculpture areolate, main sculpture absent; ground sculpture areolate, main sculpture dispersed rugose. Postpetiole width vs. absolute cephalic size (PPW/CS): 0.491 . Dorsal region of postpetiole sculpture: ground sculpture areolate, main sculpture absent; ground sculpture areolate, main sculpture dispersed rugose.Body color: brown. Body color pattern: body concolorous, only clava darker. Absolute cephalic size: 1021 \u00b5m (n=46). Cephalic length vs. maximum width of head capsule in the southern part of Madagascar Fig. .PageBreakNesomyrmex fauna into four species-groups delimited based on morphological features corroborated by morphometric data (see definition and diagnoses of groups). The within-group diversity of one of these new groups, Nesomyrmexhafahafa group, was revealed by an enhanced hypothesis-free approach. The exploratory NC-clustering implemented in the package clusterGenomics (part\u2019) assigned observations into partitions. Gap statistic is a global method, determines the number of clusters based on gap criterion described by A gap statistic algorithm and the known biogeographic patterns (Fig. Our research demonstrates that combination of NC-clustering with gap statistics and recursive partitioning algorithms performs well in distinguishing partitions in the present data based on morphological distances among nest sample means. Four-cluster hypothesis was returned by both gap statistic Fig. and recurns Fig. .Nesomyrmex.We highlight the importance and advantages of the combination of NC-clustering with algorithms to statistically infer gaps and create array of clusters. This protocol also has the potential at accelerate and improve taxonomic decision making process considerably by enabling taxonomists to objectively interpret results based on quantitative morphometric data even in a largely underexplored or poorly understood group such as the Malagasy genus Combination of these approaches allows researchers to recognize cryptic species, but also prevent users from inferring overly diverse pattern in the data. A taxonomist without long-term training in a given group can evaluate new specimens and potential new species by repeating the analysis with measurements from new specimens. This method is best included with an integrated approach that includes conventional morphological characters, biogeography, ecology or molecular data.PageBreak"} {"text": "The third author\u2019s name is spelled incorrectly. The correct name is: Robert Peu\u00df. The correct citation is: Milutinovi\u0107 B, Stolpe C, Peu\u00df R, Armitage SAO, Kurtz J (2013) The Red Flour Beetle as a Model for Bacterial Oral Infections. PLoS ONE 8(5): e64638. doi:10.1371/journal.pone.0064638"} {"text": "Inorg. DOI: 10.1107/S1600536814013336/hb7216Isup2.hklStructure factors: contains datablock(s) I. DOI: Click here for additional data file.10.1107/S1600536814013336/hb7216Isup3.cdxSupporting information file. DOI: 1007160CCDC reference: crystallographic information; 3D view; checkCIF reportAdditional supporting information:"} {"text": "Tel: +254 20 418 32 39www.kcco.net or contact Genes Mng'anga at genes@kcco.netVisit Contact Anita Shah admin@cehjournal.orgweb@cehjournal.org or visit www.cehjournal.org/subscribewww.cehjournal.orgwww.facebook.com/CEHJournal/https://twitter.com/CEHJournalVisit us online:"} {"text": "The second author\u2019s name is incorrect. The correct name is Willscott Edward Naugler. The correct citation is: Ellis ECS, Naugler WE, Parini P, M\u00f6rk L-M, Jorns C, et al. (2013) Mice with Chimeric Livers Are an Improved Model for Human Lipoprotein Metabolism. PLoS ONE 8(11): e78550. doi:10.1371/journal.pone.0078550"} {"text": "From 2001 to 2011, the percentage of uninsured persons aged <65 years for whom cost was a reason for not having health insurance coverage decreased among uninsured Hispanic, non-Hispanic white, and non-Hispanic black persons. In 2001 and 2011, uninsured Hispanic persons aged <65 years were more likely than uninsured non-Hispanic white and non-Hispanic black persons to lack health insurance coverage because of cost.Sources: Barnes PM, Adams PF, Schiller JS. Summary health statistics for the U.S. population: National Health Interview Survey, 2001. Vital Health Stat 2003;10(217). Available at http://www.cdc.gov/nchs/data/series/sr_10/sr10_217.pdf.http://www.cdc.gov/nchs/data/series/sr_10/sr10_255.pdf.Adams PF, Kirzinger WK, Martinez ME. Summary health statistics for the U.S. population: National Health Interview Survey, 2011. Vital Health Stat 2012;10(255). Available at"} {"text": "The first author\u2019s name is spelled incorrectly. The correct name is: Julian Klein. The correct citation is: Klein J, Darvin ME, M\u00fcller KE, Lademann J (2012) Serial Non-Invasive Measurements of Dermal Carotenoid Concentrations in Dairy Cows following Recovery from Abomasal Displacement. PLoS ONE 7(10): e47706. doi:10.1371/journal.pone.0047706"} {"text": "Phytophthora plurivora. PLoS ONE 9(1): e85368. doi:10.1371/journal.pone.0085368The third author\u2019s name is spelled incorrectly. The correct name is: Niklaus J. Gr\u00fcnwald. The correct citation is: Schoebel CN, Stewart J, Gr\u00fcnwald NJ, Rigling D, Prospero S (2014) Population History and Pathways of Spread of the Plant Pathogen"} {"text": "Phil. Trans. R. Soc. A\u2009380, 20210299. (Published online 15 August 2022). (https://doi.org/10.1098/rsta.2021.0299)In the original version of this article, references 113\u2013120, 123\u2013140 and 143 were incorrectly numbered.This has been corrected on the publisher's website."} {"text": "This article has been corrected: In 37154-37163. https://doi.org/10.18632/oncotarget.16209Original article: Oncotarget. 2017; 8:37154\u201337163."} {"text": "Correction: Psicologia: Reflex\u00e3o e Cr\u00edtica 35, 35 (2022)https://doi.org/10.1186/s41155-022-00237-9BLINDED\u201d in the citation should be changed to the Kinkead et al., 2021.Following publication of this article . Couples\u2019 Extrinsic Emotion Regulation Questionnaire: Psychometric Validation in a Chilean Population. PLoS ONE2. 16(6): e0252329. https://doi.org/10.1371/journal.pone.0252329The original article (Kinkead & Riquelme,"} {"text": "J Clin Invest. 2022;132(8):e149160. https://doi.org/10.1172/JCI149160Original citation: J Clin Invest. 2023;133(4):e169139. https://doi.org/10.1172/JCI169139Citation for this corrigendum: During the preparation of the manuscript, a histogram for The authors regret the error."} {"text": "Journal of Biomedical Researchhttps://doi.org/10.7555/JBR.27.20120114,published on 30 September 2013.Correction to:We apologize for the misused images in"} {"text": "Nature Communications 10.1038/s41467-022-34269-7, published online 15 November 2022Correction to: In this article the author name M. W. Krone was incorrectly written as W. M. Krone. The original article has been corrected."} {"text": "Correction: Plant Methods (2021) 17:103 https://doi.org/10.1186/s13007-021-00802-wIn the Funding information section, the Grant Number was incorrectly given as \u2018No. 2019FYD1000900\u2019 and should have read \u2018No. 2019YFD1000900\u2019. The original article ["} {"text": "Adv. Sci. 2019, 6, 190128010.1002/advs.201901280DOI: In the originally published article there is an error in Figure"} {"text": "This article has been corrected: In 11964-11976. https://doi.org/10.18632/oncotarget.22600Original article: Oncotarget. 2018; 9:11964\u201311976."} {"text": "There is an error in reference 11. The correct reference is:Tu K, Lu K, Zhang Q, Huang W, Xie D. Accurate single-cell genotyping utilizing information from the local genome territory. Nucleic Acids Res. 2021 Jun 4;49(10):e57. doi: 10.1093/nar/gkab106. PMID: 33619552."} {"text": "Staphylococcus aureus are presented. They are closely related to prophages that were previously sequenced as part of S. aureus genomes.The annotated whole-genome sequences of five cultured phietaviruses infecting Staphylococcus aureus is a human commensal bacterium that has the potential to cause life-threatening infection (http://cab.spbu.ru/software/spades) (http://gravity.cvr.gla.ac.uk) related to SAP26 (GenBank accession number GU477322 [arbitrarily linearized]). The genomes were reoriented to reflect the termini of Staphylococcus prophages from a closely related genus . Genome annotation was performed as described previously in Galaxy (https://phrogs.lmge.uca.fr) (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) (http://trna.ucsc.edu/tRNAscan-SE) (http://rssf.i2bc.paris-saclay.fr/toolbox/arnold) (https://rfam.xfam.org/search#tabview=tab1) (http://genome2d.molgenrug.nl/g2d_pepper_promoters.php) (Paired-end 2 \u00d7 150-bp) sequencing using the Illumina DNA library preparation kit was performed on the NextSeq 2000 system at the Microbial Genome Sequencing Center (MiGS), which provided quality-controlled and trimmed reads. These reads were analyzed using the CPT Galaxy Phage Genome Assembler v2021.01 Workflow (axy-pub) with SPA/spades) , which pa.ac.uk) , which seviously , 11; open Galaxy and furt.uca.fr) and Phyrd=index) , and non0-bp sequ/arnold) , noncodiew=tab1) , and proers.php) , were iders.php) and SAMtS. aureus genomes .The five SAP genomes are ~43 kb , and porPRJNA857681) (Genomes are available in GenBank (see A857681) . The pha"} {"text": "Nature Communications 10.1038/s41467-022-35384-1, published online 13 December 2022Correction to: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196673 instead of https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193673. This has been corrected in the PDF and HTML version of the article.The original version of this article contained an error in the \u201cData availability\u201d Statement. The hyperlink provided for the accession number GSE193673 was incorrectly given as"} {"text": "This article has been corrected: In 58394-58404. https://doi.org/10.18632/oncotarget.16880Original article: Oncotarget. 2017; 8:58394\u201358404."} {"text": "NORTH AMERICA28\u201031 July 2022American Podiatric Medical Association (APMA) Annual Scientific MeetingOrlando, Florida, USAwww.apma.org/events/thenational.cfm17\u201020 August 2022Annual Amputation Prevention Symposium (AMP)Chicago, Illinois, USAwww.amptheclimeeting.com/amp\u2010202226\u201028 August 2022Modern Wound Care ManagementStevenson, Wyoming USAmodernwound.comwww. 29 September \u2013 1 October 2022SVM 33rd Annual Scientific SessionsGrand Hyatt Denver, Denver, Colorado USAwww.woundsource.com/resource/svm\u201033rd\u2010annual\u2010scientific\u2010sessionsEUROPE19\u201020 July 2022International Conference on Novel Biomaterials in Drug Delivery and Wound Care ICNBDDWCCopenhagen, Denmarkwww.waset.org/novel-biomaterials-in-drug-delivery-and-wound-care-conference-in-july-2022-in-copenhagen15\u201018 August 2022International Surgical Week 2022 (ISW 2022)Vienna, Austriawww.isw2022.org7\u201010 September 2022International Continence Society Annual MeetingVienna, Austriawww.woundsource.com/resource/international\u2010continence\u2010society\u2010annual\u2010meeting7\u201310 September 202231st EADV CongressMilan, Italy & ONLINEwww.eadvcongress2022.org14\u201316 September 2022EPUAP 2022 Prague, Czech Republicwww.epuap2022.org14\u201317 September 2022Wounds Australia National Conference 2022Sydney, Australiawww.woundsaustralia.com.au/Web/Events/Web/Events/Event_List.aspx16\u201318 September 202218th Meeting of the Diabetic Foot Study Group (DFSG)Bratislava, Slovakiawww.dfsg.org/1/dfsg\u20102022"} {"text": "Correction: International Archives of Occupational and Environmental Health 10.1007/s00420-022-01922-zhttps://legislation.wa.gov.au/.Work Health and Safety (Mines) Regulations 2022, Available online: https://www.business.qld.gov.au/industries/mining-energy-water/resources/safety-health/mining/hazards/dust/exposure-limits.Exposure limits for dust in mineral mines, Available online: Unfortunately the reference was wrongly published. The correct reference is given below."} {"text": "Scientific Data10:89; 10.1038/s41597-023-01983-w, published online 11 February 2023.Correction to: In this article the author name Matthew R.V. Ross was incorrectly written as Matthew R. Ross. The original article has been corrected."} {"text": "This article has been corrected: In 101224-101243. https://doi.org/10.18632/oncotarget.20642Original article: Oncotarget. 2017; 8:101224\u2013101243."} {"text": "J Clin Invest. 2019;129(8):3214\u20133223. https://doi.org/10.1172/JCI125915Original citation: J Clin Invest. 2023;133(4):169317. https://doi.org/10.1172/JCI169317Citation for this corrigendum: \u2013/\u2013Pparb Opg-Fc sample. The correct figure is shown below.The authors recently became aware that an incorrect image was shown in The authors regret the error."} {"text": "This article has been corrected: Due to errors during figure assembly, an incorrect blot was used for the p53 panel in 8270-8283. https://doi.org/10.18632/oncotarget.2013Original article: Oncotarget. 2014; 5:8270\u20138283."} {"text": "Correction: Implement Sci 17, 42 (2022)https://doi.org/10.1186/s13012-022-01211-wFollowing publication of the original article , it was Additional file 1: Appendix A. School Professional Assessment Survey. Appendix B. School Professional Characteristics and Background. Appendix C. Re-Analysis Focusing on CBT Delivery Trends. Appendix D. Missing Data and Imputation."} {"text": "Correction: BMC Neurol 22, 412 (2022)https://doi.org/10.1186/s12883-022-02926-5Following publication of the original article , the autAli M. AlamJian P. K. ChenGreta K. WoodBethany FacerManeesh BhojakKumar DasSylviane DefresAnthony MarsonJulia GranerodDavid BrownRhys H. ThomasSimon S. KellerTom SolomonBenedict D. MichaelThe original article has been"} {"text": "J Clin Invest. 2022;132(11):e157549. https://doi.org/10.1172/JCI157549Original citation: J Clin Invest. 2023;133(2):e167843. https://doi.org/10.1172/JCI167843Citation for this corrigendum: In The authors regret the error."} {"text": "This article has an addendum: The patient provided written informed consent.2137-2140. https://doi.org/10.18632/oncotarget.27598Original article: Oncotarget. 2020; 11:2137\u20132140."} {"text": "J Clin Invest. 2022;132(8):e152187. https://doi.org/10.1172/JCI152187Original citation: J Clin Invest. 2022;132(10):e161559. https://doi.org/10.1172/JCI161559Citation for this corrigendum: Following the publication of this article, the authors became aware that an incorrect panel was used for The authors regret the error."} {"text": "Consent was added to this article: The study, protocol # HRI-0029 is an IRB approved clinical study, WIRB # 20182804, and all patients signed informed consent to participate.1836-1847. https://doi.org/10.18632/oncotarget.28046Original article: Oncotarget. 2021; 12:1836\u20131847."} {"text": "This article has been corrected: In 30992-31002. https://doi.org/10.18632/oncotarget.16047Original article: Oncotarget. 2017; 8:30992\u201331002."} {"text": "Nature Communications 10.1038/s41467-022-29714-6, published online 19 April 2022.Correction to: In this article the author name Aurel B. Leuchtmann was incorrectly written as Aurel B. Leuchtman. The original article has been corrected."} {"text": "This article has an addendum: The authors obtained written informed consent from the patient to publish information and images.1946-1952. https://doi.org/10.18632/oncotarget.28062Original article: Oncotarget. 2021; 12:1946\u20131952."} {"text": "Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation . PLOS ONE 17(1): e0261397. https://doi.org/10.1371/journal.pone.0261397.The fourth author\u2019s name is spelled incorrectly. The correct name is: Joseph J.W. Sertich. The correct citation is: Maccracken SA, Miller IM, Johnson KR, Sertich JJW, Labandeira CC (2022) Insect herbivory on"} {"text": "Consent was added to this article: All patients signed informed consent.4457-4462. https://doi.org/10.18632/oncotarget.27807Original article: Oncotarget. 2020; 11:4457\u20134462."} {"text": "Scientific Reports 10.1038/s41598-022-27095-w, published online 27 December 2022Correction to: https://www.microsof.com/zh-cn/\u201d instead of \u201chttps://www.microsoft.com/zh-cn/\u201d.The original version of this Article contained an error in the legends of Figures 1, 4, 7 and 8, where there provided link was incorrectly given as \u201cAdditionally, the provided link in the legend of Figure 3 was incorrect. The legend,https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap\u201d\u201cTypes of land use change trajectory. Software: PowerPoint 2021. URL: now reads:https://www.microsoft.com/zh-cn/.\u201d\u201cTypes of land use change trajectory. Software: PowerPoint 2021. URL: Lastly, this Article contained an error in the legend of Figure\u00a012, where the provided date was incorrect.https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap.\u201d\u201cThe Moran scatter and LISA cluster graph of CSDR in Xinjiang from 1990 to 2015. Map generated with ArcGIS 10.8 (ESRI). URL: now reads:https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap.\u201d\u201cThe Moran scatter and LISA cluster graph of CSDR in Xinjiang from 1990 to 2020. Map generated with ArcGIS 10.8 (ESRI). URL: The original Article has been corrected."} {"text": "Correction: BMC Genomics 23, 709 (2022)https://doi.org/10.1186/s12864-022-08930-wFollowing publication of the original article , the autTherefore, the section should read as follows:Availability of data and materialshttps://www.ebi.ac.uk/ena/browser/view/PRJEB40421). fastq files for 21 domestic cat individuals can be found under ENA project PRJNA343389 (https://www.ebi.ac.uk/ena/browser/view/PRJNA343389).Newly generated whole genome individual sequencing data is available at European Nucleotide Archive (ENA) project number: PRJEB40421 (The original article has been"} {"text": "J Clin Invest. 2017;127(1):169\u2013182. https://doi.org/10.1172/JCI89429Original citation: J Clin Invest. 2023;133(2):e168068. https://doi.org/10.1172/JCI168068Citation for this corrigendum: The authors recently became aware that representative illustrations presented in The updated"} {"text": "This article has been corrected: In 86648-86659. https://doi.org/10.18632/oncotarget.13429Original article: Oncotarget. 2016; 7:86648\u201386659."} {"text": "Diaporthe ilicicola is a newly described fungal species that is associated with latent fruit rot in deciduous holly. This announcement provides a whole-genome assembly and annotation for this plant pathogen, which will inform research on its parasitism and identification of gene clusters involved in the production of bioactive metabolites. Diaporthe species are ascomycete fungi found as saprophytes, endophytes, and plant pathogens . Data will inform research to understand how plant-pathogenic Diaporthe species differ from those that do not cause disease and will aid in the identification of fungal gene clusters involved in bioactive metabolite production.athogens and are athogens . This reDiaporthe ilicicola holotype strain FPH2015-502 (CBS 144318) was isolated as described by Lin et al. (Diaporthe ilicicola FPH2015-502 was grown in potato dextrose broth for 2\u2009days at 28\u00b0C and 150\u2009rpm. DNA was extracted with the DNeasy Plant minikit (Qiagen) according to the manufacturer\u2019s recommendations and sequenced with both short- and long-read sequencing. Illumina library preparation and sequencing were conducted at Novogene, Inc., using a NovaSeq 6000 system with paired-end 150-bp reads. The long-read sequencing library was prepared using the Oxford Nanopore Technologies SQK-LSK108 kit under standard preparation conditions with g-TUBE fragmentation. Long reads were sequenced using a Nanopore MinION Mk1B flow cell with R9.4.1 chemistry.2 CBS 14418 was isN50,\u20097,501\u2009bp) (Diaporthe helianthi strain 7/96 (GenBank accession number MAVT00000000) (D. helianthi 7/96 strain (GenBank accession number MAVT00000000) (Cytospora leucostoma (BioSample accession number SAMN04099706), Valsa mali (BioSample accession number SAMN03203459), Valsa malicola (BioSample accession number SAMN04099704), Valsa mali var. pyri (BioSample accession number SAMN03203462), and Valsa sordida (BioSample accession number SAMN04099705). The annotation was finalized using a modified version of OrthoFiller v1.2xonq (https://gitlab.com/xonq/orthofiller) referencing 15 Diaporthales species, namely, Coniella lustricola (https://mycocosm.jgi.doe.gov/Pilidi1/Pilidi1.home.html), Cryphonectria parasitica (BioSample accession number SAMN02744051), Cryptodiaporthe sp. (https://mycocosm.jgi.doe.gov/Crypto1/Crypto1.home.html), Cryptodiaporthe populea (https://mycocosm.jgi.doe.gov/Crypo1/Crypo1.home.html), Cytospora chrysosperma (https://mycocosm.jgi.doe.gov/Cytch1/Cytch1.home.html), Cytospora leucostoma (BioSample accession number SAMN04099706), Diaporthe ampelina (https://mycocosm.jgi.doe.gov/Diaam1/Diaam1.home.html) (Diaporthe citri (BioSample accession number SAMN15772025), Diaporthe helianthi (https://mycocosm.jgi.doe.gov/Diahe1/Diahe1.home.html) (Diaporthaceae sp. (https://mycocosm.jgi.doe.gov/DiaPMI573_1/DiaPMI573_1.home.html), Lollipopaia minuta (https://mycocosm.jgi.doe.gov/Lolmi1/Lolmi1.home.html), Melanconium sp. (https://mycocosm.jgi.doe.gov/Melsp1/Melsp1.home.html), Valsa mali , and Valsa sordida (BioSample accession number SAMN04099705).For genome assembly and annotation, default parameters were used for all software unless specified otherwise. Illumina read quality was checked using FastQC v0.11.8, and reads were trimmed using Trimmomatic v0.36 (options: HEADCROP:10 CROP:145 SLIDINGWINDOW:50:25 MINLEN:100) . Hybrid 0000000) with the0000000) , GeneMar0000000) , BUSCO v0000000) , and AUG0000000) . Protein0000000) , D. heliv1.2xonq (https:/me.html) , DiaportJALPVH000000000 .The genome was deposited in DDBJ/ENA/GenBank under the accession number"} {"text": "This article has been corrected: In 1920-1936. https://doi.org/10.18632/oncotarget.28068Original article: Oncotarget. 2021; 12:1920\u20131936."} {"text": "Open. Biol.11, 210199. (Published online 1 September 2021). (https://doi.org/10.1098/rsob.210199)Myoviridae in The"} {"text": "This article has been corrected: In 2141-2159. https://doi.org/10.18632/oncotarget.27329Original article: Oncotarget. 2020; 11:2141\u20132159."} {"text": "First published: April 13, 2022https://onlinelibrary.wiley.com/doi/10.1111/jvim.16412Volume 36, Issue 3Correction to authorship information as follows.The Journal of Veterinary Internal Medicine does not allow 2 corresponding authors or 2 first authors. Dr. Anna R. Gelzer is the corresponding author, not Dr. Cory M. Taschabrunn. Drs. Alexandra V. Crooks and Weihow Hsue contributed equally in their author roles."} {"text": "J Clin Invest. 2022;132(19):1\u201318. https://doi.org/10.1172/JCI157399Original citation: J Clin Invest. 2023;133(3):e168771. https://doi.org/10.1172/JCI168771Citation for this corrigendum: After the publication of this article, the authors became aware that the \u03b2-actin blot shown in The authors regret the error."} {"text": "This article has been corrected:3681-3693. https://doi.org/10.18632/oncotarget.26978Original article: Oncotarget. 2019; 10:3681\u20133693."} {"text": "This article has been corrected: In 26527-26542. https://doi.org/10.18632/oncotarget.25480Original article: Oncotarget. 2018; 9:26527\u201326542."} {"text": "J Clin Invest. 2023;133(1):e153733. https://doi.org/10.1172/JCI153733Original citation: J Clin Invest. 2023;133(4):e169299. https://doi.org/10.1172/JCI169299Citation for this corrigendum: The title of this paper was incorrect. The correct title is above. The HTML and PDF versions have been updated online. The authors regret the error."} {"text": "Phil. Trans. R. Soc. B377, 20210178. (Published 21 September 2022) (https://doi.org/10.1098/rstb.2021.0178)One of the authors' names was spelt incorrectly as Addsion Billing instead of Addison Billing.This has now been corrected on the publisher's website."} {"text": "Correction: Inflamm Regen 42, 35 (2022)https://doi.org/10.1186/s41232-022-00221-xFollowing publication of the original article , the authttps://www.genome.jp/kegg/. Accessed 27 Jul 2022.48. Kyoto Encyclopedia of Genes and Genomes. The correct version is:48. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27\u201330.The original article has been"} {"text": "This article has been corrected: In 19172-19191. https://doi.org/10.18632/oncotarget.13432Original article: Oncotarget. 2017; 8:19172\u201319191."} {"text": "Community Eye Health Journal will be on Neuro-ophthalmology. It will include articles such as \u2018Understanding vision and the brain\u2019 and \u2018Assessing the neuro-ophthalmology patient\u2019. This issue will not be produced in paper format because of increasing costs in publication and distribution. It will be available online at www.cehjournal.com If you wish to receive an email with a link to download the PDF copy, please send your email address to web@cehjournal.org.The next issue of the Continued Professional Development. Thank you for your understanding.The next paper issue, planned for the end of March 2017, will be on IAPB's General Assembly (10GA), the premier global event discussing public health issues related to blindness and visual impairment, brought together 1,150 eye care professionals from 100 countries in Durban in October 2016.Over the course of three days, there were over 60 sessions with 200 speakers, and over 250 poster presentations. If you couldn't be there, you can catch up on what you've missed:www.iapb.org/10ga-presentationsView and download PowerPoint files of all the talks and presentations from http://atlas.iapb.orgAccess IAPB's Vision Atlas, which was launched at the 10GA. It allows access to the latest data and evidence related to avoidable blindness and sight loss: http://photocomp.iapb.orgEnjoy the photographs entered into the #StrongerTogether Photo Competition. The winners were announced at 10GA and all entries can be viewed at vtc@gju.edu.joEmail: www.health.uct.ac.za or email chervon.vanderross@uct.ac.zaWrite to the Training Coordinator, Lions Medical Training Centre, Lions SightFirst Eye Hospital, PO Box 66576-00800, Nairobi, Kenya.Tel: +254 20 418 32 39www.kcco.net or contact Genes Mng'anga at genes@kcco.netVisit www.cehjournal.org/subscribeadmin@cehjournal.orgFor paper copies, email Anita Shah: web@cehjournal.orgTo receive an alert when a new issue is published, email www.cehjournal.orgVisit us online: www.facebook.com/CEHJournal/https://twitter.com/CEHJournal Lindsley K, Matsumura S, Hatef E, Akpek EK. Interventions for chronic blepharitis. Cochrane Database Syst Rev. 2012, 5: CD005556. doi: 10.1002/14651858. CD005556.pub2Clearfield E, Muthappan V, Wang X, Kuo IC. Conjunctival autograft for pterygium. Cochrane Database Syst Rev. 2016, 2: CD011349. doi: 10.1002/14651858. CD011349.pub2.Ervin AM, Wojciechowski R, Schein O. Punctal occlusion for dry eye syndrome. Cochrane Database Syst Rev. 2010, 9: CD006775. doi: 10.1002/14651858. CD006775.pub2.Wilhelmus KR. Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis. Cochrane Database Syst Rev. 2015, 1:CD002898. doi: 10.1002/14651858.CD002898.pub5.Gichuhi S, Irlam JH. Interventions for squamous cell carcinoma of the conjunctiva in HIV-infected individuals. Cochrane Database Syst Rev. 2013 28; 2:CD005643. doi: 10.1002/14651858. CD005643.pub3.Gipson IK. The ocular surface: the challenge to enable and protect vision: the Friedenwald lecture. Invest Opht Vis Sci 2007;48(10):4390; 4391-4398.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886589/Available online: www.tearfilm.org/dewsreport/Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye Workshop (2007). Ocul Surf. 2007;5(2):108-52. Available online: http://tinyurl.com/dry-eye-circleBaudouin C, Messmer EM, et al. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. BJO Online First, published on January 18, 2016. Available online:"} {"text": "Scientific Reportshttps://doi.org/10.1038/s41598-022-26760-4, published online 05 January 2023Correction to: The original version of this Article contained an error in Reference 37, which was incorrectly given as:et al. Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. Biochim Biophys. Acta709\u2013722, 2013. https://doi.org/10.1016/j.bbabio.2013.02.013\u00a0(1827).Wu, W. The correct reference is listed below:et al. Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. Biochim. Biophys. Acta1827, 709\u2013722. https://doi.org/10.1016/j.bbabio.2013.02.013 (2013).Wu, W. The original Article has been corrected."} {"text": "Correction to: BMC Bioinformatics (2022) 23:448https://doi.org/10.1186/s12859-022-04983-6Following publication of the original article , the autThe original article has beenAdditional file 1. supp file 1: filt3r-supp.pdf.Additional file 2. supp file 2: results_sra.xlsx.Additional file 3. supp file 3: accessions.csv.Additional file 4. supp file 4: results-different-k.xlsx.Additional file 5. supp file 5: results-small-k.xlsx.Additional file 6. supp file 6: results-different-perc.xlsx.Additional file 7. supp file 7: results-subsamples.xlsx.Additional file 8. supp file 8: genescan_SRR15006459.pdf.Additional file 9. supp file 9: genescan_SRR15006372.pdf. Additional file 10. supp file 10: accessions-CCLE.csv.Additional file 11. supp file 11: results_simulated_150bp.xlsx.Additional file 12. supp file 12: results_simulated_250bp_hq.xlsx. Additional file 13. supp file 13: results_simulated_250bp_lc.xlsx.Additional file 14. supp file 14: results_simulated_250bp_lq.xlsx.Additional file 15. supp file 15: results_simulated_250bp.xls."} {"text": "This article has been corrected: In 23020-23032. https://doi.org/10.18632/oncotarget.15479Original article: Oncotarget. 2017; 8:23020\u201323032."} {"text": "In the published article, there was an error with a reference as follows:Exp Toxicol Pathol. (2007) 58:367\u201374. doi: 10.1016/j.etp.2006.11.006.21. Eoi: 10.1007/BF02686024dy of the effects of cadmium and copper on fefails to reduce cadmium-induced oxidative damage in rat liver. The correct reference is below:Exp Toxicol Pathol. (2007) 58:367\u201374. doi: 10.1016/j.etp.2006.11.006.21. E\u015frefoglu M, G\u00fcl M, Dogru MI, Dogru A, Y\u00fcrekli M. Adrenomedullin fails to reduce cadmium-induced oxidative damage in rat liver. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated."} {"text": "This article has an addendum: All human tissues were sourced from the IUCPQ Biobank, which includes only patients that have signed a consent form for research.209-220. https://doi.org/10.18632/oncotarget.27874Original article: Oncotarget. 2021; 12:209\u2013220."} {"text": "This article has been corrected: In 1894-1910. https://doi.org/10.18632/oncotarget.27585Original article: Oncotarget. 2020; 11:1894\u20131910."} {"text": "This article has been corrected:183-197. https://doi.org/10.18632/oncotarget.28179Original article: Oncotarget. 2022; 13:183\u2013197."} {"text": "Psychoradiology were mistakenly published into Precision Clinical Medicine Volume 1, Issue 1, June 2018.In April 2022, three articles intended for the journal The articles were:https://doi.org/10.1093/psyrad/kkaa001https://doi.org/10.1093/psyrad/kkab001https://doi.org/10.1093/psyrad/kkaa002Psychoradiology, Volume 1, Issue 1, March 2021. The publisher apologizes for this error.These articles have now been moved to"} {"text": "Correction to: BMC Women's Health (2022) 22:427 10.1186/s12905-022-02004-5Following publication of the original article , the aut66. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191\u20132194. 10.1001/jama.2013.281053.Also, the in text citation has been changed in the original article.The original article has been corrected."} {"text": "This article has an addendum: Informed patient consent was obtained.4836-4844. https://doi.org/10.18632/oncotarget.27848Original article: Oncotarget. 2020; 11:4836\u20134844."} {"text": "This article has an addendum: Patient consent was obtained from the patient. This study was approved by the ethical review board of Centre L\u00e9on-B\u00e9rard.1618-1628. https://doi.org/10.18632/oncotarget.27563Original article: Oncotarget. 2020; 11:1618\u20131628."} {"text": "JCI Insight. 2022;7(13):e136678. https://doi.org/10.1172/jci.insight.136678Original citation: JCI Insight. 2022;7(15):e163757. https://doi.org/10.1172/jci.insight.163757Citation for this erratum: During the preparation of this manuscript, JCI regrets the error.The"} {"text": "Phil. Trans. R. Soc. B376, 20200086. (Published 17 May 2021). (doi:10.1098/rstb.2020.0086)Some funding information was inadvertently omitted from the funding statement.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie grant agreement no. 841127."} {"text": "This article has been corrected: In 131-147. https://doi.org/10.18632/oncotarget.27413Original article: Oncotarget. 2020; 11:131\u2013147."} {"text": "First published: 10 June 2021https://onlinelibrary.wiley.com/doi/10.1111/jvim.16197Volume 35, Issue 4Correction to the grant/award number for the funder as follows.Funding information: Rural Development Administration, Grant/Award Number: PJ01404502."} {"text": "J Clin Invest. 2018;128(2):861\u2013875. https://doi.org/10.1172/JCI96218Original citation: J Clin Invest. 2022;132(16):e163716. https://doi.org/10.1172/JCI163716Citation for this corrigendum: The authors recently became aware of errors in The authors regret the errors."} {"text": "Senior editors, editors, reviewers, authors, and the American Society for Microbiology (ASM) staff all play important, complementary roles in the scientific publishing process. In 2022, we found ourselves in somewhat uncertain times as the ASM Journals program continued its transition to fully open access. Nonetheless, we are confident that mSphere is well positioned, having been open access since our inception, and with our impact continuing to grow each year. We are encouraged that authors have also voted with their submit buttons, so to speak, continuing to publish their excellent work with us.We have a great end-of-year tradition at Raquel AbadAzar AbadiCelina Monteiro AbreuMichael C. AbtDenise M. AkobKathirvel AlagesanBassem AllamRey Custer AllenRichard A. AlmChristopher AlteriJohn AlverdyAlfred Amambua-NgwaFrancisco AmaroMatthew Zack AndersonLaura Maria Andrade de OliveiraAlex AndrianopoulosLinda S. ArchambaultRobert A. ArkowitzChelsie Elizabeth ArmbrusterPaul M. ArnaboldiGustavo ArrizabalagaSassan AsgariNick AshboltJennifer M. AuchtungMatthew B. AvisonSteffen BackertAnjana BadrinarayananJuhi BagaitkarLauren O. BakaletzJonathon L. BakerScott BalibanJimmy D. BallardMarcela Passos Galluzzi BaltazarJonathan M. BaraschRoman Alfredo BarcoBrianne BarkerSamuel BarnettJavad BaroueiJeremy J. BarrStephen D. BarrLuther A. BarteltChristine Marie BassisAndrea BattistoniClifford J. BeallJessica A. BelserBenjamin Ross BelvinMar BenavidesMaureen BergMegan BergkesselDebra E. BessenKyle BibbyKevin BickerPablo BifaniBlake BillmyreCraig BingmanBrian BirdLogan BlancettJill R. BlankenshipJoseph M. BlissPatricia Pringle BloomKarl W. BoehmeLydia M. BogomolnayaJon BohlinM\u00e9lanie BonhiversSelina BoppCristian BottaMichael John BotteryTeun BousemaKate BowermanAndrew S. BowmanAllison BradyJonathan BraunMichela BrazzoliBenjamin BrennanDavid J. BrennerChristopher B. BrookeJeremy C. BrownlieEmily A. BruceHarry BrumerCarmen BuchrieserJerry M. BuysseMatthew T. CabeenEdward M. CampbellShengbo CaoGeorge CarnellBerit CarowJaime CarrascoJuan Manuel CarrenoMark CarringtonSarah R. CarterFred CasselsMarco CassoneRoberto CattaneoRodrigo Cay\u00f4Miguel Angel CevallosBenjamin J. ChadwickChrispin ChaguzaGeorgios ChamilosClara S. ChanJeffrey ChandlerYung-Fu ChangMuhammad Tausif ChaudhryHuirong ChenLiang ChenYe ChenHae Suk CheongMichaelle ChojnackiRebecca C. ChristoffersonAlexander T. CiotaStephen A. ClarkDavid J. ClarkeChristine ClaytonBryan CobbShira Milo CochaviDarrell CockburnJames CollinsSean ConlanBede ConstantinidesLaura CookLaura C. CookIsabelle CoppensTeresa CoqueAngelina CordoneCynthia Nau CornelissenJohn R. CortDoug CossarGeorgina CoxRebecca Jane CoxKathryn CoyneRobert A. CramerNeil CrickmoreAlan CrossLiwang CuiPaul J. CullenKathleen CusickMichael CynamonWei DaiStephen DanielsHeran DarwinSiddhartha DasChandravanu DashRaymond James DattwylerMary E. DaveyMark R. DaviesApril Dawn DavisZeger DebyserMaxime DeforetElizabeth De GaspariChristopher Luis De GraffenriedYe DengNicole J. De NiscoJigar V. DesaiGirmay DesalegnSantosh DhakalVijaykrishna DhanasekaranThomas DickAntonio DiGiandomenicoFrancisco DionisioRichard D. DixYohei DoiMichael S. DonnenbergCurtis DonskeyCharles J. DormanGoncalo dos Santos CorreiaZhicheng DouDavid J. DowlingTimothy B. DoyleJuan DuEdward G. DudleyBreck A. DuerkopJoseph Alexander DuncanJulie C. Dunning HotoppFrank EbelLeo EberlAdrianne N. EdwardsAndrew EdwardsMelissa EllermannJeremy R. EllermeierMostafa S. ElshahedIuliana V. EneOthmar G. EngelhardtMelinda Anne EngevikMarkus EngstlerEeva Liisa Eronen-RasimusJavier Antonio Escobar-PerezJos\u00e9 A. EscuderoVanessa EspinosaMorgan EvansChristina S. FahertyRefath FarzanaYingang FengYoujun FengKenneth A. FieldsD. Clark FilesMelanie J. FiliatraultLaura FilkinsStefan FinkeDerek J. FisherFabrizio FoieniEdward M. FoxMichael T. FranceBettina C. FriesFriedrich FrischknechtErnesto J. FuentesIwona GabrielStarrett GabrielMichaela Ulrike GackAttila GacserJennifer GaddyRaj GajiEmily GallichotteKetaki GantiDar\u00edo Garc\u00eda De ViedmaMeritxell Garcia-QuintanillaGregory GavelisMakda GebreJennifer Geddes-McalisterLee GehrkeLorenzo GiacaniTim GilbergerSteven R. GillJoseph James GillespieSusan S. GoldenGustavo H. GoldmanVijay GondilTobias GorisThomas GorochowskiRia GoswamiRevathi GovindLone GramTimothy J. GreenElisabeth GrohmannTrudy H. GrossmanSebastian GuentherPascale GuitonArthur G\u00fcnzlShashank GuptaEyal GurKiran GurungYitzhak HadarMaria HadjifrangiskouAndrea HahnMohamed A. HakimiRoy A. HallParis S. HammJun HangGeoffrey D. HanniganKyle HappelMd. Manjurul HaqueJustin HardickChristian M. HardingReuben S. HarrisBen M. HauseCynthia Y. HeJianzhong HeNicholas S. HeatonTory A. HendrySteven HennigarFrancisca Hernandez-HernandezLena J. HeungMichael HolickPeiying HongAlexander R. HorswillDaniel K. HoweFupin HuJulian G. HurdleJillian H. HurstBonnie L. HurwitzKevin HybiskeAshraf IbrahimKaoru IkumaIliyan IlievRalph R. IsbergHideomi ItohAngela IvaskGulnaz T. JavanVicki JeffersKelsea A. JewellZhilong JiaBaoming JiangCheng JinJames R. JohnsonWilliam JohnsonClinton J. JonesSheryl JusticeBj\u00f6rn F. C. KafsackBarbara C. KahlJeremy Phillip KamilJames B. KaperThomas E. Kehl-FieBrendan KellyVolkhard A. J. KempfLily KhadempourM. Firoze KhanShahid M. KhanAnagha KhandekarMegan R. KiedrowskiNicolas KiefferHye Kwon KimPeter E. KimaJohn H. KimbroughSamantha Jane KingStephen KisslerTomoe KitaoEllen KneuferShintaro KobayashiTheresa M. KoehlerMichael H. KogutJames B. KonopkaAnna KonovalovaNicole Marie KoropatkinIoly Kotta-LoizouLukasz KozubowskiFlorian KrammerBarry N. KreiswirthInna V. KriegerErik KristianssonJames W. KronstadCarol A. KumamotoAnand KumarAnuj KumarMukesh KumarAshlan J. Kunz CoyneKyohei KurodaHiroyuki KusadaManish KushwahaJoseph KusiOlaf KutschMamuka KvaratskheliaAbigail L. LabellaBorden LacyMonique LafonGyanu LamichhaneTilman LamparterChung-Yu LanKristin LaneStephanie N. LangelDenis LeclercAllen LeeVincent T. LeeFrancois Le MauffJose M. Lemme DumitSebastian LeptihnCammie F. LesserMichael LetkoJiasui LiLing LiYong LiGeorge LiechtiEfrem S. LimJean LimChi-Hung LinYongxin LinDaniel LindnerNing LingVincenzo LionettiRosalia LiraBinbin LiuJia LiuOlga LomovskayaJason S. LongS. Wesley LongAnja L\u00fchrmannBrian Michael LunaLiang MaIain MacarthurAntonio MachadoMatthias P. MachnerMarisa MadridFinlay MaguireAndrea MaisnerMichael B. MajorChrister MalmbergAlexander MankinSam MannaShannon D. ManningNicholas J. MantisKevin MaringerClaudia N. H. MarquesFumito MaruyamaSeverine MatheusRosario MatoRobin C. MayJennifer A. MaynardJere W. McBrideShonna M. McBrideBeth A. McCormickElizabeth A. McDanielPatrick McGannLesley McGeeJoy A. McKennaJoseph B. McPheeWim G. MeijerJason MercerTimothy C. MeredithAlita A. MillerKathryn C. Milligan-McClellanCarmen MirabelliDominique MissiakasHeungyun MoonIain M. MorganJames C. MorrisKarl M\u00fcngerAlison E. MurrayMario E. MuscarellaEleftherios MylonakisJoe S. MymrykMiki NagaoRyosuke NakaiYu NakajimaJadranka NappiFernando Navarro-GarciaEsther NdungoDavid R. NelsonMartha I. NelsonMinh Hong NguyenWright W. NicholsHelge NiemannLeonardo NimrichterLaura Mary NolanSteven J. NorrisFernanda NovaisDennis NurjadiJoshua J. ObarAllyson F. O'DonnellFrank OechslinKazuhiro OgaiToru OkamotoYusuke OkazakiDaniel Groban OlsonCarlos J. OrihuelaEva Ortega-RetuertaKenji OtaHong-Yu OuBrian PalenikGlen E. PalmerRobert J. PalmerJohn C. PanepintoHuili PangHee-Soo ParkKathryn A. PatrasSara F. PaverJ. S. Malik S. M. PeirisDaniel R. PerezVincent PerretenAndreas PeschelHadrien PeyretCatherine Ann PfisterJody PhelanGorben Peter PijlmanVittal Prakash PonrajMegan PovelonesAditi PrabhakarJacob PriceLance B. PriceBali PulendranDohun PyeonLeimin QianAlison J. QuayleMaxime Qu\u00e9batteRobert Andrew QuinnTara M. RandisTara M. RandisGauri G. RaoJayne RaperChad A. RappleyeJeremy RatcliffRaveen RathnasingheChristina R. RathwellMichael L. ReeseAaron ReinkeJustin RemaisNilton RennoPeter A. RiceDave RichardJuergen A. RichtJames RiddellDouglas RisserAmariliz RiveraDaniel D. RockeyG. Marcela RodriguezJose-Manuel Rodriguez-MartinezSandra Romero-SteinerMartin RottmanClaudia R\u00fcckertElizabeth Ann RucksYang RuiThomas A. RussoKathrin RychliRobert SabatiniJaiprasath SachithanandhamMarat R. SadykovXavier SaelensMohammad Mohseni SajadiDavinia Salvach\u00faa RodriguezDerrick SamuelsonJohn C. SamuelsonNicholas D. SandersonSarah E. SansomPanagiotis SapountzisLarry S. SchlesingerThomas M. SchmidtDirk SchnappingerMichael SchuitStefan SchwarzPhillip ScottKelly E. SeatonPatrick R. SecorAnna Maria SeekatzWilliam SelfAnna SelmeckiChetan SeshadriRebecca S. ShapiroAnupam SharmaRoss ShawLilach SheinerAimee ShenTrevor ShoemakerAnton M. SholukhErika ShorL. David SibleyJeffrey SiegelBaneshwar SinghCiaran SkerryJoseph SmithWiep Klaas SmitsSandro Gomes SoaresStephanie D. SongJoseph A. SorgShanmuga SozhamannanJennifer K. SpinlerStanley M. SpinolaShiranee SriskandanRichard StantonGabriel J. StarrettChad SteeleDavid S. StephensWolfgang R. StreitMikael Lenz StrubeXin-Zhuan SuKarthik SubramanianYo SugawaraDaigo SumiNobuhiro SuzukiYasuhiro SuzukiMary Hannah SwaneyJason B. SylvanClifford C. TaggartAkifumi Takaori-KondoMichal Caspi TalRita TamayoSatoshi TamazawaYing TaurSam R. TelfordLesly A. TemesvariSharon Mei TennantBenno Herman Ter KuileRita TewariElitza S. TheelKevin R. TheisTorsten ThomasCecilia ThompsonYun TianMaria TomasDieter M. TourlousseMasanori ToyofukuKatrina E. TraberJohn S. TregoningAndrea TrevisanDavid R. TribbleDavid TurraJane F. TurtonYuki UeharaSvetlana Ugarcina PerovicElizabeth R. UngerJane UsherFrancisco UzalKrystal VailChristiaan van OoijJan-Peter van PijkerenCaroline Elisabeth VisserRomain VolleJay VornhagenSarah VreugdeWillem WaegemanSeth T. WalkDavid H. WalkerDavid A. WalshShanquan WangChongzhen WangLuxin WangTian WangTiffany WeinkopffDavid S. WeissLouis M. WeissVolkmar WeissigStephen Robert WelchKristen E. WendtEric WenzlerEdze WestraDawn WetzelAnnegret WildeMichael R. WileyMary E. WilsonSteven S. WitkinKenneth H. WolfeManuel WoltersPatrick C. Y. WooR. Mark WootenFloyd L. Wormley, Jr.Karen L. WozniakRachel A. F. WozniakXianfu WuXin XuChaoyang XueTetsuo YamaguchiKyosuke YamamotoDong YangYiling YangOzlem YilmazHyunah YoonMikaeel YoungJae-Hyuk YuYunsong YuJoseph P. ZackularMar\u00eda Mercedes ZambranoMerve S. ZedenJin ZengBing ZhaiKai ZhangShengda ZhangWei ZhangWeiping ZhangZhaolei ZhangJiangchao ZhaoXian-Liang ZhaoXilin ZhaoChunfu ZhengHaixue ZhengQingfei ZhengXiaoxian ZhongPanpan ZhouErwin G. ZoetendalThe breadth of our scope, encompassing the microbial sciences writ large, means that we depend on a large and diverse pool of reviewers to guide our decisions about manuscripts. Those individuals who helped us this year are listed here and have our sincere gratitude."} {"text": "An updated species checklist for all the Pentatomoidea species for Greece is provided. Eight species are recorded from Greece for the first time. The checklist is supported with distributional data notes for all the Pentatomoidea species of Greece.Aelia germari K\u00fcster 1852, Eurygaster hottentotta (Fabricius 1775), Eysarcoris aeneus (Scopoli 1763), Neottiglossa lineolata (Herrich-Schaeffer 1830), Neottiglossa pusilla , Picromerus bidens (Linnaeus 1758), Podops (Podops) inunctus (Fabricius 1775) and Tarisa pallescens (Jakovlev 1871). A complete updated species checklist with distributional data notes for all the new species for Greece are provided.Eight species of the superfamily Pentatomoidea are recorded from Greece for the first time: Halyomorpha halys (St\u00e5l) and the southern green stink bug Nezara viridula (L.).The superfamily Pentatomoidea constitutes one of the most important insect groups of the suborder Heteroptera. It includes 1080 genera and 5907 species belonging to 16 families of which the Cydnidae, Pentatomidae, Scutelleridae and Tessaratomidae are the most important; 94% of the species belong to these four families ,3. PentaHalyomorpha halys is a polyphagous stink bug native to China, Korea, Japan and Taiwan , Olympos Mt. [Prionia (21.V.1981)]. Total: 3 specimens.Elasmucha St\u00e5l 1864 (Genus t\u00e5l 1864 2.Elasmucha grisea grisea (Linnaeus 1758)Doris [Skaloula (2.V.1986)], Ioannina (24.VI.1984), Rodopi Mt. (10.VIII.1985). Total: 5 specimens.Family CYDNIDAESubfamily CydninaeCydnus Fabricius 1803 (Genus ius 1803 3.Cydnus aterrimus (Forster 1771)Santorini Island [Kamarion (5.V.1982)]. Total: 1 specimen.Macroscytus Fieber 1860 (Genus ber 1860 4.Macroscytus brunneus (Fabricius 1803)Attiki [Kifissia ], Doris [Agios Nikolaos (2.VII.1986)]. Total: 4 specimens.Subfamily SehirinaeOchetostethus Fieber 1860 Doris , Olympos Mt. . Total: 5 specimens.Tritomegas Amyot et Serville 1843 (Genus lle 1843 6.Tritomegas bicolor (Linnaeus 1758)Epirus [Vryssochori (28.V.1981)], Voeotia [Arachova (17.III.1981)]. Total: 2 specimens.7.Tritomegas sexmaculatus (Rambur 1839)Olympos Mt. [Stavros (20.V.1981)]. Total: 1 specimen.Family PENTATOMIDAESubfamily AsopinaeArma Hahn 1832 Genus 8.Arma insperata (Horv\u00e1th 1899)Florina [Vernon Mt-Kalo Nero (21.VIII.1986)]. Total: 1 specimen.Jalla Hahn 1832 Genus 9.Jalla dumosa (Linnaeus 1758)Doris [Skaloula (1.VI.1985)], Fokis [Elaion (22.VII.1983)], Kozani [Vourinos Mt. 18.VIII.1983)]. Total: 3 specimens.Picromerus Amyot et Serville 1843 Genus 10.Picromerus bidens* (Linnaeus 1758) (us 1758) Florina [Vernon Mt-Kalo Nero (30.VII.1982)]. Total: 3 specimens.11.Picromerus conformis (Herrich-Schaeffer 1841)Doris [Skaloula (27.IX.1983)], Florina [Psarades (18.VIII.1986)]. Total: 2 specimens.Troilus St\u00e5l 1867 (Genus t\u00e5l 1867 12.Troilus luridus (Fabricius 1775)Olympos Mt. [Stavros (20.V.1981)]. Total: 1 specimen.Zicrona Amyot et Serville 1843 (Genus lle 1843 13.Zicrona caerulea (Linnaeus 1758)Attiki [Avlon (11.V.1980)], Doris [Monastirakion (18.VIII.1981)]. Total: 2 specimens.Subfamily PentatominaeAcrosternum Fieber 1860 Genus 14.Acrosternum heegeri (Fieber 1861)Doris [Eratini (14.VII.1978)], Zakynthos [Volimes (28.VI.1988)], Athos [Karyes (5.VIII.1986)]. Total: 7 specimens.15.Acrosternum millierei (Mulsant et Rey 1866)Attiki [Marathon (11.VII.1984)], Chios [Chora (5.IV.1979)], Doris [Agios Nikolaos (20.VII.1986)], Kynouria [Astros (31.VIII.1984)]. Total: 9 specimens.Aelia Fabricius 1803 Genus 16.Aelia acuminata (Linnaeus 1758)Aetoloakarnania [Messolonghion (17.V.1990)], Amphilochia [Anixiatiko (20.VIII.1985)], Arkadia [Menalon Mt. (20.VI.1986)], Attiki , Chalkidiki [Valti (8.VIII.1985)], Chios [Chora ], Doris , Epirus [Vryssochori ], Evia [Oreoi (20.IV.1980)], Evrytania [Megalo Chorio (10.VIII.1986)], Drama [Falakron Mt. (13.VI.1982)], Florina , Fokis [Galaxidi (15.IV.1980)], Fthiotis , Grevena [Anoixis ], Ikaria , Ioannina , Karditsa [Artessiano (1.X.1981)], Konitsa [Aoos Riv. (29.V.1981)], Lakonia [Mystras (30.IV.1985)], Lesvos [Sykamnia (16.VI.1987)], Messinia , Naxos [Apeiranthos (16.VI.1981)], Olympos Mt. (13.VIII.1979), Parnassos Mt. [National Park (13.VII.1985)], Paros [Paroikia (18.VI.1981)], Pella [Vryta (14.VIII.1979)], Pieria [Poroi ], Pindos Mt. , Rodopi Mt. [Elatia ], Rhodos [Dimilia (31.V.1990)], Strymonas Riv. (1.VI.1982), Thessaloniki , Trikala [Orthovounion (30.IX.1981)], Vegoritis Lake (14.VIII.1979), Xanthi [Porto Lagos ], Zakynthos [Keri (29.VI.1988)]. Total: 119 specimens.17.Aelia albovittata (Fieber 1868)Chios [Armolia (20.VI.1987)], Samos [Pythagorion (23.VI.1987)]. Total: 3 specimens.18.Aelia germari* (K\u00fcster 1852) (er 1852) Evros [Metaxades (2.VI.1982)]. Total: 1 specimen.19.Aelia klugii (Hahn 1831)Florina [Vernon Mt. Kalo Nero ], Rodopi [Vathyrhemma (12.VI.1982)]. Total: 5 specimens.20.Aelia rostrata (Boheman 1852)Attiki , Doris [Ghiona ], Drama [Potami (12.VI.1982)], Epirus [Vryssochori (28.V.1981)], Evros , Florina ), Fthiotis [Anthili (12.VIII.1980)], Konitsa [Aoos Riv. (30.V.1981)], Kozani [Vourinos Mt. (18.VIII.1985)], Messinia , Oiti Mt. ], Olympos Mt. [Stavros (20.V.1981)], Parnon Mt. (18.VI.1986), Prionia (30.V.1982), Rhodos [Plymiri (29.VI.1987)], Rodopi Mt. [Elatia (19.VII.1983)]. Total: 38 specimens.21.Aelia virgata (Klug 1841)Evros [Metaxades (2.VI.1982)], Trikala [Aghiofilo (22.VII.1989)]. Total: 2 specimens.Antheminia Mulsant et Rey 1866 (Genus Rey 1866 22.Antheminia lunulata (Goeze 1778)Fthiotis [Kalamakion (12.VII.1979)], Pella [Vryta (14.VIII.1979)], Vegoritis Lake (14.VIII.1979). Total: 3 specimens.Apodiphus Saunders 1877 Attiki , Doris [Skaloula (5.X.1980)]. Total: 7 specimens.Brachynema Mulsant et Rey 1852 (Genus Rey 1852 24.Brachynema cinctum (Fabricius 1775)Attiki [Schinias (1.VII.1982)]. Total: 1 specimen.Carpocoris Kolenati 1846 (Genus ati 1846 25.Carpocoris (Carpocoris) fuscispinus (Boheman 1851)Attiki , Doris [Skaloula ], Epirus [Vryssochori (27.V.1981)], Evia , Kozani [Vourinos Mt. ], Parnon Mt. , Messinia [Kazarma (4.VII.1984)], Olympos Mt. [Prionia (13.VIII.1979)], Paros [Paroikia (18.VI.1981)], Rhodos , Samos , Oiti Mt. (9.VIII.1986), Thessaloniki [Cedron Hills (14.XI.1982)], Vegoritis Lake (14.VIII.1979). Total: 38 specimens.26.Carpocoris (Carpocoris) mediterraneus mediterraneus (Tamanini 1958)Evros Riv. [Delta (7.VI.1982)], Naxos [Moutsouna (15.III.1982)]. Total: 4 specimens.27.Carpocoris (Carpocoris) pudicus (Poda 1761)Attiki , Doris [Skaloula ], Florina [Vevi (24.VIII.1983)], Rodopi Mt. [Betoula Forest (22.V.1983)], Konitsa [Aoos Riv. (30.V.1981)], Kozani [Vourinos Mt. (17.VI.1985)], Vegoritis Lake (14.VIII.1979). Total: 10 specimens.Chlorochroa St\u00e5l 1872 (Genus t\u00e5l 1872 28.Chlorochroa sp. St\u00e5l 1872Olympos Mt. [Stavros (20.V.1981)]. Total: 1 specimen.Codophila Mulsant et Rey 1866 (Genus Rey 1866 29.Codophila varia (Fabricius 1787)Aetoloakarnania , Arkadia , Attiki , Avlis [Vahty (16.VI.1979)], Doris [Skaloula ], Evia [Agios Georgios (21.VI.1980)], Fokis [Eleon (17.VIII.1979)], Ikaria [Gyaliskari (15.VII.1981)], Ilia [Krestena (16.V.1985)], Kephallinia [Aenos Mt. (23.VI.1988)], Kynouria [Astros (5.VII.1984)], Messinia [Kazarma (4.VII.1984)], Parnassos Mt. (13.VII.1985), Rhodos , Samos , Aoos Riv. (30.V.1981), Giona (23.VII.1982), Oiti Mt. (30.IX.1984), Parnon Mt. (18.VI.1986), Vegoritis Lake (14.VII.1979). Total: 43 specimens.Dolycoris Mulsant et Rey 1866 (Genus Rey 1866 30.Dolycoris baccarum (Linnaeus 1758)Achaia [Rion (9.VI.1980)], Aetoloakarnania [Babini 23.VI.1986)], Attiki , Doris [Skaloula ], Epirus [Vryssochori (26.V.1981)], Evia [Edipsos (23.VI.1980)], Evros [Metaxades (2.VI.1982)], Florina (15.VIII.1979)], Fokis , Grevena [Anoixis (31.VII.1984)], Ilia [Kyllini (21.VII.1982)], Kephallinia [Aenos Mt. (23.VI.1988)], Konitsa [Aoos Riv. (29.V.1981)], Lakonia [Taygetos Mt. (30.IV.1985)], Messinia [Kazarma (4.VII.1984)], Kozani [Vourinos Mt. (28.V.1982)], Naxos [Moutsouna (16.VI.1981)], Oiti Mt. (30.IX.1984), Olympos Mt. , Paros [Monastirion (17.VI.1981)], Pindos , Rhodos , Rodopi Mt. , Samos [Pyrgos (14.VI.1987)], Parnon Mt. (18.VI.1986), Vourinos (28.V.1982)]. Total: 57 specimens.Dyroderes Spinola 1837 (Genus ola 1837 31.Dyroderes umbraculatus (Fabricius 1775)Doris [Skaloula (28.IV.1981)], Epirus [Vryssochori (26.V.1981)], Messinia [Dorion (1.V.1985)], Pindos [Greveniti (6.IX.1980)]. Total: 9 specimens.Eurydema Laporte 1833 (Genus rte 1833 32.Eurydema (Eurydema) eckerleini Syros [near Poseidonia (10.VI.2005)], Attiki , Tinos [near Triantaros (29.VII.2016)]. Total: 100 specimens.33.Eurydema (Horvatheurydema) fieberi, (Schummel 1837)Attiki [Kifissia (15.IV.1974)], Doris , Parnon Mt. (30.VI.1989), Kozani [Vourinos Mt. (22.VII.1989)]. Total: 5 specimens.34.Eurydema (Eurydema) oleracea (Linnaeus 1758)Creta [Rethymnon-Myloi (8.VIII.1985)], Epirus [Vryssohori (26.V.1981)], Florina , Kozani [Vourinos Mt. ], Messinia [Artemissia (29.IV.1985)], Olympos Mt. , Pindos , Rodopi Mt. , Oiti Mt. (30.IX.1984). Total: 40 specimens.35.Eurydema (Eurydema) ornata (Linnaeus 1758)Achaia [Bouboukas (21.VI.1986)], Aetoloakarnania [Mytikas-Astakos (23.VI.1986)], Arkadia [Tripolis (19.VI.1986)], Attiki , Avlis [Vathy (3.VII.1978)], Doris , Epirus [Vryssochori (27.V.1981)], Evia [Agios Georgios (21.VI.1980)], Florina [Kotas (15.VIII.1979)], Fthiotis [Malessina (21.III.1979)], Grevena [Anoixis (18.VIII.1983)], Kozani [Vourinos Mt. ], Lesvos [Sykaminea (16.VI.1987)], Parnassos Mt. [National Park (13.VII.1985)], Pieria , Rhodos , Samos [Agios Konstantinos (30.VI.1987)], Trikala [Mourgani (22.VII.1989)], Voeotia [Agia Paraskevi (8.VI.1980)], Ioannina (29.V.1981), Oiti Mt. , Parnon Mt. . Total: 75 specimens.36.Eurydema (Horvatheurydema) rugulosa (Dohrn 1861)Lesvos [Sykaminea (16.VI.1987)], Samos . Total: 6 specimens.37.Eurydema spectabilis (Stichel 1960)Crete [Agios Vassilios-Heracleon (10.VII.1985)]. Total: 12 specimens.38.Eurydema ventralis (Kolenati 1846)Doris [Marathias 1.V.1979)]. Total: 24 specimens.Eysarcoris Hahn 1834 Genus 39.Eysarcoris aeneus* (Scopoli 1763) (li 1763) Rodopi Mt. [Sidironero (23.V.1983)]. Total: 1 specimen.40.Eysarcoris ventralis Aetoloakarnania [Loutrakion-Vonitsa (22.VIII.1985)], Attiki , Crete [Rethymnon-Myloi (8.VII.1985)], Delta Acheloou (21.VII.1980), Delta Aliakmonos (19.VIII.1983), Doris , Fokis [Amfissa (19.IX.1978)], Fthiotis , Ikaria [Gyaliskari (15.VII.1981)], Ioannina , Karpathos [Arkassa (3.VI.1990)], Korinthia [Kokoni (3.VIII.1977)], Messinia [Artemissia (11.VI.1985)], Olympos Mt. [Stavros (20.V.1981)], Paros [Paroikia (18.VI.1981)], Pindos , Rhodos [Salakos (30.V.1990)], Samos , Xanthi [Porto Lagos (9.VI.1982)], Loutra Kaiafa (3.VII.1984). Total: 49 specimens.Halyomorpha Mayr 1864 Attiki , Crete [Chania (18.X.2015)], Kastellorizo [around village (15.VIII.2015)]. Total: 25 specimens.Holcogaster Fieber 1860 (Genus ber 1860 42.Holcogaster fibulata (Germar 1831)Attiki [Marathon (11.VII.1984)], Doris [Agios Nikolaos (20.VII.1986)]. Total: 2 specimens.Holcostethus Fieber 1860 Kynouria [Astros (31.VII.1984)]. Total: 1 specimen.44.Holcostethus sphacelatus (Fabricius 1794)Epirus [Vryssochori (26.V.1981)], Konitsa [Aoos Riv. 29.V.1981)], Olympos Mt. [Prionia (21.V.1981)], Rodopi Mt. [Virgin Wood 23.V.1983)]. Total: 7 specimens.Mustha Amyot et Serville 1843 (Genus lle 1843 45.Mustha spinulosa (Lefebvre 1831)Attiki , Doris [Skaloula (18.V.1989)], Trikala [Mourgani (19.VI.1985)]. Total: 6 specimens.Neostrachia Dallas 1851 Genus 46.Neostrachia bisignata Doris [Monastirakion (29.VII.1982)], Kynouria [Astros (24.VIII.1988)], Volos [Amaliapolis (1.IX.1990)]. Total: 3 specimens.Neottiglossa Kirby 1837 Genus 47.Neottiglossa bifida (Costa 1847)Achaia [Bouboukas (21.VI.1986)], Aetoloakarnania , Doris , Messinia , Konitsa [Aoos-Monastiri (30.V.1981)], Lakonia [Mystras (30.IV.1985)], Naxos [Apeiranthos (16.VI.1981)], Pieria [Poroi (14.VIII.1980)], Thessaloniki [Plagiarion (23.V.1981)]. Total: 22 specimens.48.Neottiglossa flavomarginata (Lucas 1849)Kozani [Vourinos Mt. (29.VI.1984)]. Total: 6 specimens.49.Neottiglossa leporina (Herrich-Schaeffer 1830)Doris , Drama [Potami (12.VI.1982)], Epirus [Vryssochori (26.V.1981)], Florina , Konitsa [Aoos-Monastiri (10.V.1981)], Kozani [Vourinos Mt. (8.VI.1984)], Pieria [Poroi (14.VIII.1980)], Rodopi Mt. , Oiti Mt. ]. Total: 22 specimens.50.Neottiglossa lineolata* (Mulsant et Rey 1852) (ey 1852) Doris [Skaloula (18.VII.1978)], Evia , Konitsa [Aoos-Monastiri (30.V.1981)], Lesvos [Antissa (17.VI.1987)], Xanthi [Porto Lagos (9.VI.1982)]. Total: 8 specimens.51.Neottiglossa pusilla* (en 1789) Rodopi Mt. [Vathyrhemma (26.VII.1982)]. Total: 2 specimens.Nezara Amyot et Serville 1843 (Genus lle 1843 52.Nezara viridula (Linnaeus 1758)Attiki . Crete [Heracleon-Agios Vassilios (10.VII.1985)], Paros [Paroikia (18.IX.1981)]. Total: 13 specimens.Palomena Mulsant et Rey 1866 Kozani [Vourinos Mt. (28.V.1982)], Oiti Mt. (30.IX.1984), Parnon Mt. [Kastanitsa ], Pindos [Miliotades (29.IX.1980)], Rodopi Mt. [Betula Forest (22.V.1983)], Tripolis [Tripolis (19.VI.1986)]. Total: 10 specimens.Pentatoma Olivier 1789 (Genus ier 1789 54.Pentatoma (Pentatoma) rufipes (Linnaeus 1758)Florina , Rodopi Mt. . Total: 10 specimens.Peribalus Mulsant et Rey, 1866 Attiki , Avlis [Vathy (3.VII.1978)], Crete [Agios Vassilios-Heracleon (25.IV.1975)], Doris [Skaloula ], Florina [Kotas (15.VIII.1979)], Fthiotis [Malessina (21.III.1979)], Parnassos Mt. [National Park (13.VII.1985)], Rhodos [Salakos (30.V.1990)], Samos [Agios Konstantinos (27.VI.1987)]. Total: 16 specimens.Piezodorus Fieber 1861 (Genus ber 1861 56.Piezodorus lituratus (Fabricius 1794)Attiki [Parnis-Mola (12.VII.1985)], Schinias [(16.V.1984)], Avlis [Vathy 13.IV.1978)], Doris , Epirus [Vryssochori (26.V.1981)], Evia [Agios Georgios (21.VI.1980)], Evrytania [Megalo Chorio (10.VIII.1986)], Florina [Vernon Mt.-Kalo Nero (30.VII.1982)], Messinia [Menina (30.IV.1985)], Ilia [Killini Mt. (21.VII.1982)], Kerkyra [Tritsi (3.IV.1985)], Oaks [Rodopi (12.VIII.1985)], Parnon Mt., [Kastanitsa ], Ikaria [Raches (14.VII.1981)], Rhodos . Total: 31 specimens.Rhaphigaster Laporte 1833 (Genus rte 1833 57.Rhaphigaster nebulosa (Poda 1761)Acheloos Riv. [Delta Acheloou (21.VII.1990)], Attiki , Avlis [Vathy (5.V.1981)], Crete [Heracleon-Agios Vassilios (10.VII.1985)], Doris , Evros Riv. [Delta Evrou (7.VI.1982)], Aetoloakarnania [Nafpaktos (4.IX.1979)], Rhodos [Petaloudes (29.V.1990)]. Total: 17 specimens.Sciocoris Fallen 1829 (Genus len 1829 58.Sciocoris (Sciocoris) cursitans cursitans (Fabricius 1794)Doris [Skaloula (12.IV.1985)], Lesvos [Andissa (17.VI.1987)]. Total: 2 specimens.59.Sciocoris (Sciocoris) deltocephalus (Fieber 1861)Kephallinia [Aenos Mt. (23.VI.1988)], Paros [Paroikia (18.VI.1981)]. Total: 2 specimens.60.Sciocoris (Sciocoris) helferii (Fieber 1851)Aetoloakarnania [Mytikas-Astakos (23.VI.1986)], Arkadia [Xeropigado (9.V.1985)], Attiki [Parnis Mt.-Mola (12.VII.1985)], Ikaria [Gialiskari (15.VII.1981)], Kephallinia [Aenos Mt. (23.VI.1988)], Konitsa [Aoos-Monastiri (30.V.1981)], Kozani [Vourinos Mt. (29.VI.1984)], Aoos Riv. (14.VIII.1986)], Lesvos [Kalloni (18.VI.1987)], Pieria [Varikon (23.VII.1982)]. Total: 11 specimens.61.Sciocoris (Aposciocoris) macrocephalus (Fieber 1851)Arkadia [Xeropigado (9.V.1985)], Attiki [Avlon Marathon ], Doris [Skaloula (1.VI.1985)], Fokis [Amfissa (2.V.1979)], Kephallinia [K. Katelios (22.VI.1988)], Kerkyra [Liapades (2.IV.1985)]. Total: 16 specimens.62.Sciocoris (Neosciocoris) maculatus (Fieber 1851)Kephallinia [Aenos Mt. (23.VI.1988)], Konitsa , Olympos Mt. [Kryovryssi (30.V.1982)], Samothraki [Loutra (4.VI.1982)], Oiti Mt. (9.VIII.1986). Total: 8 specimens.63.Sciocoris (Sciocoris) sulcatus (Fieber 1851)Aetoloakarnania [Messolongion-Tourlida (20.VII.1990)], Attiki , Kephallinia [Aenos Mt. (23.VI.1986)], Korinthia [Derveni (15.V.1985)], Kozani [Vourinos Mt. (29.VI.1984)], Kynouria [Kastanitsa (20.V.1982)], Messinia [Dorion (1.V.1985)], Olympos Mt. [Prionia (21.V.1981)], Pindos [Milies (20.VIII.1985)], Rhodos , Rodopi Mt. [Elatia (25.VII.1982)], Voeotia [Tsoukalades (12.V.1988)]. Total: 19 specimens.Stagonomus Gorski 1852 (Genus ski 1852 64.Stagonomus (Stagonomus) amoenus (Brulle 1832)Crete [Heracleon-Agios Vassilios (25.IV.1985)], Konitsa , Paros [Monastirion (17.VI.1981)], Rhodos [Petaloudes (29.V.1990)]. Total: 15 specimens.65.Stagonomus bipunctatus (Linnaeus 1758)Evia [Agios Georgios (21.VI.1980)], Florina [Vermon Mt.-Kalo Nero (30.VII.1982)], Kozani [Vourinos Mt. (18.VIII.1985)]. Total: 7 specimens.Staria Dohrn 1860 (Genus hrn 1860 66.Staria lunata (Hahn 1835)Arkadia [Xeropigado (9.V.1985)], Attiki [Marathon (11.VII.1984)], Doris [Skaloula ], Evros [Metaxades (2.VI.1982)], Fokida [Agia Euthymia (12.V.1988)], Konitsa [Aoos (27.V.1981)], Korinthia [Akrokorinthos (31.VII.1979)], Kozani [Vourinos Mt. (28.VI.1984)] Menalon Mt. (20.VI.1986), Parnassos Mt. , Rodopi Mt. [Vathyrhemma (26.VII.1982)]. Total: 36 specimens.Subfamily PodopinaeAncyrosoma Amyot et Serville 1843 (Genus lle 1843 67.Ancyrosoma leucogrammes (Gmelin 1790)Aetoloakarnania , Arkadia [Xeropigado (9.V.1985)], Arta [Louros Riv. (28.IX.1981)], Attiki , Avlis [Vathy (16.VI.1979)], Doris , Evia [Agios Georgios (21.VI.1980)], Fokis (Agia Euthymia (12.V.1988)], Ioannina (29.V.1981), Karditsa [Artessiano (1.X.1981)], Konitsa [Aoos Riv. ], Korinthia , Kynouria [Astros ], Messinia [Kazarma (4.VII.1984)], Olympos Mt. [Prionia (13.VIII.1979)], Pieria [Poroi (14.VIII.1980)], Platanos [Parnon Mt. (1.VII.1985)], Thessaloniki [Cedron Hills (23.V.1981)]. Total: 57 specimens.Derula Mulsant et Rey 1856 (Genus Rey 1856 68.Derula flavoguttata (Mulsant et Rey 1856)Attiki [Schinias (23.VI.1986)], Doris , Epirus [Vryssochori (26.V.1981)], Evia , Florina , Fokis [Agia Euthymia (12.V.1988)], Korinthia [Derveni (15.V.1985)], Pindos [Vouchorina (13.V.1983)], Rhodos [Salakos (30.V.1990)], Samos [Pythagorion (23.VI.1987)], Trikala [Mourgani (18.VI.1985)]. Total: 23 specimens.Graphosoma Laporte 1833 Aetoloakarnania [Aetolikon (20.VII.1990)], Attiki , Crete [Rethymnon-Myloi (8.VII.1985)], Doris [Skaloula ], Evrytania [Megalo Chorio (10.VIII.1986)], Fokis [Amfissa (8.VI.1980)] Ioannina [Vikos Gorge (13.VIII.1986)], Konitsa [Aoos-Monastiri (3.V.1981)], Korinthia [Derveni (15.V.1985)], Kozani , Lakonia [Mystras (30.IV.1986)], Lesvos [Sykaminea (16.VI.1987)], Olympos Mt. [Stavros (13.VIII.1980)], Pieria [Litochoron (13.VIII.1979)], Rhodos [Apolakkia (30.VI.1987)], Voeotia [Aliartos (12.V.1988)], Oiti Mt. . Total: 28 specimens.70.Graphosoma semipunctatum (Fabricius 1775)Attiki , Crete [Rethymnon-Agioi Apostoloi (30.VI.1993)], Doris [Skaloula (18.VI.1978)], Kephallinia [Myrtos (25.VI.1988)], Lakonia [Mystras (11.VI.1985)], Oidi Mt. (27.VI.1993), Samos [Neochorion (14.VI.1987)]. Total: 23 specimens.Leprosoma Baerensprung 1859 (Genus ung 1859 71.Leprosoma inconspicuum (Baerensprung 1859)Doris [Kalion (5.V.1975)]. Total: 1 specimen.Podops Laporte 1833 Genus 72.Podops (Opocrates) curvidens (Costa 1843)Aetoloakarnania , Doris , Pieria [Varikon (23.VII.1982)], Pindos . Total: 14 specimens.73.Podops (Podops) inunctus* (Fabricius 1775) (us 1775) Doris [Kalion (15.VII.1978)], Samothraki [Kamariotissa (5.VI.1982)]. Total: 4 specimens.74.Podops (Opocrates) rectidens Horvath 1883Achaia [Bouboukas (9.VI.1980)], Aetoloakarnania [Mytikas-Astakos (23.VI.1986)], Arkadia [Kynouria-Astros ], Attiki [Schinias (1.VII.1982)], Doris , Ikaria [Gialiskari (15.VII.1981)], Ilia [Pyrgos-Zacharo (3.VII.1984)], Samothraki [Kamariotissa (5.VI.1982)], Zakynthos [L. Keri (29.VI.1988)]. Total: 23 specimens.Tarisa Amyot et Serville 1843 Genus 75.Tarisa pallescens* (Jakovlev 1871) (ev 1871) Olympos Mt. [Kryovryssi (30.V.1982)]. Total: 1 specimen.Tholagmus St\u00e5l 1860 (Genus t\u00e5l 1860 76.Tholagmus flavolineatus (Fabricius 1798)Arkadia [Charadros (17.VI.1986)], Attiki [Avlon ], Avlis [Vathy (16.VI.1979)], Evia [Agios Georgios (21.VI.1980)], Fthiotis [Kalamakion (18.VIII.1979)], Kephallinia , Aetoloakarnania [Kapsorachi-Trichonis (22.VI.1986)], Menalon Mt. (20.VI.1986), Parnassos Mt. [National Park (13.VII.1985)]. Total: 18 specimens.Ventocoris Hahn 1843 (Genus ahn 1843 77.Ventocoris (Selenodera) achivus (Horvath 1889)Avlis [Vathy (16.VI.1979)]. Total: 2 specimens.78.Ventocoris (Ventocoris) rusticus (Fabricius 1781)Achaia [Kato Klitoria (20.VI.1986)], Attiki [Marathon (14.V.1985)], Avlis [Vathy ], Evia [Agios Georgios (21.VI.1980)], Fokis [Amphissa (8.VI.1980)], Kephallinia [Assos (25.VI.1988)], Messinia [Kazarma (4.VII.1984)], Santorini Island [Kamarion (5.V.1982)], Voeotia [Agia Paraskevi (23.VII.1980)]. Total: 23 specimens.Family PLATASPIDAESubfamily PlataspinaeCoptosoma Laporte 1833 (Genus rte 1833 79.Coptosoma scutellatum (Geoffroy 1785)Achaia [Bouboukas (21.VI.1986)], Doris , Florina [Vernon Mt.-Kalo Nero (21.VII.1983)], Ioannina [Voutsaras (24.VI.1984)], Kozani [Vourinos Mt. (18.VIII.1985)], Olympos Mt. [Prionia (13.VIII.1980)], Parnassos Mt. [National Park (13.VII.1985)], Pindos [Korydallos (25.V.1981)], Prespa [Bela Voda (13.X.1986)], Rodopi [Vathyrhemma (26.VII.1982)], Aoos Riv. (27.V.1981). Total: 32 specimens.Family SCUTELLERIDAESubfamily EurygastrinaeEurygaster Laporte 1833 Genus 80.Eurygaster austriaca (Schrank 1778)Avlis [Vathy ], Fokis [Galaxidi (15.IV.1980)], Oiti Mt. (1.VII.1984). Total: 4 specimens.81.Eurygaster dilaticollis (Dohrn 1860)Rodopi Mt. (19.VII.1983), Oiti Mt. , Vernon Mt. [Kalo Nero (30.VI.1982)]. Total: 6 specimens.82.Eurygaster hottentotta* (Fabricius 1775) (us 1775) Kynouria [Kastanitsa (20.VII.1982)]. Total: 1 specimen.83.Eurygaster integriceps (Puton 1881)Arkadia [Xeropigado (9.V.1985)], Attiki [Marathon (14.V.1978)], Avlis [Vathy (13.IV.1978)], Chios , Doris [Skaloula ], Epirus [Vryssochori (26.V.1981)], Grevena , Ikaria [Raches (14.VII.1981)], Ioannina (29.V.1981), Kozani [Vourinos Mt. (29.VI.1984)], Kynouria [Astros (20.V.1982)], Naxos [Apeiranthos (16.VI.1981)], Paros [Paroikia (18.VI.1981)], Samos . Total: 31 specimens.84.Eurygaster maura (Linnaeus 1758)Doris , Epirus [Vryssochori (27.V.1981)], Evia [Agios Georgios (21.VI.1980)], Florina , Kastoria (13.V.1983), Kynouria [Astros ], Messinia [Kazarma (4.VII.1984)], Pindos [Korydallos (25.V.1981)], Rhodos , Rodopi Mt. , Xanthi [Porto Lagos (8.V.1982)], Zakynthos [Keri (29.VI.1988)]. Total: 21 specimens.85.Eurygaster testudinaria testudinaria (Geoffroy 1785)Kastoria (13.V.1983), Rodopi Mt. [Silli (23.VIII.1983)]. Total: 3 specimens.Psacasta Germar 1839 (Genus mar 1839 86.Psacasta (Psacasta) exanthematica exanthematica (Scopoli 1763)Aetoloakarnania [Nafpaktos (22.VII.1978)]. Total: 1 specimen.Subfamily OdontoscelinaeIrochrotus Amyot et Serville 1843 (Genus lle 1843 87.Irochrotus maculiventris (Germar 1839)Achaia [Bouboukas (21.VI.1986)], Arkadia [Tripolis (19.VI.1986)], Attiki [Avlon (26.V.1978)], Doris [Skaloula (1.VI.1985)], Evia , Ioannina [Voutsaras (24.VI.1984)]. Total: 8 specimens.Odontoscelis Laporte 1833 (Genus rte 1833 88.Odontoscelis (Odontoscelis) fuliginosa (Linnaeus 1761)Attiki , Karpathos [Messochori (4.VI.1990)], Kephallinia [Aenos Mt. (23.VI.1988)]. Total: 7 specimens.89.Odontoscelis (Odontoscelis) lineola (Rambur 1839)Doris [Skaloula (17.IX.1978)] Arkadia , Vegoritis Lake (14.VIII.1979). Total: 4 specimens.Subfamily OdontotarsinaeOdontotarsus Laporte 1833 (Genus rte 1833 90.Odontotarsus purpureolineatus (Rossi 1790)Achaia [Bouboukas (21.VI.1986)], Aetoloakarnania , Arkadia [Charadros (17.VI.1986)], Attiki , Chios [Armolia (20.VI.1987)], Doris [Skaloula (20.VII.1986)], Epirus [Vryssochori (26.V.1981)], Evros [Metaxades (2.VI.1982)], Grevena [Anoixis (31.VII.1984)], Ilia [Kyllini Mt. (21.VII.1982)], Ioannina [Voutsaras (24.VI.1984)], Konitsa [Aoos Riv.-Monastiri (29.V.1981)], Kozani , Lesvos [Petra (17.VI.1987)], Messinia , Olympos Mt. [Prionia (21.V.1981)], Pilion Mt. [Chania 16.VIII.1980)], Rhodos , Samos , Trikala [Mourgani (19.VI.1985)], Voeotia [Tsoukalades (12.V.1988)], Parnon Mt. (11.VI.1985). Total: 36 specimens.91.Odontotarsus robustus (Jakovlev 1883)Attiki , Doris [Skaloula ], Pindos . Total: 16 specimens.92.Odontotarsus rufescens (Fieber 1861)Amphilochia [Anoixiatiko (20.VIII.1985)], Attiki [Avlon (20.V.1987)], Evia [Agios Georgios (21.VI.1980)], Ilia [Krestena (16.V.1985)], Kynouria [Astros (13.VII.1982)], Messinia [Kazarma (4.VII.1984)]. Total: 7 specimens.In Greece, until the present work, very few studies have been conducted on the Pentatomoidea fauna, in which 150 Pentatomoidea species are referred. Except two overall studies performed by Drosopoulos and Rams"} {"text": "J Clin Invest. 2022;132(8):e149160. https://doi.org/10.1172/JCI149160Original citation: J Clin Invest. 2023;133(3):e168441. https://doi.org/10.1172/JCI168441Citation for this corrigendum: The left panel of The authors regret the error."} {"text": "Phil. Trans. R. Soc. B377, 20210159. (Published online 2 May 2022). (https://doi.org/10.1098/rstb.2021.0159)In the original version of this article, author Pengjuan Zu's name was spelled incorrectly.This has now been corrected on the publisher's website."} {"text": "Consent was added to this article: We have informed consent statements from all patients.125-130. https://doi.org/10.18632/oncotarget.27854Original article: Oncotarget. 2021; 12:125\u2013130."} {"text": "Investig. Ophthalmol. Vis. Sci.25, 463 (1984).Screening for color blindness using optokinetic nystagmusThe correct reference is listed below:Investigative ophthalmology & visual science\u00a025, 463\u2013466 (1984).Cavanagh, P., Anstis, S. & Mather, G. Screening for color blindness using optokinetic nystagmus. The original Article has been corrected."} {"text": "This article has been corrected: In 61703-61715. https://doi.org/10.18632/oncotarget.11225Original article: Oncotarget. 2016; 7:61703\u201361715."} {"text": "The erratum corrects an error in Fig. 4 of the published article. J. Biomed. Opt.27(7), 074705 (2022) doi: https://doi.org/10.1117/1.JBO.27.7.074705 was originally published on 28 October 2022 with an error in Fig. 4. The axes were reversed in the original version:This article [Corrected version:The error was corrected on 9 July 2022."} {"text": "JCI Insight. 2020;5(19):e139932. https://doi.org/10.1172/jci.insight.139932Original citation: JCI Insight. 2022;7(20):e165502. https://doi.org/10.1172/jci.insight.165502Citation for this corrigendum: The authors recently became award of inconsistencies in The authors regret the errors."} {"text": "First published: 03 November 2022https://doi.org/10.1111/jvim.16554Volume 36, Issue 6Correction to reference number 13 as follows. The last name of Jelinicic does not use diacritics.Inst Safe Medicat Pract. 2004; 15(1): 10\u201011.13. Koczmara C, Hyland S, Jelincic V. High alert: preventing insulin errors."} {"text": "JCI Insight. 2021;6(4):e140180. https://doi.org/10.1172/jci.insight.140180Original citation: JCI Insight. 2022;7(23):e167011. https://doi.org/10.1172/jci.insight.167011Citation for this corrigendum: Following the publication of this article, the authors became aware of similarities between the CYP2E1 blot in The authors regret the error."} {"text": "Consent was added to this article: The patient mentioned in the paper signed the informed consent statement on 13/10/2020.1116-1121. https://doi.org/10.18632/oncotarget.27966Original article: Oncotarget. 2021; 12:1116\u20131121."} {"text": "This article has been corrected: In 2543-2559. https://doi.org/10.18632/oncotarget.27650Original article: Oncotarget. 2020; 11:2543\u20132559."} {"text": "J Clin Invest. 2020;130(7):3684\u20133698. https://doi.org/10.1172/JCI136908Original citation: J Clin Invest. 2023;133(5):e169500. https://doi.org/10.1172/JCI169500Citation for this corrigendum: In the original version of The authors regret the error."} {"text": "Computational simulation of flow-induced arterial remodeling of the pancreaticoduodenal arcade associated with celiac artery stenosis. Journal of Biomechanics. 2019;92:146-154.https://doi.org/10.1016/j.jbiomech.2019.05.043"} {"text": "JCI Insight. 2020;5(17):e133225. https://doi.org/10.1172/jci.insight.133225Original citation: JCI Insight. 2022;7(20):e165688. https://doi.org/10.1172/jci.insight.165688Citation for this corrigendum: The authors recently became aware that one of the p-TBK1 blot images presented in The authors regret the error."} {"text": "In the originally published version of the below-listed manuscripts, the html version incorrectly lists the article editor as an author.These errors have been corrected. The publisher apologizes for the errors.https://doi.org/10.1093/jmcb/mjab076https://doi.org/10.1093/jmcb/mjab078https://doi.org/10.1093/jmcb/mjab079https://doi.org/10.1093/jmcb/mjab081https://doi.org/10.1093/jmcb/mjab082https://doi.org/10.1093/jmcb/mjac002"} {"text": "J. R. Soc. Interface14, 20170247. (Published online 31 May 2022) (https://doi.org/10.1098/rsif.2017.0247)This corrigendum corrects the record and includes Mahesh M. Bandi and Madhusudhan Venkadesan as corresponding authors for the article.bandi@oist.jpm.venkadesan@yale.edushreyas.mandre@warwick.ac.uk"} {"text": "Correction:\u00a0International Journal of Implant Dentistry\u00a0(2022) 8:43https://doi.org/10.1186/s40729-022-00445-zIncorrect: C. B. SpiesCorrect: B. C. SpiesThe original publication of this article containe"} {"text": "This article has an addendum: Patient consent was obtained from the patient.81969-81971. https://doi.org/10.18632/oncotarget.13046Original article: Oncotarget. 2016; 7:81969\u201381971."} {"text": "Following the publication of the original article , we wereOriginally published name: Raghda R. S. RoshdyCorrect name: Raghda R. S. HusseinThe original article has been corrected."} {"text": "JCI Insight. 2022;7(15):e160989. https://doi.org/10.1172/jci.insight.160989Original citation: JCI Insight. 2022;7(18):e164813. https://doi.org/10.1172/jci.insight.164813Citation for this corrigendum: For clarity, the authors have updated The authors regret the errors."} {"text": "Correction: BMC Psychiatry. 20, 229 (2020)https://doi.org/10.1186/s12888-020-02596-yFollowing the publication of the original article , the autThe incorrect code of the study is: IR.KUMS.REC.1397.187The correct code of the study is: IR.KUMS.REC.1397.866The original article has been"} {"text": "In the originally published version of the below-listed manuscripts the data availability statement was accidentally omitted. Data availability statements have now been added to the following papers.https://doi.org/10.1093/ehjdh/ztaa012https://doi.org/10.1093/ehjdh/ztaa018https://doi.org/10.1093/ehjdh/ztab009https://doi.org/10.1093/ehjdh/ztab011https://doi.org/10.1093/ehjdh/ztab032https://doi.org/10.1093/ehjdh/ztab034https://doi.org/10.1093/ehjdh/ztab038https://doi.org/10.1093/ehjdh/ztab051https://doi.org/10.1093/ehjdh/ztab082https://doi.org/10.1093/ehjdh/ztab108"} {"text": "J Clin Invest. 2016;126(5):1783\u20131800. https://doi.org/10.1172/JCI83669Original citation: J Clin Invest. 2023;133(4):e169304. https://doi.org/10.1172/JCI169304Citation for this corrigendum: 2O and WT/DSS pictures were inadvertently switched. In \u2013/\u2013Ptpn22/DSS sample. The correct figure is shown below.The authors recently became aware of errors in The authors regret the errors."} {"text": "This article has an addendum: The patient has previously consented to publication of de-identified findings.4195-4200. https://doi.org/10.18632/oncotarget.27793Original article: Oncotarget. 2020; 11:4195\u20134200."} {"text": "Oncogene 10.1038/onc.2013.594, published online 27 January 2014Correction to: Supplementary figure The CDC42 blot in Suppl. fig The corrected figure is given below.Supplementary Figure 1"} {"text": "Scientific Reportshttps://doi.org/10.1038/s41598-022-24228-z, published online 16 November 2022Correction to: The original version of this Article contained an error in Reference 10, which was incorrectly given as:635, 413833. (2022).Das, S. Particle scattering by harmonically trapped quantum gases in an artificial magnetic field. Phys. B Condens. Matter The correct reference is listed below:Phys. B Condens. Matter635, 413833. https://doi.org/10.1016/j.physb.2022.413833 (2022).Das, S. Particle scattering by harmonically trapped quantum gases in an artificial magnetic field. The original Article has been corrected."} {"text": "PNAS Nexus was opened, it was incorrectly labeled March 2023. The month has been corrected, and citation details of the following list of articles were affected by this error:When Volume 2, Issue 1, January 2023 of https://doi.org/10.1093/pnasnexus/pgac306Cystic fibrosis rabbits develop spontaneous hepatobiliary lesions and CF-associated liver disease (CFLD)-like phenotypes. https://doi.org/10.1093/pnasnexus/pgac298High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state. https://doi.org/10.1093/pnasnexus/pgac297Topical SCD-153, a 4-methyl itaconate prodrug, for the treatment of alopecia areata. https://doi.org/10.1093/pnasnexus/pgac300Development of an in-vitro high-throughput screening system to identify modulators of genitalia development. https://doi.org/10.1093/pnasnexus/pgac2902,3,7,8-Tetrachlorodibenzo-p-dioxin induces multigenerational alterations in the expression of microRNA in the thymus through epigenetic modifications. Wolbachia. https://doi.org/10.1093/pnasnexus/pgac293Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing https://doi.org/10.1093/pnasnexus/pgac286Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep. https://doi.org/10.1093/pnasnexus/pgac288Pharmacological potentiators of the calcium signaling cascade identified by high-throughput screening. https://doi.org/10.1093/pnasnexus/pgac285Leaded aviation gasoline exposure risk and child blood lead levels. https://doi.org/10.1093/pnasnexus/pgac283On the interplay of hierarchies, conflicts, and cooperation: An experimental approach. https://doi.org/10.1093/pnasnexus/pgac270Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension. https://doi.org/10.1093/pnasnexus/pgac292On shape forming by contractile filaments in the surface of growing tissues. https://doi.org/10.1093/pnasnexus/pgac291Customizable, reconfigurable, and anatomically coordinated large-area, high-density electromyography from drawn-on-skin electrode arrays. https://doi.org/10.1093/pnasnexus/pgac295Watershed memory amplified the Oroville rain-on-snow flood of February 2017. https://doi.org/10.1093/pnasnexus/pgac275A deep-learning model of prescient ideas demonstrates that they emerge from the periphery. https://doi.org/10.1093/pnasnexus/pgac289Risky cascading transitions in international relationships. https://doi.org/10.1093/pnasnexus/pgac281Moralized language predicts hate speech on social media. The citation details for each of the above articles have been updated to reflect the correct month of this issue. The Publisher regrets this error."} {"text": "Correction to: bord personal disord emot dysregul 8, 28 (2021).https://doi.org/10.1186/s40479-021-00169-3Following publication of this article , it is rMaria Lidia Gerra.Martina Ardizzi.Silvia Martorana.Veronica Leoni.Paolo Riva.Emanuele Preti.Barbara Francesca Marta Marino.Paolo Ossola.Carlo Marchesi.Vittorio Gallese.Chiara De Panfilis.The original article has been updated."} {"text": "This article has been corrected: Due to errors during figure assembly, the GAPDH blots in 8822-8838. https://doi.org/10.18632/oncotarget.3558Original article: Oncotarget. 2015; 6:8822\u20138838."} {"text": "This article has been corrected: Due to errors during the assembly of 23401-23413. https://doi.org/10.18632/oncotarget.15581Original article: Oncotarget. 2017; 8:23401\u201323413."} {"text": "There is an error in reference 24. The correct reference is: Diamond Project Group. Incidence and trends of childhood Type 1 diabetes worldwide 1990\u20131999. Diabet Med. 2006;23(8):857\u201366. Epub 2006/08/17. pmid:16911623."} {"text": "Retraction Note to: Gene Therapy10.1038/gt.2011.82.The editor has retracted this article followin"} {"text": "JCI Insight. 2017;2(16):e93076. https://doi.org/10.1172/jci.insight.93076Original citation: JCI Insight. 2021;6(7):e149895. https://doi.org/10.1172/jci.insight.149895Citation for this corrigendum: NHBA Control). An institutional review committee concluded that the error in The Editors previously posted an Expression of Concern for this article regarding images in The authors regret the error."} {"text": "This article has been corrected: In 62425-62438. https://doi.org/10.18632/oncotarget.11515Original article: Oncotarget. 2016; 7:62425\u201362438."} {"text": "Correction to:Mucosal Immunology (2017); advance online publication, 23 August 2017; doi:10.1038/mi.2017.68Panel f of The publisher regrets the error."} {"text": "This article has been corrected: The bioinformatics analysis of TCGA data in 31785-31801. https://doi.org/10.18632/oncotarget.15991Original article: Oncotarget. 2017; 8:31785\u201331801."} {"text": "JCI Insight. 2021;6(6):e135753. https://doi.org/10.1172/jci.insight.135753Original citation: JCI Insight. 2021;6(8):e150137. https://doi.org/10.1172/jci.insight.150137Citation for this corrigendum: During the preparation of this manuscript, the center panel of the bottom row of Figure 2D was inadvertently duplicated from the left panel of the bottom row of Figure 2D. The figure has been corrected.The authors regret the error."} {"text": "This article has been corrected: During reorganization of 1606-1624. https://doi.org/10.18632/oncotarget.26600Original article: Oncotarget. 2019; 10:1606\u20131624."} {"text": "JAC-Antimicrobial Resistance 2021; https://doi.org/10.1093/jacamr/dlab051JAC-Antimicrobial Resistance 2021; https://doi.org/10.1093/jacamr/dlab052JAC-Antimicrobial Resistance 2021; https://doi.org/10.1093/jacamr/dlab053JAC-Antimicrobial Resistance 2021; https://doi.org/10.1093/jacamr/dlab054JAC-Antimicrobial Resistance 2021; https://doi.org/10.1093/jacamr/dlab055JAC-Antimicrobial Resistance 2021; https://doi.org/10.1093/jacamr/dlab056In the original published versions of these articles, the link to the prescribing information for cefiderocol was missing. This has now been corrected in the published versions of the articles. The authors apologize for this error."} {"text": "Correction to: Trials 18, 528 (2017)https://doi.org/10.1186/s13063-017-2270-3Originally published name: Rosanna W. L. LamCorrected name: Rosanna W. L. LauFollowing the publication of the original article , we wereThe original article has been corrected."} {"text": "Global Medical Geneticswishes to recognize those who contributed as an expert peer-reviewer of submitted scientific papers in 2021.Global Medical Genetics.Thank you for your contributions toIwona \u017burTomer Ziv-BaranAndrea ZiniQian-Hao ZhuJiang ZhouYingmei ZhangXinjiang Zhang\u00c1ngel Zarain-HerzbergSarah E. ZandersHakimeh ZaliRaymond YungYonggui YuanJin-qing YuanHao YuChao YuPierre YouinouYeliz YolVa yoT. Ylisaukko-ojaHiroyuki YasudaBing YaoJunichi YamaguchiSuowen XuClaudia WylezichYah-Huei Wu-ChouWei-Te WuJianghong WuJiande WuKris C. WoodHye Ryun WooJongkonnee WongpiyabovornLoo Keat WeiJill WegrzynMilind WatveZehua WangXiaojuan WangWeiping WangIoannis A. VoutsadakisVandana VinayakRafael Velazquez-CruzAB VedamurthySarinnapha M. VasunilashornSirisha VammiZehra Oya UygunerAsta TvarijonaviciuteDilsad TurkdoganP\u0131nar TulayAgeliki TsagaratouAnthony TrewavasVan Khanh TranAnn-Marie TorregrossaHirofumi TomitaLucia TombolanPascale TomasiniMaria TomasPavel TomancakA. TirellaPilar S. TestillanoLeroy ten DamDuygu TekinEleni TaniYuki TamuraMurtaza M. TambuwalaGerasimos P. SykiotisZ. Renee SungLi-Peng SunAihua SunTakaaki SugikiIrna SufiawatiJose Suazowenling SUChun-Li SuMaja StojiljkovicAgnieszka StembalskaElizabeth K. SpeliotesKayal DM SmitaRobert SmigielMichael K. SkinnerSanjay M. SisodiyaDavid SimarByoung-Soo ShinJin-Yuan ShihTakahiko Shibaharapei ShiBrian M. ShewchukLisha ShenPil Joon SeoAida Semic-JusufagicBarry ScottRobert J. SchmitzMari SandellMaria, de la Paz SanchezEmine Turkmen SamdanciLynn Y. SakaiOzlem SaglamReza SafaralizadehEnrique SaezAmets SaenzAlexandre RouenVeronique RossiH. Llewelyn RoderickKate E. RileyBergmann M. RibeiroSilvia R. A. ReisTheodore P. RasmussenPragna RaoAna Lucia Carrinho Ayroza RangelBhama RamkhelawonElizabeth J. RadfordLarysa Y. PylypAlkes L. PriceShikha PrasadPranav Kumar PrabhakarN. Pop-JordanovaLydia PooleS. R. PhadkePiero PeruccaA. M. PersicoPascale PerrinIsrael Perez-TorresA. Pena-RosadoA. PellicerAles PecinkaSmaranika PattnaikAlireza PasdarAlireza PasdarSeppo ParkkilaHumberto, Jr. ParadaPier Francesco PalamaraBulent OzpolatJuan M. OrdunaM. OliveAnna B. OhlssonB. NowickaParisa NorouzitallabZahra NoormohammadiTakahiro NobuzaneMasha Y. NivDuc Hinh NguyenYun Fong NgeowPraveen Kumar NeelaHashem NayeriSatoshi NarumiMasataka Narukawajuan NanGerson NakazatoA. J. MunozMridul MukherjiSrabani MukherjeeHirohito MiuraMilica MiljkovicChiara MilaniL. MiglioreJos\u00e9 Luis MicolJames J. MezhirPeter MeyerLisa MethvenJan A. MennigenShaban MelI.M. Medina-D\u00edazKatsuhiro MasagoEfr\u00e9n Mart\u00ednez-QuintanaMarcella MartinelliLucia MargariChao MaoGaia Chiara ManninoLicinio MancoJos\u00e9 E. ManautouKristiina M\u00e4kinenAbdolkarim MahroozMagdy M. MahfouzAbbas Ali MahdiAsri MaharaniPaul S. MaddoxMike MacknessRenato Assis MachadoMalou A. LugthartVito LongoHanns LochmullerXian-zhi LiuShoufeng LIUCharlotte LingJinpiao LinAnatoly V. LichtensteinMarc LibaultWilson LiaoEvi LianidouXiaomin;Xiaowan Li;Lixiaomin;juan li;heXiajun LiAnna-Liisa LevonenTomoko LeeSeung Jin LeeSeong-Wook LeeJefferson LEEM. A. LebedevaDouglas A. LauffenburgerJunko KusumiSetor K. KunutsorAlexei P. KudinKsenia V. KrasilevaClaudia K\u00f6hlerDo-Hyung KimAndre Salim KhayatNaim A. KhanDr. Mahamad Irfanulla KhanGolsa KetabchiMohammad Amin KerachianKathleen L. KellerFuminori KawabataFuminori KawabataUshang V. KateJason KaramchandaniInes Kapferer-SeebacherEmine KandemisRasime KalkanPerla KalimanYoun Joung ChoBryan W. JonesFeras J. JirjeesEmilio JirilloChutima JirapinyoJunhyun JeonMusharraf JelaniAjit JaiswalMayumi IwasakiShinsuke ItoShumpei IshikawaRachel Helen HortonNele HoremansKi Ho HongGeorges HerbeinJohn E. HayesRuilian HanAgnieszka HalasKevin M. HaigisSanna HagmanZsuzsanna GurdanPramod Kumar GuptaA. GugliucciAlicja E. GrzegorzewskaDaniel GrimanelliStanislas Grassin-DelyleStephanie GraserIsabel Gon\u00e7alvesRicardo Santiago GomezJ. GohlkeShamila GinigeTapash Chandra GhoshRomain GherardiMeenu GhaiDavid P. GavinBrandon S. GautAmparo Garcia-TejedorPhilippe GallusciAlexandre GagnonCarlo GaetanoAttila FrigyesiJennifer L. FreemanMolly FoxNatalia ForgacovaAntonino ForaboscoEugenia Flores-AlfaroAlberto Fernandez-Jaenhongjuan FangLigia Carla Faccin-GalhardiWilliam EvansWon Sik EumEbru ErzurumluogluThomas EggermannDebasree DuttaBurak DurmazJorge Dom\u00ednguez-Andr\u00e9sKorcan DemirClelia De-la-Pe\u00f1aFrank de VriesMaria Corazon A. De UngriaDelcides Ferreira De Paula JuniorDaniel A. de LuisRaul de LucasJeremy J. DayAparup DasDr Amita CoutinhoRicardo D. ColettaAmander T. ClarkStephan ClaesThomas A. CiullaFabrizio CitarellaLuisa CimminoEr-Chieh ChoMaria Sole ChimentiZ. Jeffrey ChenZ. Jeffrey ChenPao-Yang ChenFuxue ChenPrashen ChelikaniPattama ChailertvanitkulCarlo CervellatiClarissa CataleValeria CarolaInmaculada Campos-GalindoBert CallewaertMatteo BusconiRussell J. BuonoSteven BuechlerRegina Maria Bringel MartinsJason H. BricknerJ. BrezinovaAlison C. BrewerAn BoudewynsYvonne B\u00f6ttcherG. BorgonovoPenelope E. BonnenLuca Reggiani BonettiDragana BogicevicPeyman Bj\u00f6rklundAndriy BilichakMaitree BhattacharyyaIwona Ben-SkowronekMoussa BenhamedAkeila Bellahc\u00e8neMaik BehrensMohamed A. BedaiwyDiane M. BecklesClaude BeckerDaniela Sanchez Bass\u00e8resManish BansalIstvan BaloghAlma BalestrazziAdayabalam S. BalajeeBahman BahramnejadMelinda R. BaerwaldFabian BaertlingAnwar BabanDiana A. Averill-BatesD. M. Avdjieva-TzavellaKapil K. AvasthiEliandro Reis TavaresEmine Ikbal Atl\u0131Naureen AslamS. AounzouGregory S. AntonarakisNorma Almaraz-AbarcaWatfa Al-MamariAhad AlizadehMohammad Yousef AlikhaniMercedes Alfonso-Prieto\u0130brahim AkalinAnnabel Ahuriri-DriscollGholamreza AhmadianWasim AhmadSarita AgarwalOladele Vincent AdeniyiRavinder AbrolFrancisco Abad-SantosNurul Syakima Ab Mutalib"} {"text": "Following the publication of the original article , the autThe original article has beenAdditional file 3: Macro. 2step-TemplateMatching.ijm, available on the GitHub repository at https://github.com/multi-template-matching/MultiTemplateMatching-Fiji/blob/master/Fiji/scripts/Plugins/Template_Matching/2step-TemplateMatching.ijm. See Supplementary Material.pdf and Supplementary Figures.pdf for further information."} {"text": "This article has been corrected: Due to errors during figure assembly, 10803-10815. https://doi.org/10.18632/oncotarget.2506Original article: Oncotarget. 2014; 5:10803\u201310815."} {"text": "This article has been corrected: In 8162-8172. https://doi.org/10.18632/oncotarget.14131Original article: Oncotarget. 2017; 8:8162\u20138172."} {"text": "This article has been corrected: In 1020-1030. https://doi.org/10.18632/oncotarget.2741Original article: Oncotarget. 2015; 6:1020\u20131030."} {"text": "Correction to: Mol Cancer 9, 112 (2010)https://doi.org/10.1186/1476-4598-9-112Fig. Fig. Fig. Fig. Fig. Following publication of the original article , minor eThe corrected figure is given below. The correction does not have any effect on the results or conclusions of the paper. The original article has been corrected."} {"text": "This article has been corrected: Due to errors during figure assembly, the fluorescence images in 6737-6748. https://doi.org/10.18632/oncotarget.3253Original article: Oncotarget. 2015; 6:6737\u20136748."} {"text": "The authors would like to express their apologies and regret for the errors in the original published version of the abovementioned article. The corrected article follows.DOIshttps://doi.org/10.18332/tid/132833Original Article: https://doi.org/10.18332/tid/141989Correction: https://doi.org/10.18332/tid/142579Corrected Article:"} {"text": "I would like to begin with a tremendous round of applause for all the authors, reviewers, and members of our editorial team who have continued to advance our knowledge of the microbial sciences during our second year of the COVID-19 pandemic.It\u2019s that time of year, as we head into the end-of-year holidays, to reflect on how the past 12\u2009months have played out at I alluded to the following in last year\u2019s message but would like to drive it home again, with the advantage of some hindsight. In early 2020, very few people would have predicted that by the end of the year we would have had an effective vaccine against SARS-CoV-2, much less multiple versions. Yet, we accomplished it, in no small part due to years of fundamental research on how the immune system recognizes and responds to pathogens, how mRNAs are synthesized and translated, and how to effectively deliver macromolecules into cells. Much of this progress was anchored in the microbial sciences: studies of viral immunology, landmark work on mRNA metabolism in bacteria and virally infected cells, understanding how pathogens bind to and enter cells, development of techniques that were originally used to introduce viral oncogenes into mammalian cells in culture, and the use of viral vectors for gene therapy all set the stage for the COVID-19 vaccines. I would be remiss if I failed to note that this research was performed all around the world.mSphere, we are committed to continuing to publish important studies that advance our knowledge of the plethora of microbes and how they interact with their hosts. I have no doubt that this research will pay enormous benefits in the future.At Our submission numbers remain high and, despite a small increase in our time to first decision late last year and early this year, we have turned that curve around and aspire to get our decision-making speed back to where it was in the \u201cBefore Times.\u201dI want to give special mention to the staff at ASM who have worked tirelessly to keep the gears of publication well oiled. In particular, Nikki Glenn, Amanda Donaldson, and Noel Lin have made our jobs as editors easier and delightful.ad hoc reviewers in 2021. They have our gratitude. I hope that you are able to enjoy some time over the next few weeks connecting or reconnecting with your families and loved ones, this year in person. Humans are social animals, and it\u2019s great to be able to resume these activities.Kjersti AagaardMohamed M. H. AbdelbarySabrina AbsalonMichael C. AbtMark D. AdamsJosephine Azikuru AfemaKayode Olayinka AfolabiSurya D. AggarwalHector Aguilar-CarrenoChristian Paul AhearnBrian M. M. AhmerMustafa AkkoyunluMd. Tauqeer AlamAshraf Al AshhabM. John AlbertAnoop AlexCaroline AlfieriHolly M. Scott AlgoodJonathan AllenEmma Allen-VercoeJuan C. AlonsoFrancis AlonzoChristopher AlteriJohn AlverdyChristopher S. AndersonMatthew Zack AndersonDavid R. AndesLaura Maria Andrade De OliveiraMarco AndreolliDiego O. AndreyAlberto AntonelliYoshiteru AoiCristian ApetreiChelsie Elizabeth ArmbrusterSandra K. ArmstrongJennifer M. AuchtungTatjana Av\u0161i\u010d-\u017dupancDomenico Azarnia TehranSophie Bachellier-BassiMichael A. BachmanSteffen BackertMatthew BaidemeCamden R. BairJonathon L. BakerKatherine H. BakerScott BalibanJimmy D. BallardGuilia BandiniFernando BaqueroNoa Barak-GavishJoseph T. BarbieriBrianne BarkerJason C. BartzMartine BassilanaChristine Marie BassisTilman BaumstarkMarco BecherelliSara BeierDaniel P. BeitingGeorgios N. BelibasakisAeriel D. BelkSamantha L. BellJessica A. BelserJorge L. BenachJose A. BengoecheaPeter BergholzTeresa M. BergholzTanja Beri\u0107David BernsteinStefan BertilssonRalph BertramSanchita BhadraDipankar BhattacharyyaBijit BhowmikFadil A. BidmosClaire H. BirkenheuerJacob P. BitounDaniel Blanco-MeloJon S. BlevinsJoseph M. BlissPatricia Pringle BloomAntje BlumenthalKasun H. BodawattaPierre BogaertsGregory BonitoS\u00e9bastien Bontemps-GalloAngela BordinJens BosseAnna BothTravis BourretKate BowermanEric BoydEthna Fidelma BoydTodd BradleyRita BrancoKyndall BraumullerLinda BreedenMathieu BrochetNichole A. BroderickChristopher B. BrookeGrayson BrownJeremy S. BrownKevin M. BrownMichael G. BrownHarry BrumerDonald A. BryantAlison BuchanLori L. BurrowsKaren BushAndrea CabibbeLaty A. CahoonYi CaiEloiza Helena CampanaEdgar I. Campos-MaduenoEric CaragataAlessandra CarattoliFranck Gael CarboneroMiguel Carda Di\u00e9guezJeffrey CareyRyan B. CarnegieJaime CarrascoVern B. CarruthersLeslie S. CaseyIrene CastanoSantiago Castillo-Ram\u00edrezClayton C. CaswellRodrigo Cay\u00f4Daniel CazaresBrandi N. CeliaNuno CercaMiguel Angel CevallosDipshikha ChakravorttyDouglas L. ChalkerThomas M. ChambersJosephine R. ChandlerMichael ChandlerRobert L. CharleboisSujata S. ChaudhariNeeraj ChauhanDamien ChaussabelMichael S. ChausseeFrancisco P. ChavezLiang ChenChiuping ChengRachel A. ChengLaurent Roberto ChiarelliAlex W. H. ChinMichaelle ChojnackiStephen A. ClarkErika C. ClaudDavid W. ClearySara ClohiseyShira Milo CochaviDarrell CockburnAshley CohenSean ConlanLaura CookGretchen CooleyBrendan CormackPierre CornelisCaitlin CossaboomSiobhan C. CowleyRobert A. CramerMax CravenerAlison K. CrissKarissa L. CrossRobert W. CrossLiwang CuiPaul J. CullenNatacha CuotoCameron R. CurrieTodd Andrew CuttsDennis G. CvitkovitchF. Heath DamronAjai A. DandekarStephen DanielsBiswadip DasBryan W. DaviesCharles R. DeanJean-Winoc DecousserElizabeth N. De GaspariMiranda De GraafKirk W. DeitschHarry P. De KoningFrank R. DeLeoThomas G. DenesDavid W. DenningRajendar DeoraCynthia Ann DerdeynSteven C. DerrickJigar V. DesaiLalitagauri DeshpandeSanjay Kumar DeyVijaykrishna DhanasekaranRishu DheerRobert P. DicksonDiego G. DielBeatriz Diez MorenoStephen P. DiggleJoseph P. DillardSiyuan DingMarc S. DionneAlan Angelo DispiritoDirk P. DittmerEunsoo DoCarlota Doba\u00f1o LazaroYohei DoiJanet DonaldsonCaihong DongMatthew J. DormanLaurent DortetBeno\u00eet DoubletCharles M. DozoisJan Felix DrexlerYuchun DuElves DuarteEdward G. DudleyBreck A. DuerkopAnne K. DunnSanjucta DuttaKathryn EatonLeo EberlKathryn M. EdenboroughTom EdlindElizabeth A. EdwardsMaren EggersSabine EhrtPatrick EichenbergerWaldir P. EliasJeremy R. EllermeierRoland EllingNajib M. El-SayedMostafa S. ElshahedJoanne B. EmersonVirve Irene EnneEeva Liisa Eronen-RasimusAlice L. ErwinJavier Antonio Escobar-PerezMatthew J. EvansFranziska FaberRobert FaganChristina S. FahertyLinda FalgenhauerS\u00e9amus FanningMauricio J. FarfanMatthew L. FaronAmy K. FeehanMario F. FeldmanJinrong FengJ. Christopher FennoDavid J. FergusonIsabel Fern\u00e1ndez EscapaAstrid FerrerRichard L. FerreroKenneth A. FieldsJoshua FiererSergio R. FilipeMaria F. FillatScott G. FillerDouglas K. FischerCarlos FloresStephanie FlowersFabrizio FoieniSteven L. FoleyLaura FordJarrod R. FortwendelMichael T. FranceKristi L. FrankNatalia FreundGeorg FritzInga Fr\u00f6dingTakasuke FukuharaMarta M. GagliaHannah GaimsterRaj GajiJames E. GalenMarkus GanterMichael G. GanzleErin C. GarciaSarahi L. GarciaAmy Shirley GargisKathleen G\u00e4rtnerCaroline Attardo GencoNoel GeraldCarmen GherasimLorenzo GiacaniHeather L. GlasgowOleg GlebovErin S. GloagMarek GniadkowskiRichard V. GoeringGustavo H. GoldmanJonathan Louis GolobBenjamin GolombLaura G\u00f3mez-ConsarnauAngela Gomez-SimmondsYanhai GongJesus Gonzalo-AsensioSteven D. GoodmanTobias GorisMorgan GorrisRia GoswamiMatthias GotteRevathi GovindManish GoyalAndreas GrabruckerLisa GralinskiLuke R. GreenAlexander L. GreningerFinn GreyElizabeth GriceDennis GroganElisabeth GrohmannTrudy H. GrossmanCassandra GuarinoMarc-Jan GubbelsEric Gu\u00e9donPascale S. GuitonArda GulayRavindra Kumar GuptaGabriel GutkindDavid HackstadtAndrea HahnAnders P. HakanssonRiley HaleVanessa L. HaleRobert HallRoy A. HallRuth M. HallBrian K. HammerTobin HammerAbdul N. HamoodAxel Georg HamprechtKen-Ichi HanakiLynn E. HancockBlake M. HansonMingju HaoMd. Manjurul HaqueSohei HaradaClare HardingLee H. HarrisonOliver HarschnitzErica M. HartmannEric T. HarvillAsma Hatoum-AslanBen M. HauseMargo G. HaygoodCynthia Y. HeSusu HeAoife T. HeaslipNicholas S. HeatonNagendra R. HegdeChristine HeilmannHenry S. HeineDavid E. HeinrichsPeera HemarajataTory A. HendryCristina HerenciasAna Hernandez CorderoRobert L. HettichAndr\u00e9s HidalgoSteven HigginsPenelope HiggsTakahiro HionoItaru HiraiTheresa D. HoThomas HoenenNicole A. HoffDeborah A. HoganPeiying HongLauren Michelle HookThomas HoovenAlexander M. HorspoolPaul A. HoskissonDaniel K. HoweGongzheng HuKe HuLinden T. HuStephen S. H. HuangEili HuhtamoLewis HunJason F. HuntleyJillian H. HurstBonnie L. HurwitzWilhelmina HustonJustin HutchisonAlbina IbrayevaMelissa IngalaThomas J. InzanaWilliam W. JaMary Ann Jabra-RizkCody B. JacksonAnna C. JacobsWilliam R. JacobsGuilhem JanbonIngmar JanseMichael A. JarvisVicki JeffersNiuniu JiDong-Yan JinWilliam JohnsonSusan JosephLok R. JoshiYuan JunBarbara C. KahlMaria KalamvokiSuzanne R. KalbJeremy Phillip KamilManabu KannoFathi KarouiaAnbu Kumar KaruppannanFatah KashanchiJoseph KeaneDaniel B. KearnsScott P. KeelyEliisa Kek\u00e4l\u00e4inenBrendan KellyVolkhard A. J. KempfArnaud Kengmo TchoupaNemat O. KeyhaniShabaana A. KhaderArifa S. KhanM. Nadeem KhanNiharika KhannaKrystyn KiblerMegan R. KiedrowskiNicolas KiefferPeter E. KimaSamantha Jane KingDavid L. KirchmanThomas KislingerKimberly A. KlineMatthew D. KociAndrew Young KohTakahiko KoizumiJames B. KonopkaKaren A. KormuthDaniel KornitzerAnna D. KoromyslovaNicole Marie KoropatkinAnita A. KoshyNalinikanth KotagiriSusan F. KovalLukasz KozubowskiVarvara KozyrevaOliver KramerJan-Ulrich KreftGopinath KrishnamoorthyCarol A. KumamotoAnand KumarAshwani KumarBinod KumarNirbhay KumarRolf K\u00fcmmerliCemil K\u00fcrekciKyohei KurodaOliver KurzaiHiroyuki KusadaMarta Ku\u017ami\u0144ska-BajorMonique LafonGyanu LamichhaneErwin LampingKristin LaneStephanie LangelBrian D. LanoilCarla E. LanzeTimothy M. LaparaAnders Rhod LarsenAntje LauerAdi LavyMark L. LawrenceWilkinson L\u00e1zaroMichael Richard LebertYong-Hwan LeeJose A. LemosVanessa LeoneValerie Le SageRoger C. LevesqueMin Z. LevineKim LewisVictor H. Leyva-GradoJianrong LiLin-Xi LiLynne LiRuichao LiXian-Zhi LiJean LimBruno P. LimaHanzhi LinJianfeng LinYongxin LinNilton LincopanAmelia Ryan Isis LindseyZhuoren LingTrevor LithgowXingzhong LiuZhou LiuJose L. Lopez-RibotThomas LouieNancy G. LoveJelena LozoDiannan LuLenette LuShirley LuckhartBrian Michael LunaZhen LuoCalman A. MacLennanRajat MadanKhandaker Rayhan MahbubBernardo Alfredo MainouGeofrey MakengaBurkhard MalornyMichael ManhartJan MaresKevin MaringerClaudia N. H. MarquesLinsey MarrSara MartiRebekah M. MartinMiguel A. Mart\u00edn-AcebesWillames M. B. S. MartinsGislaine Martins De OliveiraIsabelle Martin-VerstraeteJulien MassoniS\u00e9bastien MatamorosRosario MatoJyl S. MatsonJoseph J. MattapallilBen MatthewsJoshua T. MattilaRadheshyam MauryaMeghan MayAndrew J. McBainAnne E. McBrideJere W. McBrideConall McCaugheyMark S. McClainBruce A. McClaneJohn K. McCormickRandy James McCreeryJohn T. McCroneElizabeth A. McDanielAnita K. McElroyLesley McGeeGerald Michael McInernyDavid J. McMillanDavid N. McMurrayPeter T. MeeMaliheh MehrshadAubrey F. MendoncaD. Scott MerrellCarl R. MerrilDennis W. MetzgerBjoern MeyerPaul A. MichelsFiras S. MidaniAlita A. MillerTodd MillerEwerton Garcia de Oliveira MimaLuciene MinariniYusuke MinatoCarmen MirabelliMaria MiragaiaDominique MissiakasStefania MitolaTanya A. MiuraTim MiyashiroKazufumi MochizukiMoniruzzaman MohammadIgor MokrousovChristopher MontgomeryCatherine MooreGonzalo MoratorioKaren MoreauHiroshi MoriKoji MoriKouichi MoritaMinoru MoriyamaThomas E. MorrisonJohn P. MorrisseyJulie MorrisseyKathryn MorrisseyJoachim Morschh\u00e4userKenichiro MotomuraW. Scott Moye-RowleyElke M\u00fchlbergerConrad W. MullineauxMatthew A. MulveyCarol A. MunroPeter J. MylerAnusha NaganathanMoon H. NahmRyosuke NakaiTeruaki NakatsujiSham NambulliVinay Kumar NandicooriCassandra E. NelsonUjjwal NeogiJeniel E. NettIrene L. G. NewtonRyan J. NewtonStuart T. NicholWright W. NicholsTracy L. NicholsonWilliam NicholsonPaula NiewoldAngela M. NiliusMatthew L. NillesYosuke NishimuraAngela Helen NobbsAna Rita NogueiraSteven J. NorrisJoshua D. NosanchukTakuro NunouraKlaus N\u00fcssleinAustin S. NuxollTorsten OchsenreiterNkechi Martina OdogwuKyle L. O'DonnellKazuhiro OgaiKnut OhlsenYusuke OkazakiFaten A. OkdaAndrew J. OliveAntonio OliverMartin OlivierMichael OlsonTeresa R. O'MearaAndres Opazo-CapurroRobert C. OrchardJohn Osei SekyereAndrei L. OstermanMartin PabstChristopher PaddockMalcolm G. P. PageJohn V. PaiettaGlen E. PalmerTimothy PalzkillJohn C. PanepintoMarcus PanningSneh Lata PanwarCostas C. PapagiannitsisDaniel Paredes-SabjaHyunsook ParkDane ParkerGabriel I. ParraColin R. ParrishSally R. PartridgeSamir N. PatelMark E. PeeplesJos\u00e9 PenadesXinxia PengDaniel PensingerMari PentJakob PernthalerAndreas PeschelKarin E. PetersonMichael PetridisMelinda M. PettigrewRenata Cristina Pic\u00e3oAndrzej PiekarowiczSeth H. PincusAmeet J. PintoJohann PitoutPaul J. PlanetMateusz PlucinskiMircea PodarShawn W. PolsonStephen J. PolyakVineel Kumar Pothi ReddyThomas PottageArjun PrasadVibhu PrasadGregory P. PriebeFirdausi QadriShangshang QinJianming QiuMaxime Qu\u00e9batteCheryl L. QuinnRobert Andrew QuinnBrent RaceGireesh RajashekaraStuart A. RalphSrinivasan RamakrishnanKumaran S. RamamurthiSasirekha RamaniMaria Soledad RamirezJoshua P. RamsayTara M. RandisLeslie Anne RankXiancai RaoChad A. RappleyePhilip N. RatherMaria Angelica ReaMichael D. ReedJose A. Regla-NavaJonathan S. ReichnerAaron ReinkeJyothi RengarajanNilton RennoPeter ReutherKelly C. RiceDave RichardAmariliz RiveraCarmen Alicia Rivera P\u00e9rezIan S. RobertsMarilyn C. RobertsD. Ashley RobinsonLibia Zulema Rodriguez AnayaFrancisco Rodriguez-ValeraAdriana E. RosatoDavid A. RosenHelene F. RosenbergIsabelle Rosinski-ChupinBenjamin RossRaymond R. RowlandClaudia R\u00fcckertThomas A. RussoJenna RychertDavid A. SackXavier SaelensChayan Kumar SahaPaula S. SalgadoFrancisco SalinasAnastasios SamarasJames E. SamuelOrjan SamuelsenDerrick SamuelsonJohn C. SamuelsonSarah E. SansomAna Carolina Carolina de Mello SantosManuela SantosChristian Santos-Medell\u00ednSunil D. SarojMichael Joseph SatlinYuya SatoTimothy J. SavageCharles A. ScangaConnie SchmaljohnThomas M. SchmidtMirco SchmolkeRaymond SchuchStacey Schultz-CherryWilliam R. SchwanJulia A. SchwartzmanAlison J. ScottIngrid L. ScullyAnna Maria SeekatzEinat SegevJulie A. SegreRyan F. SeipkeRanjan SenKarol SestakWilliam M. ShaferRebecca S. ShapiroNikki W. ShariatAmit SharmaAshu SharmaVijay K. SharmaThomas J. SharptonRoss ShawTimothy P. SheahanAlaullah SheikhSamuel A. ShelburneAimee ShenRobert C. ShieldsShin-Ru ShihTakaaki ShimohataNaoya ShinzatoAndrey N. ShkoporovNahum Y. ShpigelJoshua D. ShroutDavid SibleyLynn L. SilverMarie SimoninAnthony P. SinaiAmit SinghHerman SintimBeate M. SlabyLeyla SlamtiAmy SmithWiep Klaas SmitsEvan S. SnitkinFernando C. SonciniStephanie D. SongHarini SooryanarainDaniel O. SordelliJoseph A. SorgPaul SpearmanFabio M. SquinaJustina StanislawMaja StanojevicJack T. StapletonMichael N. StarnbachJacob L. SteenwykStefania StefaniWilliam J. SteinbachSilke StertzDavid Cole StevensMarc J. A. StevensGeorge C. StewartAlison Elizabeth StoutDaniel StraumeJorg StulkeDerek SullivanWei SunYingjie SunJoyce SutcliffeTroy C. SuttonYasuhiro SuzukiMary Hannah SwaneyToru TakeshitaToru TakimotoMichal Caspi TalSatoshi TamazawaMichelle D. TateTallita C. L. TavaresVeronika TchesnokovaRobin TeconSam R. TelfordBen TempertonFred C. TenoverAkihiko TeradaAartjan J. W. te VelthuisRajagowthamee ThangavelKevin R. TheisJustin A. ThorntonYun TianCaroline T. TiemessenAnna D. TischlerKelvin K. W. ToRichard B. ToddMasanori TohnoHirokazu TojuMark Alexander TolemanAndrew TomarasJavier TorresDieter M. TourlousseMaria Carolina TouzJulian TrachselAndrej TraunerPankaj TrivediBilly TsaiAthanassios TsakrisBoo Shan TsengClaire Elizabeth TurnerJane F. TurtonJessie UehlingJuan Esteban UgaldeGottfried UndenSyun-Ichi UrayamaConstantin F. UrbanBlake UshijimaDavid W. UsseryPeter Valentin-WeigandMark van der GiezenPeter Van der VoortNicole N. van der WelPatrick Van DijckGiel G. van DoorenDavid van DuinDaria Van TyneArvind VarsaniJos\u00e9 Antonio V\u00e1zquez-BolandKasthuri VenkateswaranElisa M. VeselyJorge E. VidalRafael VignoliMarius VitalJay VornhagenMartin I. VoskuilDaniel E. VothSlavena VylkovaDavid M. WagnerSeth T. WalkEdward WalkerKimberly A. WalkerMark J. WalkerGemma WaltonChengming WangKai WangShanquan WangTony WangXiaoxue WangYang WangDavid Morgan WardEmma WearMary WeberNa WeiTiffany WeinkopffBrian C. WeinrickBrian WeissTao WenGuido WernerLukas WeseslindtnerDave J. WestenbergEdze WestraDawn WetzelNathan John WeyandRobert T. WheelerJudith M. WhiteShannon WhitmerGregory WiedmanKrista Rule WiggintonMichael R. WileyBrian J. WilkinsonJulia WillettSimon WilliamsMary E. WilsonJeffrey H. WitheyGeorge WittemyerChristiane E. WobusBrian Allan WolffAdam C. N. WongThomas WoodStephen M. WoodcockMichael H. WoodworthAniela WozniakRachel A. F. WozniakXianfu WuLihua XiaoHang XieChenggang XuJianping XuJin-Rong XuKageto YamadaKyosuke YamamotoShinji YamasakiS. Steve YanTao YanHee-Jeong YangZhaomin YangHui-Ling YenJae-Hyuk YuYunsong YuJoseph P. ZackularRaffaele ZarrilliEgija ZauraAhmed ZayedGuoquan ZhangLianhui ZhangRui ZhangWanjiang ZhangWen ZhangXilin ZhaoYaofeng ZhaoBeiwen ZhengYong ZhengXiaohui ZhouDuolong ZhuGuoqiang ZhuJoseph M. ZiegelbauerStefan ZimmermannFinally, we list below the many individuals who served as"} {"text": "This article has been corrected: Due to errors during figure assembly, an accidental duplicate image of panel 4 in 4814-4825. https://doi.org/10.18632/oncotarget.13978Original article: Oncotarget. 2017; 8:4814\u20134825."} {"text": "LeukemiaCorrection to: 10.1038/leu.2008.89The authors have retracted this article . An inve"} {"text": "This article has been corrected: The image in 66922-66934. https://doi.org/10.18632/oncotarget.11877Original article: Oncotarget. 2016; 7:66922\u201366934."} {"text": "Cerebral organoids are three-dimensional cell-culture systems that represent a unique experimentalmodel reconstructing early events of human neurogenesis in vitro in health and various pathologies. The mostcommonly used approach to studying the morphological parameters of organoids is immunohistochemicalanalysis; therefore, the three-dimensional cytoarchitecture of organoids, such as neural networks or asymmetricinternal organization, is difficult to reconstruct using routine approaches. Immunohistochemical analysis of biologicalobjectsis a universal method in biological research. One of the key stages of this method is the productionof cryo- or paraffin serial sections of samples, which is a very laborious and time-consuming process. In addition,slices representonly a tiny part of the object under study; three-dimensional reconstruction from the obtained serialimages is an extremely complex process and often requires expensive special programs for image processing.Unfortunately, staining and microscopic examination of samples are difficult due to their low permeability and ahigh level of autofluorescence. Tissue cleaning technologies combined with Light-Sheet microscopy allows thesechallenges to be overcome. CLARITY is one of the tissue preparation techniques that makes it possible to obtainopaque biological objects transparent while maintaining the integrity of their internal structures. This method isbased on a special sample preparation, during which lipids are removed from cells and replaced with hydrogelcompounds such as acrylamide, while proteins and nucleic acids remain intact. CLARITY provides researchers witha unique opportunity to study three-dimensional biological structures while preserving their internal organization,including whole animals or embryos, individual organs and artificially grown organoids, in particular cerebralorganoids. This protocol summarizes an optimization of CLARITY conditions for human brain organoids and thepreparation of Light-Sheet microscopy samples. Biological tissues and organs present a complex three-dimensionalstructure. Due to their opacity and high level ofautofluorescence, three-dimensional reconstruction of suchobjects is an extremely laborious, but necessary process.To date, a number of protocols (more than a dozen) havebeen developed for making tissue transparent: SeeDB , ScaleA2 , uDISCO , CLARITY , CUBIC and others. In general, all protocols canbe divided into three groups, depending on the chemicalsused for tissue clearance: organic solvents (hydrophobicreagent)-based protocols ,hydrophilic reagent-based protocols and hydrogel-tissuechemistry-based protocol . Some of themhave different advantages like quality and speed of clearingor simplicity of the procedure. But on the other hand, some ofthe protocols involve using toxic and corrosive chemicals thatrequire special objectives to avoid damage to the microscopeor require other special equipment. Most of these protocolshave been developed to clarify entire organs or their bigfragmentsRecently, a new method of artificial mini-organ or organoidsgeneration from induced pluripotent stem cells (iPSC) wasdeveloped and now many differenttypes of organoids have already been produced . Organoids arewidely used both to recreate the three-dimensional architectureand functional activity of the original organs during normalembryonic development and at various disorders and to test thebiological activity of various drugs, chemical and biologicalagents. Usually, organoids are opaque, which makes investigatingthem rather difficult. For this purpose, it is advisableto use the combination of tissue clearing and 3D imagingtechnologies. However, it is important to select the clarifyingtechnology that would match organoids size and fragility asmuch as possible and would produce sufficient resolution forinvestigation of tiny structures.Various techniques have been used for organoid tissueclearing and several studies have compared different clarifyingmethods which could be applied to mini-organs . Some techniques, such as the hydrophilicclearing protocols are most acceptablefor clearing small spheroids such as neurospheres or cancer cell spheroids . Others, such as RapiClear, Fructoseglycerol andFUnGI, also using hydrophilic components, are designed andoptimized for handling small and fragile, predominantly holloworganoid structures such as intestinal organoids. It shouldbe noted that these protocols are very convenient and take onlythree days without application of harmful chemicals . For complex and densebrain organoids, stronger clearing protocols including delipidationprocedure are usually used .Applying organic solvent-based methods like 2Eci (2nd generationEthyl cinnamate-based clearing method) or BABB methodfor midbrain organoids can get a relativelyquick (within a few days) result. However, most of theorganic components used in these protocols are quite toxic ).The use of hydrogel-tissue chemistry sometimes providesmore opportunities for preserving the structure of organoidsand increasing the optical resolution of tiny objects. That isdue to the tissue hydrogel scaffold preparation by cross-linkinghydrogel monomers to native biomolecules . The creation of such a polymer frame in the brainorganoids allows combining these protocols with additionalprocedures with sodium dodecyl sulfate and physical electrophoresis,as well as with high-resolution imaging of ExpansionMicroscopy with a general microscopy setup .Thus, it is quite important to choose the most optimal andeffective tissue clearing technique for samples, especially forsuch complex objects as cerebral organoids.One of the most convenient and lab-friendly techniques isCLARITY (Clear Lipid-exchanged Acrylamide-hybridizedRigid Imaging/Immunostaining/In situ hybridization-compatibleTissue-hYdrogel). CLARITY was developed in 2013for obtaining high-resolution information from complex3D structures, such as the whole mouse brain . Application of this technique enabled to obtainintact-tissue imaging of long-range projections, local circuitwiring, cellular relationships, subcellular structures, proteincomplexes, and neurotransmitters. CLARITY protocol includesreplacing lipids with hydrophilic polymers (acrylamideand bis-acrylamide), which help to stabilize tissue but make itoptically transparent and permeable. It is very important thatmolecules like nucleic acids and proteins stuck in the hydrogelkeep their structures and locations. Thus, CLARITY allowscombining tissue clearing techniques with immunostainingand in situ hybridization and explores the internal structureof large three-dimensional objects without damaging theirintegrity. There is only one article in which CLARITY techniquewas used for cerebral organoid clarifying , but without a detailed description. Thus, theaim of our work was optimization of CLARITY protocol inapplication to cerebral organoids and detailed description ofsamples preparation for Light-Sheet microscopy.Reagents1. Acrylamide .2. Agarose D1, low EEO .3. Bisacrylamide .4. Boric acid .5. ddH2O.6. Glue .7. Parafilm M .8. Paraformaldehyde (PFA) .9. Phosphate buffer saline (PBS) .10. Sodium azide .11. Sodium dodecyl sulfate .12. Triton X-100 .13. VA044 .14. Serological pipets 5, 10, 25 ml .15. 1-ml syringe .16. 2 ml tube .17. 5 ml tube .18. Glass bottle 100 and 500 ml .19. Syringe filter, 0.22 \u03bcm .20. 4\u2032,6-diamidino-2-phenylindole (DAPI) .21. Antibodies (Table 1).Equipment1. Light-Sheet Z1 microscope (Zeiss).2. Orbital shaker .3. Roller shaker .4. pH meter .5. Magnetic stirrer .6. Standard microwave.7. Thermometer.8. Forceps.9. Chemical spoons.10. Fume hood.11. Icebox.Software1. ImageJ 2. ZEN ProcedureFixation of human cerebral organoidNote: For any manipulation with organoids, use cut 1 ml tipsor wide orifice 1 ml tips to protect samples from damage.1. Transfer cerebral organoids in 5-ml tubes and wash with1X PBS solution 2 times.2. Replace 1X PBS solution with freshly prepared 4 % PFAsolution.3. Place the tubes on the roller/orbital shaker and incubate atroom temperature for 2\u20133 h.4. Wash samples 3 times with 1X PBS solution for 30 min.Note: At this step, cerebral organoids can be kept at +4 \u00b0C in1X PBS solution. For keeping more than 1 week, we recommendadding sodium azide to a final concentration of 0.01 %to prevent sample contamination with bacteria and fungi.Hydrogel embedding1. Precool all solutions, equipment, and samples on ice toprevent premature polymerization of the hydrogel solution.Note: If you use a frozen aliquot of hydrogel solutions, thawthe vial on ice in a fridge overnight. After thawing, gently mixand check for the absence of precipitation.2. Fill the 2-ml tube with the hydrogel solution and transfercerebral organoids in the tube having previously gentlyremoved leftovers of the PBS with a paper towel.Note: 2-ml tube format is acceptable for 1\u20133 organoids. Fora large number of organoids, we recommend using a biggertube.3. Incubate the samples in the hydrogel solution at +4 \u00b0C atthe lowest speed of roller/orbital shaker for 24 h.4. Refill the tube with fresh hydrogel solution and incubateat +37 \u00b0C for 4 h.Note: Fill the tube with hydrogel solution completely. Oxygeninhibits hydrogel polymerization, thus all bubbles should beremoved. Additionally, we recommend covering the tube withParafilm to prevent air access.5. Very gently extract the samples from the polymerizedhydrogel by carefully rolling samples on a paper towel.6. Transfer the samples into the 5-ml tube and wash withClearing Solution 4 times at room temperature for 24 h.Passive clearing1. Change Clearing Solution every 2 days and incubate at+37 \u00b0C with agitation. Continue clearing until samplesbecome transparent.Note: We strongly recommend using +37 \u00b0C for lipid removal.Room temperature slows this process down to several months!Note: The time of tissue clearing depends on the size of organoids.Cerebral organoids \u22640.5 cm become transparent during~2 weeks, for organoids \u22650.5 cm it can take up to 3 weeks.2. Wash samples in PBST for 48 h. Change solution 2\u20133 timesper day.Staining1. Incubate samples with primary antibodies in PBST at roomtemperature on a shaker for 3 days.2. Wash samples with PBST for 2 days, changing PBSTevery 4 h.3. Incubate with secondary antibodies and DAPI at roomtemperature for 2 days.4. Wash samples with PBSR for 2 days, changing PBSTevery 4 h.Note: Antibody consumption for staining of CLARITY samplesis very high. We recommend reducing the volume to the minimumat which the samples in the tube are completely coveredwith the staining buffer with constant stirring on an orbitalor roller shaker.Note: For larger organoids, we recommend extending eachstaining step by at least 1 daySample preparation for Light-Sheet microscopyOrganoid sizes can vary greatly. Therefore, we recommendusing a different fixation method for Light-Sheet microscopydepending on the size.Agarose embedding samples Note: Use the agarose with a low melting point temperatureonly.Note: The percentage of agarose solutions depends on thesize of the organoid. For larger organoids, use 1.5 % agarosesolution.1. Prepare the 1-ml syringe by cutting off the top .2. Weigh the required amount of agarose (at the rate of 1 g per100 ml) and dissolve in 1X PBS or ddH2O. Prepare agarosesolution by melting in the microwave. Usually, for a 1-mlsyringe, 1.5 ml of agarose is enough.3. Pour the hot agarose solution into a 12-well plate or anyother laboratory glassware or plasticware. When agarosesolution cools down to +40 \u00b0C, transfer samples and gentlymix. Put the samples in agarose solution into the 1-mlsyringe.4. Assemble the 1-ml syringe with a sample holder .5. Proceed to Light-Sheet microscopy.Note: Fill the microscope chamber with ddH2O or 1X PBS.No great differences were observed between the two solutions.Agarose-free or hanging samples (for bigger samples)1. Glue the sample to the bar . The area ofadhesion can be increased by attaching a small piece of filterpaper. Keep samples in ddH2O or 1X PBS before placingthem into the microscope chamber.2. Proceed to Light-Sheet microscopy.Note: It is imperative to check and rinse the rod and sampleholder for glue residues. If there are any, we strongly recommendthat you soak in soapy water and mechanically removeany glue residue.RecipesNote: Most solutions and reagents from this protocol are toxicand biohazardous. Do not forget about your safety and workin protective laboratory clothing and only under a fume hood!10X PBS solutionTo prepare a 10X stock solution, dissolve 10 tablets of PBSin 100 ml of ddH2O.PFA solutions\u2022 16 % PFA stock solutionTo prepare stock solution, dissolve 16 g of PFA in 80 mlof 1X PBS using a magnetic stirrer. Adjust pH to 7.4\u20137.5and add 1X PBS up to 100 ml. Filter the solution througha 0.40 \u03bcm filter and aliquote into 5 ml tubes. Keep stocksolution at +4 \u00b0C for short storage (up to 2 weeks) or at\u201320 \u00b0C for long storage.\u2022 4 % PFA working solutionTo prepare 4 % PFA working solution, dilute stock solutionwith 1X PBS.Hydrogel solutionNote: All solutions and equipment have to be pre-cooledto prevent premature polymerization of hydrogel solution.1. Mix all components on ice according to Table 2.2. Aliquote hydrogel solution and keep at \u201320 \u00b0C for longstorage or use freshly prepared solution.Clearing solution1. Mix all components on ice according to Table 3.2. Keep the solution in a glass bottle at room temperature.PBST1. Add Triton-X100 to the final concentration of 0.1 % usinga magnetic stirrer.2. Keep the solution in a glass bottle at room temperature.Human cerebral organoids were generated according to a protocolfrom Lancaster et al. (2013) with small modifications.2- and 3-month-old cerebral organoids were used for tissueclearing protocol. At this stage, there are dense spheres morethan 2 mm in diameter . We noted that the time oftissue clearing depends on the size of organoids. Cerebralorganoids \u2264 0.5 cm become transparent during ~2 weeks,for organoids \u2265 0.5 cm up to 3 weeks. This time may varyfrom sample to sample, however, continue cleaning until thesamples become transparent .For immunostaining we chose two proteins with differentsubcellular localisation such as nuclear CTIP2 andcytoplasmic bTubb3 . We did not find a significantdifference between penetration of antibodies into different cellular compartments. In both cases, we observed specificstaining throughout the entire thickness of the organoid .Cerebral organoids are a unique novel technology that allowsthe reconstruction of early human neurogenesis. Theoutstanding feature of this in vitro system is the reproductionof the three-dimensional organization of the human embryonicbrain. Standard histological methods of analysis do notallow reconstructing the internal structure of the cerebralorganoids and result in information loss. The tissue clearingtechnique helps to overcome these limitations, allowing torecreate a three-dimensional model of cerebral organoidsand explore their fine organization without internal structuredestruction. This is especially important for the investigationof brain organoids since they contain a dense network of longprocesses of nerve cells, which is very difficult to study byserial sections .Based on the various tissue clearance techniques analysis,we settled on the use of hydrogel-tissue chemistry as a clearingagent. Generally hydrophobic and hydrophilic reagent-basedprotocols are applied to the investigation of spheroids or holloworganoids such as intestinal organoids , while hydrogel reagents are used for the clarifying ofhuman iPSC-derived retinal organoids and iPSC-derived cerebral organoids . Hydrogel-tissuechemistry-based protocols maximize the preservation of theinternal structure of organoids and allow to achieve high opticalresolution and low background at fluorescent microscopyCurrently, there are at least three known hydrogel-tissuechemistry-based methods that use different delipidation anddehydration chemicals: SWITCH Diatrizoic acid N-methyl-D-glucamineIodixanol (dehydration)), SHIELD (Polyepoxy cross-linking(Delipidation), Diatrizoic acid N-methyl-D-glucamine Iodixanol(dehydration)) and CLARITY (Hydrogel embedding(Delipidation), HistodenzTM Glycerol (dehydration)) . Therefore in our choice ofa suitable technique, we also focused on the availability ofthe appropriate reagents, the simplicity of the protocol andthe lack of need for special equipmentOf course, a significant disadvantage of CLARITY techniqueis the relatively long tissue clearance procedure , butthis obstacle is compensated by a quite simple protocol. Toour knowledge, there is a single report in which the CLARITYtechnique was used for cerebral organoid clarifying ; however, a detailed description of thistechnique applied to brain organoids has not been previouslyperformed. For the first time, we make a detailed descriptionof the human cerebral organoid samples preparation forinvestigation of CLARITY-treated samples for Light-Sheetmicroscopy.The authors declare no conflict of interest.Albanese A., Swaney J.M., Yun D.H., Evans N.B., Antonucci J.M.,Velasco S., Sohn C.H., Arlotta P., Gehrke L., Chung K. Multiscale3D phenotyping of human cerebral organoids. Sci. Rep. 2020;10(1):21487. DOI 10.1038/s41598-020-78130-7. https://www.ncbi.nlm.nih.gov/pubmed/33293587. Boutin M.E., Hoffman-Kim D. Application and assessment of opticalclearing methods for imaging of tissue-engineered neural stemcell spheres. Tissue Eng. Part C Methods. 2015;21(3):292-302.DOI 10.1089/ten.TEC.2014.0296. https://www.ncbi.nlm.nih.gov/pubmed/25128373.Boutin M.E., Voss T.C., Titus S.A., Cruz-Gutierrez K., Michael S., FerrerM. A high-throughput imaging and nuclear segmentation analysisprotocol for cleared 3D culture models. Sci. Rep. 2018;8(1):11135.DOI 10.1038/s41598-018-29169-0. https://www.ncbi.nlm.nih.gov/pubmed/30042482.Chung K., Deisseroth K. CLARITY for mapping the nervous system.Nat. Methods. 2013;10(6):508-513. DOI 10.1038/nmeth.2481. https://www.ncbi.nlm.nih.gov/pubmed/23722210Cora V., Haderspeck J., Antkowiak L., Mattheus U., Neckel P.H.,Mack A.F., Bolz S., Ueffing M., Pashkovskaia N., Achberger K., LiebauS.A. Cleared view on retinal organoids. Cells. 2019;8(5):391.DOI 10.3390/cells8050391. https://www.ncbi.nlm.nih.gov/pubmed/31035373.Dekkers J.F., Alieva M., Wellens L.M., Ariese H.C.R., Jamieson P.R.,Vonk A.M., Amatngalim G.D., Hu H., Oost K.C., Snippert H.J.G.,Beekman J.M., Wehrens E.J., Visvader J.E., Clevers H., Rios A.C.High-resolution 3D imaging of fixed and cleared organoids. Nat.Protoc. 2019;14(6):1756-1771. DOI 10.1038/s41596-019-0160-8.https://www.ncbi.nlm.nih.gov/pubmed/31053799.Dodt H.U., Leischner U., Schierloh A., J\u00e4hrling N., Mauch C.P., DeiningerK., Deussing J.M., Eder M., Zieglg\u00e4nsberger W., Becker K.Ultramicroscopy: three-dimensional visualization of neuronal networksin the whole mouse brain. Nat. Methods. 2007;4(4):331-336.DOI 10.1038/nmeth1036. https://www.ncbi.nlm.nih.gov/pubmed/17384643Goranci-Buzhala G., Mariappan A., Gabriel E., Ramani A., Ricci-VitianiL., Buccarelli M., D\u2019Alessandris Q.G., Pallini R., GopalakrishnanJ. Rapid and efficient invasion assay of glioblastoma in humanbrain organoids. Cell Rep. 2020;31(10):107738. DOI 10.1016/j.celrep.2020.107738. https://www.ncbi.nlm.nih.gov/pubmed/32521263Gradinaru V., Treweek J., Overton K., Deisseroth K. Hydrogel-tissuechemistry: principles and applications. Annu. Rev. Biophys. 2018;47:355-376. DOI 10.1146/annurev-biophys-070317-032905. https://www.ncbi.nlm.nih.gov/pubmed/29792820.Hama H., Kurokawa H., Kawano H., Ando R., Shimogori T., Noda H.,Fukami K., Sakaue-Sawano A., Miyawaki A. Scale: a chemical approachfor fluorescence imaging and reconstruction of transparentmouse brain. Nat. Neurosci. 2011;14(11):1481-1488. DOI 10.1038/nn.2928. https://www.ncbi.nlm.nih.gov/pubmed/21878933Ke M.T., Fujimoto S., Imai T. SeeDB: a simple and morphologypreservingoptical clearing agent for neuronal circuit reconstruction.Nat. Neurosci. 2013;16(8):1154-1161. DOI 10.1038/nn.3447.https://www.ncbi.nlm.nih.gov/pubmed/23792946Lancaster M.A., Renner M., Martin C.A., Wenzel D., BicknellL.S., Hurles M.E., Homfray T., Penninger J.M., Jackson A.P.,Knoblich J.A. Cerebral organoids model human brain developmentand microcephaly. Nature. 2013;501(7467):373-379. DOI 10.1038/nature12517. https://www.ncbi.nlm.nih.gov/pubmed/23995685Masselink W., Reumann D., Murawala P., Pasierbek P., Taniguchi Y.,Bonnay F., Meixner K., Knoblich J.A., Tanaka E.M. Broad applicabilityof a streamlined ethyl cinnamate-based clearing procedure.Development. 2019;146(3):dev166884. DOI 10.1242/dev.166884.https://www.ncbi.nlm.nih.gov/pubmed/30665888Pan C., Cai R., Quacquarelli F.P., Ghasemigharagoz A., LourbopoulosA., Matryba P., Plesnila N., Dichgans M., Hellal F., Ert\u00fcrk A.Shrinkage-mediated imaging of entire organs and organisms usinguDISCO. Nat. Methods. 2016;13(10):859-867. DOI 10.1038/nmeth.3964. https://www.ncbi.nlm.nih.gov/pubmed/27548807Renner H., Grabos M., Becker K.J., Kagermeier T.E., Wu J., Otto M.,Peischard S., Zeuschner D., TsyTsyura Y., Disse P., Klingauf J.,Leidel S.A., Seebohm G., Sch\u00f6ler H.R., Bruder J.M. A fully automated high-throughput workflow for 3D-based chemical screeningin human midbrain organoids. Elife. 2020;9:e52904. DOI 10.7554/eLife.52904. https://www.ncbi.nlm.nih.gov/pubmed/33138918Renner M., Lancaster M.A., Bian S., Choi H., Ku T., Peer A., Chung K.,Knoblich J.A. Self-organized developmental patterning and differentiationin cerebral organoids. EMBO J. 2017;36(10):1316-1329. DOI 10.15252/embj.201694700. https://www.ncbi.nlm.nih.gov/pubmed/28283582Sakaguchi H., Ozaki Y., Ashida T., Matsubara T., Oishi N., Kihara S.,Takahashi J. Self-organized synchronous calcium transients in a culturedhuman neural network derived from cerebral organoids. StemCell Reports. 2019;13(3):458-473. DOI 10.1016/j.stemcr.2019.05.029. https://www.ncbi.nlm.nih.gov/pubmed/31257131.Susaki E.A., Tainaka K., Perrin D., Yukinaga H., Kuno A., Ueda H.R.Advanced CUBIC protocols for whole-brain and whole-body clearingand imaging. Nat. Protoc. 2015;10(11):1709-1727. DOI 10.1038/nprot.2015.085. https://www.ncbi.nlm.nih.gov/pubmed/26448360.usaki E.A., Takasato M. Perspective: extending the utility of threedimensionalorganoids by tissue clearing technologies. Front. CellDev. Biol. 2021;9:679226. DOI 10.3389/fcell.2021.679226. https://www.ncbi.nlm.nih.gov/pubmed/34195197.Ueda H.R., Dodt H.U., Osten P., Economo M.N., Chandrashekar J.,Keller P.J. Whole-brain profiling of cells and circuits in mammalsby tissue clearing and light-sheet microscopy. Neuron. 2020;106(3):369-387. DOI 10.1016/j.neuron.2020.03.004. https://www.ncbi.nlm.nih.gov/pubmed/32380050.van Ineveld R.L., Ariese H.C.R., Wehrens E.J., Dekkers J.F., Rios A.C.Single-cell resolution three-dimensional imaging of intact organoids.J. Vis. Exp. 2020;160:e60709. DOI 10.3791/60709. https://www.ncbi.nlm.nih.gov/pubmed/32568249.Wassie A.T., Zhao Y., Boyden E.S. Expansion microscopy: principlesand uses in biological research. Nat. Methods. 2019;16(1):33-41.DOI 10.1038/s41592-018-0219-4. https://www.ncbi.nlm.nih.gov/pubmed/30573813Yu T., Zhu J., Li D., Zhu D. Physical and chemical mechanisms oftissue optical clearing. iScience. 2021;24(3):102178. DOI 10.1016/j.isci. 2021.102178. https://www.ncbi.nlm.nih.gov/pubmed/33718830."} {"text": "The first author\u2019s name is listed incorrectly. Their correct name is: Subburaman Mohan.https://doi.org/10.1371/journal.pone.0247913The correct citation is: Mohan S, Edderkaoui B (2021) Evaluation of CCL21 role in post-knee injury inflammation and early cartilage degeneration. PLoS ONE 16(3): e0247913."} {"text": "In the original article published online one of the references is incorrect, which seems to be preventing it from being indexed.It reads:https://doi.org/10.1016/j.futures.2021.102756.Jacy Reese, Anthis Eze, Paez (2021) Moral circle expansion: A promising strategy to impact the far future. Futures 130102756\u2013But it should read:https://doi.org/10.1016/j.futures.2021.102756Anthis, J.R., & Paez, E. (2021). Moral circle expansion: A promising strategy to impact the far future. Futures 130102756. The original article has been corrected."} {"text": "This article has been corrected: In 6870-6878. https://doi.org/10.18632/oncotarget.27326Original article: Oncotarget. 2019; 10:6870\u20136878."} {"text": "Correction to: Trials 17:809 (2021).https://doi.org/10.1186/s13063-021-05761-0Following the publication of the original article , we wereOriginally published name: Anne Tsay.Corrected name: Annie Tsay.The original article has been corrected."} {"text": "Correction to: Oncogene;10.1038/onc.2015.355; Published online 21 Sept 2015In Fig."} {"text": "Scientific Reports 10.1038/s41598-020-72133-0, published online 14 September 2020Correction to: The original version of this Article contained an error in the Acknowledgments section.\u201cThis work was funded by Funda\u00e7\u00e3o para a Ci\u00eancia e a Tecnologia through projects UID/QUI/00100/2019 and UIDB/00100/2020 to Centro de Qu\u00edmica Estrutural, through research grants SAICTPAC/0019/2015 and PTDC/QUI-QAN/32242/2017, and through PhD grants SFRH/BD/110945/2015 (P.F.P.) and SFRH/BD/143128/2019 (C.F.M.). K.S.B. thanks EMBO for providing the short-term fellowship (EMBO ref. 8107). M.M.A. and G.C.J. are IST-ID employees under contracts IST-ID/154/2018 and IST-ID/090/2018, respectively, in agreement with D.L. 57/2017. The authors would also like to thank Ana Charas for providing the ITO/PET substrate.\u201dnow reads:\u201cThis work was funded by Funda\u00e7\u00e3o para a Ci\u00eancia e a Tecnologia through projects UID/QUI/00100/2019 and UIDB/00100/2020 to Centro de Qu\u00edmica Estrutural, through research grants LISBOA-01-0145-FEDER-016405 \u2013 SAICTPAC/0019/2015 and PTDC/QUI-QAN/32242/2017, and through PhD grants SFRH/BD/110945/2015 (P.F.P.) and SFRH/BD/143128/2019 (C.F.M.). K.S.B. thanks EMBO for providing the short-term fellowship (EMBO ref. 8107). M.M.A. and G.C.J. are IST-ID employees under contracts IST-ID/154/2018 and IST-ID/090/2018, respectively, in agreement with D.L. 57/2017. The authors would also like to thank Ana Charas for providing the ITO/PET substrate.\u201dThe original Article has been corrected."} {"text": "Scientific Reportshttps://doi.org/10.1038/srep27911, published online 15 June 2016Correction to: This Article contains errors.For Figure"} {"text": "The original version of this article unfortunately contained a mistake. The following author names were incorrectly structured.Tobias C. WoodGareth J. BarkerJuan A. Hernandez-TamamesEsther A. H. WarnertThe original article has been corrected."} {"text": "Scientific Reports 10.1038/s41598-020-75298-w, published online 27 October 2020Correction to: This Article contains an error. A Data Availability section was originally not included\u2014it should appear as below:Data AvailabilityData underlying this study can be accessed through the Cranfield University repository at 10.17862/cranfield.rd.13186745.v1."} {"text": "Emergomyces orientalis Emergomycosis Diagnosed by Metagenomic Next-Generation Sequencing . The article has been corrected online (https://wwwnc.cdc.gov/eid/article/27/10/21-0769_article).The name of author Xiaohui Wang was misspelled in"} {"text": "This article has been corrected: In 39907-39915. https://doi.org/10.18632/oncotarget.9530Original article: Oncotarget. 2016; 7:39907\u201339915."} {"text": "Correction to: BMC Palliat Care 21, 13 (2022)https://doi.org/10.1186/s12904-021-00881-5Following the publication of the original article , the lasJony Francisco Dos Santos Silva. Identifikasi Kebutuhan Palliative Care pada Pasien Penyakit Kronis di Ruang Rawat Inap Dewasa di RSUP Dr. Sardjito Yogyakarta. Thesis. 2020. Yogyakarta. UnpublishedThe original article has been updated."} {"text": "This article has been corrected: Due to accidental placement, some of the images in 86488-86502. https://doi.org/10.18632/oncotarget.21212Original article: Oncotarget. 2017; 8:86488\u201386502."} {"text": "J Clin Invest. 2007;117(11):3211\u20133223. https://doi.org/10.1172/JCI31757Original citation: J Clin Invest. 2022;132(1):e157373. https://doi.org/10.1172/JCI157373Citation for this corrigendum: The authors recently became aware that the image for the HA (Foxo3a) blot in The authors regret the error."} {"text": "This article has been corrected: In 16531-16552. https://doi.org/10.18632/oncotarget.14972Original article: Oncotarget. 2017; 8:16531\u201316552."} {"text": "This article has been corrected: The 23018-23028. https://doi.org/10.18632/oncotarget.25195Original article: Oncotarget. 2018; 9:23018\u201323028."} {"text": "Open Biol.12, 210206. (Published online 16 February 2022). (doi:10.1098/rsob.210206)The originally published version of this paper showed the incorrect figure legends for figures"} {"text": "JCI Insight. 2016;1(17):e87754. https://doi.org/10.1172/jci.insight.87754Original citation: JCI Insight. 2021;6(7):e149896. https://doi.org/10.1172/jci.insight.149896Citation for this corrigendum: The Editors previously posted an Expression of Concern for this article regarding images in Supplemental 4B that appeared similar (Endo40 and Endo42 samples) and images in The authors regret the error."} {"text": "Correction to: BMC Pediatr 21, 311 (2021)https://doi.org/10.1186/s12887-021-02517-2After publication of this supplement article , it was The references have since been corrected in the original article and may be found detailed below:https://www.nice.org.uk/guidance/ph31[35] NICE. Unintentional injuries on the road: interventions for under 15s [Internet]. 2010 [cited 2019 Oct 21]. p. 1\u201346. Available from: https://www.nice.org.uk/guidance/ph29[43] NICE. Unintentional injuries: prevention strategies for under 15s [Internet]. 2010 [cited 2019 Oct 21]. p. 1\u201388. Available from: [67] Watson M, Kendrick D, Coupland C, Woods A, Futers D, Robinson J. Providing child safety equipment to prevent injuries: randomised controlled trial. BMJ. 2005;330:178\u201382.The author apologizes for any inconvenience caused."} {"text": "Neovison vison), Poland . The article has been corrected online (https://wwwnc.cdc.gov/eid/article/27/9/21-0286_article).The acknowledgments and funding information were inaccurate in Severe Acute Respiratory Syndrome Coronavirus 2 in Farmed Mink ("} {"text": "This article has been corrected: In 2546-2560. https://doi.org/10.18632/oncotarget.26817Original article: Oncotarget. 2019; 10:2546\u20132560."} {"text": "Diptera: Scenopinidae), Scenopinusjereisp. nov., with characteristic bicoloured legs and completely black halteres, is described from Finland. To exclude potential previously named species, a survey of the relevant type specimens as well as original descriptions of the Palearctic and Nearctic Scenopinus species has been conducted, including old Scenopinusfenestralis (Linnaeus) synonyms. Scenopinusjereisp. nov. is likely to be an overlooked, boreal forest specialist living in the nests of cavity-nesting birds. An identification key to the European species is provided.A new species of window fly ( Diptera: Scenopinidae) are a small family of primitive flies belonging to the therevoid clade of the Asiloidea superfamily . The family has a cosmopolitan distribution, with more than 420 described species in 25 genera. Scenopinidae consists of three subfamilies, Caenotinae (1 genus), Proratinae (6 genera), and Scenopininae (18 genera) , S.bouvieri , S.glabrifrons Meigen, 1824, S.gobiensis Kelsey, 1981, S.griseus , S.halteralis Frey, 1936, S.lesinensis Strobl, 1902, S.niger , S.oldenbergi (Kr\u00f6ber) , S.verrucosus Carles-Tolra, 2001, and S.vitripennis Meigen, 1824. In addition, S.phaidimos Kelsey, 1969 is present in Turkey and might be expected to occur in the eastern Mediterranean.Window flies ( genera) , with on genera) : CaenoneScenopinidae is in the arid regions of the world directly to vials and killed by freezing, ethyl acetate or potassium cyanide prior to mounting them on entomological pins.Apart for the two old museum specimens of Label data of newly collected specimens are given verbatim using the following symbols: / end of a line and beginning of the next; // end of label and beginning of the next (from top to bottom on the same pin). The specimens are deposited in the following collections and are indicated with the given acronym in the text:AHC Private collection of Antti Haarto, Myn\u00e4m\u00e4ki, FinlandJPC Private collection of Jaakko Pohjoism\u00e4ki, Joensuu, FinlandMIZMuseum and Institute of Zoology, Polish Academy of Sciences, Warszawa, PolandMZHFinnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, FinlandMZTZoological Museum of the University of Turku, Turku, FinlandSMNSStaatliches Museum f\u00fcr Naturkunde Stuttgart, Germanyhttps://laji.fi/theme/emk for more details) and coordinates (NNNN:EEEE) on the labels are mostly given in the old national Finnish map grid coordinate system 1\u2642(dissected): Fennia Kb [Karelia borealis \u2013 north Karelia]: Liperi/ Kontkala 6950:3616 / 19.7.2014/ Ali Karhu leg. [JPC]; 1\u2640: Same collection data ; 1\u2640: Finland, Kb: Ilomantsi/ Kelovaara 70008:36825 / 25.6.2016/ J. Pohjoism\u00e4ki leg. [JPC]; 1\u2640: Finland, Sa [Savonia australis \u2013 south Savo]: Taipalsaari/ Riihilahti 6778:3564 / 21.7.2015/ J. Pohjoism\u00e4ki leg. ; 1\u2642: Finland, Ta [Tavastia australis \u2013 south H\u00e4me]: Orivesi/ Siitama 6835:3354 / 11.7.2009/ J. Pohjoism\u00e4ki leg. [JPC]; 1\u2640: Finland, Ok [Ostrobottnia kajanensis \u2013 Kainuu region]: Sotkamo/ Laukkala, 7114:3565 / 1.7.2005/ J. Pohjoism\u00e4ki leg. [JPC]; 1\u2640: Finland, Ab [regio Aboensis \u2013 Turku region]: Myn\u00e4m\u00e4ki/ Perkko 6733:3222 / 22.7.2011/ A. Haarto leg. . 1\u2642: Finland, Ab: Myn\u00e4m\u00e4ki/ Perkko 6733:3222 / 13.6.2009/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ fenestralis (L.)/ det. A. Haarto 2009/ AHa09\u2013000593 [MZT]; 1\u2640: Finland, Ab: Mietoinen/ Perkko 6733:[3]222 / 17.7.2003/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ fenestralis (L.)/ det. A. Haarto 2008/ AHa08\u2013001324 [AHC]; 1\u2640: Finland, Ab: Mietoinen/ Perkko 6733:[3]222 / 17.7.2003/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ fenestralis (L.)/ det. A. Haarto 2008/ AHa08\u2013001324 [AHC]; 1\u2642: Finland, Ab: Mietoinen/ Perkko 6733: [3]222 / / 16.5.2004/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ fenestralis (L.)/ det. A. Haarto 2021/ AHa21\u2013000589 [AHC]; 1\u2642: Finland, Ab: Mietoinen/ Perkko 6733: [3]222 / 5.6.2004/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ fenestralis (L.)/ det. A. Haarto 2021/ AHa21\u2013000590 [MZT]; 1\u2642: Finland, EP [Etel\u00e4-Pohjanmaa]: Isokyr\u00f6/ Orisberg 6983: [3]265 / 7.7.1999/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ fenestralis (L.)/ det. A. Haarto 1999 [AHC]; 1\u2640: Same collection and determination data [AHC];Germany: 2\u2640\u2640: Germany/ Hessen, Friedberg/ Ockstadt 50.3319, 8.7208 [Geographic coordinate]/ 13.6.2010/ J. Pohjoism\u00e4ki leg. [JPC]Greece: 2\u2640\u2640: GR CRETE Chania/ Thymia 35.4106, 24.0440 [Geographic coordinate]/ 5.-6.vi.2019/ J. Pohjoism\u00e4ki leg. [JPC]Finland: 6\u2642\u2642, 4\u2640\u2640. See the type material below for details.Finland: 2\u2640\u2640: Finland, Sa: Kouvola, 674\u2013679:347\u2013350 / e.l. 2018 ex Strixaluco nest box. / M. Mutanen leg. [JPC]; 1\u2642: Finland, Sa: Taipalsaari/ Riihilahti 6778:3564 / 21.7.2015/ J. Pohjoism\u00e4ki leg. ; 1\u2640: Finland, Ta: Tampere/ Rantaperki\u00f6 6822:3327 / 26.6.2009/ J. Pohjoism\u00e4ki leg. [JPC]; 1\u2640: Finland, Ab: Myn\u00e4m\u00e4ki/ Perkko 6733:3222 / 12.6.2011/ A. Haarto leg. ; 1\u2640: Finland, V [Varsinais-Suomi]: Turku Hirvensalo/ Rauhala 6707:[3]233/ 22.5.1996/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ niger (DeGeer)/ det. A. Haarto [AHC];] ; 1\u2642: Finland, V: Turku Hirvensalo/ Rauhala 6707: [3]233 / 7.6.1996/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ niger (DeGeer)/ det. A. Haarto [AHC]; 1\u26421\u2640: Finland, V: Turku Hirvensalo/ Rauhala 6707: [3]233 / 7.6.1996/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ niger (DeGeer)/ det. A. Haarto [MZT]; 1\u2642: Finland, Ab: Myn\u00e4m\u00e4ki/ Perkko 67333:32223 / 22.5.2017/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ niger (De Geer)/ det. A. Haarto 2017/ AHa17\u2013001063 [AHC]; 1\u2640: Finland, V: Kaarina/ Kuusisto R\u00f6varholm/ 9.7.1998/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ niger (De Geer)/ det. A. Haarto 2008/ AHa08\u2013001326 [AHC].Germany: 1\u2642: Scen. glabrifrons/ W\u00fcrttbg Meig. ?/ v.Roser 1872 [handwritten]// Scenopinus/ vitripennis Meig./ det. L.P. Kelsey 1964 [SMNS]. Examined from high resolution photographs. See the discussion regarding the identity of this specimen.Poland: 1\u2640: Warszawa [barely visible]/ 14.vii.1953 r./ leg. R. Trojan// Omphrale \u2640/ vitripennis (Meig)/ P. Trojan det. 1954. [MIZ]. Examined from high resolution photographs.The classification follows Herting and Dely-Draskovits (1993). The morphological terminology used in this study follows The images were taken with a Leica Z6APO stereomicroscope and a Leica DFC450c (5MPix) camera, MSV266 motorised focus and using the Leica Application Suite 4.6.0 software for Z-axis stacking. Images were cropped, colour- and contrast-enhanced but not manipulated otherwise.COI) DNA barcoding was performed as a part of the Tachinidae project of Finnish Barcode of Life initiative (FinBoL). The 5\u00b4-terminal part of COI was amplified using the routine barcoding primers LepF1 and LepR1 (BOLD) are given for each barcoded specimen.Cytochrome oxidase subunit 1 : Finland, Sa: Kouvola, 674\u2013679:347\u2013350 / e.l. 2018 ex Strixaluco nest box. / M. Mutanen leg. // Scenopinusjerei sp. nov. Pohjoism\u00e4ki & Haarto 2021 / (Diptera: Scenopinidae) / J. Pohjoism\u00e4ki det. // HOLOTYPE [red label] [MZH] Paratypes: 1\u2642 , 1\u2640, same collection data; // Scenopinusjerei sp. nov. Pohjoism\u00e4ki & Haarto 2021 / (Diptera: Scenopinidae) / J. Pohjoism\u00e4ki det. // PARATYPE [yellow label] [MZH]; 1\u2642: Finland, EP: Isokyr\u00f6/ Orisberg 6983:[3]265 / 7.7.1999/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ vitripennis Meig./ det. A. Haarto 1999// PARATYPE/ Diptera: Scenopinidae/ Scenopinusjerei/ Pohjoism\u00e4ki & Haarto 2021 [red label] [AHC]; 1\u2642: Finland, ES [Etel\u00e4-Savo]: Rantasalmi/ Korhola 68720:[3]5802 / 27.6.2006/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ sp./ det. A. Haarto 2006// PARATYPE/ Diptera: Scenopinidae/ Scenopinusjerei/ Pohjoism\u00e4ki & Haarto 2021 [red label] [AHC]; 2\u2642: Finland, Kb: Ilomantsi/ Kelovaara 70008:36826 / 24.7.2021/ J. Pohjoism\u00e4ki leg. // PARATYPE/ Diptera: Scenopinidae/ Scenopinusjerei/ Pohjoism\u00e4ki & Haarto 2021 [yellow label] [JPC]; 1\u2640: Finland, ES: Rantasalmi/ Korhola 68720:5802 / 29.6.2006/ A. Haarto leg.// SCENOPINIDAE/ Scenopinus/ sp./ det. A. Haarto 2006// PARATYPE/ Diptera: Scenopinidae/ Scenopinusjerei/ Pohjoism\u00e4ki & Haarto 2021 [red label] [AHC]; 1\u2640: Finland, Kb: Liperi/ Viinij\u00e4rvi 6951:3615 / e larva 2013/ Ali Karhu leg.// linnunp\u00f6ntt\u00f6 [nest box]// SCENOPINIDAE/ Scenopinus/ sp./ det. A. Haarto 2014/ AHa14\u2013000891// PARATYPE/ Diptera: Scenopinidae/ Scenopinusjerei/ Pohjoism\u00e4ki & Haarto 2021 [red label] [AHC]; 1\u2640: Finland, Kb: Liperi/ K\u00e4s\u00e4m\u00e4 suo 6950:3619 / 26.-28.6.2013/ Ali Karhu leg.// SCENOPINIDAE/ Scenopinus/ sp./ det. A. Haarto 2020/ AHa20\u2013000473// PARATYPE/ Diptera: Scenopinidae/ Scenopinusjerei/ Pohjoism\u00e4ki & Haarto 2021 [red label] [MZT].Scenopinusjerei sp. nov. belongs to the S.fenestralis group and is easily recognisable from the other species in this group based on the contrasting colour differences between the femora and the yellow to orange tibiae. The coxae as well as the knob of the halteres are always uniformly black or dark brown, similar to the colour of the thorax.Male . ead Fig. . Frons brax Fig. . Very wemen Fig. . DorsallScenopinus spp. are poorly covered in the DNA barcode databases, such as Barcode of Life Database or GenBank. It is noteworthy that all S.fenestralis specimens in the databases from Europe to North America have almost identical COI sequences and represent the same barcode index number (BIN). The DNA barcode of Scenopinusjerei sp. nov. differs markedly from the other northern European species, its closest match being Scenopinusfenestralis from which it is separated by 12.48% sequence difference , especially Monopislaevigella (Denis & Schifferm\u00fcller), but also other Monopis spp., Niditineastriolella (Matsumura), and Tinea spp. Other insects observed from the same nest boxes included Ceratophyllus fleas, various beetles and flies . Apart for two male specimens found dead on a windowsill in an attic of an old house in Kelovaara on July 24 (see type specimens), most observations are from third week of June. According to the observations of Jere Kahanp\u00e4\u00e4 (pers. comm.), Scenopinusjerei sp. nov. hibernates as full-grown larvae and the adults emerge in a couple of weeks in room temperature rearing conditions. Based on the collection locations, it is likely that Scenopinusjerei sp. nov. is a boreal forest specialist.on the biology and distribution of Scenopinus spp., Scenopinusjerei sp. nov. is not very active flier, does not visit flowers and therefore is rarely collected by active netting or traps. Judging from the few Finnish observations, the species appears widespread in the southern and central parts of the country. We are certain that Scenopinusjerei sp. nov. can also be found in boreal forest biotopes in the other Nordic countries and Russia but has been until now overlooked.Like other This species is named after Mr. Jere Kahanp\u00e4\u00e4, Helsinki, who was to first to discover that the taxon is new to science and kindly agreed with the current arrangement for its formal description.Scenopinidae are outdated or difficult to obtain, we felt necessary to provide a key for the known European species of Scenopinidae. We must emphasise that we have been only able to examine the species with specimens listed in this paper, for which the identification key should work well. For the remainder, our approach was to go through the written species descriptions and pick features which we judged, by our collective species identification experience, to be useful for determination. To us this approach was better justified than reproducing the keys given in earlier literature, which are often difficult to follow or focus on limited number of poorly defined features. The diagnostic features for the key have been obtained from the descriptions in Because the existing literature on the European species of Scenopinusjerei sp. nov. was originally confused with Scenopinusvitripennis developing in cool and humid conditions are typically darker than the ones developed in warm and dry conditions . Legs entirely olive brown.Scenopinus pallipes Say, 1823 \u2013 White halteres, yellow legs.Scenopinus domesticus Meigen, 1824 \u2013 Legs yellow-red, head white from below.Scenopinus sulcicollis Meigen, 1824 \u2013 Legs yellow-red, head white from below, halteres white.Scenopinus scutellatus Macquart, 1843 \u2013 Halteres white, scutellum yellow.Scenopinus furcinervis Zetterstedt, 1844 \u2013 Legs fully yellow.Scenopinus fuscinervis Schiner, 1860 \u2013 The name is not mentioned in Schiner (1860).However, Kelsey attributes the synonymy to Schiner (1862), where S. fuscinervis Zetterstedt is given as a synonym of S. fenestralis. It is obvious that in this context, S. fuscinervis is a misspelling of S. furcinervis. In fact, the spelling is later corrected in Schiner (1864).Scenopinus graminicola Zetterstedt, 1859 \u2013 Halteres white.Scenopinus nigroscutellatus Frey, 1945 \u2013 From Azores, halteres white.Scenopinusjerei sp. nov. is not among the accepted species nor hidden among the synonyms of S.fenestralis. We hope that the species discovery reported here, together with the provisional indentification key we have provided, will encourage more research towards this exciting but poorly known family of flies.Based on this survey, we are confident that the species presented here as"} {"text": "R. Soc. Open Sci.8, 201441. (Published online 21 April 2021) (doi:10.1098/rsos.201441)This correction refers to the caption for figure 2. An incorrect reference was given; the correct reference is [39]. This has now been corrected."} {"text": "In this study, we critically revised and updated the checklist of native vascular plants of Mongolia. The checklist comprises 3,041 native vascular plant taxa from 653 genera and 111 families, including 7 lycophytes, 41 ferns, 21 gymnosperms, and 2,972 angiosperms. In the angiosperms, we identified the 14 families with the greatest species richness, ranging from 50 to 456 taxa. Species endemism is also noted here; 102 taxa are endemic to Mongolia, and 275 taxa are sub-endemic that co-occur in adjacent countries. Since 2014, a total of 14 taxa have been described new to science based on morphological evidences. Moreover, five genera and 74 taxa were newly added to the flora of Mongolia. Based on our critical revisions, names of three families, 21 genera, and 230 species have been changed in comparison to the previous checklist, \u201cConspectus of the vascular plants of Mongolia\u201d (2014). The flora of Mongolia is comprised of native species of different origins including boreal, steppe, desert, and mountainous elements of vegetation (Mongolia is located in the mid-latitude (between 41\u00b035'N\u201352\u00b009'N and 87\u00b044'E\u2013119\u00b056'E), between Russia and China, covering approximately 1.6 million kmgetation . The cougetation , namely,getation . Mongoligetation , which cgetation . Overallgetation . Howevergetation , which hCyperaceae (Apiaceae to Cornaceae (Huperziaceae to Ephedraceae (Asteraceae (Ceratophyllaceae to Zygophyllaceae (Amaranthaceae s.l. (incl. Chenopodiacceae) , Nymphaedelaceae .Brassicaceae family, the fifth-largest family in the country, was provided by Aquilegia L., Stipa L., and Primula L. were compiled by Geraniaceae in Mongolia. Orchidaceae, which included notes on their species richness and conservation status. The families Menyanthaceae and Nymphaeaceae were also revised by Additionally, several families and genera have been revised in recent years. For example, a new checklist of the Matthiola W.T.Aiton, Brassicaceae , for example, had two species that have been proven absent in the country due to the inaccurate location written on the herbarium specimens was found in northern Mongolia by Since sicaceae , Onocleacleaceae , Aldrovaseraceae , Hydrillritaceae , and Arcteraceae . Additiopecimens . On the In 2016, the orders and families of flowering plants were updated by the https://www.gbif.org/). We also compiled the phytogeographical regional distribution of all species, because species distribution is important information for species identification. The main herbaria for Mongolian flora , and all literature data for the species\u2019 regional distribution, have been checked and studied. The regional distribution of the taxa mostly follows The systematic order and taxonomic circumscription of the families is based on the following classifications: Ferns and Fern Allies by The current checklist comprises 3,042 native vascular plant taxa , belonging to 653 genera and 111 families (Table Asteraceae (85 genera and 456 taxa), Fabaceae (24 and 328), Poaceae (58 and 229), Rosaceae (28 and 168), Ranunculaceae (20 and 156), Brassicaceae (51 and 138), Cyperaceae (10 and 130), Lamiaceae (22 and 103), Amaranthaceae (30 and 94), Caryophyllaceae (20 and 97), Boraginaceae (24 and 78), Apiaceae (36 and 66), Polygonaceae (11 and 63), and Orobanchaceae (9 and 57) , Artemisia L. (103), Carex L. (99) Oxytropis DC. (97), Potentilla L. (75), Saussurea DC. (55), Taraxacum F.H.Wigg. (53), Allium L. (50), Salix L. (42), Ranunculus L. (41), Pedicularis L. (36), Poa L. (28), Viola L. (27), and Silene L. (24) which is shown in Fig. There are 14 families with a high species richness (\u2265 9 genera and \u2265 57 taxa): Fabaceae (74 taxa) show the highest number of sub-endemic taxa along with Asteraceae (60 taxa), Brassicaceae (23 taxa), Poaceae (18 taxa), and Amaranthaceae (9 taxa). The highest number of sub-endemic taxa were found in the Mongolian Altai (114 taxa) followed by Khangai (87 taxa), Gobi-Altai (76 taxa), Khovd (68 taxa), Khuvsgul (63 taxa), and the Depression of Great Lakes (60 taxa). The remaining ten regions have between 24 and 58 sub-endemic taxa were identified: the Mongolian Altai , Khangai , Khentei 1,236 taxa), Mongolian Dauria , Khuvsgul , and Khovd . The remaining ten regions have between 262 and 952 taxa and Portulacaceae (Portulacaoleracea L.). Several taxa were found to be archeophytes, which were introduced in \u201cancient\u201d times and became naturalized as part of the native flora and Portulacaceae (Portulacaoleracea L.) and 57 other taxa . Moreover, approximately 19,300 images of 1,780 taxa have been observed as part of citizen science contributions to the \u201cFlora of Mongolia\u201d project on the iNaturalist platform , which was established on January 2019.Both of the online databases are allowing researchers to collaborate and revise Mongolian taxa more readily and will continue to improve the documentation of Mongolia\u2019s flora. To date, a total of 2,249 taxa (ca. 73% of the flora) have been deposited in the database of In this study, we checked more than 70 works published since 2013 that have revised the flora of Mongolia, and provided respective references for each species in our checklist. We reviewed the species status of all vascular flora of Mongolia and made critical changes by adding, synonymizing, and excluding taxa; this work resulted in 265 fewer taxa compared to SE].The families in the checklist are alphabetically ordered and, within them, the genera, species, and subspecies are alphabetically listed. The currently accepted names are highlighted in bold italics. The most common synonyms (previously used in I LycophytesLycopodiaceae P.Beauv. (3 genera and 5 species)1. Diphasiastrumalpinum (L.) Holub Diphasiastrumcomplanatum (L.) Holub [1]Huperziaselago (L.) Bernh. Lycopodiumannotinum L. Lycopodiumclavatum L. [2]Selaginellaceae2. Willk. (1 genus and 2 species)Selaginellaborealis (Kaulf.) Spring Selaginellasanguinolenta (L.) Spring II Ferns and fern alliesAspleniaceae3. Newman (1 genus and 5 species)Aspleniumaltajense (Kom.) Grubov Aspleniumruprechtii Sa.Kurata Aspleniumruta-muraria L. Aspleniumseptentrionale (L.) Hoffm. Aspleniumyunnanense Franch. Athyriaceae4. Alston (2 genera and 4 species)Athyriumfilix-femina (L.) Roth [1\u20135]Athyriummonomachi Kom. Athyriumsinense Rupr. Diplaziumsibiricum (Turcz.) Sa.Kurata [1\u20135]Cystopteridaceae5. Shmakov (2 genera and 4 species)Cystopterisfragilis (L.) Bernh. Cystopterissudetica A.Braun & Milde [2]Gymnocarpiumdryopteris Newman Gymnocarpiumjessoense (Koidz.) Koidz. Dennstaedtiaceae6. Losty (1 genus and 1 species)Pteridiumaquilinum (L.) Kuhn Dryopteridaceae7. Herter (1 genus and 3 species)Dryopterisdilatata (Hoffm.) A.Gray Dryopterisexpansa (C.Presl) Fraser-Jenk. & Jermy Dryopterisfragrans (L.) Schott Equisetaceae8. Michx. (1 genus and 9 species)Equisetumarvense L. Equisetumfluviatile L. Equisetumhyemale L. Equisetumpalustre L. Equisetumpratense Ehrh. Equisetumramosissimum Desf. [14]Equisetumscirpoides Michx. Equisetumsylvaticum L. Equisetumvariegatum Schleich. Onocleaceae9. Pic.Serm. (2 genera and 2 species)Matteucciastruthiopteris (L.) Tod. Onocleasensibilis L. [2]Ophioglossaceae10. Martinov (1 genus and 2 species)Botrychiumlanceolatum (Gmel.) \u00c5ngstr. [3]Botrychiumlunaria (L.) Sw. Polypodiaceae11. J.Presl. & C.Presl (2 genera and 2 species)Lepisorusclathratus Ching [13]Polypodiumvirginianum L. Pteridaceae12. E.D.M.Kirchn. (2 genera and 2 species)Cheilanthesargentea (S.G.Gmel.) Kunze Cryptogrammastelleri (S.G.Gmel.) Prantl [1]Thelypteridaceae13. Ching (1 genus and 1 species)Phegopterisconnectilis (Michx.) Watt Woodsiaceae14. Herter (1 genus and 6 species)Woodsiacalcarea (Fomin) Shmakov Woodsiaglabella R.Br. Woodsiaheterophylla (Turcz.) Shmakov [1]Woodsiailvensis (L.) R.Br. [= Woodsiaacuminata (Fomin) Sipliv.] Woodsiapseudopolystichoides (Fomin) Kiselev & Shmakov [5]Woodsiasubcordata Turcz. III GymnospermsCupressaceae15. Gray (1 genus and 4 taxa)Juniperuscommunis L. Juniperuspseudosabina Fisch. & C.A.Mey. Juniperussabinavar.davurica Farjon [= Juniperusdavurica Pall.] [2]JuniperussabinaL.var.sabina Ephedraceae16. Dumort. (1 genus and 9 species)Ephedradahurica Turcz. [= Ephedrasinicasubsp.dahurica (Turcz.) Galanin] Ephedraequisetina Bunge Ephedrafedtschenkoi Paulsen Ephedraglauca Regel Ephedraintermedia Schrenk & C.A.Mey. Ephedralomatolepis Schrenk Ephedramonosperma J.G.Gmel. Ephedraprzewalskii Stapf Ephedrasinica Stapf Pinaceae17. Spreng. (4 genera and 8 species)Abiessibirica Ledeb. Larixczekanowskii Szafer [4]Larixgmelinii (Rupr.) Kuzen. [\u2261 Abiesgmelinii Rupr.] Larixsibirica Ledeb. Piceaobovata Ledeb. Pinuspumila Regel [2]Pinussibirica Du Tour Pinussylvestris L. IV AngiospermsAcoraceae18. Martinov (1 genus and 1 species)Acoruscalamus L. Adoxaceae19. E.Mey. [including Viburnaceae Raf.] (3 genera and 6 species)Adoxamoschatellina L. Sambucussibirica Nakai Sambucuswilliamsii Hance [= Sambucusmanshurica Kitag.] Viburnumburejaeticum Regel & Herder [5]Viburnummongolicum Rehder [= Loniceramongolica Pall.] Viburnumsargentii Koehne [5]Alismataceae20. Vent. (2 genera and 4 species)Alismagramineum Lej. Alismaplantago-aquatica L. Sagittarianatans Pall. Sagittariatrifolia L. Amaranthaceae21. Juss. [including Chenopodiaceae Vent.] (34 genera and 94 taxa)Agriophyllumpungens (Vahl) Link [= Agriophyllumsquarrosum Moq.] [6\u201316]Anabasisaphylla L. Anabasisbrevifolia C.A.Mey. Anabasiselatior (C.A.Mey.) Schischk. [14]Anabasiseriopoda Paulsen [14]Anabasispelliotii Danguy [14]Anabasissalsa Paulsen [14]Anabasistruncata Bunge Atriplexaltaica Sukhor. [7]Atriplexcana C.A.Mey. [14]Atriplexfera (L.) Bunge Atriplexlaevis C.A.Mey. Atriplexsibirica L. Atriplextatarica L. Axyrisamaranthoides L. Axyrishybrida L. Axyrisprostrata L. Bassiahyssopifolia Kuntze Bassiaprostrata (L.) Beck [\u2261 Kochiaprostrata (L.) Schrad.] [1\u201315]Bassiascoparia (L.) A.J.Scott [\u2261 Kochiascoparia (L.) Schrad.] Blitumvirgatum L. [\u2261 Chenopodiumfoliosum Asch.] Camphorosmamonspeliacasubsp.lessingii (Litv.) Aellen Caroxylongemmascens Tzvelev [\u2261 Salsolagemmascens Pall.] [10]Caroxylonpasserinum (Bunge) Akhani & Roalson [\u2261 Salsolapasserina Bunge] Ceratocarpusarenarius L. Chenopodiastrumhybridum (L.) S.Fuentes, Uotila & Borsch [\u2261 Chenopodiumhybridum L.] Chenopodiumacuminatum Willd. Chenopodiumalbum L. [1\u201316]Chenopodiumficifolium Sm. Chenopodiumfrutescens C.A.Mey. Chenopodiumiljinii Golosk. Chenopodiumkaroi Aellen [1\u201315]Chenopodiumnovopokrovskyanum (Aellen) Uotila [\u2261 Chenopodiumalbumsubsp.novopokrovskyanum (Aellen) Uotila] [7]Chenopodiumstrictum Roth Chenopodiumvulvaria L. Climacopteraaffinis (C.A.Mey.) Botsch. [\u2261 Pyankoviaaffinis (C.A.Mey.) Mosyakin & Roalson] [14]Climacopterasubcrassa (Popov) Botsch. [14]Corispermumchinganicum Iljin [1\u201312]Corispermumdeclinatum Steph. ex Iljin Corispermumelongatum Bunge [\u2261 Corispermumstauntoniisubsp.elongatum (Bunge) Vorosch.] Corispermummongolicum Iljin SECorispermumpatelliforme Iljin SECorispermumtylocarpum Hance [= Corispermumgmelinii Bunge] [12]Dysphaniabotrys (L.) Mosyakin & Clemants Gruboviadasyphylla (Fisch. & C.A.Mey.) Freitag & G.Kadereit [3\u201316]Gruboviakrylovii (Litv.) Freitag & G.Kadereit [\u2261 Kochiakrylovii Litv.] Gruboviamelanoptera (Bunge) Freitag & G.Kadereit [\u2261 Kochiamelanoptera Bunge] Halocnemumstrobilaceum M.Bieb. [14]Halogetonglomeratus (M.Bieb.) C.A.Mey. Halostachyscaspica C.A.Mey. Haloxylonammodendron (C.A.Mey.) Bunge Iljiniaregelii (Bunge) Korovin Kalidiumcaspicum (L.) Ung.-Sternb. Kalidiumcuspidatum (Ung.-Sternb.) Grubov Kalidiumfoliatum Moq. SEKalidiumgracile Fenzl Krascheninnikoviaceratoides (L.) Gueldenst. [= Krascheninnikoviaewersmanniana (Stschegl.) Grubov] Micropeplisarachnoidea (Moq.) Bunge [\u2261 Halogetonarachnoides Moq.] SENanophytongrubovii U.P.Pratov [10]SENanophytonmongolicum U.P.Pratov Oreosalsolaabrotanoides (Bunge) Akhani [\u2261 Salsolaabrotanoides Bunge] [6\u201313]Oxybasischenopodioides (L.) S.Fuentes, Uotila & Borsch [\u2261 Chenopodiumchenopodioides (L.) Aellen] Oxybasisglauca (L.) S.Fuentes, Uotila & Borsch [\u2261 Chenopodiumglaucum L.] [2\u201316]Oxybasisgubanovii (Sukhor.) Sukhor. & Uotila [\u2261 Chenopodiumgubanovii Sukhor.] Oxybasisrubra (L.) S.Fuentes, Uotila & Borsch [\u2261 Chenopodiumrubrum L.] Oxybasisurbica (L.) S.Fuentes, Uotila & Borsch [\u2261 Chenopodiumurbicum L.] Petrosimonialitvinowii Korsh. [10]Petrosimoniasibirica Bunge [14]SESalicorniaaltaica Lomon. [\u2261 Salicorniaperennanssubsp.altaica (Lomon.) G.Kadereit & Piirainen] [7]Salsolacollina Pall. [\u2261 Kalicollinum Akhani & Roalson] [2\u201315]SESalsolaikonnikovii Iljin [\u2261 Kaliikonnikovii (Iljin) Akhani & Roalson] Salsolajacquemontii Moq [\u2261 Kalijacquemontii (Moq.) Akhani & Roalson] Salsolalaricifolia Litv. Salsolamonoptera Bunge [\u2261 Kalimonopterum (Bunge) Lomon.] Salsolapaulsenii Litv. [\u2261 Kalipaulsenii (Litv.) Akhani & Roalson] Salsolarosacea L. Salsolatragus L. Sodafoliosa (L.) Akhani [\u2261 Salsolafoliosa L. \u2261 Neocaspiafoliosa (L.) Tzvelev] [14]Suaedaacuminata (C.A.Mey). Moq. Suaedacorniculata(C.A.Mey.)Bungesubsp.corniculata Suaedacorniculatasubsp.mongolica Lomon. & Freitag Suaedaglauca (C.A.Mey.) Bunge Suaedaheterophylla (Kar. & Kir.) Bunge [10\u201315]Suaedakossinskyi Iljin [\u2261 Bienertiakossinskyi (Iljin) Tzvelev] Suaedalinifolia Pall. Suaedaprostrata Pall. [= Suaedamaritima auct. non L.] Suaedaprzewalskii Bunge [\u2261 Bienertiaprzewalskii (Bunge) G.L.Chu] [10\u201313]Suaedasalsa (L.) Pall. Suaedasibirica Lomon. & Freitag SESuaedatschujensis Lomon. & Freitag SESuaedatuvinica Lomon. & Freitag Sympegmaregelii Bunge Teloxysaristata (L.) Moq. [\u2261 Chenopodiumaristatum L. \u2261 Dysphaniaaristata (L.) Mosyakin & Clemants] Xylosalsolaarbuscula Tzvelev [\u2261 Salsolaarbuscula Pall.] Amaryllidaceae22. J.St.-Hil. (1 genus and 50 taxa)Alliumspirale is absent in Mongolia and A.subangulatum was found in southern Gobi by Note: According to Alliumaltaicum Pall. Alliumamphibolum Ledeb. Alliumanisopodium Ledeb. [2\u201313]SEAlliumaustrosibiricum N.Friesen Alliumbaicalense Willd. [= Alliumsenescenssubsp.glaucum (Schrader) Dost\u00e1l] Alliumbidentatum Fisch. Alliumburjaticum N.Friesen Alliumcarolinianum Redout\u00e9 [14]Alliumchamarense M.M.Ivanova Alliumclathratum Ledeb. Alliumcondensatum Turcz. Alliumeduardi Stearn Alliumflavidum Ledeb. Alliumgalanthum Kar. & Kir. Alliumhymenorrhizum Ledeb. Alliumkarelinii Poljakov Alliumledebourianum Schult. & Schult.f. [7]Alliumleucocephalum Turcz. Alliummacrostemon Bunge Alliummalyschevii N.Friesen Alliummaximowiczii Regel Alliummicrodictyon Prokh. Alliummonadelphum Turcz. Alliummongolicum Regel Alliumneriniflorum G.Don Alliumobliquum L. [7]Alliumoliganthum Kar. & Kir. Alliumpallasii Murray [14]AlliumplatyspathumSchrenksubsp.platyspathum Alliumplatyspathumsubsp.amblyophyllum (Kar. & Kir.) N.Friesen Alliumpolyrhizum Turcz. Alliumprostratum Trev. [1\u201313]SEAlliumpumilum Vved. Alliumramosum L. [1\u201313]Alliumrubens Schrad. Alliumschischkinii Sobolevsk. Alliumschoenoprasum L. Alliumschrenkii Regel [= Alliumbogdoicola Regel] Alliumsenescens L. Alliumsplendens Willd. Alliumspurium G.Don Alliumstellerianum Willd. Alliumstrictum Schrad. SEAlliumsubangulatum Regel [16]Alliumsubtilissimum Ledeb. Alliumtenuissimum L. Alliumtuvinicum (N.Friesen) N.Friesen [\u2261 Alliumstellerianumsubsp.tuvinicum N.Friesen] SEAlliumtytthocephalum Schult.f. SEAlliumubsicola Regel Alliumvodopjanovae N.Friesen Apiaceae23. Lindl. (36 genera and 66 taxa)Aegopodiumalpestre Ledeb. Angelicaczernaevia (Fisch. & C.A.Mey.) Kitag. Angelicadahurica (Hoffm.) Benth. & Hook.f. [\u2261 dahurica Hoffm.] Angelicasaxatilis Turcz. [\u2261 Physolophiumsaxatile (Turcz.) Turcz.] [2]Angelicasylvestris L. Anthriscussylvestris (L.) Hoffm. [1\u201310]Archangelicadecurrens Ledeb. [\u2261 Angelicaarchangelicasubsp.decurrens (Ledeb.) Kuvaev] Aulacospermumanomalum Ledeb. Bupleurumaureum Fisch. [7]Bupleurumbicaule Helm [= Bupleurumpusillum Krylov] Bupleurumdensiflorum Rupr. [= Bupleurummongolicum V.M.Vinogr.] Bupleurumkrylovianum Schischk. Bupleurummultinerve DC. [= Bupleurumlongeinvolucratum Krylov] Bupleurumscorzonerifolium Willd. Bupleurumsibiricum Vest Carumburiaticum Turcz. Carumcarvi L. Cenolophiumdenudatum (Hornem.) Tutin Cicutavirosa L. [1\u201315]Cnidiumdauricum (Jacq.) Turcz. [\u2261 Laserpitiumdauricum Jacq.] [2\u201310]Cnidiummonnieri Cusson SEConioselinumlongifolium Turcz. Conioselinumtataricum Hoffm. [= Conioselinumvaginatum (Spreng.) Thell.] Elwendiasetacea (Schrenk) Pimenov & Kljuykov SEFerulabungeana Kitag. Ferulacaspica M.Bieb. Feruladissecta Ledeb. Feruladshaudshamyr Korovin [= Feruladubjanskyi Korovin] Ferulaferulioides (Steud.) Korovin [7]Ferulapotaninii Korovin [14]Ferulasoongarica Pall. [= Ferulamongolica (V.M.Vinogr. & Kamelin) V.M.Vinogr. & Kamelin] SEFerulopsishystrix (Bunge) Pimenov [\u2261 Peucedanumhystrix Bunge] SEHaloselinumfalcaria (Turcz.) Pimenov [\u2261 Peucedanumfalcaria Turcz.] Hanseniamongholica Turcz. [\u2261 Ligusticummongholicum (Turcz.) Krylov] Heracleumdissectum Ledeb. Heracleumsibiricum L. Kadeniasalina (Turcz.) Lavrova & V.N.Tikhom. [\u2261 Cnidiumsalinum Liou] Kitagawiabaicalensis (Redow.) Pimenov [\u2261 Peucedanumbaicalense (Redow.) Koch] Kitagawiaterebinthacea (Fisch.) Pimenov [\u2261 Peucedanumterebinthaceum (Fisch.) Ledeb.] SELithosciadiumkamelinii (V.M.Vinogr.) Pimenov [\u2261 Cnidiumkamelinii V.M.Vinogr.] [7]SELithosciadiummulticaule Turcz. Neogayasimplex Meisn. [= Pachypleurumalpinum Ledeb.] [10]Oenantheaquatica (L.) Poir. [= Peucedanumsalinum Pall.] Ostericumtenuifolium Y.C.Chu [= Pachypleurumalpinum Ledeb.] Paraligusticumdiscolor (Ledeb.) V.N.Tikhom. [7]SEPeucedanumpuberulum Turcz. Peucedanumvaginatum Ledeb. Phlojodicarpussibiricus Koso-Pol. Phlojodicarpusvillosus Turcz. Pimpinellathellungiana H.Wolff Pleurospermumuralense Hoffm. Prangosledebourii Herrnst. & Heyn Sajanellamonstrosa (Willd.) Soj\u00e1k Saposhnikoviadivaricata (Turcz.) Schischk. Schulziacrinita Spreng. Seseliabolinii (Korovin) Schischk. [\u2261 Libanotisabolinii (Korovin) Korovin] Seselibuchtormense W.D.J.Koch [\u2261 Libanotisbuchtormensis (Fisch.) DC.] Seselicondensatum Rchb.f. [\u2261 Libanotiscondensata (L.) Fisch.] Seselieriocarpum B.Fedtsch. [\u2261 Libanotiseriocarpa Schrenk] Seseliglabratum Willd. [= Libanotistenuifolia DC.] [7]SESeseligrubovii V.M.Vinogr. & Sanchir [\u2261 Libanotisgrubovii (V.M.Vinogr. & Sanchir) M.L.Sheh & M.F.Watson] Seselimucronatum (Schrenk) Pimenov & Sdobnina [14]Seseliseseloides (Fisch. & C.A.Mey.) M.Hiroe [\u2261 Libanotisseseloides (Fisch. & C.A.Mey.) Turcz.] Siumsuave Walter Sphallerocarpusgracilis Koso-Pol. Stenocoeliumathamantoides Ledeb. [\u2261 Seseliathamantoides (M.Bieb.) Beck] Apocynaceae24. Juss. (3 genera and 10 taxa)Apocynumpictum Schrenk [= Apocynumhendersonii Hook.f.] Apocynumvenetum L. [\u2261 Poacynumvenetum (L.) Mavrodiev] [14]Cynanchumacutumsubsp.sibiricum (Willd.) Rech.f. [10\u201316]Cynanchumbungei Decne. [9]Cynanchumchinense R.Br. SECynanchumgobicum Grubov [= Vincetoxicumlanceolatum (Grubov) Grubov] [12\u201316]Cynanchummongolicum Hemsl. [16]Cynanchumpurpureum K.Schum. Vincetoxicummukdenense Kitag. [= Cynanchumpaniculatum (Bunge) Kitag.] Vincetoxicumsibiricum (L.) Decne. [= Cynanchumthesioides K.Schum.] [2\u201316]Araceae25. Juss. (2 genera and 4 species)Lemnaminor L. Lemnatrisulca L. Lemnaturionifera Landolt Spirodelapolyrhiza (L.) Schleid. Asparagaceae26. Juss. (5 genera and 19 species)Anemarrhenaasphodeloides Bunge Asparagusbrachyphyllus Turcz. [9]SEAsparagusburjaticus Peschkova [4]Asparagusdauricus Fisch. SEAsparagusgobicus Ivanova [7\u201316]Asparagusneglectus Kar. & Kir. [14]Asparagusoligoclonos Maxim. [5]Asparaguspallasii Miscz. Asparagusschoberioides Kunth [5]Asparagustamariscinus Ivanova Asparagustrichophyllus Bunge Convallariakeiskei Miq. Maianthemumbifolium (L.) F.W.Schmidt Maianthemumdilatatum (Alph.Wood) A.Nelson & J.F.Macbr. Maianthemum\u00d7intermedium Vorosch. [5]Maianthemumtrifolium (L.) Sloboda [2]Polygonatumhumile Fisch. Polygonatumodoratum (Mill.) Druce Polygonatumsibiricum Redout\u00e9 Asphodelaceae27. Juss. [including Xanthorrhoeaceae Dumort.] (1 genus and 2 taxa)HemerocallislilioasphodelusL.var.lillioasphodelus Hemerocallislilioasphodelusvar.minor (Mill.) M.N.Tamura [\u2261 Hemerocallisminor Mill.] Asteraceae28. Bercht. & J.Presl (85 genera and 456 taxa)Asteraceae have changed after extnesive molecular investigations. For example, species of Scorzonera L. were split into several genera, and three of them are present in Mongolia: Lipschitzia Zaika, Sukhor. & N.Kilian, Takhtajaniantha Nazarova, and Scorzonera L. s.str. by Scorzoneracurvata, S.grubovii, and S.sinensis is not resolved yet.Note: Some classifications of some genera of Achilleaacuminata Sch.Bip. Achilleaalpina L. Achilleaasiatica Serg. Achilleaimpatiens L. Achillealedebourii Heimerl Achilleamillefolium L. Achilleaptarmicoides Maxim. Achilleasergievskiana Shaulo & Shmakov [7]SEAjaniaachilleoides Poljakov Ajaniafruticulosa (Ledeb.) Poljakov Ajaniagrubovii Muldashev [\u2261 Chrysanthemumgrubovii (Muldashev) H.Ohashi & Yonek.] E Ajaniatrifida (Turcz.) Muldashev [\u2261 Hippolytiatrifida (Turcz.) Poljakov] Allardiatridactylites Sch.Bip. [\u2261 Waldheimiatridactylites Kar. & Kir.] Ancathiaigniaria DC. Antennariadioica (L.) Gaertn. Arctiumtomentosum Mill. [4]Arctogerongramineum (L.) DC. Arnicaangustifoliasubsp.iljinii (Maguire) I.K.Ferguson [7]Artemisiaadamsii Besser SEArtemisiaaksaiensis Y.R.Ling Artemisiaamoena Poljakov Artemisiaanethifolia Weber Artemisiaanethoides Mattf. [8\u201316]Artemisiaannua L. Artemisiaargyi H.L\u00e9v. & Vaniot Artemisiaargyrophylla Ledeb. Artemisiaassurgens Filatova [\u2261 Seriphidiumassurgens (Filatova) K.Bremer & Humphries] E Artemisiaaurata Kom. Artemisiabargusinensis Spreng. SEArtemisiablepharolepis Bunge Artemisiaborealis Pall. Artemisiaborotalensis Poljakov [\u2261 Seriphidiumborotalense (Poljakov) Ling & Y.R.Ling] SEArtemisiabrachyloba Franch. Artemisiabrachyphylla Kitam. [5]Artemisiacaespitosa Ledeb. Artemisiacapillaris Thunb. Artemisiacompacta Fisch. Artemisiadahurica (Turcz.) Poljakov [4]Artemisiadavazamczii Darijma & Kamelin E Artemisiademissa Krasch. Artemisiadepauperata Krasch. ArtemisiadesertorumSpreng.subsp.desertorum Artemisiadesertorumsubsp.pseudojaponica Darijma & Kamelin [5]E SEArtemisiadisjuncta Krasch. SEArtemisiadolosa Krasch. SEArtemisiadracunculusvar.changaica (Krasch.) Y.R.Ling [\u2261 Artemisiachangaica Krasch.] ArtemisiadracunculusL.var.dracunculus [1\u201315]Artemisiaeriopoda Bunge [16]Artemisiafeddeisubsp.arschantinica (Darijma) Gubanov & Kamelin [\u2261 Artemisiaarschantinica Darijma] [16]ArtemisiafeddeiH.L\u00e9v. & Vaniotsubsp.feddei Artemisiafreyniana (Pamp.) Krasch. Artemisiafrigida Willd. [1\u201316]SEArtemisiagiraldii Pamp. [4]Artemisiaglauca Pall. SEArtemisiaglobosa Krasch. SEArtemisiaglobosoides Ling & Y.R.Ling ArtemisiagmeliniiWeb.var.gmelinii [2\u201313]Artemisiagmeliniivar.messerschmidiana (Besser) Poljakov Artemisiagracilescens Krasch. & Iljin Artemisiahalodendron Turcz. Artemisiaheptapotamica Poljakov [\u2261 Seriphidiumheptapotamicum (Poljakov) Ling & Y.R.Ling] Artemisiaimplicata T.G.Leonova [16]Artemisiaintegrifolia L. Artemisiaklementzae Krasch. [= Artemisiaxylorhiza Krasch.] Artemisialaciniata Willd. SEArtemisialagocephalaFisch.var.lithophila (Turcz.) Y.R.Ling [1]Artemisialatifolia Ledeb. Artemisiamacilenta (Maxim.) Krasch. Artemisiamacrantha Ledeb. Artemisiamacrocephala Jacquem. [1\u201316]Artemisiamanshurica (Kom.) Kom. Artemisiamarschalliana Spreng. [7]Artemisiamaximovicziana Krasch. Artemisiamedioxima Krasch. Artemisiamongolica (Fisch.) Nakai [\u2261 Artemisiavulgarisvar.mongolica Fisch.] [1\u201315]Artemisiamongolorumsubsp.gobicum Krasch. [\u2261 Artemisiagobica (Krasch.) Grubov] ArtemisiamongolorumKrasch.subsp.mongolorum [\u2261 Seriphidiummongolorum (Krasch.) Ling & Y.R.Ling] Artemisianitrosa Weber Artemisiaobtusilobasubsp.altaiensis (Krasch.) Krasnob. [\u2261 Artemisiaaltaiensis Krasch.] ArtemisiaobtusilobaLedeb.subsp.obtusiloba Artemisiaobtusilobavar.glabra Ledeb. [= Artemisiaglabella Kar. & Kir.] SEArtemisiaordosica Krasch. SEArtemisiaoxycephala Kitag. Artemisiapalustris L. [1\u201313]Artemisiapamirica C.Winkl. Artemisiaphaeolepis Krasch. Artemisiapubescens Ledeb. [= Artemisiacommutata Besser] Artemisiapycnorrhiza Ledeb. Artemisiarubripes Nakai Artemisiarupestris L. Artemisiarutifoliavar.altaica (Krylov) Krasch. [7]Artemisiasacrorumvar.messerschmidtiana (Besser) Y.R.Ling Artemisiasaissanica (Krasch.) Filatova Artemisiasantolinifolia Turcz. [= Artemisiasantolinifoliasubsp.stepposa Darijma] Artemisiaschischkinii Krasch. Artemisiaschrenkiana Ledeb. Artemisiascoparia Waldst. & Kit. [2\u201312]Artemisiaselengensis Turcz. Artemisiasericea Weber Artemisiasieversiana Ehrh. [1\u201316]SEArtemisiasphaerocephala Krasch. Artemisiastolonifera (Maxim.) Kom. SEArtemisiasubchrysolepis Filatova [\u2261 Seriphidiumsubchrysolepis (Filatova) K.Bremer & Humphries] Artemisiasubdigitata Mattf. [\u2261 Artemisiadubiavar.subdigitata (Mattf.) Y.R.Ling] Artemisiasublessingiana Krasch. [= Seriphidiumgorjaevii (Poljak.) Y.R.Ling] [14]Artemisiasubulata Nakai Artemisiasucculenta Ledeb. [7]Artemisiasylvatica Maxim. Artemisiatanacetifolia L. Artemisiaterrae-albae Krasch. Artemisiatomentella Trautv. Artemisiatournefortiana Rchb. SEArtemisiatransbaicalensis T.G.Leonova Artemisiaumbrosa (Besser) Turcz. Artemisiavestita Wall. [13]Artemisiaviridis Willd. Artemisiavulgarissubsp.vulgaris L. Artemisiavulgarissubsp.inundata Darijma [= Artemisiasuperba Pamp.] E Artemisiawudanica Liou & W.Wang SEArtemisiaxanthochloa Krasch. [3\u201316]Artemisiaxerophytica Krasch. Askelliaflexuosa (Ledeb.) W.A.Weber Askelliapygmaea (Ledeb.) Sennikov Asteralpinus L. Asterhispidus Thunb. Asterlingii G.J.Zhang & T.G.Gao [= Rhinactinidialimoniifolia Novopokr.] [7]Astermaackii Regel [5]Astersanczirii Kamelin & Gubanov [5]E Astertataricus L.f. SEAsterothamnusalyssoides (Turcz.) Novopokr. [= Asteralyssoides Turcz.] SEAsterothamnuscentraliasiaticusvar.potaninii (Novopokr.) Y.Ling & Y.L.Chen [\u2261 Asterothamnuspotaninii Novopokr.] SEAsterothamnusheteropappoides Novopokr. Asterothamnusmolliusculus Novopokr. Asterothamnuspoliifolius Novopokr. Bidenscernua L. Bidensparviflora Willd. Bidensradiata Thuill. Bidenstripartita L. SEBrachanthemumgobicum Krasch. SEBrachanthemummongolicum Krasch. Brachanthemummongolorum Grubov [9]E Cancriniadiscoidea (Ledeb.) Poljakov SECancriniakrasnoborovii Khanm. [10]Carduuscrispus L. Carduusnutans L. Centaureaadpressa Ledeb. [6]Centaureaglastifoliasubsp.intermedia (Boiss.) L.Martins [= Centaureachartolepis Greuter] Centaureapulchella Ledeb. [= Hyaleapulchella (Ledeb.) K.Koch] Chondrillalejosperma Kar. & Kir. Chrysanthemumchalchingolicum Grubov E Chrysanthemummongolicum Ling [\u2261 Chrysanthemumzawadzkiivar.mongolicum (Ling) Gubanov] Chrysanthemumnaktongense Nakai [9]SEChrysanthemumsinuatum Ledeb. [Tanacetumsinuatum Sch.Bip.] Chrysanthemumtrilobatum (Poljakov) H.Ohashi & Yonek. [\u2261 Ajaniatrilobata Poljakov] Chrysanthemumzawadzkii Herbich Cicerbitaazurea (Ledeb.) Beaverd Cirsiumarvense (L.) Scop. [\u2261 Serratulaarvensis L.] Cirsiumesculentum C.A.Mey. Cirsiumglabrifolium O.Fedtsch. & B.Fedtsch. [7]Cirsiumhelenioides (L.) Hill [= Carduushelenioides L.] [2]Cirsiumpendulum Fisch. Cirsiumserratuloides Hill Cirsiumsetosum (Willd.) M.Bieb. [\u2261 Serratulasetosa Willd.] Cirsiumsieversii (Fisch. & C.A.Mey.) Petr. [= Cirsiumpolyacanthum Kar. & Kir.] [7]Cirsiumvlassovianum Fisch. Cousiniaaffinis Schrenk [14]Crepidiastrumakagii (Kitag.) J.W.Zhang & N.Kilian [= Youngiatenuicaulis (Babc. & Stebbins) Czerep.] Crepidiastrumsonchifolium (Bunge) Pak & Kawano [5]Crepidiastrumtenuifolium (Willd.) Sennikov [\u2261 Crepistenuifolia Willd. \u2261 Youngiatenuifolia (Willd.) Babc. & Stebbins] Crepisbungei Ledeb. Crepischrysantha Froel. Crepiscrocea(Lam.)Babc.var.crocea SECrepiscroceavar.czuensis (Serg.) Tzvelev [\u2261 Crepisczuensis Serg.] Crepislomonosovae Tzvelev E Crepislyrata (L.) Froel. Crepismulticaulis Ledeb. Crepispolytricha Turcz. Crepispraemorsa (L.) Tausch [\u2261 Hieraciumpraemorsum L.] Crepissibirica L. Crepistectorum L. Doronicumaltaicum Pall. [1]Doronicumoblongifolium DC. Doronicumturkestanicum Cavill. Echinopsdavuricus Fisch. [= Echinopslatifolius Tausch] Echinopsgmelinii Turcz. Echinopshumilis M.Bieb. Echinopsintegrifolius Kar. & Kir. Echinopsnanus Bunge Echinopsritro L. Erigeronacris L. Erigeronaltaicus Popov SEErigeronbaicalensis Botsch. [1]Erigeroneriocalyx (Ledeb.) Vierh. Erigeronkrylovii Serg. Erigeronlonchophyllus Hook. Erigeronoreades Fisch. & C.A.Mey. Erigeronpetiolaris Vierh. Erigeronpolitus Fr. Erigeronpseudoeriocephalus Popov [3]Filagoarvensis L. Filifoliumsibiricum (L.) Kitam. [= Tanacetumsibiricum L.] Galatellaaltaica Tzvelev Galatellaangustissima (Tausch) Novopokr. [1]Galatelladahurica DC. [= Galatellamacrosciadia Gand. = Galatellasongorica Novopokr.] Galatellahauptii Lindl. [7]Gnaphaliumuliginosum L. [= Gnaphaliumbaicalense Kirp. & Kuprian.] Helichrysumarenarium Moench [7]Heteropappusaltaicus Novopokrov. [\u2261 Asteraltaicus Willd.] Heteropappusbiennis (Ledeb.) Tamamsch. SEHeteropappusmedius (Krylov) Tamamsch. SEHieraciumczadanense Tupitz. Hieraciumkorshinskyi Zahn Hieraciumnarymense Schischk. & Serg. Hieraciumrobustum Fr. Hieraciumsershukense \u00dcksip [7]Hieraciumsubramosum Lonnr. Hieraciumumbellatum L. Hieraciumvirosum Pall. Hololeionmaximowiczii Kitam. [9]Hypochaerismaculata L. [\u2261 Trommsdorffiamaculata (L.) Bernh.] Inulajaponica Thunb. [2]Inulalinariifolia Turcz. Inulasalsoloides Ostenf. [\u2261 Limbardasalsoloides Ikonn.] Ixerischinensis(Thunb.)Kitagawasubsp.chinensis s.l. Jacobaeaambracea (Turcz.) B.Nord. [= Senecioambraceus Turcz.] Jacobaeacannabifolia (Less.) E.Wiebe [\u2261 Seneciocannabifolius Less.] Jacobaeaerucifoliasubsp.argunensis (Turcz.) Veldkamp [\u2261 Senecioargunensis Turcz.] Jacobaeaerucifolia (L.) G.Gaertn., B.Mey. & Scherb. subsp.erucifolia [= Senecioerucifolius L.] Jacobaeavulgaris Gaertn. [\u2261 Seneciojacobaea L.] Jurineachaetocarpa (Ledeb.) Ledeb. Jurineamargalensis Iljin SEJurineamongolica Maxim. [= Jurineapotaninii Ilijn] [10\u201314]Jurineamultiflora B.Fedtsch. Kareliniacaspia Less. Kaschgariakomarovii (Krasch. & Rubtzov) Poljakov [\u2261 Tanacetumkomarovii Krasch. & Rubtzov] Klaseacardunculus Holub [\u2261 Serratulacardunculus Schischk.] Klaseacentauroides (L.) Cass. [\u2261 Serratulacentauroides L.] Klaseamarginata (Tausch) Kitag. [\u2261 Serratulamarginata Tausch] Klaseasogdiana (Bunge) L.Martins [6]Lactucaserriola L. [= Lactucasativasubsp.serriola (L.) Frietema] Lactucasibirica Benth. Lactucatatarica C.A.Mey. Lactucaundulata Ledeb. Leibnitziaanandria (L.) Turcz. Leontopodiumcampestre Hand.-Mazz. Leontopodiumconglobatum Hand.-Mazz. Leontopodiumleontopodioides (Willd.) Beauverd Leontopodiumnanum (Hook.f. & Thomson) Hand.-Mazz. [16]Leontopodiumochroleucum Beauverd Leontopodiumpalibinianum Beauverd Leuzeacarthamoides DC. [= Rhaponticumcarthamoides (Willd.) Iljin] [7]Leuzearepens (L.) D.J.N.Hind, [\u2261 Rhaponticumrepens (L.) Hidalgo \u2261 Acroptilonrepens (L.) DC.] Leuzeauniflora (L.) Holub [= Rhaponticumuniflorum (L.) DC.] Ligulariaaltaica DC. Ligulariafischerii (Ledeb.) Turcz. Ligulariaglauca (L.) O.Hoffm. [7]Ligulariahodgsonii Hook.f. Ligulariamongolica DC. Ligulariaprzewalskii Diels Ligulariasagitta (Maxim.) Mattf. [\u2261 Seneciosagitta Maxim.] Ligulariasibirica Cass. Lipschitziadivaricata (Turcz.) Zaika, Sukhor. & N.Kilian [\u2261 Scorzoneradivaricata Turcz.] Matricariachamomilla L. [= Matricariarecutita L.] [2]Neopallasiapectinata Poljakov SEOlgaealeucophylla (Turcz.) Iljin SEOlgaealomonossowii (Trautv.) Iljin [9]Omalothecasupina (L.) DC. [= Gnaphaliumsupinum L.] Packeracymbalaria (Pursh) W.A.Weber & \u00c1.L\u00f6ve [\u2261 Seneciocymbalaria Pursh] Paraseneciohastatus (L.) H.Koyama [\u2261 Cacaliahastata L.] Pentanemaasperum (Poir.) G.V.Boiko & Korniy. [\u2261 Inulaaspera Poir.] Pentanemabritannica (L.) D.Gut.Larr. [\u2261 Inulabritannica L.] Pentanemasalicinum (L.) D.Gut.Larr. [\u2261 Inulasalicina L.] Petasitesfrigidus (L.) Fr. [1]Petasitesradiatus (J.F.Gmel.) Toman [1]Petasitesrubellus (J.F.Gmel.) Toman Phalacrachenacalva (Ledeb.) Iljin [10]Picrisdavurica Fisch. Picrishieracioides L. Picrisjaponica Thunb. Piloselladublitzkii (B.Fedtsch. & Nevski) Sennikov [\u2261 Hieraciumdublitzkii B.Fedtsch. & Nevski] [7]Pilosellaechioides (L.) F.W.Schultz & Sch.Bip. [\u2261 Hieraciumechioides L.] Pulicariavulgaris Gaertn. [10]Rhinactinidiaeremophila (Bunge) Novopokr. [= Rhinactinidiaeremophilasubsp.grubovii Botsch.] Richteriapyrethroides Kar. & Kir. [\u2261 Pyrethrumpyrethroides (Kar. & Kir.) B.Fedtsch.] [7]Saussureaacuminata Turcz. SESaussureaalaschanica Maxim. Saussureaalata DC. Saussureaalpina (L.) DC. Saussureaamara (L.) DC. SESaussureaarctecapitulata Lipsch. Saussureabaicalensis B.L.Rob. SESaussureabogedaensis Yu J.Wang & J.Chen [14]SESaussureacatharinae Lipsch. [15]SESaussureaceterachifolia Lipsch. Saussureacongesta Turcz. [1]Saussureacontroversa DC. Saussureacoronata Schrenk [= Saussureadshungarica Iljin] [7]Saussureadaurica Adams SESaussureadorogostaiskii Palib. Saussureaelata Ledeb. [7]Saussureaelegans Ledeb. [= Saussureaamoena Kar. & Kir.] SESaussureaelongata DC. Saussureafoliosa Ledeb. Saussureaglacialis Herder SESaussureagrubovii Lipsch. Saussureagubanovii Kamelin [15]E Saussureainvolucrata (Kar. & Kit.) Sch.Bip. Saussureajaponica (Thunb.) DC. [9]Saussureaklementzii Lipsch. [7]SESaussureakrasnoborovii S.V.Smirn. [1]Saussureakrylovii Schischk. & Serg. [7]Saussurealaciniata Ledeb. Saussurealatifolia Ledeb. Saussurealeucophylla Schrenk SESaussurealipschitzii Filatova Saussureamongolica (Franch.) Franch. [5]Saussureaneoserrata Nakai Saussureaodontolepis Sch.Bip. [5]Saussureaodorata E.Pjak [7]E Saussureaorgaadayi Khanm. & Krasnob. Saussureaparviflora (Poir.) DC. SESaussureapopovii Lipsch. [14]Saussureapricei N.D.Simpson Saussureapseudoalpina N.D.Simpson Saussureapseudosalsa Lipsch. Saussureapulchella Fisch. SESaussureapurpurata (Fisch.) Lipsch. Saussurearamosa Lipsch. E Saussurearecurvata (Maxim.) Lipsch. Saussurearuncinata DC. Saussureasaichanensis Kom. E Saussureasalicifolia DC. [2\u20139]Saussureasalsa Spreng. Saussureaschanginiana (Wydler) Fisch. SESaussureasquarrosa Turcz. [1]Saussureastubendorffii Herder Saussureasubacaulis (Ledeb.) Serg. SESaussureasukaczevii Lipsch. Saussureaussuriensis Maxim. [5]Scorzoneraalbicaulis Bunge Scorzoneracurvata (Popl.) Lipsch. Scorzoneragrubovii Lipsch. E Scorzoneraparviflora Jacq. [14]Scorzoneraradiata Fisch. Scorzonerasinensis (Lipsch. & Krasch.) Nakai [9]Seneciodubitabilis C.Jeffrey & Y.L.Chen [\u2261 Seneciodubius Ledeb. nom. illegit. non Beck] Seneciokenteicus Grubov [2]E Senecionemorensis L. Seneciosubdentatus Ledeb. Seneciovulgaris L. Serratulacoronata L. Serratulakirghisorum Iljin [7]Solidagodahurica (Kitag.) Kitag. Solidagovirgaurea L. [7]Sonchelladentata (Ledeb.) Sennikov [\u2261 Sonchusdentatus Ledeb.] Sonchellastenoma (Turcz.) Sennikov [\u2261 Crepisstenoma Turcz.] [8\u201315]Sonchusarvensis L. Sonchusbrachyotus DC. Sonchusuliginosus M.Bieb. Stilpnolepisintricata (Franch.) C.Shih Symphyotrichumciliatum (Ledeb.) G.L.Nesom Synurusdeltoides (Aiton) Nakai Takhtajanianthaaustriaca (Willd.) Zaika, Sukhor. & N.Kilian [\u2261 Scorzoneraaustriaca Willd.] Takhtajanianthacapito (Maxim.) Zaika, Sukhor. & N.Kilian [\u2261 Scorzoneracapito Maxim.] Takhtajanianthaikonnikovii (Krasch. & Lipsch.) Zaika, Sukhor. & N.Kilian [\u2261 Scorzoneraikonnikovii Lipsch. & Krasch.] Takhtajanianthamongolica (Maxim.) Zaika, Sukhor. & N.Kilian [\u2261 Scorzoneramongolica Maxim.] [10\u201316]Takhtajanianthapseudodivaricata (Lipsch.) Zaika, Sukhor. & N.Kilian [\u2261 Scorzonerapseudodivaricata Lipsch] Takhtajanianthapusilla Nazarova [\u2261 Scorzonerapusilla Pall.] Takhtajanianthasubacaulis (Regel) Zaika, Sukhor. & N.Kilian [= Scorzonerasubacaulis (Regel) Lipsch.] [6]Tanacetumalatavicum Herder [\u2261 Pyrethrumalatavicum O.Fedtsch. & B.Fedtsch.] [7]Tanacetumchangaicum (Krasch.) K.Bremer & Humphries [\u2261 Pyrethrumchangaicum Krasch.] E Tanacetumcrassipes (Stschegl.) Tzvelev [7]Tanacetumkrylovianum (Krasch.) K.Bremer & Humphries [\u2261 Pyrethrumkrylovianum Krasch.] [7]Tanacetumlanuginosum Sch. [\u2261 Pyrethrumlanuginosum (Sch.Bip. & Herder) Tzvelev] SETanacetumpulchellum Sch. [\u2261 Pyrethrumpulchellum Turcz.] [7]Tanacetumpulchrum Sch. [= Pyrethrumpulchrum Ledeb.] Tanacetumtanacetoides (DC.) Tzvelev Tanacetumvulgare L. [= Tanacetumboreale Fisch. & DC.] Taraxacumarmeriifolium Soest Taraxacumasiaticum Dahlst. Taraxacumatrans Schischk. Taraxacumbessarabicum (Hornem.) Hand.-Mazz. Taraxacumbicorne Dahlst. SETaraxacumbornuurense R.Doll Taraxacumbrevirostre Hand.-Mazz. Taraxacumceratophorum (Ledeb.) DC. [= Taraxacumaltaicum Schischk.] Taraxacumcollinum DC. Taraxacumdealbatum Hand.-Mazz. Taraxacumdissectum Ledeb. Taraxacumeriopodum DC. Taraxacumerythrospermum Andrz. [3]Taraxacumglabrum DC. Taraxacumglaucanthum Nakai Taraxacumgoloskokovii Schischk. Taraxacuminimitabile Kirschner & \u0160t\u011bp\u00e1nek [13]E Taraxacumjunatovii Tzvelev E Taraxacumkok-saghyz Rodin SETaraxacumkrasnoborovii Krasnikov [7]SETaraxacumkrylovii Krasnikov & Khanm. [7]Taraxacumleucanthum Ledeb. Taraxacumlinczevskyi Schischk. [7]SETaraxacumlongicorne Dahlst. Taraxacumluridum G.E.Haglund Taraxacumlyratum (Ledeb.) DC. Taraxacummacilentum Dahlst. Taraxacummicrospermum Schischk. [= Taraxacumcompactum Schischk.] Taraxacumminutilobum Popov [7]Taraxacummongolicum Hand.-Mazz. Taraxacummongoliforme R.Doll Taraxacummonochlamydeum Hand.-Mazz. Taraxacummujense Petrochenko Taraxacummultisectum Kitag. [9]Taraxacumofficinale F.H.Wigg. Taraxacumparvulum DC. [14]Taraxacumpawlodarskum R.Doll [= Taraxacumustamenum R.Doll] [7]Taraxacumpingue Schischk. Taraxacumpseudoatratum Orazova [6]SETaraxacumpseudonivale Malyschev [1]Taraxacumpuberulum G.E.Haglund [14]SETaraxacumsangilense Krasnob. & Khanm. Taraxacumscariosum (Tausch) Kirschner & \u0160t\u011bp\u00e1nek Taraxacumselengensis Tzvelev [3]E Taraxacumsinicum Kitag. [= Taraxacumborealisinense Kitam.] [3\u201316]SETaraxacumsmirnovii M.S.Ivanova [7]SETaraxacumsongoricum Schischk. Taraxacumstanjukoviczii Schischk. Taraxacumsubmacilentum Tzvelev [7]E Taraxacumsumneviczii Schischk. Taraxacumtibetanum Hand.-Mazz. Taraxacumturgaicum Schischk. SETaraxacumtuvense Krasnob. & Krasnikov [1]Tephroserisflammea (DC.) Holub [\u2261 Senecioflammeus DC.] [5]Tephroserisintegrifoliasubsp.atropurpurea (Ledeb.) B.Nord. [1]Tephroserisintegrifolia(L.)Holubsubsp.integrifolia [= Seneciocampestris (Retz.) DC.] Tephroseriskirilowii (DC.) Holub [5]Tephroserispalustris (L.) Rchb. [\u2261 Seneciopalustris (L.) Hook.] SETephroserisporphyrantha (Schischk.) Holub [= Senecioporphyranthus Schischk.] Tephroserispraticola (Sisk. & Serg.) Holub [= Senecioasiatica Schischk. & Serg.] Tephroserispricei (N.D.Simpson) Holub [\u2261 Seneciopricei N.D.Simpson] SETephroserissukaczevii (Schischk.) Holub [\u2261 Seneciosukaczevii Schischk.] Tephroseristurczaninovii (DC.) Holub [\u2261Seneciosumneviczii Schischk. & Serg.] Tephroserisvereszczaginii (Schischk. & Serg.) Holub [\u2261 Senecioveresczaginii Schischk. & Serg.] [7]Tibetiodesflaccida (Bunge) G.L.Nesom [\u2261 Erigeronflaccidus (Bunge) Botsch.] Tragopogonkasahstanicus S.A.Nikitin [7]Tragopogonorientalis L. Tragopogonruber S.G.Gmel. Tragopogonsongoricus S.A.Nikitin SETragopogontrachycarpus S.A.Nikitin Tripleurospermumambiguum (Ledeb.) Franch. & Sav. [\u2261 Matricariaambigua (Ledeb.) Krylov] Tripoliumpannonicum (Jacq.) Dobrocz. [\u2261 Tripoliumpannonicum Jacq.] Trommsdorffiaciliata (Thunb.) Soj\u00e1k [\u2261 Hypochaerisciliata (Thunb.) Makino] [5]SETugarinoviamongolica Iljin Turczaninoviafastigiata (Fisch.) DC. [\u2261Asterfastigiatus Fisch.] Vickifunkiasongarica (Fisch.) C.Ren [\u2261 Ligulariasongarica (Fisch.) Y.Ling] [14]Vickifunkiathomsonii (C.B.Clarke) C.Ren [\u2261 Ligulariathomsonii (C.B.Clarke) Pojark.] [14]Vickifunkiathyrsoidea (Ledeb.) C.Ren [\u2261 Ligulariathyrsoidea (Ledeb.) DC.] Balsaminaceae29. A.Rich. (1 genus and 2 species)Impatiensnoli-tangere L. Impatiensparviflora DC. [7]Berberidaceae30. Juss. (1 genus and 2 species)Berberisamurensis Rupr. [5]Berberissibirica Pall. Betulaceae31. Gray (2 genera and 9 taxa)Alnusalnobetulasubsp.fruticosa (Rupr.) Raus Betulafruticosa Pall. Betulamandshuricasubsp.tauschii (Regel) Kamelin Betulamicrophylla Bunge Betulananasubsp.exilis (Sukachev) Hult\u00e9n Betulananasubsp.rotundifolia (Spach) Malyschev Betulaovalifolia Rupr. Betulapendulasubsp.mandshurica (Regel) Ashburner & McAll. BetulapendulaRothsubsp.pendula Biebersteiniaceae32. Schnizl. (1 genus and 1 species)Biebersteiniaodora Stephan Bignoniaceae33. Juss. (1 genus and 1 species)SEIncarvilleapotaninii Batalin Boraginaceae34. Juss. (24 genera and 78 taxa)Craniospermum Lehm. have been described from Mongolia by Ovczinnikova and Korolyuk (2016) and Arnebiatibetica previously known as a synonym of A.guttata, differs from A.guttata based on floral morphology and plastid genome characteristics discovered by Note: Since Amblynotusrupestris Popov [\u2261 Eritrichiumrupestre (Georgi) Bunge] Anchusaarvensis (L.) M.Bieb. SEAnoplocaryumcompressum Ledeb. [\u2261 Echinospermumcompressum (Ledeb.) Turcz.] Anoplocaryumtenellum A.L.Ebel & Rudaya [\u2261 Microulatenella (A.L.Ebel & Rudaya)] [7]E SEAnoplocaryumturczaninovii Krasnob. Arnebiadecumbens Coss. & Kralik Arnebiafimbriata Maxim. Arnebiaguttata Bunge Arnebiatibetana Kurz [7]Asperugoprocumbens L. Asperulagobicola Grubov [= Asperulasaxicola Grubov] E SECraniospermumcanescens DC. Craniospermumdesertorum Ovczinnikova & A.Korolyuk [7]E Craniospermumgubanovii Ovczinnikova [14]E Craniospermumkamelinii Ovczinnikova [7]E SECraniospermummongolicum I.M.Johnst. Craniospermummontanostepposum Ovczinnikova [7]E Craniospermumpseudotuvinicum Ovczinnikova & A.Korolyuk [10]E SECraniospermumtuvinicum Ovczinnikova Craniospermumvolkovae Ovczinnikova [10]E Cynoglossumdivaricatum Steph. SEEritrichiumalpinum Ovczinnikova [6]Eritrichiumpauciflorum DC. Eritrichiumpectinatum DC. [3]SEEritrichiumpulviniforme Popov SEEritrichiumsajanense Sipliv. [1]Eritrichiumthymifolium (DC.) Y.S.Lian & J.Q.Wang Eritrichiumtianschanicum Iljin [6]Eritrichiumvillosum (Ledeb.) Bunge [\u2261 Myosotisvillosa Ledeb.] Hackeliadeflexa (Wahlenb.) Opiz [\u2261 Myosotisdeflexa Wahlenb.] Heliotropiumellipticum Ledeb. Lappulabalchaschensis Popov Lappulabrachycentroides Popov [3]Lappulaconsanguinea G\u00fcrke Lappulacoronifera Popov [3]Lappuladuplicicarpa Pavlov SELappulagranulata (Krylov) Popov Lappulaheteracantha (Ledeb.) G\u00fcrke [7]Lappulaintermedia (Ledeb.) Popov Lappulakrylovii Ovczinnikova, Pjak & A.L.Ebel [7]Lappulamacrantha (Ledeb.) G\u00fcrke Lappulamicrocarpa G\u00fcrke Lappulamyosotis Wolf Lappulapatula Asch. Lappularedowskii (Hornem.) Greene Lappulasemiglabra (Ledeb.) G\u00fcrke Lappulastricta (Ledeb.) G\u00fcrke Lappulatadshikorum Popov [7]Lappulatenuis G\u00fcrke Lappulatianschanica Popov & Zakirov [7]Lappulatuvinica Ovczinnikova [6]Lindelofiastylosa (Kar. & Kir.) Brand [\u2261 Cynoglossumstylosum Kar. & Kir.] Mertensiadavurica (Sims) G.Don [= Mertensiaochroleuca Ikonn.-Gal.] Mertensiapallasii G.Don [7]Mertensiastylosa DC. Mertensiatarbagataica B.Fedtsch. [7]SEMicroulatibeticavar.pratensis (Maxim.) W.T.Wang [\u2261 Tretocaryapratensis Maxim.] Myosotisalpestris F.W.Schmidt Myosotisaustrosibirica O.D.Nikif. Myosotisbaltica Sam. Myosotiscaespitosa Schultz Myosotiskrylovii Serg. Myosotisscorpioides L. [2]Myosotisstricta Link [7]Noneacaspica G.Don Noneapulla DC. Nonearossica Steven [3]Onosmafuyunensis Y.He & Q.R.Liu [7]Onosmagmelinii Ledeb. OnosmasetosaLedeb.subsp.setosa [7]Onosmasetosasubsp.transrhymnensis (Klokov) Kamelin Pseudolappulaoccultata (Popov) Q.R.Liu & D.H.Liu [\u2261 Lappulaoccultata Popov] [14]Pulmonariadacica (Simonk.) Simonk. [= Pulmonariamollissima A.Kern.] Rinderatetraspis Pall. [14]Rocheliabungei Trautv. Rochelialeiocarpa Ledeb. Stenosoleniumsaxatile Turcz. [\u2261 Anchusasaxatilis Pall.] Tournefortiasibirica L. [= Messerschmidiasibirica (L.) L.] Brassicaceae35. Burnett (51 genera and 138 taxa)Brassicaceae was recently revised by Lepidiumgobicum V.I.Dorof. was newly described from Mongolia and China by Lepidiumapetalum Willd. Heynh. Arabisborealis Andrz. Barbareaorthoceras Ledeb. Barbareavulgaris W.T.Aiton Brayahumilis (C.A.Mey.) B.L.Rob. Brayarosea Bunge Brayasiliquosa Bunge [1]Camelinamicrocarpa Andrz. Capsellabursa-pastoris (L.) Medik. Capsellaorientalis Klokov [\u2261 Capsellabursa-pastorissubsp.orientalis (Klokov) Tzvelev] Cardaminebellidifolia L. Cardamineimpatiens L. [6]Cardamineleucantha (Tausch) O.E.Schulz [5]Cardaminemacrophylla Willd. Cardamineparviflora L. Cardaminepratensis L. Cardamineprorepens Fisch. [5]Cardaminetrifida (Lam.) B.M.G.Jones [5]Catolobuspendulus (L.) Al-Shehbaz [= Arabispendula L.] Chorisporabungeana Fisch. & C.A.Mey. [7]Chorisporasibirica (L.) DC. Chorisporatenella DC. Clausiaaprica Trotzky Clausiatrichosepala (Turcz.) F.Dvo\u0159\u00e1k [4]Crucihimalayamollissima (C.A.Mey.) Al-Shehbaz [\u2261 Sisymbriummollissimum C.A.Mey.] SECrucihimalayarupicola (Krylov) A.L.Ebel & D.A.German [\u2261 Arabisrupicola Krylov] Dendroarabisfruticulosa (C.A.Mey.) D.A.German & Al-Shehbaz [\u2261 Arabisfruticulosa C.A.Mey.] Descurainiasophia (L.) Webb SEDontostemoncrassifolius (Bunge) Maxim. Dontostemondentatus Ledeb. [5]SEDontostemonelegans Maxim. Dontostemongubanovii (D.A.German) D.A.German [\u2261 Dontostemonsenilissubsp.gubanovii D.A.German] E Dontostemonintegrifolius (L.) Ledeb. Dontostemonmicranthus C.A.Mey. SEDontostemonperennis C.A.Mey. Dontostemonpinnatifidus (Willd.) Al-Shehbaz & H.Ohba [\u2261 Cheiranthuspinnatifidus Willd.] SEDontostemonsenilis Maxim. Drabaalpina L. [6]Drabaaltaica (C.A.Mey.) Bunge SEDrababaicalensis Tolm. Drabaeriopoda Turcz. Drabafladnizensis Wulfen Drabahirta L. Drabakusnetzovii (Turcz.) Hayek Drabalanceolata Royle Drabamongolica Turcz. Drabanemorosa L. Drabaochroleuca Bunge Drabaoreades Schrenk SEDrabapygmaea Turcz. Drabasibirica Thell. Drabastenocarpa Hook.f. & Thomson [7]Drabasubamplexicaulis C.A.Mey. Drabaturczaninowii Pohle Erysimumandrzejowskianum Bess. [7]Erysimumcheiranthoidessubsp.altum Ahti [without indication of regions]ErysimumcheiranthoidesL.subsp.cheiranthoides Erysimumcheiranthoidessubsp.transiliense (Popov) D.A.German [\u2261 Erysimumtransiliense Popov] [7]Erysimumflavum(Georgi)Bobrovsubsp.flavum Erysimumflavumsubsp.altaicum (C.A.Mey.) Polozhij SEErysimumkotuchovii D.A.German [7]Erysimumledebourii D.A.German [7]Erysimummarschallianum Andrz. SEErysimummongolicum D.A.German Erysimumsisymbrioides C.A.Mey. Eutremaedwardsiisubsp.compactum (O.E.Schulz) A.L.Ebel [\u2261 Eutremacompactum O.E.Schulz] [7]EutremaedwardsiiR.Br.subsp.edwardsii Eutremasalsugineum Al-Shehbaz & Warwick [\u2261 Sisymbriumsalsugineum Pall.] Galitzkyamacrocarpa Botsch. [\u2261 Berteroamacrocarpa Ikonn.-Gal.] E SEGalitzkyapotaninii (Maxim.)Botsch. SEGoldbachiaikonnikovii Vassilcz. GoldbachiapendulaBotsch. Hesperissibirica L. Hornungiaprocumbens Hayek Iljinskaeaplanisiliqua (Fisch. & C.A.Mey.) Al-Shehbaz [\u2261 Conringiaplanisiliqua Fisch. & C.A.Mey.] Isatiscostata C.A.Mey. Isatisgymnocarpa (Fisch.) Al-Shehbaz, Moazzeni & Mumm. [\u2261 Tauscheriagymnocarpa Fisch.] [14]Isatismulticaulis (Kar. & Kir.) Jafri [14]Isatisoblongata DC. Leiocarpaeacochlearioides (Murray) D.A.German & Al-Shehbaz [\u2261 Buniascochlearioides Murray] [1]Leiosporaexscapa (C.A.Mey.) F.Dvo\u0159\u00e1k [\u2261 Parryaexscapa C.A.Mey.] Lepidiumaffine Ledeb. [\u2261 Lepidiumlatifoliumsubsp.affine (Ledeb.) Kitag.] Lepidiumamplexicaule Willd. Lepidiumapetalum Willd. Lepidiumappelianum Al-Shehbaz Lepidiumcartilagineum Thell. Lepidiumcordatum Willd. Lepidiumlacerum C.A.Mey. [= Lepidiumsongaricum Schrenk] Lepidiumobtusum Basiner Litwinowiatenuissima Woronow [14]Macropodiumnivale R.Br. Matthiolasuperba Conti [14]Megacarpaeamegalocarpa Schischk. [14]Meniocuslinifolius (Willd.) DC. [\u2261 Alyssumlinifolium Willd.] SEMicrostigmabrachycarpum Botsch. SEMicrostigmadeflexum (Bunge) Juz. Neotorulariabrevipes (Kar. & Kir.) Hedge & J.L\u00e9onard [\u2261 Sisymbriumbrevipes F.Muell.] Noccaeaferganensis (N.Busch) Czerep. [\u2261 Thlaspiferganense N.Busch] [7]Noccaeathlaspidioides F.K.Mey. [\u2261 Lepidiumthlaspidioides Pall. = Thlaspicochleariforme DC.] Odontarrhenaobovata C.A.Mey. [\u2261 Alyssumobovatum (C.A.Mey.) Turcz.] [1\u201310]Olimarabidopsispumila (Stephan) Al-Shehbaz [\u2261 Sisymbriumpumilum Stephan] [14]SEPachyneurumgrandiflorum Bunge Pugioniumdolabratum Maxim. SEPugioniumpterocarpum Kom. [10]Rhammatophyllumerysimoides (Kar. & Kir.) Al-Shehbaz & O.Appel [\u2261 Arabiserysimoides Kar. & Kir.] Rorippabarbareifolia (DC.) Kitag. [2]Rorippadogadovae Tzvelev Rorippapalustris Besser Sisymbriumbrassiciforme C.A.Mey. Sisymbriumheteromallum C.A.Mey. Sisymbriumloeselii L. Sisymbriumpolymorphum (Murr.) Roth Sisymbriumsubspinescens Bunge [14]Smelowskiaalba B.Fedtsch. SESmelowskiaaltaica (Pobed.) Botsch. Smelowskiabifurcata (Ledeb.) Botsch. Smelowskiacalycina (Stephan) C.A.Mey. [= Lepidiumcalycinum Steph.] SESmelowskiacalycinasubsp.pectinata (Bunge) D.A.German [= Hutchinsiapectinata Bunge] Smelowskiamongolica Kom. [3]E SESterigmostemumviolaceum (Botsch.) H.L.Yang Steveniaalyssoides Adams & Fisch. SESteveniaalyssoidessubsp.zinaidae Kamelin [\u2261 Steveniazinaidae Malyschev] Steveniacanescens (DC.) D.A.German [\u2261 Alyssumcanescens DC. \u2261 Ptilotrichumcanescens (DC.) C.A.Mey.] SESteveniacheiranthoidesDC.subsp.cheiranthoides Steveniacheiranthoidessubsp.incarnata (Kamelin) D.A.German SESteveniadahurica (Peschkova) D.A.German & Al-Shehbaz SESteveniasergievskajae (Krasnob.) Kamelin & Gubanov [\u2261 Alyssumsergievskajae Krasnob.] [3]SESteveniatenuifolia (Stephan) D.A.German [\u2261 Alyssumtenuifolium Steph.] Strigosellaafricana (L.) Botsch. Strigosellabrevipes (Bunge) Botsch. [14]Subulariaaquatica L. Tetracmequadricornis (Steph.) Bunge Thlaspiarvense L. Thlaspiceratocarpum Murray [\u2261 Carpocerasceratocarpum N. Busch] Turritisglabra L. [7]Butomaceae36. Mirb. (1 genus and 2 species)Butomusjunceus Turcz. Butomusumbellatus L. Campanulaceae37. Juss. (4 genera and 18 taxa)Adenophorachangaica Gubanov & Kamelin [3]E Adenophoragmelinii Fisch. Adenophoralamarkii Fisch. [\u2261 Campanulalamarckii D.Dietr.] Adenophoraliliifolia (L.) A.DC. [\u2261 Campanulaliliifolia L.] Adenophorapereskiifolia (Fisch.) G.Don Adenophorastenanthina (Ledeb.) Kitagawa [= Adenophoracrispata Turcz.] Adenophoratricuspidata A.DC. Adenophoratriphylla (Thunb.) A.DC. [\u2261 Campanulatriphylla Thunb.] Campanulacervicaria L. [2]Campanuladasyantha M.Bieb. Campanulaglomerata L. Campanulapunctata Lam. [9]Campanularotundifolia L. [6]Campanulasteveniisubsp.altaica (Ledeb.) Fed. [\u2261 Campanulaaltaica Ledeb.] [7]Campanulasteveniisubsp.turczaninovii (Fed.) Victorov [\u2261 Campanulaturczaninovii Fed.] Campanulasteveniisubsp.wolgensis (P.A.Smirn.) Fed. [\u2261 Campanulawolgensis P.A.Smirn.] [7]Codonopsisclematidea C.B.Clarke [7]Platycodongrandiflorus A.DC. [5]Caprifoliaceae38. Juss. (5 genera and 24 taxa)Linnaeaborealis L. Loniceracaeruleasubsp.altaica Gladkova [\u2261 Loniceraaltaica Pall.] LoniceracaeruleaL.subsp.caerulea [6]Loniceracaeruleavar.venulosa (Maxim.) Vorosch. [\u2261 Loniceravenulosa Maxim.] [5]Lonicerachrysantha Turcz. [5]Lonicerahispida Pall. Loniceramicrophylla Willd. [\u2261 Caprifoliummicrophyllum (Willd.) Kuntze] Loniceratatarica L. [4]Patriniaheterophylla Bunge [9]Patriniaintermedia Roem. & Schult. Patriniarupestris Dufr. [\u2261 Valerianarupestris Pall.] Patriniascabiosifolia Fisch. Patriniasibirica (L.) Juss. [1\u20137]Scabiosacomosa Fisch. Scabiosaochroleuca L. Valerianaaltaica Sumnev. Valerianaalternifolia Ledeb. [= Valerianadahurica Sumnev.] Valerianacapitata Pall. [1]Valerianadubia Bunge Valerianamartjanovi Krylov [= Valerianasaichanensis Kom.] [13]Valerianaofficinalis L. Valerianapetrophila Bunge SEValerianatangutica Batalin [16]SEValerianatransjenisensis Kreyer Caryophyllaceae39. Juss. (20 genera and 97 taxa)Acanthophyllumpungens Boiss. Arenarialeptoclados Guss. [7]Arenariaserpyllifolia L. Cerastiumalpinum L. [6]Cerastiumarvense L. Cerastiumcerastoides (L.) Britton [\u2261 Dichodoncerastoides (L.) Rchb. \u2261 Stellariacerastoides L.] Cerastiumdavuricum Fisch. Cerastiumfalcatum (Gren.) Bunge [\u2261 Stellariafalcata Ser.] [14]Cerastiumholosteoides Fr. [\u2261 Cerastiumfontanumf.holosteoides (Fr.) M.B.Wyse Jacks.] [2]Cerastiumlithospermifolium Fisch. Cerastiummaximum L. [13]Cerastiumpauciflorum Steven Cerastiumpusillum Ser. Cherleriaarctica (Steven) A.J.Moore & Dillenb. [\u2261 Minuartiaarctica (Steven) Graebn.] Cherleriabiflora (L.) A.J.Moore & Dillenb. [\u2261 Minuartiabiflora (L.) Schinz & Thell.] Dianthuschinensis L. [= Dianthusversicolor Fisch.] Dianthuscrinitussubsp.soongoricus (Schischk.) Kozhevn. [\u2261 Dianthussoongoricus Schischk.] Dianthusramosissimus Pall. [10]Dianthusrepens Willd. [\u2261 Dianthuschinensissubsp.repens (Willd.) Vorosch.] Dianthussuperbus L. Eremogoneandrosacea (Grubov) Ikonn. [\u2261 Arenariaandrosacea Grubov] [13]Eremogoneasiatica (Schischk.) Ikonn. [\u2261 Arenariaasiatica Schischk.] [7]Eremogonecapillaris (Poir.) Fenzl [\u2261 Arenariacapillaris Poir.] Eremogonejuncea (M.Bieb.) Fenzl [\u2261 Arenariajuncea M.Bieb.] Eremogonemeyeri (Fenzl) Ikonn. [\u2261 Arenariameyeri Fenzl] SEEremogonemongolica (Schischk.) Ikonn. [\u2261 Arenariamongolica Schischk.] [7]SEGymnocarposprzewalskii Maxim. [\u2261 Paronychiaprzewalskii (Bunge) Rohweder & Urmi-K\u00f6nig] Gypsophilaaltissima L. [7]Gypsophilacapituliflora Rupr. Gypsophilacephalotes (Schrenk) F.N.Williams Gypsophiladavurica Fenzl [\u2261 Gypsophilapatriniisubsp.davurica (Fenzl) Kozhevn.] Gypsophilapaniculata L. Gypsophilapatrinii Ser. Gypsophilaperfoliata L. [10]Gypsophilasericea (Ser.) Krylov [\u2261 Arenariasericea Ser.] [7]Herniariacaucasica Rupr. [7]Herniariaglabra L. [7]Heterochroadesertorum Bunge [\u2261 Gypsophiladesertorum Fenzl] Lepyrodiclisholosteoides (C.A.Mey.) Fenzl [\u2261 Gouffeiaholosteoides C.A.Mey.] Moehringialateriflora (L.) Fenzl [\u2261 Arenarialateriflora L.] Moehringiaumbrosa (Bunge) Fenzl [\u2261 Arenariaumbrosa Bunge] Pseudocherlerialaricina (L.) Dillenb. & Kadereit [\u2261 Minuartialaricina Mattf.] Pseudostellariarupestris (Turcz.) Pax Sabulinaregeliana (Trautv.) Dillenb. & Kadereit [= Minuartiaregeliana (Trautv.) Mattf.] [3]Sabulinastricta (Sw.) Rchb. [\u2261 Minuartiastricta (Sw.) Hiern] Sabulinaverna Rchb. [\u2261 Minuartiaverna (L.) Hiern] Saginasaginoides (L.) H.Karst. [7]Saponariafloribunda (Kar. & Kir.) Boiss. [\u2261 Psammophiliellafloribunda (Kar. & Kir.) Ikonn.] [14]Silenealexandrae B.Keller [14]Silenealtaica Pers. Sileneaprica Turcz. [\u2261 Ussuriaaprica (Turcz.) Tzvelev] Sileneborysthenica (Gruner) Walters Silenebungei Bocquet Silenechamarensis Turcz. [\u2261 Silenetenuissubsp.chamarensis (Turcz.) Kozhevn.] Sileneconoidea L. [7]Silenefoliosa Maxim. Silenegraminifolia Otth [= Silenesobolevskajae Czerep.] Silenegubanovii Lazkov SESileneintramongolica Lazkov Silenejeniseensis Willd. [= Sileneiche-bogdo Grubov] Silenelatifoliasubsp.alba (Mill.) Greuter & Burdet [\u2261 Lychnisalba Mill.] [7]Silenemongolica Maxim. E Silenequadriloba Turcz. Silenerepens Patrin Silenesamojedorum (Sambuk) Oxelman [\u2261 Lychnissibiricasubsp.samojedorum Sambuk.] Silenesibirica Pers. [14]Silenesongarica Bocquet [= Gastrolychnisbrachypetala (Hornem.) Tolm. & Kozhanczikov] Silenesuaveolens Kar. & Kir. Sileneuralensis (Rupr.) Bocquet Sileneviolascens (Tolm.) V.V.Petrovsky & Elven [\u2261 Gastrolychnisviolascens Tolm.] [7]Sileneviscosa Schleich. Silenevulgaris (Moench) Garcke Spergulariamarina (L.) Besser [\u2261 Arenariarubravar.marina L.] Spergulariasegetalis G.Don [14]Stellariaalsinoides Boiss. & Buhse Stellariaamblyosepala Schrenk Stellariabrachypetala Bunge Stellariabungeana Fenzl [\u2261 Hylebiabungeana (Fenzl) Tzvelev] Stellariacherleriae (Fisch.) F.N.Williams [\u2261 Arenariacherleriae Fisch.] Stellariacrassifolia Ehrh. Stellariadavurica Willd. Stellariadepressa Schmid [7]Stellariadichotoma L. [1\u201314]Stellariadichotomavar.lanceolata Bunge [= Stellariagypsophiloides Fenzl] Stellariadiscolor Turcz. Stellariafilicaulis Makino Stellariaimbricata Bunge Stellariairrigua Bunge Stellarialongifolia Muhl. Stellarialongipes Goldie [= Stellularialongipes (Goldie) MacMill.] Stellariamartjanovii Krylov [= Mesostemmamartjanovii (Krylov) Ikonn.] [7]Stellariamedia (L.) Vill. [= Alsinemedia L.] Stellariapalustris Ehrh. Stellariapetraea Bunge Stellariapulvinata Grubov Stellariaradians L. Stellariazolotuchinii A.L.Ebel [\u2261 Stellariaglandulifera N.Zolot. nom. illegit.] Celastraceae40. R.Br. (2 genera and 3 species)Euonymusmaackii Rupr. Parnassialaxmannii Pall. Parnassiapalustris L. Ceratophyllaceae41. Gray (1 genus and 2 taxa)Ceratophyllumdemersum L. Ceratophyllumplatyacanthumsubsp.oryzetorum (Kom.) Les [10]Cleomaceae42. Bercht. & J.Presl (1 genus and 1 species)Cleomegobica Grubov [15]E Convolvulaceae43. Juss. (4 genera and 15 species)Calystegiahederacea Wall. Calystegiapellita G.Don [= Calystegiadahurica Herb.] Calystegiasepium (L.) R.Br. [\u2261 Convolvulussepium L.] [14]Calystegiasubvolubilis G.Don Convolvulusammannii Desr. Convolvulusarvensis L. Convolvulusfruticosus Pall. Convolvulusgortschakovii Schrenk Convolvulustragacanthoides Turcz. Cuscutaaustralis R.Br. [9]Cuscutachinensis Lam. Cuscutaeuropaea L. Cuscutalupuliformis Krock. Cuscutamonogyna Vahl [\u2261 Monogynellamonogyna (Vahl) Hada\u010d] Merremiasibirica (L.) Hallier f. [3]Cornaceae44. Bercht. & J.Presl (1 genus and 1 species)Cornusalba L. Crassulaceae45. J.St.-Hil. (6 genera and 17 taxa)Crassulaaquatica (L.) Sch\u00f6nland Hylotelephiumewersii (Ledeb.) H.Ohba [\u2261 Sedumewersii Ledeb.] Hylotelephiumpallescens (Freyn) H.Ohba Hylotelephiumtelephium (L.) H.Ohba [\u2261 Sedumtelephium L.] [1\u201310]Orostachysfimbriata (Turcz.) A.Berger [\u2261 Cotyledonfimbriata Turcz.] Orostachysmalacophylla Fisch. [\u2261 Cotyledonmalacophylla Pall.] Orostachysspinosa (L.) Sweet [\u2261 Cotyledonspinosa L.] Orostachysthyrsiflora Fisch. Phedimusaizoon (L.) \u2018t Hart [\u2261 Sedumaizoon L.] [1\u201314]Phedimushybridus (L.) \u2018t Hart [\u2261 Sedumhybridium L.] Pseudosedumlievenii A.Berger Rhodiolaalgida (Ledeb.) Fisch. & C.A.Mey. Rhodiolacoccinea (Royle) Boriss. [7]Rhodiolalitwinowii Boriss. Rhodiolaquadrifida Fisch. & C.A.Mey. Rhodiolarosea L. [\u2261 Sedumroseum (L.) Scop.] Rhodiolastephani (Cham.) Trautv. & C.A.Mey. [= Rhodiolakrylovii Polozhij & Revjakina = Rhodiolapinnatifida Boriss. = Rhodiolasubpinnata (Krasnob.) Krasnob.] Cynomoriaceae46. Endl. (1 genus and 1 species)Cynomoriumsongaricum Rupr. [\u2261 Cynomoriumcoccineumsubsp.songaricum (Rupr.) J.L\u00e9onard] [10\u201316]Cyperaceae47. Juss. (10 genera and 131 taxa)Kobresia Willd. have been recorded in Mongolia Kukkonen Blysmusrufus Link Bolboschoenusmaritimus (L.) Palla [\u2261 Scirpusmaritimus L.] Bolboschoenusmaritimussubsp.affinis (Roth) T.Koyama [= Bolboschoenuspopovii T.V.Egorova] [10\u201316]Bolboschoenusplaniculmis (F.Schmidt) T.V.Egorova Carexaccrescens Ohwi [= Carexpallida C.A.Mey.] [2]Carexacuta L. Carexalatauensis S.R.Zhang [= Kobresiahumilis (C.A.Mey.) Serg.] Carexalba Scop. Carexaltaica (Gorodkov) V.I.Krecz. [\u2261 Carexorbicularissubsp.altaica (Gorodkov) T.V.Egorova] [3]Carexamgunensis F.Schmidt [= Carexchloroleuca Meinsh.] Carexappendiculata K\u00fck. Carexargunensis Turcz. [\u2261 Carexrupestrissubsp.argunensis (Turcz.) Vorosch.] Carexarnellii Christ Carexaterrima Hoppe Carexatherodes Spreng. Carexatrofusca Schkuhr Carexbigelowiisubsp.ensifolia (Gorodkov) Holub Carexbigelowiisubsp.rigidioides (Gorodkov) T.V.Egorova Carexbistaminata (W.Z.Di & M.J.Zhong) S.R.Zhang [\u2261 Kobresiabistaminata W.Z.Di & M.J.Zhong = Kobresiamyosuroides (Vill.) Fiori] Carexbohemica Schreb. [4]Carexborealipolaris S.R.Zhang [= Kobresiasibirica (Turcz.) Boeck. = Kobresiasmirnovii Ivanova] Carexbrunnescens (Pers.) Poir. [\u2261 Carexcurtavar.brunnescens Pers.] Carexcanescens L. Carexcapillifolia (Decne.) S.R.Zhang [= Kobresiacapilliformis Ivanova] Carexcapitata L. Carexcapricornis Meinsh. [10]Carexcaryophyllea Latourr. Carexcespitosa L. Carexchordorrhiza L.f. [2]Carexcoriophora Fisch. & C.A.Mey. Carexcuraica Kunth Carexdahurica K\u00fck. Carexdelicata C.B.Clarke Carexdiandra Schrank Carexdiluta M.Bieb. [10]Carexdistanssubsp.aspratilis (V.I.Krecz.) T.V.Egorova Carexduriuscula C.A.Mey. Carexeleusinoides Turcz. Carexenervis C.A.Mey. Carexeremopyroides V.I.Krecz. Carexericetorum Pollich [4]Carexglobularis L. Carexgotoi Ohwi [\u2261 Carexsongoricasubsp.gotoi (Ohwi) Popov] Carexhancockiana Maxim. Carexheterolepis Bunge [5]SECarexiljinii V.I.Krecz. Carexkaroi Freyn [= Carexselengensis N.A.Ivanova] Carexkorshinskii Kom. Carexlachenalii Schkuhr Carexlanceolata Boott [2]Carexlasiocarpa Ehrh. [2]Carexlaxa Wahlenb. Carexledebouriana C.A.Mey. [\u2261 Carexcapillarissubsp.ledebouriana (C.A.Mey.) Vorosch.] Carexleporina L. Carexlimosa L. [2]Carexlithophila Turcz. [\u2261 Carexdistichasubsp.lithophila (Turcz.) D.H\u00e4met-Ahti] Carexloliacea L. Carexmacrogyna Turcz. Carexmacroprophylla (Y.C.Yang) S.R.Zhang [\u2261 Kobresiafilifolia (Turcz.) C.B.Clarke \u2261 Kobresiafilifolia(Turcz.)C.B.Clarkevar.macroprophylla Y.C.Yang] CarexmagellanicaLam.subsp.irrigua (Wahlenb.) Hiitonen [\u2261 CarexlimosaL.var.irrigua Wahlenb.] Carexmedia R.Br. Carexmelanantha C.A.Mey. Carexmelanocephala Turcz. Carexmeyeriana Kunth Carexmicroglochin Wahlenb. Carexnigrasubsp.juncea (Fr.) So\u00f3 [= Carexjuncella T.M.Fries] Carexnorvegica Retz. Carexobtusata Lilj. Carexorbicularis Boott Carexpamirica(O.Fedtsch.)B.Fedtsch.subsp.dichroa (Freyn) T.V.Egorova [\u2261 CarexpullaGooden.subsp.dichroa Freyn] CarexparallelaLaest.subsp.redowskiana (C.A.Mey.) T.V.Egorova [\u2261 Carexredowskiana C.A.Mey.] Carexparva Nees [3]Carexpediformisvar.macroura (Meinsh.) K\u00fck. [\u2261 Carexmacroura Meinsh.] Carexpediformissubsp.pediformis Carexpraecox Schreb. Carexpseudofoetida K\u00fck. Carexpycnostachya Kar. & Kir. [\u2261 Carexcuraicasubsp.pycnostachya (Kar. & Kir.) T.V.Egorova] Carexraddei K\u00fck. [2]Carexrelaxa V.I.Krecz. Carexreptabunda (Trautv.) V.I.Krecz. Carexrhynchophysa Fisch. Carexrostrata Stokes Carexrupestris All. Carexsabulosa Turcz. Carexsabynensis Less. SECarexsajanensis V.I.Krecz. Carexsargentiana (Hemsl.) S.R.Zhang [\u2261 Kobresiasargentiana Hemsl. = Kobresiarobusta Maxim.] [3]Carexsaxatilis L. [= Carexsaxatilissubsp.laxa (Trautv.) Kalela] Carexschmidtii Meinsh. Carexsedakowii C.A.Mey. Carexsimpliciuscula Wahlenb. [= Kobresiasimpliciusculasubsp.subholarctica T.V.Egorova] Carexsongorica Kar. & Kir. Carexsordida Van Heurck & M\u00fcll.Arg. Carexstenophyllasubsp.stenophylloides (V.I.Krecz.) T.V.Egorova Carexsupermascula V.I.Krecz. Carextenuiflora Wahlenb. Carextomentosa L. Carextristissubsp.stenocarpa (Turcz.) T.V.Egorova Carexvaginatavar.petersii (C.A.Mey.) Akiyama [= Carexfalcata Turcz.] CarexvaginataTauschvar.vaginata Carexvesicata Meinsh. Carexwilliamsii Britton [2]Carexyamatsutana Ohwi [= Carexdiplasiocarpa V.I.Krecz.] Cyperusfuscus L. Cyperushamulosus M.Bieb. [\u2261 Mariscushamulosus (M.Bieb.) S.S.Hooper] [10]Cyperusmichelianus (L.) Delile [\u2261 Scirpusmichelianus L.] [4]Cyperuspannonicus Jacq. [\u2261 Juncelluspannonicus (Jacq.) C.B.Clarke] Eleocharisacicularis (L.) Roem. & Schult. Eleocharismamillata (H.Lindb.) H.Lindb. [10]Eleocharismitracarpa Steud. Eleocharispalustris (L.) Roem. & Schult. [\u2261 Scirpuspalustris L.] [1\u201316]Eleocharisquinqueflora (Hartmann) O.Schwarz [\u2261 Scirpusquinqueflorus Hartmann] Eleocharisuniglumis Schult. [= Eleocharisklingei (Meinsh.) B.Fedtsch.] Eleocharisyokoscensis (Franch. & Sav.) Tang & F.T.Wang [\u2261 Eleocharisacicularissubsp.yokoscensis (Franch. & Sav.) T.V.Egorova] Eriophorumaltaicum Meinsh. Eriophorumangustifolium Honck. Eriophorumangustifoliumsubsp.komarovii (V.N.Vassil.) M.S.Novos. [1\u201310]Eriophorumbrachyantherum Trautv. & C.A.Mey. Eriophorumcallitrix C.A.Mey. [1]Eriophorumchamissonis C.A.Mey. [= Eriophorummandshuricum Meinsh.] Eriophorumgracile W.D.J.Koch [= Eriophorumgracilesubsp.asiaticum (V.N.Vassil.) M.S.Novos.] Eriophorumhumile Turcz. Eriophorumvaginatum L. [3]Schoenoplectiellasupina (L.) Lye [= Schoenoplectussupinus (L.) Pall.] [10]Schoenoplectuslacustrissubsp.hippolytii (V.I.Krecz.) Kukkonen [\u2261 Scirpushippolyti V.I.Krecz.] Schoenoplectustabernaemontani (C.C.Gmel.) Pall. Schoenoplectustriqueter (L.) Palla [\u2261 Scirpustriqueter L.] [9]Scirpusorientalis Ohwi [\u2261 Scirpussylvaticussubsp.orientalis (Ohwi) Vorosch.] Scirpusradicans Schkuhr Trichophorumpumilum (Vahl) Schinz & Thell. Droseraceae48. Salisb. (2 genera and 3 species)Aldrovandavesiculosa L. [10]Droseraanglica Huds. [2]Droserarotundifolia L. [2]Elaeagnaceae49. Juss. (2 genera and 3 taxa)Elaeagnusangustifolia L. HippophaerhamnoidesSt.-Lag.subsp.mongolica Rousi [\u2261 Hippophaemongolica (Rousi) Tzvelev] HippophaerhamnoidesSt.-Lag.subsp.turkestanica Rousi [\u2261 Hippophaeturkestanica (Rousi) Tzvelev] [14]Ericaceae50. Durande (12 genera and 27 taxa)Arctostaphylosuva-ursi (L.) Spreng. [2]Arctousalpina (L.) Nied. [= Arbutusalpina L.] Cassiopeericoides D.Don [4]Chamaedaphnecalyculata (L.) Moench EmpetrumnigrumL.subsp.nigrum Empetrumnigrumsubsp.sibiricum (V.N.Vassil.) Kuvaev [\u2261 Empetrumsibiricum V.N.Vassil.] Monesesuniflora A.Gray Monotropahypopitys L. Orthiliaobtusata (Turcz.) H.Hara [\u2261 Pyrolasecundavar.obtusata Turcz.] Orthiliasecunda (L.) House [\u2261 Pyrolasecunda L] Phyllodocecaerulea (L.) Bab. [\u2261 Andromedacaerulea L.] [1]Pyrolaasarifoliasubsp.incarnata (DC.) A.E.Murray [\u2261 Pyrolarotundifoliavar.incarnata (DC.) A.P.Khokhr.] Pyrolachlorantha Sw. Pyroladaurica Kom. Pyrolamedia Sw. Pyrolaminor L. [2]Pyrolarotundifolia L. Rhododendronadamsii Rehder Rhododendronaureum Georgi Rhododendrondauricum L. Rhododendronlapponicum (L.) Wahlenb. Rhododendronledebourii Pojark. [\u2261 Rhododendrondauricumsubsp.ledebourii (Pojark.) Alexandrova & P.A.Schmidt] Rhododendrontomentosum Harmaja Vacciniummicrocarpum (Turcz.) Schmalh. [\u2261 Oxycoccusmicrocarpus Turcz.] Vacciniummyrtillus L. [\u2261 Vitis-idaeamyrtillus (L.) Moench] Vacciniumuliginosum L. Vacciniumvitis-idaea L. [\u2261 Vitis-idaeavitis-idaea (L.) Britton] Euphorbiaceae51. Juss. (1 genus and 15 species)Euphorbiaalpina C.A.Mey. [7]Euphorbiacaesia Kar. & Kir. [7]Euphorbiaesula L. [= Euphorbiadiscolor Ledeb.] Euphorbiafischeriana Steud. Euphorbiahumifusa Willd. Euphorbiakozlovii Prokh. Euphorbiamacrorhiza Ledeb. Euphorbiamongolica Prokh. Euphorbiapachyrhiza Kar. & Kir. [7]Euphorbiapilosa L. [7]Euphorbiapotaninii Prokh. Euphorbiasoongarica Boiss. [\u2261 Galarhoeussoongaricus (Boiss.) Prokh.] [7]Euphorbiasubcordata C.A.Mey. Euphorbiatshuiensis (Prokh.) Serg. Euphorbiavirgata Waldst. & Kit. [\u2261 Galarhoeusvirgatus Prokh.] Fabaceae52. Lindl. (24 genera and 328 taxa)Alhagimaurorum Medik. Alhagipseudalhagisubsp.kirghisorum (Schrenk) Yakovl. [= Alhagisparsifolia Shap.] SEAmmopiptanthusmongolicus (Maxim.) S.H.Cheng SEAstragalusadmirabilus Pjak & E.Pjak [7]Astragalusadsurgens Pall. [1\u201313]Astragalusagrestis Douglas ex G.Don Astragalusaksaicus Schischk. [7]SEAstragalusalaschanus Bunge [13]Astragalusalberti Bunge Astragalusalbicans Bong. [14]Astragalusalpinus L. Astragalusaltaicola Podlech Astragalusammodytes Pall. Astragalusankylotus Fisch. & C.A.Mey. Astragalusarcuatus Kar. & Kir. [14]Astragalusargutensis Bunge Astragalusarkalycensis Bunge Astragalusaustro-sibiricus Schischk. SEAstragalusbaitagensis Sanchir [14]Astragalusbeketowii (Krassn.) B.Fedtsch. [6]Astragalusborodinii Krasnob. Astragalusbrachybotrys Bunge Astragalusbrevifolius Ledeb. SEAstragalusburtschumensis Sumnev. Astragaluscandidissimus Ledeb. Astragaluschamonobrychis Podlech [7]E Astragaluschangaicus Sanchir E Astragaluschinensis L.f. SEAstragaluschorinensis Bunge [= Astragaluspseudochorinensis N.Ulziykh.] Astragaluschubsugulicus Gontsch. ex N.Ulziykh. [1]E Astragaluscompressus Ledeb. [7]Astragalusconfertus Benth. Astragalusconsanguineus Bong. & C.A.Mey. [10]Astragaluscontortuplicatus L. [14]Astragalusdahuricus Patrin Astragalusdanicus Retz. Astragalusdepauperatus Ledeb. Astragalusdilutus Bunge Astragalusdschimensis Gontsch. Astragalusellipsoideus Ledeb. Astragalusfiliformis (DC.) Poir. [\u2261 Oxytropisfiliformis DC.] Astragalusfollicularis Pall. [3]Astragalusfrigidus A.Gray Astragalusfruticosus Pall. Astragalusgalactites Pall. Astragalusglomeratus Ledeb. Astragalusgobicus Hanelt & Davaz. E Astragalusgranitovii Sanchir E SEAstragalusgregorii B. Fedtsch. & Basil. [7]SEAstragalusgrubovii Sanchir [= Astragalusalaschanensis H.C.Fu] SEAstragalusgrum-grshimailoi Palib. [7]Astragalusgubanovii N.Ulziykh. E SEAstragalushabaheensis Y.X.Liou [14]SEAstragalushamiensis S.B.Ho [= Astragalusbanzragczii N.Ulziykh.] [14]SEAstragalushsinbaticus P.Y.Fu & Y.A.Chen [= Astragalusquasitesticulatus Barratte & Z.Y.Chu] [9]Astragalushypogaeus Ledeb. Astragalusinopinatus Boriss. SEAstragalusjunatovii Sanchir Astragaluskasachstanicus Golosk. [7]Astragaluskaufmannii Krylov Astragaluskenteicus N.Ulziykh. [2]E Astragalusklementzii N.Ulziykh. [3]Astragaluskoslovii B.Fedtsch. & N.Basil. [13]E Astragaluskurtschumensis Bunge Astragaluslaguroides Pall. [= Astragalusgobi-altaicus N.Ulziykh.] Astragaluslasiopetalus Bunge Astragaluslaxmannii Jacq. Astragaluslepsensis Bunge [7]Astragalusleptostachys Pall. [= Astragalusmacropterus DC. = Astragalusmulticaulis Ledeb.] SEAstragaluslupulinus Pall. SEAstragalusluxurians Bunge [7]Astragalusmacrolobus M.Bieb.[= Astragalusmacrocerus C.A.Mey.] Astragalusmacrotrichus E.Peter Astragalusmajevskianus Krylov [7]Astragalusmegalanthus DC. Astragalusmelilotoides Pall. Astragalusminiatus Bunge Astragalusmongholicus Bunge [= Astragalusmembranaceus Fisch. = Astragaluspropinquus Schischk.] Astragalusmonophyllus Bunge [6\u201316]Astragalusnorvegicus Weber SEAstragalusochrias Bunge Astragalusonobrychis L. [10]Astragalusortholobus Bunge [7]Astragalusoxyglottis Steven Astragaluspallasii Spreng. [= Astragaluslasiophyllus Ledeb.] [14]SEAstragaluspavlovii B.Fedtsch. & Basil. [13\u201316]Astragaluspeterae Tsai & Yu Astragalusphysocarpus Ledeb. [7]SEAstragaluspolitovii Krylov [7]SEAstragaluspolozhiae Timokhina SEAstragaluspseudoborodinii S.B.Ho [= Astragalusbaischinticus N.Ulziykh.] [14]Astragaluspseudobrachytropis Gontsch. [6]Astragaluspseudotesticulatus Sanchir [7]E Astragaluspseudovulpinus Sanchir [14]E Astragaluspuberulus Ledeb. [\u2261 Craccinapuberula (Ledeb.) Steven] Astragalusroseus Ledeb. Astragalusrudolffii N.Ulziykh. Astragalusrytidocarpus Ledeb. Astragalussabuletorum Ledeb. Astragalussaichanensis Sanchir E Astragalussanczirii N.Ulziykh. E SEAstragalussaralensis Gontsch. [1]Astragalusscaberrimus Bunge Astragalusscabrisetus Bong. [15]Astragalusschanginianus Pall. [7]Astragalusschrenkianus Fisch. & C.A.Mey. [7]Astragalusscleropodius Ledeb. [7]Astragalussecundus DC. [\u2261 Astragalusfrigidussubsp.secundus (DC.) Vorosch.] Astragalussphaerocystis Bunge [7]Astragalusstenoceras C.A.Mey. [10]Astragalussuffruticosus DC. Astragalussulcatus L. Astragalustamiricus N.Ulziykh. [3]E Astragalustenuis Turcz. [\u2261 AstragalusmelilotoidesPall.var.tenuis (Turcz.) Ledeb.] Astragalustephrolobus Bunge [7]Astragalustibetanus Benth. Astragalustschujensis Bunge [7]Astragalustulinovii B.Fedtsch. [7]SEAstragalustuvinicus Timokhina Astragalusuliginosus L. Astragalusulziykhutagii Sytin [= Astragalusalexandrii N.Ulziykh.] [7]E Astragalusurunguensis N.Ulziykh. [14]SEAstragalusvallestris Kamelin Astragalusvariabilis Bunge Astragalusversicolor Pall. [= Astragalusalexandrii N.Ulziykh. nom. illegit.] Astragalusviridiflavus N.Ulziykh. E Astragalusxanthotrichos Ledeb. [7]SEAstragalusyumenensis S.B.Ho SEAstragaluszacharensis Bunge [9]Astragaluszaissanensis Sumnev. [7]Caraganaarborescens Lam. Caraganabrachypoda Pojark. Caraganabungei Ledeb. SECaraganadavazamcii Sanchir [\u2261 Caraganakorshinskiivar.davazamcii (Sanchir) Yakovlev] Caraganagobica Sanczir E Caraganahalodendron Dum.Cours. [\u2261 Halimodendronhalodendron Voss.] Caraganajubata Poir. SECaraganakorshinskii Kom. Caraganaleucophloea Pojark. Caraganamicrophylla Lam. Caraganapygmaea (L.) DC. [\u2261 Robiniapygmaea L.] [1\u201314]Caraganaspinosa (L.) Vahl Caraganastenophylla Pojark. SECaraganatibetica Kom. Chesneyaferganensis Korsh. [\u2261 Chesniellaferganensis (Korsh.) Boriss.] [15]SEChesneyamongolica Maxim. SEChesniellamacrantha (W.C.Cheng) L.Duan, J.Wen & Zhao Y.Chang [= Spongiocarpellagrubovii (N.Ulziykh.) Yakovlev] Cicersongaricum Steph. [7]Corethrodendronfruticosum B.H.Choi & H.Ohashi [\u2261= Hedysarumfruticosum Pall.] Corethrodendronscoparium (Fisch. & C.A.Mey.) Fisch. & Basiner [\u2261 Hedysarumscoparium Fisch. & C.A.Mey. = Hedysarumarbuscula Maxim.] Glycyrrhizaaspera Pall. Glycyrrhizaglabra L. [= Glycyrrhizaalaschanica Grankina] SEGlycyrrhizainflata Batalin Glycyrrhizapallidiflora Maxim. [9]SEGlycyrrhizasquamulosa Franch. Glycyrrhizauralensis Fisch. [= Glycyrrhizagobica Grankina = Glycyrrhizasoongorica Grankina] Gueldenstaedtiamonophylla Fisch. Gueldenstaedtiaverna (Georgi) Boriss. [= Gueldenstaedtiastenophylla Bunge] Hedysarumalpinum L. [\u2261 Echinolobiumalpinum (L.) Desv.] Hedysarumaustrosibiricum B.Fedtsch. [\u2261 Hedysarumhedysaroidessubsp.austrosibiricum (B.Fedtsch.) Jurtzev] Hedysarumbrachypterum Bunge SEHedysarumchalchorum N.Ulziykh. Hedysarumconsanguineum DC. [7]Hedysarumdahuricum Turcz. [\u2261 Hedysarumgmeliniivar.dahuricum (Turcz.) R.Sha] Hedysarumferganense Korsh. Hedysarumgmelinii Ledeb. Hedysarumhedysaroidessubsp.arcticum (B.Fedtsch.) P.W.Ball [\u2261 Hedysarumarcticum B.Fedtsch.] Hedysarumiliense B.Fedtsch. [7]Hedysaruminundatum Turcz. Hedysarumkamelinii N.Ulziykh. [7]Hedysarumkrylovii Sumn. [7]Hedysarumlintschevskyi Bajtenov Hedysarumneglectum Ledeb. Hedysarumroseum Sims Hedysarumsajanicum N.Ulziykh. [1]SEHedysarumsangilense Krasnob. & Timokhina Hedysarumsetigerum Turcz. Hedysarumtheinum Krasnob. [7]Lathyrushumilis (Ser.) Fisch. [\u2261 Orobushumilis Ser.] Lathyrusledebourii Trautv. [7]LathyruspalustrisL.subsp.pilosus (Cham.) Hult\u00e9n Lathyruspisiformis L. Lathyruspratensis L. Lathyrusquinquenervius (Miq.) Litv. Lespedezabicolor Turcz. [5]Lespedezadaurica (Laxm.) Schindl. [\u2261 Trifoliumdauricum Laxm.] Lespedezajuncea (L.f.) Pers. Lespedezatomentosa Siebold Lotuskrylovii Schischk. & Serg. Medicagofalcata L. Medicagolupulina L. Medicagoplatycarpa (L.) Trautv. Medicagoruthenica Trautv. Melilotusdentatus Pers. Melilotusofficinalis (L.) Lam. Melilotussuaveolens Ledeb. [\u2261 Trigonellasuaveolens (Ledeb.) Coulot & Rabaute] Melilotuswolgicus Poir. Onobrychisarenaria(Kit.)DC.subsparenaria Onobrychisarenariasubsp.sibirica (Turcz.) P.W.Ball [\u2261 Onobrychissibirica (Sirj.) Turcz.] SEOxytropisacanthacea Jurtzev Oxytropisaciphylla Ledeb. SEOxytropisalpestris Schischk. [7]Oxytropisalpicola Turcz. [2]Oxytropisalpina Bunge Oxytropisaltaica Pers. Oxytropisambigua DC. Oxytropisampullata Pers. SEOxytropisbaicalia Pers. SEOxytropisbicolor Bunge [9]Oxytropisbrachycarpa Vassilcz. [7]Oxytropisbungei Kom. E Oxytropiscaerulea DC. Oxytropiscaespitosa Pers. Oxytropiscampanulata Vassilcz. Oxytropischionophylla Schrenk Oxytropisdeflexa DC. Oxytropisdiantha Bunge [= Oxytropischangaica B.Fedtsch. & Basil.] SEOxytropisdubia Turcz. [2]SEOxytropiseriocarpa Bunge Oxytropisfalcata Bunge Oxytropisfragilifolia N.Ulziykh. E SEOxytropisgebleri Fisch. Oxytropisglabra DC. Oxytropisglandulosa Turcz. Oxytropisglareosa Vassilcz. Oxytropisgorbunovii Boriss. Oxytropisgrandiflora DC. Oxytropishailarensis Kitag. SEOxytropisheterophylla Bunge Oxytropishirta Bunge [5]SEOxytropisintermedia Bunge Oxytropisjunatovii Sanchir [13]E SEOxytropisjurtzevii Malyschev [1]Oxytropisklementzii N.Ulziykh. E SEOxytropiskomarovii Vassilcz. SEOxytropiskossinskyi B.Fedtsch. & Basil. Oxytropiskrylovii Schipcz. [7]SEOxytropiskusnetzovii Kryl. & Steinb. Oxytropisladyginii Krylov [7]Oxytropislanata DC. SEOxytropislanuginosa Kom. Oxytropislapponica Gaudin Oxytropislasiopoda Bunge SEOxytropislatibracteata Jurtzev [3]Oxytropislavrenkoi N.Ulziykh. [12]E Oxytropisleptophylla DC. SEOxytropisleucotricha Turcz. Oxytropislongirostra DC. Oxytropismacrosema Bunge SEOxytropismartjanovii Krylov Oxytropismicrantha Bunge E Oxytropismicrophylla DC. SEOxytropismixotriche Bunge SEOxytropismongolica Kom. SEOxytropismonophylla Grubov Oxytropismuricata DC. Oxytropismyriophylla DC. SEOxytropisnitens Turcz. SEOxytropisochrantha Turcz. [9]Oxytropisoligantha Bunge Oxytropisoxyphylla DC. Oxytropispauciflora Bunge Oxytropispavlovii B.Fedtsch. & Basil. E SEOxytropisphysocarpa Ledeb. [7]Oxytropispotaninii Bunge E SEOxytropisprostrata DC. SEOxytropispseudoglandulosa Gontsch. Oxytropispuberula Boriss. Oxytropispumila Fisch. Oxytropisracemosa Turcz. [= Oxytropisgracillima Bunge] Oxytropisrecognita Bunge SEOxytropisreverdattoi Jurtzev SEOxytropisrhizantha Palib. Oxytropisrhynchophysa Schrenk SEOxytropissacciformis H.C.Fu [12]SEOxytropissajanensis Jurtzev Oxytropissaposhnikovii Krylov SEOxytropisselengensis Bunge SEOxytropissetosa DC. Oxytropissongorica DC. [7]Oxytropissordida (Willd.) Pers. [1]Oxytropissquammulosa DC. SEOxytropisstenophylla Bunge Oxytropisstrobilacea Bunge SEOxytropisstukovii Palib. Oxytropissulphurea Ledeb. [7]Oxytropissutaica N.Ulziykh. E Oxytropistenuis Palib. E Oxytropisteres DC. [7]Oxytropistragacanthoides Fisch. Oxytropistrichophysa Bunge SEOxytropistschujae Bunge SEOxytropisturczaninovii Jurtzev Oxytropisulzijchutagii Sanchir [7]E SEOxytropisvarlakovii Serg. Oxytropisviridiflava Kom. E Sophoraalopecuroides L. [12\u201316]Sophoraflavescens Aiton Sphaerophysasalsula DC. Thermopsisalpina Ledeb. SEThermopsisdahurica Czefr. Thermopsislanceolata R.Br. [= Thermopsislanceolatavar.glabra (Czefr.) Yakovlev] Thermopsislongicarpa N.Ulziykh. E Thermopsismongolica Czefr. [\u2261 Thermopsislanceolatavar.mongolica (Czefr.) Q.R.Wang & X.Y.Zhu] SEThermopsisprzewalskii Czefr. Trifoliumeximium Steph. Trifoliumlupinaster L. [1\u20139]Trifoliumpratense L. Trifoliumrepens L. Trigonellaarcuata C.A.Mey. Trigonellacancellata Desf. Viciaamoena Fisch. [= Viciaamoenasubsp.sericea (Kitag.) Kamelin & Gubanov] Viciaamurensis Oett. Viciacostata Ledeb. Viciacracca L. Viciageminiflora Trautv. Viciajaponica A.Gray Viciamacrantha Jurtzev [= Viciamacranthasubsp.olchonensis Peschkova] Viciamegalotropis Ledeb.. Viciamulticaulis Ledeb. [= Vicianervata Sipliv.] SEViciaolchonensis (Peschkova) O.D.Nikif. [\u2261 Viciamacranthasubsp.olchonensis Peschkova] Viciapseudorobus Fisch. & C.A.Mey. Viciaramuliflora (Maxim.) Ohwi [= Viciabaicalensis (Turcz.) B.Fedtsch.] Viciasemenovii B.Fedtsch. Viciatenuifolia Roth SEViciatsydenii Malyshev [4]Viciaunijuga A.Braun [1\u20138]Viciavenosa Maxim. Frankeniaceae53. Desv. (1 genus and 2 species)Frankeniapulverulenta L. [10]SEFrankeniatuvinica Lomon. [10]Gentianaceae54. Juss. (8 genera and 32 taxa)Centauriumpulchellumsubsp.meyeri (Bunge) Tzvelev Centauriumpulchellum(Sw.)Hayeksubsp.pulchellum Comastomafalcatum (Turcz.) Toyokuni Comastomamalyschevii (Zuev) Zuev [\u2261 Gentianellamalyschevii Zuev] Comastomapulmonarium (Turcz.) Toyokuni Comastomatenellum (Rottb.) Toyok. [\u2261 Gentianatenella Rottb.] Gentianaalgida Pall. GentianaaquaticaL.subsp.aquatica Gentianaaquaticavar.pseudoaquatica (Kusn.) S.Agrawal [\u2261 Gentianapseudoaquatica Kusnezow] Gentianadahurica Fisch. [\u2261 Dasystephanadahurica (Fisch.) Zuev] Gentianadecumbens L.f. [\u2261 Dasystephanadecumbens (L.f.) Zuev] Gentianagrandiflora Laxm. Gentianaleucomelaena Maxim. [\u2261 Ciminalisleucomelaena (Maxim.) Zuev] Gentianamacrophylla Pall. Gentianaprostrata Haenke Gentianakarelinii Griseb. [\u2261 Gentianaprostratavar.karelinii (Griseb.) Kusn.] [7]Gentianariparia Kar. & Kir. Gentianasquarrosa Ledeb. [\u2261 Ciminalissquarrosa (Ledeb.) Zuev] [1\u201311]Gentianatriflora Pall. Gentianauniflora Georgi GentianellaamarellaL.subsp.acuta (Michx.) J.M.Gillett [\u2261 Gentianaacuta Michx.] Gentianellaatrata (Bunge) Holub [5]Gentianellaaurea (L.) Harry Sm. Gentianellaturkestanorum (Gand.) Holub Gentianopsisbarbata (Froel.) Ma Haleniacorniculata (L.) Cornaz [\u2261 Swertiacorniculata L.] Lomatogoniumcarinthiacum (Wulfen) Rchb. [\u2261 Swertiacarinthiaca Wulfen] Lomatogoniumrotatum Fr. Swertiabanzragczii Sanchir Swertiadichotoma L. [\u2261 Anagallidiumdichotomum (L.) Griseb.] Swertiamarginata Schrenk [= Swertiakomarovii Pissjauk.] Swertiaobtusa Ledeb. Geraniaceae55. Juss. (2 genera and 19 taxa)Erodiumcicutarium (L.) L\u2019H\u00e9r. Erodiumstephanianum Willd. Erodiumtibetanum Edgew. & Hook.f. Geraniumaffine Ledeb. Geraniumalbiflorum Ledeb. Geraniumamurense Tsyren. Geraniumcollinum Stephan Geraniumdahuricum DC. Geraniumkrylovii Tzvelev Geraniumlaetum Ledeb. Geraniumpamiricum Ikonn. [14]Geraniumplatyanthum Duthie Geraniumpratense L. Geraniumpseudosibiricum J.Mayer Geraniumsaxatile Kar. & Kir. Geraniumsibiricum L. Geraniumtransbaicalicum Serg. Geraniumtransbaicalicumsubsp.turczaninovii (Serg.) Peschkova Geraniumwlassovianum Fisch. Grossulariaceae56. DC. (1 genus and 12 taxa)Ribesaciculare Sm. [\u2261 Grossulariaacicularis (Sm.) Spach] Ribesdiacanthum Pall. [=Ribesdiacanthum f. weichangense J.X.Huang & J.Z.Wang] Ribesfragrans Pall. Ribesgraveolens Bunge Ribesheterotrichum C.A.Mey. Ribesmeyeri Maxim. Ribesnigrum L. Ribespetraeum Wulfen [= Ribesaltissimum Turcz.] Ribesprocumbens Pall. Ribespulchellum Turcz. Ribesrubrum L. Ribesspicatum E.Robson Haloragaceae57. R.Br. (1 genus and 3 species)Myriophyllumsibiricum Kom. [5]Myriophyllumspicatum L. Myriophyllumverticillatum L. Hydrocharitaceae58. Juss. (2 genera and 5 species)Hydrillaverticillata (L.f.) Royle [\u2261 Serpiculaverticillata L.f.] [10]Najasflexilis (Willd.) Rostk. & W.L.E.Schmidt [\u2261 Cauliniaflexilis Willd.] [10]Najasmarina L. Najasminor All. [10]Najastenuissima (A.Braun) Magnus [\u2261 Cauliniatenuissima (A.Braun) Tzvelev] [10]Hypericaceae59. Juss. (1 genus and 4 taxa)HypericumascyronL.subsp.ascyron Hypericumascyronsubsp.gebleri (Ledeb.) N.Robson [\u2261 Hypericumgebleri Ledeb.] [2]Hypericumattenuatum Choisy Hypericumperforatum L. Iridaceae60. Juss. (1 genus and 21 taxa)SEIrisbungei Maxim. [\u2261 Cryptobasisbungei (Maxim.) M.B.Crespo] Irisdichotoma Pall. Irisglaucescens Bunge [6]Irishalophila Pall. [\u2261 Chamaeirishalophila M.B.Crespo] Irishumilis Georgi [= Irisflavissima Pall.] SEIrisivanovae Doronkin SEIriskamelinii Alexeeva Irislactea Pall. [\u2261 Eremirislactea Rodion.] Irisloczyi Kanitz Irisludwigii Maxim. [\u2261 Xyridionludwigii (Maxim.) Rodion.] [7]Irispotaninii Maxim. Irispsammocola Y.T.Zhao [10]SEIrispseudothoroldii Galanin [4]Irisruthenicasubsp.brevituba (Maxim.) Doronkin [\u2261 Irisruthenicavar.brevituba Maxim.] IrisruthenicaKer Gawl.subsp.ruthenica Irisschmakovii Alexeeva [1]E Irissibirica L. [= Irissanguinea Donn] Iristenuifolia Pall. [7\u201315]Iristigridia Bunge Irisuniflora Pall. [\u2261 Jonirisuniflora M.B.Crespo] Irisventricosa Pall. [\u2261 Cryptobasisventricosa M.B.Crespo] Juncaceae61. Juss. (2 genera and 32 taxa)Juncusalpinoarticulatussubsp.fischerianus (V.I.Krecz.) H\u00e4met-Ahti SEJuncusarcticussubsp.grubovii (Novikov) Novikov [\u2261 Juncusgrubovii Novikov] JuncusarticulatusL.subsp.articulatus Juncusarticulatussubsp.limosus (Vorosch.) Vorosch. [\u2261 Juncuslimosus Vorosch.] Juncusbiglumis L. Juncusbufonius L. [1\u201316]Juncuscastaneussubsp.leucochlamys (V.I.Krecz.) Hult\u00e9n [\u2261 Juncusleucochlamys V.I.Krecz.] Juncuscastaneussubsp.triceps (Rostk.) Novikov Juncuscompressus Jacq. Juncusfiliformis L. [7]Juncusgerardi Loisel Juncusgracillimus (Buchenau) V.I.Krecz. & Gontsch. Juncushybridus Brot. [= Juncusbufoniussubsp.ambiguus (Guss.) Schinz & Thell.] Juncusorchonicus Novikov Juncuspersicussubsp.libanoticus (J.Thi\u00e9baut) Novikov & Snogerup [= Juncuslibanoticus J.Thi\u00e9baut] Juncusranarius Songeon & E.P.Perrier [= Juncusbufoniussubsp.nastanthus (V.I.Krecz. & Gontsch.) So\u00f3] Juncussalsuginosus Turcz. Juncussoranthus Schrenk Juncustriglumis L. Juncusturkestanicus V.I.Krecz. & Gontsch. [\u2261 Juncusbufoniussubsp.turkestanicus (V.I.Krecz. & Gontsch.) Novikov] Juncusvirens Buchenau [\u2261 Juncuspapillosusvar.virens (Buchenau) Vorosch.] [4]Luzulaconfusa Lindeb. Luzulamultiflora (Ehrh.) Lej. [3]Luzulamultiflorasubsp.frigida (Buchenau) V.I.Krecz. [7]Luzulamultiflorasubsp.sibirica V.I.Krecz. [\u2261 Luzulasibirica (V.I.Krecz.) V.I.Krecz.] Luzulanivalis (Laest.) Spreng. [\u2261 Luzulacampestrisvar.nivalis Laest.] [1]Luzulapallescens Sw. Luzulaparviflora Desv. Luzulapilosa (L.) Willd. [\u2261 Juncuspilosus L.] [2]Luzularufescensvar.macrocarpa Buchenau [= Luzulachangaica Novikov] [3]Luzulaspicatasubsp.mongolica Novikov LuzularufescensFisch.var.rufescens Juncaginaceae62. Juss. (1 genus and 2 species)Triglochinmaritima L. [1\u201316]Triglochinpalustris L. Lamiaceae63. Martinov (22 genera and 103 taxa)Phlomisoreophila in Mongolia was identified as Phlmoideschinghoensis by Note: The herbarium records of Amethysteacaerulea L. Caryopterismongholica Bunge Dracocephalumargunense Fisch. [5]Dracocephalumdiscolor Bunge Dracocephalumfoetidum Bunge Dracocephalumfragile Turcz. Dracocephalumfruticulosum Stephan Dracocephalumgrandiflorum L. Dracocephalumheterophyllumsubsp.heterophyllum Benth. [3]Dracocephalumheterophyllumsubsp.ovalifolium A.L.Budantzev [\u2261 Dracocephalumovalifolium (A.L.Budantzev) Doronkin] [3]Dracocephalumimberbe Bunge Dracocephalumintegrifolium Bunge [\u2261 Ruyschianaintegrifolia (Bunge) House] Dracocephalumjunatovii A.L.Budantzev Dracocephalummoldavicum C.Morren Dracocephalumnodulosum Rupr. [14]Dracocephalumnutans L. Dracocephalumolchonense Peschkova [4]DracocephalumoriganoidesSteph.subsp.origanoides Dracocephalumoriganoidessubsp.bungeanum Hyl. Elsholtziadensa Benth. Galeopsisbifida Boenn. [\u2261 Galeopsistetrahitvar.bifida (Boenn.) Lej. & Courtois] Hyssopusambiguus (Trautv.) Iljin [= Hyssopusofficinalisvar.ambiguus Trautv.] [7]Hyssopuscuspidatus Boriss. Lagochilusbungei Benth. Lagochilusdiacanthophyllus Benth. Lagochilusilicifolius Bunge Lagopsisdarwiniana Pjak [7]E Lagopsiseriostachya (Benth.) Ikonn.-Gal. Lagopsisflava Kar. & Kir. [7]Lagopsismarrubiastrum (Steph.) Ikonn.-Gal. Lagopsissupina (Steph.) Ikonn.-Gal. Lamiumalbum L. Leonurusdeminutus V.I.Krecz. [\u2261 Leonurusglaucescensvar.deminutus (V.I.Krecz.) Karav.] Leonurusglaucescens Bunge Leonurusmongolicus V.I.Krecz. & Kuprian. Leonuruspseudopanzerioides Krestovsk. [= Leonuruscardiacasubsp.turkestanicus (V.I.Krecz. & Kuprian.) Rech.f.] Leonurussibiricus L. Leonurusturkestanicus V.I.Krecz. & Kuprian. [7]Lophanthuschinensis Benth. Lophanthuskrylovii Lipsky [7]Lycopuslucidus Turcz. [9]Menthaaquatica L. [4]Menthaarvensis L. Menthacanadensis L. [2]Nepetaannua Pall. [\u2261 Schizonepetaannua Schischk.] Nepetadensiflora Kar. & Kir. Nepetamicrantha Bunge Nepetamultifida L. Nepetanuda L. [6]Nepetapungens Benth. [14]Nepetasibirica L. Origanumvulgare L. Panzerinacanescens (Bunge) Soj\u00e1k Panzerinalanata (L.) Soj\u00e1k [\u2261 Ballotalanata Willd.] Phlomoidesagraria (Bunge) Adylov [\u2261 Phlomisagraria Bunge] Phlomoidesalpina Adylov [\u2261 Phlomisalpina Pall.] [7]SEPhlomoideschinghoensis (C.Y.Wu) Kamelin & Makhm. [\u2261 Phlomischinghoensis C.Y.Wu] Phlomoidesmolucelloides (Bunge) Salmaki [\u2261 Eremostachysmolucelloides Bunge] Phlomoidesmongolica (Turcz.) Kamelin & A.L.Budantzev [\u2261 Phlomismongolica Turcz.] Phlomoidespratensis (Kar. & Kir.) Adylov [\u2261 Phlomispratensis Kar. & Kir.] [6]Phlomoidestuberosa Moench [\u2261 Phlomistuberosa L.] [2\u20139]Phlomoidestuvinica (A.Schroet.) Kamelin [\u2261 Phlomistuvinica A.Schroet.] Salviaabrotanoides (Kar.) Sytsma [\u2261 Perovskiaabrotanoides Kar.] [6]Salviadeserta Schangin [6]Scutellariaaltaica Ledeb. [7]Scutellariabaicalensis Georgi Scutellariadependens Maxim. Scutellariagalericulata L. ScutellariagrandifloraSimssubsp.grandiflora Scutellariagrandiflorasubsp.gymnosperma Kamelin & Gubanov E Scutellariakrasevii Kom. & I.Schischk. [3]Scutellariapaulsenii Briq. [7]Scutellariaregelianavar.ikonnikovii (Juz.) C.Y.Wu & H.W.Li Scutellariascordiifolia Fisch. [1\u20139]Scutellariasieversii Bunge Scutellariasupina L. [\u2261 Scutellariaalpinasubsp.supina (L.) I.Richardson] Scutellariatuvensis Juz. [\u2261 Scutellariagrandiflorasubsp.tuvensis (Juz.) Kamelin & Gubanov] [10]Scutellariaviscidula Bunge [9]Stachysasperasubsp.baicalensis (Fisch.) Krestovsk. [\u2261 Stachysbaicalensis Fisch.] Stachyspalustris L. Thymusaltaicus Klokov & Des.-Shost. Thymusbaicalensis Serg. Thymusbituminosus Klokov [1]Thymusdahuricus Serg. Thymusgobi-altaicus (N.Ulziykh.) Kamelin & A.L.Budantzev [13]E Thymusgobicus Tscherneva Thymuskomarovii Serg. [9]Thymusmichaelis Kamelin & A.L.Budantzev Thymusminussinensis Serg. [10]Thymusmongolicus (Ronniger) Ronniger Thymusnarymensis Serg. [7]Thymuspavlovii Serg. Thymusroseus Schipcz. [7]Thymussibiricus Klokov & Des.-Shost. [4]Thymusturczaninovii Serg. [9]ZiziphoraclinopodioidesLam.subsp.clinopodioides Ziziphoraclinopodioidessubsp.bungeana (Juz.) Rech.f. [\u2261 Ziziphorabungeana Juz.] Ziziphorapamiroalaica Juz. Lentibulariaceae64. Rich. (2 genera and 7 species)Pinguiculaalpina L. [1]Pinguiculavulgaris L. [1]Utriculariaaustralis R.Br. Utriculariaintermedia Hayne [\u2261 Lentibulariaintermedia (Hayne) Nieuwl. & Lunell] Utricularia\u00d7japonica Makino [10]Utriculariaminor L. Utriculariavulgaris L. [\u2261 Lentibulariavulgaris (L.) Moench] Liliaceae65. Juss. (5 genera and 15 taxa)Erythroniumsibiricum (Fisch. & C.A.Mey.) Krylov [7]SEFritillariadagana Turcz. Gageabrevistolonifera Levichev [7]Gageafiliformis Merckl. [7]Gageagranulosa Turcz. [7]Gageahiensis Pasch. [= Gageaterraccianoana Pasch.] SEGageakuraiensis Levichev [7]Gageafragifera (Vill.) Ehr.Bayer & G.L\u00f3pez [= Gagealiotardii (Sternb.) Schult. & Schult. f.] [7]Gageapauciflora Turcz. Gageaserotina (L.) Ker Gawl. [\u2261 Lloydiaserotina (L.) Salisb.] Liliumconcolorvar.partheneion (Siebold & de Vriese) Baker [= Liliumbuschianum G.Lodd.] [5]Liliummartagon L. [1\u20137]Liliumpensylvanicum Ker Gawl. [= Liliumdauricum Ker Gawl.] Liliumpumilum Redout\u00e9 [= Liliumpotaninii Vrishcz] Tulipauniflora (L.) Besser Linaceae66. DC. (1 genus and 5 species)Linumaltaicum Ledeb. Linumbaicalense Juz. Linumpallescens Bunge Linumperenne L. Linumviolascens Bunge [7]Lythraceae67. J.St.-Hil. (1 genus and 3 species)Lythrumsalicaria L. [4]Lythrumvirgatum L. Lythrumborysthenicum (Schrank) Litv. [\u2261 Peplisborysthenica Schrank] [10]Malvaceae68. Juss. (2 genera and 5 species)Abutilontheophrasti Medik. [15]Malvaneglecta Wallr.. Malvapusilla Sm. Malvasylvestris L. Malvaverticillata L. Mazaceae69. Reveal (3 genera and 3 species)Mazaceae was separated from Phrymaceae according to Note: Dodartiaorientalis L. Lanceatibetica Hook.f. & Thomson Mazusstachydifolius Maxim. [5]Melanthiaceae70. Batsch (3 genera and 5 species)Anticleasibirica(L.) Kunth [\u2261 Zigadenussibiricus (L.) A.Gray] Parisquadrifolia L. Parisverticillata M.Bieb. Veratrumlobelianum Bernh. Veratrumnigrum L. Menispermaceae71. Juss. (1 genus and 1 species)Menispermumdauricum DC. Menyanthaceae72. Dumort. (2 genera and 2 species)Nymphoidespeltata (S.G.Gmel.) Kuntze Menyanthestrifoliata L. Molluginaceae73. Bartl. (1 genus and 1 species)Hyperteliscerviana (L.) Thulin [\u2261 Mollugocerviana (L.) Ser.] Montiaceae74. Raf. (1 genus and 1 species)Claytoniajoanneana Roem. & Schult. Nitrariaceae75. Lindl. (2 genera and 5 species)Nitrariaroborowskii Kom. [\u2261 Nitrariaschoberivar.roborowskii (Kom.) Grubov] Nitrariasibirica Poir. Nitrariasphaerocarpa Maxim. Peganumharmala L. [= Peganummultisectum (Maxim.) Bobrov] Peganumnigellastrum Bunge Nymphaeaceae76. Salisb. (2 genera and 2 species)Nymphaeatetragona Georgi is not recorded in Mongolia, according to Note: Recently, this family was revised based on field observations and extensive herbarium specimens in Mongolia . NymphaeNupharpumila (Timm) DC. Nymphaeacandida J.Presl. Onagraceae77. Juss. (2 genera and 12 taxa)CircaeaalpinaL.subsp.alpina Circaeaalpinasubsp.caulescens (Kom.) Tatew. [3]Epilobiumanagallidifolium Lam. [= Epilobiumalpinum L.] [7]Epilobiumangustifolium L. [\u2261 Chamaenerionangustifolium (L.) Schur] Epilobiumciliatum Raf. [2]Epilobiumdavuricum Fisch. Epilobiumfastigiato-ramosum Nakai [= Epilobiumbaicalense Popov] Epilobiumhirsutum L. Epilobiumlatifolium L. [= Chamaenerionlatifolium (L.) Sweet] Epilobiumminutiflorum Hausskn. Epilobiumnervosum Boiss. & Buhse [7]Epilobiumpalustre L. Orchidaceae78. Juss. (14 genera and 26 taxa)Note: Orchids of Mongolia were recently revised by Calypso bulbosa (L.) Oakes [= Cypripediumbulbosum L.] Corallorhizatrifida Ch\u00e2tel. Cypripediumcalceolus L.. Cypripediumguttatum Sw. Cypripediummacranthos Sw. Cypripediumxventricosum Sw. [2]Dactylorhizafuchsii (Druce) So\u00f3 Dactylorhizaincarnata (L.) So\u00f3 Dactylorhizaincarnatasubsp.cruenta (O.F.M\u00fcll.) P.D.Sell [3]Dactylorhizasalina (Turcz.) So\u00f3 Dactylorhizaumbrosa (Kar. & Kir.) Nevski Dactylorhizaviridis (L.) R.M.Bateman [= Coeloglossumviride (L.) Hartm.] [1\u20137]Epipogiumaphyllum Sw. Goodyerarepens (L.) R.Br. Gymnadeniaconopsea (L.) R.Br. [\u2261 Orchisconopsea L.] [1\u20135]Herminiumalaschanicum Maxim. [\u2261 Peristylusalaschanicus (Maxim.) N.Pearce & P.J.Cribb] [16]Herminiummonorchis R.Br. Malaxismonophyllos (L.) Sw. [\u2261 Ophrysmonophyllos L.] Neottiacamtschatea Sprengel Neottiapuberula (Maxim.) Szlach. [\u2261 Listerapuberula Maxim.] [5]Orchismilitaris L. Platantherabifolia (L.) Rich. Platantherafuscescens Kraenzl. Platantheraoligantha Turcz. Ponerorchiscucullata (L.) X.H.Jin [\u2261 Neottianthecucullata (L.) Schltr.] Spiranthesaustralis Lindl. Orobanchaceae79. Vent. (9 genera and 57 taxa)Boschniakiarossica (Cham. & Schltdl.) B.Fedtsch. [2]pallida (L.) Spreng. Cistanchedeserticola Ma Cistanchefeddeana K.S.Hao Cistanchelanzhouensis Zhi Y.Zhang [12]Cistanchesalsa (C.A.Mey.) Beck [12\u201316]Cymbariadaurica L. Euphrasiaaltaica Serg. [7]Euphrasiahirtella Jord. Euphrasiamaximowiczii Wettst. Euphrasiapectinata Ten. Euphrasiaschischkinii Serg. [7]Euphrasiasyreitschikovii Govor. Odontitesvulgaris Moench Orobancheamoena C.A.Mey. Orobanchecaesia Rchb. [= Phelypaealanuginosa C.A.Mey. \u2261 Orobanchelanuginosa (C.A.Mey.) Beck] Orobanchecernua Loefl. Orobanchecoerulescens Steph. [\u2261 Orobanchellacoerulescens (Steph.) Piwow.] Orobanchecoerulescensvar.albiflora Kuntze [= Orobanchekorshinskyi Novopokr.] [1\u201315]Orobanchepycnostachya Hance [5]Pedicularisabrotanifolia M.Bieb. Pedicularisachilleifolia Steph. Pedicularisaltaica Steph. Pedicularisamoena Adams Pedicularisanthemifolia Fisch. Pediculariscompacta Steph. Pedicularisdolichorrhiza Schrenk Pediculariselata Willd. SEPedicularisfetisowii Regel [14]Pedicularisfissa Turcz. Pedicularisflava Pall. SEPedicularisincarnata L. [1]Pedicularislabradorica Wirsing Pedicularislapponica L. [1]Pedicularislasiostachys Bunge Pedicularislongiflora Rudolph Pedicularismoschata Maxim. Pedicularismyriophylla Pall. Pedicularisoederi Vahl PedicularispalustrisL.subsp.karoi (Freyn) P.C.Tsoong [\u2261 Pediculariskaroi Freyn] Pedicularisphysocalyx Bunge [7]Pedicularisproboscidea Steven [7]Pedicularisresupinata L. Pedicularisrhinanthoides Schrenk [7]Pedicularisrubens Steph. Pedicularissceptrum-carolinum L. Pedicularissibirica Vved. Pedicularisspicata Pall. Pedicularisstriata Pall. Pedicularissudetica Willd. Pedicularistristis L Pedicularisuliginosa Bunge Pedicularisvenusta Schangin Pedicularisverticillata L. Pediculariswlassoviana Steven [2]Rhinanthusserotinus Oborny [2]Rhinanthussongaricus (Sterneck) B.Fedtsch. [\u2261 Rhinanthusborbasii(D\u00f6rf.)So\u00f3subsp.songaricus (Sterneck) So\u00f3] Oxalidaceae80. R.Br. (1 genus and 1 species)Oxalisacetosella L. Paeoniaceae81. Raf. (1 genus and 3 species)Paeoniaanomala L. Paeoniaintermedia C.A.Mey. Paeonialactiflora Pall. Papaveraceae82. Juss. (6 genera and 30 species)Chelidoniummajus L. Corydalisadunca Maxim. Corydaliscapnoides Pers. Corydalisgrubovii Mikhailova Corydalisimpatiens Fisch. Corydalisinconspicua Bunge Corydalispauciflora Pers. Corydalissajanensis Peschkova [\u2261 Corydalispauciflorasubsp.sajanensis (Peschkova) Mikhailova] [1]Corydalisschanginii B.Fedtsch. Corydalissibirica Pers. Corydalisstricta Steph. [= Corydalisgrubovii Mikhailova] Fumariaofficinalis L. [7]Fumariaschleicheri Soy.-Will. Glauciumelegans Fisch. & C.A.Mey. [14]Glauciumsquamigerum Kar. & Kir. Hypecoumerectum L. Hypecoumlactiflorum (Kar. & Kir.) Pazii Hypecoumleptocarpum Hook.f. & Thomson [3]Papaverbaitagense Kamelin & Gubanov E Papavercanescens Tolm. Papaverchakassicum Peschkova Papaverlapponicum (Tolm.) Nordh. [7]Papavernudicaule L. Papaverpseudocanescens Popov Papaverpseudotenellum Grubov Papaverrefractum (DC.) K.-F.G\u00fcnther [\u2261 Roemeriarefracta DC.] Papaverrubroaurantiacum (Fisch.) C.E.Lundstr. SEPapaversaichanense Grubov [\u2261 Papaverrubroaurantiacumsubsp.saichanense (Grubov) Kamelin & Gubanov] Papaversmirnovii Peschkova [\u2261 Papaverrubroaurantiacumsubsp.smirnovii (Peschkova) Kamelin & Gubanov] Papaversetosum (Tolm.) Peschkova [\u2261 Papaverrubroaurantiacumsubsp.setosum Tolm.] [4]Phyllanthaceae83. Martinov (1 genus and 1 species)Flueggeasuffruticosa Baill. Plantaginaceae84. Juss. (7 genera and 47 species)Callitrichehermaphroditica L. Callitrichepalustris L Hippurisvulgaris L. Lagotisintegrifolia (Willd.) Schischk. Linariaacutiloba Fisch. [\u2261 LinariavulgarisMill.subsp.acutiloba (Fisch.) D.Y.Hong] Linariaaltaica Fisch. Linariaburiatica Turcz. Linariadebilis Kuprian. Linariahepatica Bunge Linariaincompleta Kuprian. [7]Linariamelampyroides Kuprian. Linariapedicellata Kuprian. Plantagoarachnoidea Schrenk [= Plantagolorata (J.Z.Liu) Shipunov \u2261 Plantagoarachnoideavar.lorata J.Z.Liu] [14]Plantagocornuti Gouan Plantagodepressa Willd. Plantagokomarovii Pavlov Plantagomajor L. [2\u201314]Plantagomaritimasubsp.ciliata Printz [= Plantagosalsa Pall.] Plantagominuta Pall. Plantagopolysperma Kar. & Kir. Plantagourvillei Opiz [2]Veronicaanagallis-aquatica L. Veronicaanagalloides Guss. [10]Veronicaarenosa (Serg.) Boriss. [= Veronicalaeta auct. non Kar. & Kir.] Veronicabeccabunga L. Veronicabiloba Schreb. Veronicaciliata Fisch. Veronicadaurica Steven Veronicadensiflora Ledeb. Veronicaferganica Popov Veronicahispidula Boiss. & Huet [= Veronicapusilla Hohen. & Boiss.] [7]Veronicaincana L. Veronicakrylovii Schischkin [9]Veronicalinariifolia Link Veronicalongifolia L. Veronicamacrostemon Bunge Veronicaoxycarpa Boiss. [\u2261 Veronicaanagallis-aquaticasubsp.oxycarpa (Boiss.) A. Jelen] [7]Veronicapinnatasubsp.nana Polozhij [7]VeronicapinnataL.subsp.pinnata Veronicaporphyriana Pavlov Veronicasajanensis Printz [7]Veronicasapozhnikovii Kosachev E Veronicascutellata L. [7]Veronica\u00d7schmakovii Kosachev [7]Veronica\u00d7smirnovii Kosachev & D.A.German [7]Veronicastrumsibiricum (L.) Pennell Veronicastrumtubiflorum (Fisch. & C.A.Mey.) Soj\u00e1k [\u2261 Veronicatubiflora Fisch. & C.A.Mey.] [4]Plumbaginaceae85. Juss. (4 genera and 20 taxa)Armeriamaritimasubsp.sibirica (Turcz.) Nyman [\u2261 Armeriasibirica Turcz.] Goniolimoncallicomum Boiss. Goniolimoneximium Boiss. [7]Goniolimonkrylovii A.V.Grebenjuk Goniolimonspeciosum Boiss. Limoniumaureum (L.) Hill Limoniumbicolor Kuntze Limoniumchrysocomum (Kar. & Kir.) Kuntze Limoniumchrysocomumsubsp.semenovii (Herder) Kamelin Limoniumcongestum Kuntze Limoniumcoralloides (Tausch) Lincz. Limoniumflexuosum Kuntze Limoniumgmelinii Kuntze Limoniumgobicum Ikonn.-Gal. [12]E Limoniumgrubovii Lincz. [9]E Limoniumklementzii Ikonn.-Gal. E Limoniummyrianthum Kuntze [14]Limoniumsuffruticosum Kuntze [14]Limoniumtenellum Kuntze Plumbagellamicrantha (Ledeb.) Spach Poaceae86. Barnhart (58 genera and 229 taxa)Stipa L. was recently revised which included a taxonomic key and species synopsis by Note: The genus Achnatherumcaragana (Trin.) Nevski [= Stipaconferta Poir.] [7]Achnatherumconfusum (Litv.) Tzvelev [\u2261 Stipaconfusa Litv.] SEAchnatheruminebrians (Hance) Keng [\u2261 Stipainebrians Hance] SEAchnatherumpelliotii (Danguy) R\u00f6ser & Hamasha [\u2261 Stipapelliotii Danguy] Achnatherumsibiricum (L.) Keng [\u2261 Stipasibirica (L.) Lam.] [1\u201313]Aeluropuslittoralis (Gouan) Parl. Agropyroncristatum (L.) Gaertn. [\u2261 Bromuscristatus L.] Agropyrondesertorum Schult. Agropyronfragile (Roth) P.Candargy Agropyronkrylovianum Schischk. Agropyronmichnoi Roshev. [\u2261 Agropyroncristatum(L.)Gaertn.subsp.michnoi (Roshev.) \u00c1.L\u00f6ve] Agropyronpumilum (Steud.) P.Candargy Agrostisclavata Trin. [\u2261 Agrostisexaratasubsp.clavata (Trin.) T.Koyama] Agrostisdivaricatissima Mez [= Agrostismongolica Roshev.] Agrostisgigantea Roth Agrostisstolonifera L. SEAgrostistuvinica Peschkova Agrostisvinealis Schreb. [= Agrostistrinii Turcz.] Alopecurusaequalis Sobol. Alopecurusarundinaceus Poir. Alopecurusbrachystachyus M.Bieb. Alopecuruspratensis L. SEAlopecurusturczaninovii O.D.Nikif. Anthoxanthumglabrum (Trin.) Veldkamp [\u2261 Hierochloeglabra Trin.] [1\u201310]Anthoxanthummonticola (Bigelow) Veldkamp [\u2261 Holcusmonticola Bigelow] Anthoxanthumnitens (Weber) Y.Schouten & VeldkampPoanitens Weber = Hierochloeodorata (L.) P.Beauv.] Arctagrostislatifolia Griseb. Arctopoaschischkinii (Tzvelev) Prob. [\u2261 Poaschischkinii Tzvelev] Arctopoatibetica (Munro) Prob. [\u2261 Poatibetica Munro] Aristidaadscensionis L. Arundinellahirta (Thunb.) Tanaka [\u2261 Poahirta Thunb.] Beckmanniasyzigachne Fernald Brachypodiumpinnatum (L.) P.Beauv. [\u2261 Bromuspinnatus L.] Bromusinermis Leyss. Bromusjaponicus Thunb. Bromusoxyodon Schrenk Bromuspumpellianus Scribn. [= Bromuskorotkiji Drobow] Bromusscoparius L. [14]Bromussquarrosus L. [10]Bromustectorum L. Calamagrostisangustifolia Kom. [= Calamagrostisangustifoliasubsp.tenuis (V.N.Vassil.) Tzvelev] Calamagrostisepigejos (L.) Roth [= Calamagrostisepigejossubsp.glomerata (Boiss. & Buhse) Tzvelev] Calamagrostisinexpansa A.Gray [= Calamagrostisinexpansasubsp.micrantha (Kearney) Stebbins] Calamagrostiskorotkyi Litv. [\u2261 Deyeuxiakorotkyi (Litv.) S.M.Phillips & W.L.Chen] SECalamagrostis\u00d7kuznetzovii Tzvelev [4]Calamagrostislapponica (Wahlenb.) Hartm. [\u2261 Arundolapponica Wahlenb.] Calamagrostismacilenta Litv. Calamagrostismacrolepis Litv. [\u2261 Calamagrostisepigejossubsp.macrolepis (Litv.) Tzvelev] Calamagrostisobtusata Trin. Calamagrostispavlovii (Roshev.) Roshev. Calamagrostispseudophragmites Koeler [\u2261 Arundopseudophragmites Haller f.] Calamagrostispurpurea (Trin.) Trin. [\u2261 Arundopurpurea Trin.] SECalamagrostissajanensis Malyschev Calamagrostissalina Tzvelev Calamagrostisstricta (Timm) Koeler [\u2261 Arundostricta Timm] [2]Catabrosaaquatica (L.) P.Beauv. Cenchrusflaccidus (Griseb.) Morrone [\u2261 Pennisetumflaccidum Griseb.] Cinnalatifolia (Trevir.) Griseb. [\u2261 Agrostislatifolia Trevir.] SECleistogenescaespitosa Keng [12]SECleistogenesfestucacea Honda [= Cleistogenesfoliosa Keng] Cleistogeneskitagawae Honda [\u2261 Kengiakitagawae (Honda) Packer] Cleistogenessongorica (Roshev.) Ohwi Cleistogenessquarrosa (Trin.) Keng [2\u201313]Colpodiumaltaicum Trin. DeschampsiacaespitosaP.Beauv.subsp.caespitosa Deschampsiacaespitosasubsp.orientalis Hult\u00e9n Deschampsiacaespitosasubsp.pamirica (Roshev.) Tzvelev [\u2261 Deschampsiapamirica Roshev.] Deschampsiakoelerioides Regel Echinochloacrus-galli (L.) P.Beauv. Elymusbungeanus (Trin.) Melderis Elymusconfusus (Roshev.) Tzvelev [\u2261 Roegneriaconfusa (Roshev.) Nevski] Elymusdahuricus Turcz. Elymusfedtschenkoi Tzvelev [\u2261 Roegneriafedtschenkoi (Tzvelev) J.L.Yang & C.Yen] [7]Elymusgmelinii (Ledeb.) Tzvelev SEElymuskarakabinicus Kotukhov [7]Elymusmacrourus (Turcz.) Tzvelev Elymusmutabilis (Drobow) Tzvelev [= Elymustransbaicalensis (Nevski) Tzvelev = Elymuspraecaespitosus (Nevski) Tzvelev] Elymusnutans Griseb. Elymuspendulinus (Nevski) Tzvelev [= Agropyronvernicosum Nevski = Elymusbrachypodioides (Nevski) Peschkova] Elymusreflexiaristatus (Nevski) Melderis [= Elymusaegilopoides (Drobow) Vorosch.] Elymusrepens (L.) Gould [= Elytrigiarepens (L.) Nevski] Elymusschrenkianus (Fisch. & C.A.Mey.) Tzvelev [= Elymuspamiricus Tzvelev] Elymussibiricus L. Elymusuralensis (Nevski) Tzvelev [= Elymusuralensissubsp.komarovii (Nevski) Tzvelev] Elymusvarius (Keng) Tzvelev [4]Enneapogondesvauxii P.Beauv. Eragrostiscilianensis (All.) Vignolo [10]Eragrostisminor Host Eragrostispilosa (L.) P.Beauv. [= Eragrostispilosasubsp.imberbis (Franch.) Tzvelev] Eremopyrumdistans (K.Koch) Nevski [14]Festucaaltaica Trin. Festucabrachyphylla Schult. & Schult.f. Festucadahurica V.I.Krecz. & Bobr. Festucaextremiorientalis Ohwi [2]SEFestucahubsugulica Krivot. [= Festucasumneviczii Serg.] [1]Festucajacutica Drobow Festucakomarovii Krivot. Festucakryloviana Reverd. Festucakurtschumica E.B.Alexeev [7]Festucalenensis Drobow Festucalitvinovii (Tzvelev) E.B.Alexeev [9]Festucaoreophila Markgr.-Dann. [= Festucavalesiacasubsp.hypsophila (St.-Yves) Tzvelev] Festucaovina L. [= Festucaovinasubsp.sphagnicola (B.Keller) Tzvelev] SEFestucapseudosulcata Drobow [4]Festucarubra L. Festucasibirica Hack. Festucatristis Krylov & Ivanitzk. SEFestucatschujensis Reverd. Festucavalesiaca Schleich. Festucavenusta St.-Yves Glyceriaarundinacea Kunth Glycerialithuanica (Gorski) Gorski Glyceriaspiculosa Roshev. [= Glycerialongiglumis Hand.-Mazz.] Helictochloadahurica (Kom.) Romero Zarco [\u2261 Helictotrichondahuricum (Kom.) Kitag.] Helictochloahookeri (Scribn.) Romero Zarco [= Helictotrichonschellianum (Hack.) Kitag.] Helictotrichondesertorum (Less.) Pilg. [= Helictotrichonaltaicum Tzvelev] Helictotrichonmongolicum (Roshev.) Henrard [\u2261 Avenastrummongolicum (Roshev.) Roshev.] Helictotrichonpubescens (Huds.) Pilg. [= Hordeumbrevisubulatumsubsp.turkestanicum (Nevski) Tzvelev] Hordeumbogdanii Wilensky Hordeumbrevisubulatum Link [= Hordeumbrevisubulatumsubsp.turkestanicum (Nevski) Tzvelev] [1\u201316]Hordeumroshevitzii Bowden [\u2261 Critesionroshevitzii (Bowden) Tzvelev] Koeleriaaltaica (Domin) Krylov Koeleriaasiatica Domin Koeleriaglauca DC. [4]Koelerialitvinowii Domin Koeleriamacrantha (Ledeb.) Schult. Koeleriaspicatasubsp.mongolica (Hult\u00e9n) Barber\u00e1, Quintanar, Soreng, & P.M.Peterson [\u2261 Trisetumspicatumsubsp.mongolicum Hult\u00e9n] SEKoeleriathonii Domin [5]Leymusangustus (Trin.) Pilg. [\u2261 Elymusangustus Trin.] Leymuschinensis (Trin.) Tzvelev SELeymusordensis Peschkova [15]Leymuspaboanus (Claus) Pilg. Leymusracemosus (Lam.) Tzvelev Leymusramosus (K.Richt.) Tzvelev [\u2261 Agropyronramosum K.Richt.] Leymussecalinus (Georgi) Tzvelev [= Leymussecalinusvar.mongolicus (Meld.) Tzvelev = Leymusovatus (Trin.) Tzvelev] Melicanutans L. Melicatranssilvanica Schur [7]Melicaturczaninowiana Ohwi Melicavirgata Turcz. Miliumeffusum L. [2]Nardusstricta L. [3]Neotriniasplendens (Trin.) M.Nobis [\u2261 Achnatherumsplendens (Trin.) Nevski \u2261 Stipasplendens Trin.] Phalarisarundinacea L. Phleumalpinum L. [7]Phleumphleoides (L.) H.Karst. Phragmitesaustralis (Cav.) Steud. [1\u201316]Piptatherumsongaricum (Trin. & Rupr.) Roshev. Poaalpina L. Poaalta Hitchc. [= Poamongolica (Rendle) Keng] Poaaltaica Trin. [\u2261 Poaglaucasubsp.altaica (Trin.) Olonova & G.H.Zhu] Poaangustifolia L. [\u2261 Poapratensissubsp.angustifolia (L.) Dumort.] Poaannua L. [\u2261 Ochlopoaannua (L.) H.Scholz] Poaargunensis Roshev. PoaattenuataTrin.subsp.attenuata . Poaattenuatasubsp.botryoides (Trin.) Tzvelev Poaattenuatasubsp.dahurica (Trin.) Gubanov [\u2261 Poadahurica Trin.] Poaattenuatasubsp.tshuensis (Serg.) Olonova [\u2261 Poaargunensisf.tshuensis Serg.] Poaglauca Vahl Poaircutica Roshev. [4]SEPoakenteica Ivanova Poakrylovii Reverd. [\u2261 Poaurssulensissubsp.krylovii (Reverd.) Olonova] Poanemoralis L. Poapalustris L. Poapratensis L. [= Poapratensissubsp.sabulosa (Turcz.) Tzvelev] Poaraduliformis Prob. Poasibirica Roshevitz Poasmirnowii Roshev. Poasubfastigiata Trin. Poasupina Schrad. Poatianschanica Hack. Poatrivialis L. [1]Poaurssulensis Trin. Poaveresczaginii Tzvelev [7]Poaversicolorsubsp.reverdattoi (Roshev.) Olonova & G.H.Zhu [\u2261 Poareverdattoi Roshev.] PoaversicolorBessersubsp.versicolor [= Poaversicolorsubsp.stepposa (Krylov) Tzvelev] Polypogonmaritimus Willd. Polypogonmonspeliensis (L.) Desf. SEPsammochloavillosa (Trin.) Bor Psathyrostachysjuncea (Fisch.) Nevski Psathyrostachyslanuginosus (Trin.) Nevski Ptilagrostismongholica (Turcz.) Griseb. [\u2261 Stipamongholica Turcz.] Puccinelliaaltaica Tzvelev [14]Puccinelliadistans (Jacq.) Parl. SEPuccinelliafilifolia (Trin.) Tzvelev Puccinelliahackeliana (V.I.Krecz.) V.I.Krecz. [7]Puccinelliahauptiana (V.I.Krecz.) Kitag. Puccinelliamacranthera V.I.Krecz. Puccinelliamanchuriensis Ohwi [3]Puccinellianudiflora (Hack.) Tzvelev SEPuccinelliaprzewalskii Tzvelev [10]Puccinelliaschischkinii Tzvelev Puccinelliatenuiflora Scribn. & Merr. [= Puccinelliakreczetoviczii Bubnova] [1\u201316]Schismusarabicus Nees Schizachnepurpurascenssubsp.callosa (Turcz.) T.Koyama & Kawano Scolochloafestucacea Link [4]Sibirotrisetumsibiricum (Rupr.) Barber\u00e1 [\u2261 Trisetumsibiricum Rupr.] Spodiopogonsibiricus Trin. Sporobolusaculeatus (L.) P.M.Peterson [\u2261 Crypsisaculeata (L.) Aiton] Sporobolusschoenoides (L.) P.M.Peterson [\u2261 Crypsisschoenoides Lam.] Stipaaustromongolica M.Nobis [10]E Stipabaicalensis Roshev. Stipabreviflora Griseb. Stipacapillata L. StipacaucasicaSchmalh.subsp.caucasica Stipacaucasicasubsp.desertorum (Roshev.) Tzvelev [10]Stipaconsanguinea Trin. & Rupr. Stipaglareosaf.pubescens P.A.Smirn. [4\u201312]Stipaglareosa P.A.Smirn. [\u2261 Stipacaucasicasubsp.glareosa (P.A.Smirn.) Tzvelev] Stipagobica Roshev. Stipagrandis P.A.Smirn. Stipakhovdensis L.Q.Zhao E Stipakirghisorum P.A.Smirn. Stipaklemenzii Roshev. Stipakrylovii Roshev. [1\u201314]Stipamongolorum Tzvelev Stipaorientalis Trin. StipapennataL. subsp. pennata Stipapennatasubsp.sabulosa (Pacz.) Tzvelev [10]Stipasareptana A. Beck. Stipasczerbakovii Kotuch. [7]Stipatianschanica Roshev. [= Stipatianschanicasubsp.gobica (Roshev.) D.F. Cui = Stipatianschanicavar.klemenzii (Roshev.) Norl.] Stipazalesskii Wilensky Timouriasaposhnikowii Roshev. [= Stipasaposhnikowii (Roshev.) Kitag.] Tragusmongolorum Ohwi Tripogonchinensis Hack. Tripogonpurpurascens Duthie Trisetumaltaicum Roshev. Zizanialatifolia Turcz. [9]Polemoniaceae87. Juss. (2 genera and 4 species)Phloxsibirica L. Polemoniumboreale Adams Polemoniumchinense Brand Polemoniumpulchellum Bunge Polygalaceae88. Hoffmanns. & Link (1 genus and 3 species)Polygalacomosa Schkuhr [= Polygalahybrida DC.] Polygalasibirica L. Polygalatenuifolia Willd. Polygonaceae89. Juss. (11 genera and 63 taxa)Atraphaxisbracteata Losinsk. Atraphaxiscompacta Ledeb. Atraphaxisfrutescens (L.) K.Koch Atraphaxiskamelinii Yurtseva [14]E Atraphaxispungens Jaub. & Spach [2\u201316]Atraphaxisspinosa L. Atraphaxisvirgata (Regel) Krassn. Bistortaelliptica (Willd.) V.V.Petrovsky SECalligonumebinuricum Ivanova Calligonumjunceum (Fisch. & C.A.Mey.) Litv. Calligonumlitwinowi Drobow [= Calligonumgobicum Losinsk.] Calligonummongolicum Turcz. Fallopiaconvolvulus (L.) \u00c1.L\u00f6ve [\u2261 Polygonumconvolvulus L.] Fallopiadumetorum (L.) Holub [5]Knorringiasibirica(Laxm.)Tzvelevsubsp.sibirica [1\u201316]Knorringiasibiricasubsp.ubsunurica Tzvelev [10]Koenigiaislandica L. Oxyriadigyna Hill Persicariaalpina Gross. Persicariaamphibia (L.) Delarbre Persicariabistorta Samp. [2]Persicariabungeana Nakai Persicariahydropiper (L.) Delarbre [\u2261 Polygonumhydropiper L.] Persicarialapathifolia (L.) Delarbre [\u2261 Polygonumochreatum L.] [1\u201316]Persicaria longiseta var. rotundata (A.J.Li) B.Li [\u2261 Polygonumlongisetumvar.rotundatum A.J.Li] Persicariaminor (Huds.) Opiz Persicariasagittata (L.) H.Gross Persicariavivipara (L.) Ronse Decr. Polygonumabbreviatum Kom. Polygonumalopecuroides Turcz. Polygonumangustifolium Pall. Polygonumarenastrum Boreau Polygonumargyrocoleon Steud. Polygonumaviculare L. Polygonumcognatum Meisn. Polygonumdivaricatum L. Polygonumellipticum Willd. Polygonumhumifusum C.Merck [3]Polygonumintramongolicum Borodina Polygonumnovoascanicum Klokov [14]Polygonumpatulum M.Bieb. Polygonumpolycnemoides Jaub. & Spach Polygonumsericeum Pall. Polygonumtenuissimum A.I.Baranov & Skvortsov [9]Polygonumvalerii A.K.Skvortsov Polygonumvolchovense Tzvelev [7]Rheumcompactum L. Rheumnanum Siev. Rheumrhabarbarum L. [= Rheumundulatum L.] SERheumuninerve Maxim. [13]Rumexacetosa L. Rumexacetosella L. Rumexaquaticus L. Rumexcrispus L. Rumexgmelinii Turcz. Rumexmaritimus L. Rumexmarschallianus Rchb. Rumexpatientia L. Rumexpopovii Pachom. Rumexpseudonatronatus (Borb\u00e1s) Murb. Rumexsimilans Rech.f. Rumexstenophyllus Ledeb. Rumexthyrsiflorus Fingerh. [1\u201314]Potamogetonaceae90. Bercht. & J.Presl (3 genera and 18 taxa)Potamogetonangustifolius Bercht. & J.Presl [10]Potamogetonalpinussubsp.tenuifolius (Raf.) Hulten Potamogetonberchtoldii Fieber Potamogetoncompressus L. Potamogetoncrispus L. Potamogetonfriesii Rupr. Potamogetongramineus L. Potamogetonlucens L. Potamogetonmandschuriensis A.Benn. [5]Potamogetonnatans L. Potamogetonobtusifolius Mert. & W.D.J.Koch Potamogetonperfoliatus L. Potamogetonpraelongus F.Muell. Potamogetonpusillus L. Stuckeniafiliformis (Pers.) B\u00f6rner [\u2261 Potamogetonfiliformis Pers.] Stuckeniapectinata (L.) B\u00f6rner [\u2261 Potamogetonpectinatus L.] Stuckeniavaginata Holub Zannichelliapalustris L. [= Zannichelliapalustrissubsp.pedicellata (Ros\u00e9n & Wahlenb.) Hook.f.] Primulaceae91. Batsch (3 genera and 28 taxa)Primula L. was recently revised by Note: The genus Androsacefedtschenkoi Ovcz. Androsacefiliformis Retz. Androsacegmelinii Gaertn. Androsaceincana Lam. Androsacelactiflora Fisch. [= Androsaceamurensis Prob.] Androsacelehmanniana Spreng. [= Androsacebungeana Schischk. & Bobrov] Androsacelongifolia Turcz. Androsacemaxima L. Androsaceovczinnikovii Schischk. & Bobrov Androsaceseptentrionalis L. AndrosacevillosaL.var.dasyphylla (Bunge) Kar. & Kir. [\u2261 Androsacedasyphylla Bunge] Lysimachiadavurica Ledeb. Lysimachiaeuropaea (L.) U.Manns & Anderb. [\u2261 Trientaliseuropaea L.] Lysimachiamaritima (L.) Galasso [\u2261 Glauxmaritima L.] [1\u201316]Lysimachiathyrsiflora L. [\u2261 Naumburgiathyrsiflora (L.) Rchb.] Primulaalgida Adams Primulabukukunica Kovt. Primulacortusoides L. [3]Primulafarinosa L. Primulalongiscapa Ledeb. Primulamatthiolisubsp.altaica (Losinsk.) Kovt. [\u2261 Cortusaaltaica Losinsk.] Primulamatthiolisubsp.brotheri (Pax) Kovt. [\u2261 Cortusamatthiolif.brotheri Pax] [7]Primulamaximowiczii Regel [5]Primulanivalissubsp.nivalis Pall. Primulanivalissubsp.turkestanica (J.N.Haage & E.Schmidt) Kovt. Primulanivalissubsp.xanthobasis (Fed.) Halda Primulanutans Georgi Primulaserrata Georgi Ranunculaceae92. Juss. (20 genera and 156 taxa)Actea and Cimcifuga, we follow Anemone is considered here according to Pulsatilla at generic level Vorosch.] Aconitumbarbatum Patr. Aconitumbiflorum Fisch. Aconitumcoreanum (H.L\u00e9v.) Rapaics [5]Aconitumdecipiens Vorosch. & Anfalov Aconitumglandulosum Rapaics [=Aconitumaltaicum Steinb. = Aconitumsmirnovii Steinb.] Aconitumgubanovii Luferov & Vorosch. E Aconitumkamelinii A.A.Solovjev [= Aconitumchasmanthum Stapf] E SEAconitumkhanminthunii A.A.Solovjev & Shmakov Aconitumkusnezoffii Rchb. [= Aconitumbirobidshanicum Vorosch.] Aconitumleucostomum Vorosch. Aconitummacrorhynchum Turcz. [4]SEAconitumpaskoi Vorosch. Aconitumranunculoides Turcz. [4]SEAconitumrubicundum (Ser.) Fisch. [\u2261 Aconitumseptentrionalesubsp.rubicundum (Ser.) Vorosch.] [1]Aconitumseptentrionale Koelle SEAconitumturczaninowii Vorosch. Aconitumvolubile Koelle Actaeacimicifuga L. [\u2261 Cimicifugafoetida L.] Actaeadahurica (Turcz.) Franch. [\u2261 Cimicifugadahurica (Turcz.) Maxim.] Actaeaerythrocarpa (Fisch.) Kom. Actaeasimplex Prantl [5]Adonisapennina L. [= Adonissibirica Patrin] Adonismongolica Simonovich E Anemonastrumcrinitum (Juz.) Holub [\u2261 Anemonenarcissiflorasubsp.crinita (Juz.) Kitag.] Anemonastrumdichotomum (L.) Mosyakin [\u2261 Anemonedichotoma L.] Anemonastrumobtusilobum (D.Don) Mosyakin [\u2261 Anemoneobtusiloba Lindl.] [3]Anemonastrumsibiricum (L.) Holub [\u2261 Anemonesibirica L.] Anemonereflexa Steph. Anemonesylvestris L. [\u2261 Anemonoidessylvestris (L.) Galasso] Aquilegiaamurensis Kom. [2]Aquilegiaaradanica Shaulo & Erst [4]Aquilegiadaingolica Erst & Shaulo [7]E Aquilegiaganboldii Kamelin & Gubanov [5]Aquilegiaglandulosa Fisch. Aquilegiagrubovii Erst E Aquilegiajucunda Fisch. & Lallem. [1]Aquilegiasibirica Lam. Aquilegiaviridiflora Pall. Aquilegiaxinjiangensis Erst [7]Callianthemumangustifolium Witasek [7]Callianthemumisopyroides Witasek Callianthemumsajanense Witasek Calthamembranacea (Turcz.) Schipcz. [5]Calthanatans Deyl & Sojak Calthapalustris L. Ceratocephalatesticulata (Crantz) Besser [7]Clematisaethusifolia Turcz. [9]Clematisbrevicaudata DC. SEClematisfruticosa Turcz. Clematisglauca Willd. Clematishexapetala Pall. Clematisintricata Bunge Clematismacropetala Ledeb. [9]Clematisochotensis Poir. & Lam. [4]Clematisorientalis L. [15]Clematissibirica (L.) Mill. Clematissongarica Siev. SEClematistanguticasubsp.mongolica Grey-Wilson [2]ClematistanguticaKorsh.subsp.tangutica Delphiniumaltaicum Nevski Delphiniumbarlykense Lomon. & Khanm. Delphiniumchangaicum N.Friesen E Delphiniumcheilanthum Fisch. Delphiniumcrassifolium Schrad. Delphiniumdictyocarpum DC. [7]SEDelphiniumdissectum Huth Delphiniumelatum L. Delphiniumgrandiflorum L. Delphiniumgubanovii N.Friesen [7]E Delphiniumiliense Huth [14]DelphiniuminconspicuumSerg.subsp.inconspicuum Delphiniuminconspicuumsubsp.mongolicum A.L.Ebel [7]E SEDelphiniummalyschevii N.Friesen [1]Delphiniummirabile Serg. SEDelphiniumsajanense Jurtzev [1]Delphiniumtriste Fisch. Delphiniumukokense Serg. Halerpestessalsuginosa Greene Halerpestessarmentosa (Adams) Kom. & Klob.-Alis Isopyrumanemonoides Kar. & Kir. [7]Leptopyrumfumarioides Rchb. Oxygraphisglacialis (Fisch.) Bunge Paraquilegiaanemonoides Ulbr. Pulsatillaambigua Turcz. SEPulsatillabungeana C.A.Mey. [= Pulsatillabungeanavar.astragalifolia (Pobed.) Grubov] Pulsatillacampanella Fisch. Pulsatilladahurica (Fisch.) Spreng. Pulsatillamultifida (G.Pritz.) Juz. [\u2261 Pulsatillapatenssubsp.multifida (G.Pritz.) Z\u00e4melis] Pulsatillapatens(L.)Mill.subsp.flavescens (Zucc.) Z\u00e4melis [\u2261 Pulsatillaflavescens (Zucc.) Juz.] Pulsatillatenuiloba (Hayek) Juz. Pulsatillaturczaninovii Krylov & Serg. Ranunculusacris L. Ranunculusaltaicus Laxm. Ranunculusaquatilis L. Ranunculusarschantynicus Kamelin, Shmakov & S.V.Smirn. E Ranunculuschinensis Bunge Ranunculuscircinatus Sibth. Ranunculusconfervoides (Fr.) Fr. [= Ranunculustrichophyllussubsp.eradicatus (Laest.) C.D.K.Cook] Ranunculusgmelinii DC. Ranunculusgobicus Maxim. [13]Ranunculusgrandifolius C.A.Mey. [3]Ranunculuskauffmannii Clerc [\u2261 Batrachiumkauffmannii (Clerc) Krecz.] Ranunculuslapponicus L. SERanunculuslasiocarpus C.A.Mey. Ranunculuslingua L. [14]Ranunculuslongicaulis C.A.Mey. Ranunculusmongolicus (Krylov) Serg. [\u2261 Batrachiummongolicum Serg.] Ranunculusmonophyllus Ovcz. [1\u20137]Ranunculusnatans C.A.Mey. Ranunculuspedatifidus Sm. [= Ranunculusrigescens Turcz.] Ranunculuspolyanthemos L. [6]RanunculuspropinquusC.A.Mey.subsp.propinquus Ranunculuspropinquusvar.subborealis (Tzvel.) Luferov Ranunculuspseudohirculus Schrenk SERanunculuspseudomonophyllus Timokhina Ranunculuspulchellus C.A.Mey. Ranunculusradicans C.A.Mey. Ranunculusrepens L. [2\u20139]Ranunculusreptans L. Ranunculussapozhnikovii Schegol. [7]E Ranunculussceleratus L. SERanunculusschmakovii Erst [7]Ranunculussmirnovii Ovcz. [2]Ranunculussulphureussubsp.exaltatus Erst [7]Ranunculustanguticus (Maxim) Ovcz. Ranunculustrautvetterianus Regel [7]Ranunculustrichophyllus Chaix [\u2261 Batrachiumtrichophyllum (Chaix) Bosch = Batrachiumdivaricatum (Schrank) Schur] SERanunculusturczaninovii (Luferov) Vorosch. [2]SERanunculustuvinicus Erst [7]Thalictrumalpinum L. Thalictrumbaicalense Turcz. Thalictrumcontortum L. [= Thalictrumaquilegiifoliumvar.sibiricum Regel & Tiling] Thalictrumfoetidum L. Thalictrumisopyroides C.A.Mey. SEThalictrumminussubsp.appendiculatum (C.A.Mey.) Gubanov [\u2261 Thalictrumappendiculatum C.A.Mey.] [3]Thalictrumminussubsp.elatum (Jacq.) Stoj. & Stef. [= Thalictrumminussubsp.kemense (Fries) Cajander] [3]ThalictrumminusL.subsp.minus Thalictrumpetaloideum L. SEThalictrumschischkinii N.Friesen [= Thalictrumaltaicum (Schischk.) Serg.] [7]Thalictrumsimplex L. Thalictrumsquarrosum Steph. Trolliusaltaicus C.A.Mey. Trolliusasiaticus L. Trolliusaustrosibiricus Erst & Luferov [7]Trolliuschinensis Bunge [7]Trolliusdschungaricus Regel [14]Trolliusledebourii Rchb. Trolliuslilacinus Bunge Trolliussajanensis Sipliv. [1]Trolliussibiricus Schipcz. [5]Trolliusvicarius Sipliv. [5]Rhamnaceae93. Juss. (1 genus and 5 species)Rhamnusdavurica Pall. Rhamnuserythroxylon Pall. Rhamnusmaximovicziana J.J.Vassil. Rhamnusparvifolia Bunge Rhamnusutilis Decne. Rosaceae94. Juss. (28 genera and 168 taxa)Agrimoniapilosa Ledeb. Alchemillaargutiserrata H.Lindb. [7]Alchemillachangaica V.N.Tikhom. E Alchemillacircularis Juz. [7]Alchemillacyrtopleura Juz. Alchemillaflavescens Buser [3]Alchemillagracilis Pax [3]Alchemillagubanovii V.N.Tikhom. Alchemillahebescens Juz. Alchemillakrylovii Juz. [7]Alchemillamurbeckiana Buser [7]SEAlchemillapavlovii Juz. anserina (L.) Rydb. [\u2261 Potentillaanserina L.] Aruncussylvester Kostel. [5]Chamaerhodosaltaica Bunge SEChamaerhodoscorymbosa Murav. Chamaerhodoserecta (L.) Bunge [1\u201313]Chamaerhodosgrandiflora Ledeb. [5]Chamaerhodossabulosa Bunge Chamaerhodostrifida Ledeb. Coluriageoides Ledeb. [\u2261 Dryasgeoides Pall.] Comarumpalustre L. Cotoneastermegalocarpus Popov [7]Cotoneastermelanocarpus Lodd. Cotoneastermongolicus Pojark. Cotoneasterneopopovii Czerep. [4]Cotoneasteruniflorus Bunge Crataegusdahurica Koehne Crataegusmaximowiczii C.K.Schneid. [5]Crataegussanguinea Pall. Dasiphorafruticosa (L.) Rydb. [\u2261 Potentillafruticosa L.] Dasiphoraparvifolia (Fisch.) Juz. [\u2261 Potentillaparvifolia Fisch.] Dryasgrandis Juz. Dryasincisa Juz. [1]Dryasoxyodonta Juz. Dryaspunctata Juz. SEDryassumneviczii Serg. [1]Farinopsissalesoviana (Steph.) Chrtek & Soj\u00e1k [\u2261 Comarumsalesovianum (Steph.) Ledeb] Filipendulaangustiloba Maxim. Filipendulapalmata Maxim. Filipendulaulmaria (L.) Maxim. Fragariaorientalis Losinsk. Fragariaviridis Weston [2]Geumaleppicum Jacq. Geumrivale L. [7]Malusbaccata (L.) Borkh. SEPotaniniamongolica Maxim. Potentillaacaulis L. Potentillaacervata Soj\u00e1k [= Potentillachenteica Soj\u00e1k] Potentillaagrimonioides M.Bieb. [= Potentillalydiae Kurbatski] Potentillaaltaica Bunge [= PotentillaniveaL.var.pinnatifida Lehm.] [7]Potentillaangustiloba T.T.Yu & C.L.Li Potentillaaphanes Soj\u00e1k Potentillaarenosa (Turcz.) Juz. [\u2261 Potentillaniveavar.arenosa Turcz.] Potentillaasiatica (Th.Wolf) Juz. [7]Potentillaastragalifolia Bunge SEPotentilla\u00d7burjatica Soj\u00e1k [2]Potentillachalchorum Soj\u00e1k SEPotentilla\u00d7chamaeleo Soj\u00e1k Potentillachinensis Ser. Potentillachionea Soj\u00e1k Potentillachrysantha Trevir. Potentillaconferta Bunge Potentillacoriacea Soj\u00e1k [3]E Potentillacrantzii (Crantz) Fritsch [7]Potentillacrebridens Juz. [= Potentillaniveavar.elongata Th.Wolf] Potentilladesertorum Bunge SEPotentilla\u00d7drymeja Soj\u00e1k Potentillaekaterinae Kamelin ex Kechaykin [13]E Potentillaelegans Cham. & Schltdl. [1]Potentillaelegantissima Polozhij [3]Potentillaevestita Th.Wolf Potentillaexuta Soj\u00e1k Potentillaflagellaris D.F.K.Schltdl. Potentillafragarioides L. Potentillagelida C.A.Mey. Potentillagobica Soj\u00e1k [14]E SEPotentillagracillima Kamelin Potentillahilbigii Soj\u00e1k [3]E Potentillahubsugulica Soj\u00e1k [1]E Potentillaikonnikovii Juz. E Potentillainopinata Soj\u00e1k E Potentillajenissejensis Polozhij & W.Smirnova [= PotentillaagrimonioidesM.Bieb.var.kobdoensis Soj\u00e1k] Potentillakryloviana Th.Wolf Potentillalaevipes Soj\u00e1k [7]E Potentillalaevissima Kamelin [7]E Potentillaleucophylla Pall. [= Potentillabetonicifolia Poir.] Potentillalongifolia D.F.K.Schltdl. [1\u201313]Potentillamongolica Krasch. E Potentillamulticaulis Bunge Potentillamultifida L. [= Potentillatenella Turcz.] [1\u201314]Potentillanivea L. Potentillanorvegica L. [= Potentillamonspeliensis L.] Potentillanudicaulis D.F.K.Schltdl. [= Potentillastrigosa Pall.] [12]SEPotentilla\u00d7olchonensis Peschkova [6]Potentillaornithopoda Tausch SEPotentillaozjorensis Peschkova Potentillapamirica Th.Wolf Potentillapamiroalaica Juz. [14]Potentillapensylvanica L. [\u2261 Pentaphyllumpennsylvanicum (L.) Lunell] Potentillaregeliana Th.Wolf [6]SEPotentilla\u00d7rhipidophylla Soj\u00e1k [3]SEPotentillarigidula Th.Wolf Potentillasanguisorba D.F.K.Schltdl. Potentillaschmakovii Kechaykin E SEPotentillasergievskajae Peschkova Potentillasericea L. SEPotentillaserrata Soj\u00e1k [3]SEPotentillasischanensis Bunge Potentillasongorica Bunge SEPotentillastepposa Soj\u00e1k Potentillasubdigitata T.T.Yu & C.L.Li [= Potentillajunatovii Rudaya & A.L.Ebel] [7]Potentillasupina L. Potentillatanacetifolia D.F.K.Schltdl. Potentillatergemina Soj\u00e1k SEPotentillatericholica Sobolevsk. Potentillatetrandra (Bunge) Hook.f. [\u2261 Sibbaldiatetrandra Bunge] Potentillaturczaninowiana Stschegl. Potentillaturkestanica Soj\u00e1k Potentillatytthantha (Soj\u00e1k) Kechaykin E Potentilla\u00d7vanzhilii Gundegmaa & Kechaykin [3]E Potentillaverticillaris Stephan Potentillavirgata Lehm. Prunusmongolica Maxim. [\u2261 Amygdalusmongolica (Maxim.) Ricker] Prunuspadus L. Prunuspedunculata Maxim. [\u2261 Amygdaluspedunculata Pall.] Prunussibirica L. [\u2261 Armeniacasibirica (L.) Lam.] Rosaacicularis Lindl. Rosaalbertii Regel [7]Rosabaitagensis Kamelin & Gubanov [14]E Rosabeggeriana Schrenk [14]Rosadavurica Pall. Rosakokanica (Regel) Regel [7]Rosalaxavar.kaschgarica (Rupr.) Y.L.Han [= Rosakaschgarica Rupr.] RosalaxaLindl.var.laxa Rosaoxyacantha M.Bieb. Rosaplatyacantha Schrenk [14]Rosaspinosissima L. Rosaxanthina Lindl. [9]Rubusarcticus L. Rubuschamaemorus L. [2]Rubushumilifolius C.A.Mey. Rubussachalinensis H.L\u00e9v. Rubussaxatilis L. Sanguisorbaalpina Bunge Sanguisorbaofficinalis L. [1\u201311]Sanguisorbaparviflora (Maxim.) Takeda [9]Sanguisorbatenuifolia Fisch. Sibbaldiaprocumbens L. Sibbaldiantheadpressa (Bunge) Juz. [\u2261 Sibbaldiaadpressa Bunge] Sibbaldianthebifurca (L.) Kurtto & T.Erikss. [\u2261 Potentillabifurca L.] [1\u201314]Sibbaldiantheimbricata (Kar. & Kir.) Mosyakin & Shiyan [\u2261 Potentillaimbricata Kar. & Kir.] Sibbaldiantheorientalis (Soj\u00e1k) Mosyakin & Shiyan [= Potentillabifurcavar.major Ledeb.] Sibbaldianthesemiglabra (Soj\u00e1k) Mosyakin & Shiyan [\u2261 Potentillasemiglabra Juz.] SESibbaldianthesericea Grubov Sibiraealaevigata (L.) Maxim. [7]Sorbariasorbifolia (L.) A.Braun SorbusaucupariaL.subsp.glabrata (Wimm. & Grab.) Hedl. [= Sorbussibirica Hedl.] Spiraeaalpina Pall. Spiraeaaquilegiifolia Pall. Spiraeachamaedryfolia L. [5]Spiraeadahurica (Rupr.) Maxim. Spiraeaelegans Pojark. [4]Spiraeaflexuosa Fisch. Spiraeahypericifolia L. SpiraeamediaF.Schmidtsubsp.media [= Spiraeasericea Turcz.] Spiraeapubescens Turcz. Spiraeasalicifolia L. Rubiaceae95. Juss. (3 genera and 13 taxa)Asperulagobicola Grubov [= Asperulasaxicola Grubov] E Galiumamblyophyllum Schrenk Galiumboreale L. Galiumdahuricum Turcz. [2]Galiumdensiflorum Ledeb. Galiumhumifusum M.Bieb. Galiumsongaricum Schrenk Galiumspurium L. Galiumtrifidum L. Galiumuliginosum L. GaliumverumL.subsp.verum [= Galiumdensiflorum Ledeb.] Galiumverumsubsp.wirtgenii (F.W.Schultz) Oborny [7]Rubiacordifolia L. [\u2261 Galiumcordifolium (L.) Kuntze] Ruppiaceae96. Horan. (1 genus and 1 species)Ruppiamaritima L. [10]Rutaceae97. Juss. (2 genera and 2 species)Haplophyllumdauricum (L.) G.Don Dictamnusalbus L. Salicaceae98. Mirb. (2 genera and 47 species)Populuseuphratica Olivier [12\u201316]Populuslaurifolia Ledeb. [= Populuspilosa Rehder] Populussimonii Carri\u00e8re [9]Populussuaveolens Fisch. Populustremula L. Salixabscondita Laksch. Salixalatavica Kar. Salixarctica Pall. Salixbebbiana Sarg. Salixberberifolia Pall. Salixbrachypoda (Trautv. & C.A.Mey.) Kom. Salixcaesia Vill. Salixdivaricata Pall. Salixglauca L. Salixgmelinii Pall. [= Salixdasyclados Wimmer] Salixgordejevii Y.L.Chang & Skvortsov Salixhastata L. Salixjenisseensis (F.Schmidt) Flod. Salixkochiana Trautv. Salixledebouriana Trautv. Salixmicrostachya Turcz. Salixmiyabeana Seemen Salixmyrtilloides L. SESalixnasarovii A.K.Skvortsov [1]Salixnipponica Franch. & Sav. [9]Salixnummularia Andersson Salixpolaris Wahlenb. [1]Salixpseudopentandra (Flod.) Flod. [= Salixpentandravar.intermedia Nakai] Salixpyrolifolia Ledeb. Salixrectijulis Ledeb. Salixrecurvigemmata A.K.Skvortsov [= Salixrecurvigemmis A.K.Skvortsov] Salixreticulata L. Salixrhamnifolia Pall. Salixrorida Laksch. Salixrosmarinifolia L. Salixsajanensis Nasarow Salixsaposhnikovii A.K.Skvortsov Salixsaxatilis Turcz. Salixschwerinii E.L.Wolf Salixtaraikensis Kimura Salixtenuijulis Ledeb. Salixtriandra L. Salixturanica Nasarow Salixturczaninowii Laksch. Salixudensis Trautv. & C.A.Mey. [9]Salixvestita Pursh Salixviminalis L. Santalaceae99. R.Br. (1 genus and 6 species)Thesiumchinense Turcz. [9]Thesiumlongifolium Turcz. Thesiumrefractum C.A.Mey. Thesiumrepens Ledeb. SEThesiumsaxatile Turcz. SEThesiumtuvense Krasnob. Saxifragaceae100. Juss. (5 genera and 21 taxa)Bergeniacrassifolia (L.) Fritsch Chrysospleniumnudicaule Bunge [6]SEChrysospleniumpeltatum Turcz. SEChrysospleniumsedakowii Turcz. Chrysospleniumserreanum Hand.-Mazz. [= Chrysospleniumalternifoliumsubsp.sibiricum (Ser.) Hult\u00e9n] Micranthesdavurica (Willd.) Small [\u2261 Saxifragadavurica Willd.] [2]Micranthesfoliolosa (R.Br.) Gornall [\u2261 Saxifragafoliolosa R.Br.] Micrantheshieraciifolia Haw. [\u2261 Saxifragahieraciifolia Waldst. & Kit.] Micranthesmelaleuca (Fisch.) Losinsk. [\u2261 Saxifragamelaleuca Fisch.] Micranthesnelsonianasubsp.aestivalis (Fisch. & C.A.Mey.) Elven & D.F.Murray [\u2261 Saxifragaaestivalis Fisch. & C.A.Mey.] Micranthesnivalis (L.) Small [\u2261 Saxifraganivalis L.] [1]Mitellanuda L. Saxifragabronchialis L. Saxifragacernua L. Saxifragahirculus L. Saxifragamacrocalyx Tolm. [= Saxifragaflagellaris Willd.] SaxifragaoppositifoliaL.subsp.oppositifolia [= Saxifragaasiatica Hayek] Saxifragasetigera Pursh Saxifragasibirica L. Saxifragaterektensis Bunge Scheuchzeriaceae101. F.Rudolphi (1 genus and 1 species)Scheuchzeriapalustris L. [2]Scrophulariaceae102. Juss. (3 genera and 6 species)Limosellaaquatica L. Scrophulariaaltaica Murray Scrophulariacanescens Bong. [= Scrophulariahilbigii J\u00e4ger] Scrophulariaincisa Weinm. Scrophulariaumbrosa Dumort. [10]Verbascumthapsus L. [4]Solanaceae103. Juss. (4 genera and 9 taxa)Hyoscyamusniger L. Hyoscyamuspusillus L. Lyciumchinensevar.potaninii (Pojark.) A.M.Lu [\u2261 Lyciumpotaninii Pojark.] [16]Lyciumruthenicum Murray Lyciumtruncatum Y.C.Wang Physochlainaalbiflora Grubov E Physochlainaphysaloides (L.) G.Don Solanumkitagawae Sch\u00f6nb.-Tem. Solanumseptemlobum Bunge Tamaricaceae104. Link (3 genera and 13 taxa)Myricariabracteata Royle Myricarialongifolia Ehrenb. Reaumuriasoongarica Maxim. Tamarixarceuthoides Bunge Tamarixelongata Ledeb. Tamarixgracilis Willd. Tamarixhispida Willd. [13]Tamarix\u00d7karelinii Bunge Tamarixkasahorum Gorschk. Tamarixlaxa Willd. Tamarixleptostachya Bunge Tamarixramosissima Ledeb. Tamarixsmyrnensis Bunge Thymelaeaceae105. Juss. (2 genera and 3 species)Diarthronaltaicum (Thi\u00e9b.-Bern.) Kit Tan [\u2261 Stelleraaltaica Thi\u00e9b.-Bern.] [7]Diarthronlinifolium Turcz. Stellerachamaejasme L. Tofieldiaceae106. Takht. (1 genus and 1 species)Tofieldiacoccinea Richardson [1]Typhaceae107. Juss. (2 genera and 12 species)Sparganiumemersum Rehmann Sparganiumglomeratum (Laest.) Beurl. Sparganiumnatans L. Sparganiumstoloniferum (Graebn.) Buch.-Ham. Typhaangustifolia L. Typhadomingensis Pers. Typhajoannis Mavrodiev [9]Typhalatifolia L. Typhalaxmannii Lepech. Typhaminima Funck Typhaorientalis C.Presl [5]Typhatzvelevii Mavrodiev [4]Ulmaceae108. Mirb. (1 genus and 3 taxa)Ulmusdavidianavar.japonica (Rehder) Nakai Ulmusmacrocarpa Hance Ulmuspumila L. Urticaceae109. Juss. (2 genera and 4 taxa)Parietariadebilis G.Forst. Urticaangustifolia Fisch. Urticacannabina L. UrticadioicaL.subsp.sondenii (Simm.) Hyl. [\u2261 Urticasondenii (Simm.) Avror] Violaceae110. Batsch. (1 genus and 27 taxa)Viola L in the Russian Far East and adjacent territories. In this study, accepted species and nomenclature mostly follow Note: Recently, Violaacuminata Ledeb. SEViolaalexandrowiana (W.Becker) Juz. [4]Violaaltaica Ker Gawl. Violaarvensis Murray [4]Violabiflora L. Violabrachyceras Turcz. [2]Violacollina Besser Violadactyloides Schult. Violadisiuncta W.Becker [7]Violadissecta Ledeb. Violaepipsiloides \u00c1.L\u00f6ve & D.L\u00f6ve Violagmeliniana Schult. Violaincisa Turcz. SEViolaircutiana Turcz. [2]Violamacroceras Bunge [7]Violamauritii Teplouchow Violamirabilis L. Violanemoralis Kuetz. [2]Violapatrinii Ging. Violarudolfii Vl.V.Nikitin Violarupestris F.W.Schmidt Violasacchalinensis H.Boissieu Viola\u00d7schauloi Vl.V.Nikitin Violaselkirkii Pursh [2]Violatenuicornissubsp.trichosepala W.Becker [4]Violauniflora L. Violavariegata Fisch. Zygophyllaceae111. R.Br. (2 genera and 13 taxa)Tribulusterrestris L. Zygophyllumbrachypterum Kar. & Kir. Zygophyllumgobicum Maxim. Zygophyllumkaschgaricum Boriss. [\u2261 Sarcozygiumkaschgaricum (Boriss.) Y.X.Liou] [12\u201316]Zygophyllummacropterum C.A.Mey. [= Zygophyllumpinnatum Cham. & Schltdl.] SEZygophyllummelongena Bunge SEZygophyllummucronatum Maxim. Zygophyllumneglectum Grubov E Zygophyllumpotaninii Maxim. Zygophyllumpterocarpum Bunge Zygophyllumrosowiivar.latifolium (Schrenk) Popov [13\u201316]ZygophyllumrosowiiBungevar.rosowii Zygophyllumxanthoxylon (Bunge) Maxim."} {"text": "Streptococcus episodes was misstated in Invasive Group B Streptococcus Infections in Adults, England, 2015\u20132016 . The correct rate is 4.09/10,000 live births. The article has been corrected online (https://wwwnc.cdc.gov/eid/article/26/6/19-1141_article).The rate of pregnancy-related invasive group B"} {"text": "In the originally published version of the below listed manuscripts, acknowledgement of NIH/NIMH funding was omitted in error. These errors have been corrected.https://doi.org/10.1093/psyrad/kkab009https://doi.org/10.1093/psyrad/kkab017"} {"text": "Some of these LDs establish close contact sites with the outer mitochondrial membrane (OMM) (S. cerevisiae . C,5. CS. crevisiae . Recent revisiae . Ectopic stimuli , thereby stimuli . Therefo"} {"text": "This article has been corrected: In 14359-14373. https://doi.org/10.18632/oncotarget.8736Original article: Oncotarget. 2017; 8:14359\u201314373."} {"text": "Redistributing deaths by ill-defined and unspecified causes on cancer mortality in Brazil\u201d, DOI https://doi.org/10.11606/s1518-8787.2021055003319, published on the Revista de Sa\u00fade P\u00fablica. 2021;55:106, on page 1, where it reads:In the article \u201cDESCRIPTORS: Chemical Waste. Hazardous Waste. Product Labeling. Substances, Products and Materials Transportation.It should read as follows:DESCRIPTORS: Neoplasms, mortality. Data Accuracy. Vital Statistics. Cause of Death."} {"text": "This article has been corrected: In 115803-115816. https://doi.org/10.18632/oncotarget.23253Original article: Oncotarget. 2017; 8:115803\u2013115816."} {"text": "This article has been corrected: In 1143-1156. https://doi.org/10.18632/oncotarget.2732Original article: Oncotarget. 2015; 6:1143\u20131156."} {"text": "The first and third authors\u2019 names are spelled incorrectly. The correct names are Md. Alamgir Sarder and Md. Maniruzzaman.https://doi.org/10.1371/journal.pone.0245923Sarder MA, Islam SMS, Maniruzzaman M, Talukder A, Ahammed B (2021) Prevalence of unintended pregnancy and its associated factors: Evidence from six south Asian countries. PLoS ONE 16(2): e0245923."} {"text": "Correction to: BMC Health Serv Res 21, 474 (2021)https://doi.org/10.1186/s12913-021-06459-4Following publication of the original article , the autThe incorrect author name is: L. E. U. N. G. Ling YanThe correct author name is: Ling Yan LEUNGThe author group has been updated above and the original article has been"} {"text": "J Clin Invest. 2012;122(11):3955\u20133959. https://doi.org/10.1172/JCI63113Original citation: J Clin Invest. 2022;132(1):e157161. https://doi.org/10.1172/JCI157161Citation for this corrigendum: GrnKO was incorrect. The correct sequence is below.The sense primer 1 listed for genotyping 5\u2032-AGTGGGGCTGGCCATCCTCThe authors regret the error."} {"text": "This article has been corrected: In 28523-28539. https://doi.org/10.18632/oncotarget.8660Original article: Oncotarget. 2016; 7:28523\u201328539."} {"text": "It is with a great pleasure to announce the top three most-cited AVD articles on Web of Science.Review ArticleVisceral Artery Aneurysms and Pseudoaneurysms? Should They All be Managed by Endovascular Techniques?Alfredo C. Cordova and Bauer E. SumpioCitation: 59Published: 2013 (Vol. 6 No. 4: 687-693)DOI: 10.3400/avd.ra.13-00045Review ArticleCompression Therapy: Clinical and Experimental EvidenceHugo PartschCitation: 56Published: 2012 (Vol. 5 No. 4: 416-422)DOI: 10.3400/avd.ra.12.00068Review ArticleThe Relationship between Vascular Function and the Autonomic Nervous SystemEisuke Amiya, Masafumi Watanabe, and Issei KomuroCitation: 46Published: 2014 (Vol. 7 No. 2: 109-119)DOI: 10.3400/avd.ra.14-00048"} {"text": "This article has been corrected: In 32917-32928. https://doi.org/10.18632/oncotarget.25952Original article: Oncotarget. 2018; 9:32917\u201332928."} {"text": "JCI Insight. 2021;6(9):e144260. https://doi.org/10.1172/jci.insight.144260Original citation: JCI Insight. 2022;7(6):e159640. https://doi.org/10.1172/jci.insight.e159640Citation for this corrigendum: Information on data availability was omitted from Methods. The correct information is below.Data availabilityRaw data were deposited in the National Genomics Data Center\u2019s Genome Sequence Archive .The authors regret the error."} {"text": "AbdiLisa Abernathy-CloseHamada A. AboubakrJ\u00f4natas S. Abrah\u00e3oZaky AdamBeth M. AdamowiczAmeeta K. AgarwalSurya D. AggarwalDaniel Aguirre de CarcerMir Alvee AhmedCaio Augusto Martins AiresSamuel L. AitkenAshok A. AiyarKola AjuwonRobert A. AkinsMd. Tauqeer AlamBegum AlaybeyogluLuis D. AlcarazGajender AletiGladys AlexandreNahid AliShaukat AliDaniela S. Aliaga GoltsmanJoannie M. AllaireJonathan AllenRey Custer AllenAlexandre AlmeidaHassan M. Al-TameemiEva AlvarezStefano AmalfitanoAman Aman KhanKatherine R. AmatoAlongkorn AmnuaykanjanasinAmitesh AnandCheryl P. AndamAnnette Carola AndersonMichael AndersonRika AndersonSimon C. AndrewsS. Andreas AngermayrNana Y. D. AnkrahAlessio AprileElizabeth ArchieFarnoosh ArfaeeH\u00e9ctor ArguelloJos\u00e9 M. Arg\u00fcelloGunjan AroraMelinda Marie AshcroftAlexander AskenovContreras AsuncionHaruyuki AtomiJennifer M. AuchtungSelcan AydinFrank O. AylwardTaj AzarianReha O. AzizogluPaul BabitzkeGiovanni BacciVarsha Dave BadalBrian D. BadgleyJin-Woo BaeJake BaileyBrett J. BakerRoberto Balbont\u00ednRegina Lucia BaldiniDavid A. BaltrusMarcy J. BalunasHoria Leonard BanciuSreejata BandopadhyayNoam BarDaniel BarkanFrancisco Barona-G\u00f3mezRodolphe BarrangouDouglas H. BartlettNick BartsMarcelo Bueno BatistaSilvia Beatriz BatistaDavid L. V. BauerAndreas J. B\u00e4umlerJoseph BaurMatt BawnGwyn A. BeattieWilliam N. BeaversTiago BeitesGeorgios N. BelibasakisAeriel D. BelkAmanda BendiaJose A. BengoecheaMaureen BergTeresa M. BergholzKathryn BernardAude BernheimAnthony BertagnolliMatthew BertinElizabeth N. BessSharon BewickOliver K. I. BezuidtMohini BhattacharyaGiancarlo A. BiaginiLewis BingleJordan E. BisanzPradeep BistPinaki BiswasEran BlacherJonathan M. BlackburnChristopher BlackwoodJorge BlancoRan BlekhmanMark BlennerJoseph M. BlissLouis-Marie BobayThomas A. BobikJames BoedickerAlexandria B. BoehmNicholas Andrew BokulichAndrea BonettiJames L. BonoBatbileg BorErik BorchertAndrew M. BormanJames BornemanThomas C. G. BoschJoseph M. BosilevacMichael J. BouchardYann F. BoucherPatrick H. BradleyEefjan BreukinkAmanda J. BrinkworthShaun R. BrinsmadeJuliana Delatorre BronzatoJulie BrothwellTitus BrownLinda BrubakerSpencer A. BruceSebastian BruchmannBryan D. BrysonGregory A. BuckAngus BucklingSilvia BulgheresiLorinda BullingtonLisa BurdetteLiana T. BurghardtMark J. ButtnerL\u00edlian CaesarFeng CaiIsabelle CaldelariPhilip CalderCarole CamarasaShawn R. CampagnaDanielle Elizabeth CampbellJuliana Coutinho CamposAhmet Can BerkyurekHailong CaoJialan CaoYueqing CaoDelphine CapelaMauricio Caraballo RodriguezValerie Jean CarabettaAlessandra CarattoliJuan Pablo C\u00e1rdenasAllison F. CareyRoss P. CarlsonRonan K. CarrollSantiago Castillo-Ram\u00edrezJuan Castro-SeverynJorge CervantesKok Gan ChanSiu H. J. ChanTrevor C. CharlesBenoit ChassaingSom S. ChatterjeeAdit ChaudharyMax Chavarr\u00edaCongying ChenDing-Qiang ChenFeng ChenGao ChenLiang ChenLianmin ChenShaohua ChenStanley H. ChenYin ChenYongliang ChenCaroline Ch\u00e9nardShu ChengAlexandra ChiaveriniJungil ChoiLon M. ChubizNico J. ClaassensJan ClaesenDennis ClaessenGerard ClarkeThomas ClavelSarah A. ClockMara L. C. CloutierShannon R. ColemanJustine CollierEric CollinsCharles ColuzziAndre M. ComeauFabio CominelliLaurie E. ComstockTerrance G. CooperReilly O. CooperFernando CorralesDoug CossarLauren CowleyKatharine CoyteSean CrossonElena CrottiDavid E. CrowleyNyssa CullinChris CurtinRoy CurtissLeah CuthbertsonWeronika CzabanStefania DaghinoYang DaiBenjamin DainatAlex DajkovicJennifer L. DaleGautam DantasSophie E. DarchPromi DasRaunak Kumar DasSudip DasMark R. DaviesEllen DecaesteckerHidde de JongRonnie de JongeJohn P. DekkerRosa del CampoDiego de MendozaXianding DengXiangyu DengXin DengYijie DengLaura De NiesNicole J. De NiscoDaniel P. DepledgeDhwani DesaiLes DethlefsenTravis J. De WolfeEric D\u00e9zielAvantika DhabariaNeha DhasmanaJuan Diaz-ColungaFabrizio Di CaprioGregory J. DickJoseph DiDonatoChristian DienerStephen P. DiggleKimberly Anne Dill-McFarlandTatiana DimitriuRay DixonUlrich DobrindtYohei DoiStephen K. DolanSara DominguesJustin J. DonatoSharon DonovanCharles J. DormanGavin M. DouglasMarc DroletChao DuYabing DuanBreck A. DuerkopSe\u00e1na DugganJack DunkleAnne DuplouyMatt DurrantSanjucta DuttaRachel J. DuttonM\u00e1ria D\u017eunkov\u00e1William D. EatonTom EdlindCollin EdwardsMartinique Lefevre EdwardsMarie A. ElliotJoshua ElmoreEmiley Ansley Eloe-FadroshMelinda Anne EngevikChristoph EnglTobias EnglBrendan EpsteinAna V. Espinel-IngroffCarmen Espinosa-GongoraAndreia B. EstrelaYanhua FanRongxiang FangWeiguo FangYufeng FangS\u00e9amus FanningSara FedericiVictor FedorenkoConor FeehilyFengqin FengHong FengPinghui FengGabriel da Rocha FernandesJuan Carlos Gutierrez FernandezMarine FeyereisenNoah FiererReinhard FischerRoss FitzgeraldKyle FloydFatima FoflonkerMarco FondiHerrison FontanaGad FrankelPatrick FrantomPaul FraserAlessandra FrauSteven FreseMaximilian FreyMichael W. FriedrichVille FrimanJulia FrunzkeYunhe FuChikara FurusawaGiovanni GalloMichael G. GanzleCheng GaoXiaofeng GaoDavid Garcia-CallejasMelanie GareauJunkal GarmendiaMatthew J. GebertJennifer Geddes-McalisterJohn A. GerltGisa GeroldMonica L. GerthLandon John GetzRohit GhaiMurad GhanimRaad GharaibehPartho GhoshScott Michael GiffordConcha GilMicaela GiorginiMathieu GissotStefanie P. GlaeserAnum GlasgowLaura GlendinningErin S. GloagGregory B. GloorAlain P. GobertMatthew Robert GoddardDaryl GohlJoanna B. GoldbergJoao Carlos Gomes-NetoLaura G\u00f3mez-ConsarnauAngela Gomez-SimmondsYanhai GongCesar Raul Gonzalez-EsquerUri GophnaTobias GorisAndrew GorringeJeffrey M. GrabowskiDavid E. GrahamTodd M. GrecoChris GreeningGwen G. GreletJoel S. GriffittsIn\u00eas Ramos GriloGhjuvan GrimaudTed GrunbergAlexander Gr\u00fcnbergerDanxia GuHaiwei GuSteinn GudmundssonRoberto M. C. GuedesCaitriona M. GuinaneXianwu GuoTony GutierrezAndras GyorgyMaria HadjifrangiskouTatsuro HagiAndrea HahnVanessa L. HaleAlex HallRuth M. HallKambiz HamadaniTrinity L. HamiltonThomas H. HamptonMei-Ling HanNabil HannaGeoffrey D. HanniganPamela HansonWilliam R. HarcombeJessica HardinChristopher HarmerXavier HarrisonMark E. HartChristiane Hassenr\u00fcckGraham F. HatfullRoland HatzenpichlerAlyse HawleySusu HeYan HeAziz HeddiJussi HeinonsaloKlaas J. HellingwerfChris HenryMichael A. HensonMelissa M. Herbst-KralovetzDaniel Philipp Ralf HerlemannMark T. HernandezAnder Hern\u00e1ndez Pl\u00e1garoRobert L. HettichPaul G. HigginsFalk HildebrandLuke HillaryJoshua W. K. HoShang-Tse HoYing-Ning HoWouter D. HoffDeborah A. HoganDevin B. HolmanMichael J. HolmesYuichi HongohMatthew HortonMasahito HosokawaCristina Howard-VaronaAnsel HsiaoCheng-Chih HsuJianzhong HuXiaoting HuaHsin-Ho HuangKerwyn Casey HuangShi HuangLori B. HubermanCasey HubertLuciano F. HuergoDiarmaid HughesMylene HugoniAmanda HurleyAlan HutchisonWilliam P. InskeepRichard E. IsaacsonRalph R. IsbergSiva Sankari Iyer Mani SankaranRobert JacksonJohn JacobsWilliam R. JacobsMyrna Ellen Jacobson MeyersDeborah Jacobs-SeraPratik JagtapNico JehmlichChe Ok JeonJong JeongAashish JhaJuquan JiangYong JiangDong-Yan JinAaron JohnsonJames R. JohnsonMichael David Leslie JohnsonTimothy JohnsonRheinallt M. JonesPeter JorthChristine JosenhansLaurence JossetPeter JungblutNadeem O. KaakoushMadhavi L. KakumanuMarina G. KalyuzhnayaKrishna KantsharmaHeidi B. KaplanSmruthi KarthikeyanJustin R. KasparLaura A. KatzEmily KawalerWilliam L. KelleyLibusha KellyHans KestlerNemat O. KeyhaniAmjad KhanNicolas KiefferKristopher KieftYoung Ho KimJeffrey Alan KimbrelKerry KinneyKatharina KitzingerMaia KivisaarStephanie KivlinJen KniesEric KochGerwald KoehlerArash KomeiliPeter KonturekBon-Sang KooOmry KorenSaori KosonoAriangela J. KozikFrauke KrackeElizabeth B. KujawinskiAnand KumarAshwani KumarRoshan KumarAnthony KusalikPriyanka KushwahaAnders KvarnhedenMan Jae KwonYoung Min KwonC\u00e9dric LacznyBeatriz LagunasLeo LahtiErh-Min LaiIain L. LamontJulie LaRocheSabina Leanti La RosaPeter E. LarsenSunil LaxmanCarlito B. LebrillaRaphael LedermannChang-Ro LeeDong-Woo LeeDong-Yup LeeEun Yeol LeeKihyun LeeSunjae LeeOwen P. LeiserVanessa LeoneKeith N. LeppardKarine G. Le RochCammie F. LesserKa Yin LeungMark Alexander LeverJanina P. LewisBo LiFu-Li LiHuiying LiJian LiJilian LiLiang LiMu LiRongyu LiTuo LiWen-Jun LiXiangzhen LiXiaogang LiXiaotong LiQiming LiangJosie LibertucciTami LiebermanJean LimBruno P. LimaGipsi Lima-MendezJonathan Y. LinYao-Cheng LinNilton LincopanDan LindnerSteven E. LindowRoger G. LiningtonDi LiuJinxin LiuLong LiuShirong LiuXiaolu LiuYan LiuYongxin LiuYubing LiuJason Lloyd-PriceTed Loch-TemzelidesAndrew LongReid LongleyWilliam LopesJose L. Lopez-RibotMartina LoriWai Yee LowCatherine LozuponePeter Adrian LundElaine LuoXin M. LuoJonathan LynchMeinan LyuZhe LyuBo MaZhonghua MaNataliia MachushynetsRoderick I. MackieHannah MacLeodGuerrino MacoriErica L.-W. MajumderIris MaldenerAshish MalikJohan Malmstr\u00f6mSerena ManaraJulia ManassonLauralie Mangeot-PeterAdriana MantegazzaHuiling MaoCostas D. MaranasAbelardo MargollesClarisse (Lisa) MarotzPhilippe MarteauJos\u00e9 Luis Mart\u00ednezAugusto Martinez-AntonioEsteban Mart\u00ednez-Garc\u00edaVincent G. MartinsonTakako MasudaS\u00e9bastien MatamorosPrince Peter MathaiMiguel A. MatillaCameron McBrideLaura-Isobel McCallJessica R. McCannRyan McClureUrsula M. McCormackAli McCullyJason E. McDermottTimothy R. McDermottAndrew McDowellMichelle McGuireAoife J. McHughMichael J. McInerneyJames B. McKinlayMichael J. McLarenJoel McManusRainer U. MeckenstockGregory L. MedlockMaliheh MehrshadLuis C. MejiaMelissa MelbySilvia MelgarBrett L. MellbyeAlessio MengoniGuillaume M\u00e9ricNoha M. MesbahSt\u00e9phane MesnageElla M. MeumannGeorge MichailFiras S. MidaniPeter E. MidfordJoseph R. MihaljevicJeremiah J. MinichBiswapriya Biswavas MisraRajeev MisraRicha MisraDouglas A. MitchellMegan C. MladinichJennifer M. MobberleyLuke A. MoeAmin MohamedYassene MohammedOmkar Satyavan MohiteMashkoor MohsinWendy MokL\u00e1zaro MolinaDenise MonackIsha MongaJonathan M. MonkDouglas MonteiroOlimpio MonteroMatthew D. MooreJames J. MoranChristopher E. MorganMegan MorrisMark MorrisonJamie MortonLuis Mota-BravoJochen A. MuellerRyan Sean MuellerMandy MullerCatherine Mulli\u00e9Alise MuokGemma G. MurrayMario E. MuscarellaJillian MyersCarey D. NadellNiranjan NagarajanDrew R. NanniniAdrienne B. NarrowePayman NasrStephen NayfachDaniel NaylorBrittany NeedhamJeniel E. NettMeina Neumann-SchaalJoshua Patrick Mark NewsonChristopher NicchittaGraeme William NicolPierre NicolasVincent NietoPablo Ivan NikelBen NiuQiuhong NiuFranklin NobregaSamuel-Philip NobsTrent NorthenSpencer V. NyholmAnna O'BrienConor P. O'ByrneKazuhiro OgaiDele OgunremiYasuo OhnishiShigeaki OhnoNaoko OhtaniAnil OjhaAndrew OleinikovAngela OliverioChristine OlsonMarc OngenaMei OoiTodd OsmundsonOrla O'SullivanHiroshi OtaniRonan F. O'TooleMichael OttoHong-Yu OuMarc OuelletteJeremy George OwenEgon Anderson OzerMartin PabstCara T. PagerMelinda PaholcsekSepideh PakpourMagnus PalmbladRobert J. PalmerBernhard O. PalssonMeichen PanTansol ParkJohn ParkinsonJulio Parra-FloresAnutthaman ParthasarathyLaila Pamela Partida-MartinezSally R. PartridgeAdrian PaskeyEdoardo PasolliAlessandro PasseraKiran PatilMichael PatnodeAndrew C. PawlowskiJennifer L. PechalItsik Pe'erDesheng PeiRudy PelicaenDale A. PelletierXuanxian PengJakob PernthalerJames PetersScott PetersonVanessa V. PhelanBrett E. PickettGiovanni PilloniJarone PinhassiAmeet J. PintoJohann PitoutPaul J. PlummerMircea PodarGeorg PohnertLaurent PoirelSuchawan PornsukaromAnais PotronDominic Poulin-LapradeAkbar Adjie PratamaSusan PrescottErin P. PriceMorgan N. PriceSambhawa PriyaAlexander J. ProbstDaniele ProvenzanoQiang PuAlexandra E. PurdyFahd QadirXiaopeng QiZhe-Xue QuanAlisha QuandtKenjiro Wake QuidesRalf RabusMark RadosevichMalini RajanMirjana Rajili\u0107-Stojanovi\u0107Gordon RamageKelly RamirezDipak RamjiJayasimha RaoDavid RaskoSimon RasmussenDaniel RathThomas RatteiAlison RavenscraftKasie RaymannTimothy D. ReadShawna ReedPierre RenaultJose M. RequenaHenry ReyerAlejandro ReyesPhilip J. RichardsJason M. RidlonDaniel Rios GarzaHenrik Munch RoagerSteve RobbinsLeah RobertsSerina L. RobinsonAmalia RocaJennifer RoccaGuillermo RodrigoMarcio RodriguesLuis RodriguezEduardo Rodr\u00edguez-Rom\u00e1nDavid RomeroMarilyn J. RoossinckJason W. RoschFederico RosconiBenjamin RossDaniel E. RossOmar RossiHannes L. RostChristopher RotaDaniel R\u00f6thSimon RouxDenis RoySyamal RoyDaniel RozenPeter RubbensJeffrey RudolfMarc RuitenbergSteffen RuppFracesco RussoSangryeol RyuZakee L. SabreeRajib SahaJason W. SahlSakuntala SaijaiElisa SalvettiNadia SampaioJohn C. SamuelsonNicholas SandovalRobert A. SanfordDominique SanglardAlvaro San-Mil\u00e1nAlyson E. SantoroChristian Santos-Medell\u00ednGuillaume SarrabayrouseJimmy H. SawTomoo SawabeGary SawersMatthew J. ScarboroughJoy ScariaJoseph SchachererLennart Schada von BorzyskowskiIsabelle SchalkDirk-Jan ScheffersBernhard H. SchinkGuy SchleyerPatrick D. SchlossMarian L. SchmidtThomas M. SchmidtDirkjan SchokkerMichelle SchornBenjamin Luke SchulzEgbert SchwartzHannah Doris SchweitzerVera SchwierzeckPeter SeboLeopoldo SegalJana SeifertRyan F. SeipkeYuji SekiguchiCharlie SetoLuca SettanniEmmanuel SeveriMohammad R. SeyedsayamdostLauren Marie SeylerMichael ShafferMaulin P. ShahYatrik ShahFergus ShanahanXihui ShenPaul SheridanJunling ShiAndrey N. ShkoporovAmanda ShoreNatalia ShulzhenkoSeyed Davar SiadatNikolai SiemensSusanne SieversCynthia B. SilveiraAmit SinghAnoop SinghBaneshwar SinghRamandeep SinghNaresh SinghalSonia SinghalEvan SkowronskiTimofey SkvortsovLloyd M. SmithMelvyn SmithPaul SmithThomas E. SmithScott D. SobyChristian SohlenkampBokai SongHyun-Seob SongJiuzhou SongJustin L. SonnenburgUtkarsh SoodLauren SpeareStephen SpiroSanjeeva SrivastavaLee F. StanishFabian StaubachB\u00e4rbel StecherTodd R. SteckBruno StefanonEike J. SteinigUlrich StelzlBo Maxwell StevensBradley S. StevensonAdrie J. SteynPaul StodghillSarah StraussWolfgang R. StreitJian Qiang SuXiaoquan SuWoo Jun SulSnorre SulheimChaomin SunHongzhe SunHui-Zeng SunQiang SunShan SunWenxian SunXiaolun SunPer SunnerhagenMaxim SvetlovAustin D. SwaffordBryan SwingleJason B. SylvanYinjie J. TangWindy TannerGerald W. TannockXuanyu TaoAzuma TaokaIlma TapioCormac Thomas TaylorJan TebbenHerve TettelinChristoph A. ThaissAndrew Maltez ThomasJulie A. ThomasSunnie R. ThompsonCasper ThorupGuo-Bao TianXiaojun TianYun TianMarius Belmondo TinchoKara A. TinkerDirk TischlerAndrzej TkaczJeffery K. TomberlinParizad Torabi-PariziDieter M. TourlousseMaxime TourteSachia Jo TravingGena D. TribbleDenis TrubitsynGareth TrublStephen Kwok-Wing TsuiJennifer Anne TullmanBenjamin John TullyChristine Y. TurennePeter J. TurnbaughCaroline TurnerElhanan TzipilevichDaniel UdwaryJuan A. UgaldeRaphael ValdiviaYo-Ann Valez JustinianoEthan Van ArnamFran\u00e7oise Van BambekeJan Roelof van der MeerKaren Jane VanderwolfJames L. Van EttenRob Van HoudtJolanda van LeeuwenWillem Van SchaikSuzan Pantaroto VasconcellosDelyana Peteva VasilevaNic M. VegaSandeep VenkataramVittorio VenturiN. VerdileAjit VikramValeska Villegas-EscobarAntony T. VincentUwe VoelkerAngelina VolkovaAurele VuilleminJoseph Thomas WadeMaggie R. WagnerIrene Wagner-DoblerLevi WaldronDavid Ian WalkerWolfgang WanekChengshu WangHaixia WangJinfeng WangJoyce WangJunjun WangPandeng WangQiyao WangWeilan WangXifeng WangXueshan WangYue WangYongbao WangIndu WarrierAlex D. WashburneTilmann WeberZhaojun WeiVirginia WeisAlexandra J. WeisbergJake WeissmanRoy D. WelchJia WenI. WheeldonNicole WheelerRichard Allen White IIISivaramesh WigneshwerarajRoland Conrad WilhelmMichael WilkinsJulia WillettAmy D. WillisTomasz WilmanskiJennifer R. WilsonJennifer H. Wilson-WelderAngela WitteAlan J. WolfeSul Woo JulJonathan WrenGerard D. WrightRobyn J. WrightHao WuRuonan WuYu-Wei WuSander WuytsClaudia WylezichKristine M. WyliePeng XingJinbo XiongWei XiongLibin XuPing XuZhenjiang Zech XuKatherine XueTakuji YamadaMasayuki YamamotoQingyun YanTao YanXianghua YanBaowei YangChunfu YangJinkui YangJun YangZhaomin YangYu-Feng YaoM.-N. Frances YapRobert YarchoanEmily Yates-DoerrJung-Yong YehHuabing YinShibu YoosephLoubna YoussarEizadora T. YuGuangtao YuJing YuanMengting Maggie YuanCarlos R. Z\u00e1rate-Blad\u00e9sRaz ZarivachAhmed ZayedDavid ZeeviAnna C. ZemkeLauren A. ZenewiczKarsten ZenglerAngela ZhangGuangliang ZhangJiachao ZhangJian ZhangMingzi ZhangPei ZhangRong ZhangRuifu ZhangXiao-Hua ZhangYongjun ZhangZhengguang ZhangKun ZhaoYingming ZhaoJun ZhengJusheng ZhengShijun J. ZhengYong ZhengHaokui ZhouJianhua ZhouZhi-Gang ZhouBaoli ZhuWenhan ZhuYang ZhuYong-Zhang ZhuRyan M. ZielsNadine ZiemertMichael ZimmermannZhiyong ZongJackie ZorzJasenka ZubcevicMartin ZwanzigLast year, I hoped that we were moving toward the end of the pandemic. I was wrong. Despite the availability of free vaccines that have demonstrated remarkable ability to reduce transmission and serious illness, vaccine rates are still woefully low. It seems that many of our fellow global citizens (that have access to vaccines) have rejected the evidence presented, preferring to put themselves, family members, and the wider community at risk of serious illness and death. However, this apparent rejection of science should not reduce our resolve to provide rigorous review of our peers\u2019 work. Scientific discovery works only because we as a community are willing to assess its accuracy and validity. Providing this service free of charge is an important part of reducing perceived bias. That being said, it is a major time commitment, and every one of us that gives up our limited time to support peer review does so with the understanding that our assessments are important in ensuring that unfounded, nonrigorous results and conclusions are not disseminated widely. The suggestion that we should abandon peer review and let postpublication review sort through the rigor of new science does not account for the new world in which we live. People will use \u201cpublished\u201d research to justify their perspectives, and so the propagation of poorly designed studies and inaccurate findings will further the erosion of the public\u2019s \u201cfaith\u201d in science. Peer review has never been more important than it is now, and the"} {"text": "PLoS Medicine, volume 2, issue 11: DOI:10.1371/journal.pmed.0020405Inhttp://unstats.un.org/unsd/mi/techgroup/January2005/Series%20update%20status%20query_FC.xls. Accessed 13 October 2005] was publicly accessible at the time of publication of Amir Attaran's article, but is no longer publicly accessible. This file can now be found asReference 3 [United Nations (2005) Data availability analysis. New York: United Nations. Available:Dataset S1(41.5 KB XLS).Click here for additional data file."} {"text": "PLoS Medicine, volume 2, issue 10: DOI:10.1371/journal.pmed.0020318Inhttp://unstats.un.org/unsd/mi/techgroup/Sept2004/message_to_inter_agency_mdg.pdf. Accessed 1 August 2005] was publicly accessible at the time of publication of Amir Attaran's article, but is no longer publicly accessible. This file can now be found asReference 3 [Deputy Secretary General United Nations (2004) Message to the inter-agency and expert meeting on MDG indicators Geneva 29 September\u20131 October 2004. New York: United Nations. Available:Text S1(44.5 KB DOC).Click here for additional data file."} {"text": "PLoS Pathogens, volume 3, issue 1: doi: 10.1371/journal.ppat.0030001In The third author's name was incorrectly listed as Claire J. Hoving. The correct name is J. Claire Hoving."} {"text": "PLoS Computational Biology, volume 3, issue 3: doi: 10.1371/journal.pcbi.0030053In An author's name was misspelled as Fransizka Michor and should read:Franziska Michor"} {"text": "PLoS Biology, volume 5, issue 5: doi: 10.1371/journal.pbio.0050097In The ninth author's name was incorrectly given as Janet Thonton; it should be Janet Thornton."} {"text": "PLoS Computational Biology, volume 1, issue:DOI: 10.1371/journal.pcbi.0010079In in was omitted from Equation 6. The correct equation is as shown below:An"} {"text": "PLoS Medicine, volume 3, issue 3: DOI:10.1371/journal.pmed.0030167Inhttp://ottawagroup.ohri.ca/signatories.html.The URL provided for the Ottawa Group was incorrect. It should be"} {"text": "Environ Health Perspect 115:1087\u20131093 (2007)], the corresponding author\u2019s address is incorrect. The correct address is S.G. O\u2019Neil, 1071 Blue Hill Ave., Milton, MA 02186. Telephone: 617-333-0500. E-mail:soneil0905@curry.eduIn the article by O\u2019Neil [EHP regrets the error."} {"text": "PLoS Genetics, volume 2, issue 12: doi:10.1371/journal.pgen.0020205In http://bioinfo.lifl.fr/yass/yass.php.In the Materials and Methods, the URL to the Yass online program was incorrectly listed. The correct URL is"} {"text": "PLoS Computational Biology, volume 3, issue 6: 10.1371/journal.pcbi.0030107In In the subsection \"Evolutionary conservation of modules and proteins\" of the Materials and Methods section, a link was incomplete. The correct link reads:http://rd.plos.org/10.1371_journal.pcbi.0030107_01_0"} {"text": "PLoS Genetics, volume 3, issue 5: 10.1371/journal.pgen.0030085In Mr. Eric L. Van Nostrand's name was incorrectly listed in the online citation as Nostrand ELV. The correct citation is:10.1371/journal.pgen.0030085.Yeo GW, Van Nostrand EL, Liang TY (2007) Discovery and Analysis of Evolutionarily Conserved Intronic Splicing Regulatory Elements. PLoS Genet 3(5): e85 doi:"} {"text": "PLoS Pathogens, volume 3, issue 3: doi: 10.1371/journal.ppat.0030034In The seventh author's name was incorrectly listed as Gilean A. V. McVean. The correct name is Gil McVean."} {"text": "DOI: 10.1371/journal.pcbi.0020013PLoS Computational Biology, volume 2, issue 2:In http://cssb.biology.gatech.edu/skolnick/files/gpcr/gpcr.html.The URL provided for the GPCR model database in the published article is no longer active. The database is now located at"} {"text": "E. coli in humans in the Netherlands. PLoS ONE 13(3): e0193834. https://doi.org/10.1371/journal.pone.0193834The fifth author\u2019s name is incorrect. The correct name is: Cornelia C. H. Wielders. The correct citation is: Teunis PFM, Evers EG, Hengeveld PD, Dierikx CM, Wielders CCH, van Duijkeren E (2018) Time to acquire and lose carriership of ESBL/pAmpC producing"} {"text": "Present: Due to an error made during the assembly of Figure Corrected: Correct Figure 11709-22. doi: 10.18632/oncotarget.2606.Original article: Oncotarget. 2014; 5(22):"} {"text": "R. Soc. open sci.4, 171085. (Published 6 December 2017). (doi:10.1098/rsos.171085)http://rsos.royalsocietypublishing.org/content/4/12/171085.An author name was given wrongly in reference [17] of The author's name should be Hooper R and not Holder R, as presently written.The corrected reference in full is:p-value depends only weakly on statistical power in realistic situations. J. Clin. Epidemiol. 62, e1242\u2013e1247. (doi:10.1016/j.jclinepi.2009.02.004)Hooper R. 2009 The Bayesian interpretation of a"} {"text": "PRESENT: Due to an error during production, Figures .Correct: Figures 830-43. doi: 10.18632/oncotarget.971.Original article: Oncotarget. 2013; 4(6):"} {"text": "Richard Wiseman, Adrian M. Owen. Turning the Other Lobe: Directional Biases in Brain Diagrams. i-Perception. 8(3):1\u20134.The authors regret that the labels on"} {"text": "The Data Availability statement for this paper is incorrect. The correct statement is: All relevant data are available at the following locations:https://doi.org/10.6084/m9.figshare.4730053.v1Golgi staining: https://doi.org/10.6084/m9.figshare.4730089.v1Hippocampal primary cultures (spine density): https://doi.org/10.6084/m9.figshare.4730038.v1qPCR Tspan6 KO mice: https://doi.org/10.6084/m9.figshare.4730026.v1RNA scope images: https://doi.org/10.6084/m9.figshare.4730146.v1Electrophysiological recordings: https://doi.org/10.6084/m9.figshare.4730149.v1Behavioral results: https://doi.org/10.6084/m9.figshare.4730164.v1Surface GluA1 expression in hippocampal primary neurons: https://doi.org/10.6084/m9.figshare.4730182.v1Western blot hippocampal synaptosomes: https://doi.org/10.6084/m9.figshare.4730194.v1Western blot hippocampal homogenates:"} {"text": "The Chief Editors and the Editorial Board thank the reviewers' listed below for their contribution and time consuming efforts in refereeing papers submitted to 3 Biotech in 2015. Their timely response and critical comments have not only assisted us in the selection of high-quality scientific work, but their critique is also appreciated by authors as it frequently assists them to improve the style and content of their publications.Nayera A.M. AbdelwahedMar\u00eda Abad-GrauNaglaa AbdallahNadia AbdEl-NasserTapan K. AdhyaDeepti AgrawalBasir AhmadAta AkcilMohd. AkhtarAyodele AlaiyaSahal Al-HajojFatimah AlhamlanRabih Al-KaysiSulaiman Al-MayoufGundi Vijay AnandProf. Reshetilov AnatolyAnees AnsariMohammad AnsariRaheel AnwarAbdolreza ArdeshirylajimiEhtasham ArifMohammad AsadollahiUtku AvciMd. Rabiul AwualYuxiang BaiChunyu BaiN.K. BainsalaM.D. BalakumaranH.S. BalyanIndrani BanerjeeDebdulal BanerjeeHussaina BanuAndrew BattleP.D. BelurSubhash BhardwajPankaj M. BhattDurga BhattChanghao BiS. BinduRajib BiswasYannick BombleAbhijeet BoroleCraig BuntSiddhardha Busi SiddhardhaTao CaiZhen CaiMingfeng CaoAur\u00e9lie C\u00e9bronSonia ChadhaSusanta ChakrabortyAnindya ChandaNidhee ChaudharyS.F. ChenJinchun ChenHairong ChengJoshua ChouKathrine ChristensenHanna DahmP.K. DasAshis DasSurajit DasShailesh DaveAchlesh DavereyJan De RiekApurba DeyD. DhanasekaranNicolas DoucetJoao DuarteKheireddine El-BoubbouNadia El-GamalAhmed ElsharkawySebnem ErenlerLeticia EstevinhoThaddeus EzejiAnbin EzhilanE. Fernandez-GarciaDaniela GaborShowkat GanieYuhua GaoDifeng GaoRomain GautierK. Gawel-BebenXumeng GeSveta GerdesJan GeunsM. GhaediParvatam GiridharAnanthan GnanakkanVenkateswara GogineniT. GopalakrishnaSubramaniam GopalakrishnanBhattiprolu Govinda RaoShipra GuptaDorin GuptaVandana GuptaVijai Kumar GuptaVijai GuptaBaskar GurunathanAshok HadapadSubhashish HaldarYiejun HanZhangying HaoVinayaka HegdeKhan HekmatyarCornelia HooperShankar HosmaniZhiyong HuangK. Hari KrishnanSundeep JaglanRachna JainHasnain JavedR. JayamadhuriVenkatesh JelliSujee JeyapalinaJean JoseChaitanya G. JoshiTarek KabilC.C.N. KhobragadeD. KaladharRajwant KaliaChristos KannasPrasad KaparajuB. KapdnisAfsin KayaKumaraswamy KenchappaR. KeerthiDerek KennedyRavi KesariNeda KeyhaninejadRafeiza KhanSardar KhanThida Win KhinMoon-Soo KimSoo_Ki KimUday KishoreTimo KorhonenAnil KotasthaneAnkita KothariFatemeh KouhkanAnagha KrishnanLakshminarasimhan KrishnaswamyRamesh KuhadPankaj KumarSuresh KumarDr. Narendra KumarSaravanah KumarAaron Alfred KwaasiPark KyeungJinwook LeeSlawomir LewickiS.N. LewisDemao LiZhongyi LiJinshan LiY. LiZhenglong LiYuping LinS.J. LinLifeng LiuTao LiuJin LiuJun LiuXiaowei LiuH. LiuLong LiuJos\u00e9 Pedro Lopes FariaXavier LouisS. LutsenkoThomas LutzHongwu MaDatta MadamwarRajat MahajanS. Dharne MaheshHamid MalekiAnushree MalikK. MallikarjunaNazim MamedovJose ManchenoMaegala ManiyamAshwini MathurSayaji MehetreBoris MinaevPankaj MishraGiovanni MitaM.K. RajeshBiplob ModakReda MoghaiebSanaa MohamedMaysa MoharamThanaa MohdalyDejana MokranjacHossain MondalSukanta MondalPoulomi MukherjeeArup Kumar MukherjeeSuprabhat MukherjeeSuparna MukherjiAkhtar NadhmanAmbarish NagManjunath NaikJyothisha NairSavithri NambeesanBala NambisanRenu NandakumarIsali NantesPradeep NegiHelena NevalainenSujogya PandaJanmejay PandeyPranay PankajEmmanuel PapamichaelM.V. ParakhiaRamakrishnan ParthasarathiTrupti PatelRanjana PathaniaKishore PatilChristina PayneI. PeinadoYanfeng PengAngelo PeraltaCarlo PiermarocchiOnruthai PinyakongVimal PrajapatiA.P. PratapBharath PrithivirajT. PullaiahHong QingBabak RabieiB. Rajasekhar ReddyK. RaghavendraHamidur RahamanSudhir RaiNishant RaiNaushad RaisS. RajagopalAlex Selvanayagam RajangamBernard Rajeev SWVrinda RamakrishnanB.V. RamanV. RangaswamyA.R. RaoRino RappuoliMamoon RashidArthi RathinasabapathyGourav RathoreRajesh RautPrasun RayManju RayMehdi Razzaghi-abyanehGopal ReddyK. RekhaSatyanarayana RentalaKedar RokadeMainak RoySeunghyun RyuA. SabuJitendra SainiS.S. SandhuMaddirevulla SateeshP. Suresh kumarS. SatheeshKannusamy SathyaseelanTulasi SatyanarayanaIndu SawantWalter SchmidtIvan SchusterSamuel SeaverG. Seghal KiranFlavio SeixasJoseph SelvinAn Seong Soo AHanan ShaabanShafinaz ShahirSitansh SharmaBirinchi SharmaNitya SharmaR. ShashidharIng-Lung ShihP. ShilpkarWenqing ShuiPratyoosh ShuklaSwapna SimonRandhir SinghAbhishek SinghKusum SolankiAndong SongCunjiang SongHui SongMaria SotoValentina SpanicJanet SprentBharati SrinivasanS. SriramManoj SrivastavaAlexander Steinb\u00fcchelM. Subhosh ChandraMayavan SubramanianKondeti SubramanyamRajeev SukumaranFaheem Sultan MohammadGeeta SumbaliYuanxia SunP.N. SunilkumarLaura A. SvetazTamer TamerLi TanGeok Hun TanShuangyan TangFei TaoHamsa TayebValentino Te\u2019oChao-guang TianAdeline TIngNathan TintleJoe TiralongoMontserrat TobajasM. TohidfarIrena Trbojevi\u0107 Akma\u010di\u0107Minh TriTimir TripathyRan TuP. Uma Maheswari DeviNaryana UpadhyayaS.V.N. VijayendraO.P. VermaSalwa WahshDongping WangZhen WangYi WangHaiyan WangChonglong WangThomas WestQingyu WuYi-Rui WuQiaqing WuHaixia XiaoJianmin XingZhenghong XuZhuofei XuS. XuVinod YadavJohn YarbroughG\u00f6ksungur YektaDr. Sailu YellaboinaRachel YesudasanDoctor Xiaoxing YinYanbin YinBo YuXiaochen YuYongbo YuanYouxi YuanHaggag ZainLila ZareiY.L. ZhangYanping ZhangGuimin ZhangDongyuan ZhangLing ZhangM.W. ZhangY. ZhangYifeng ZhangDawei ZhangDong ZhangQ. ZhangYingying ZhengChe Zhen-mingCheng ZhouKun Zhu"} {"text": "The Editor has retracted this article due to sNanoscale Res. Lett. 11:462; first published 18 October 2016. Huang Z-Optics Commun. 383:1-5; first published 30 August 2016. Huang Z-"} {"text": "Present: A reference for this paper was accidentally omitted from the article.Correct: The missing reference appears below.15. Al-haidari AA, Syk I, Jirstr\u00f6m K, Thorlacius H. CCR4 mediates CCL17(TARC)-induced migration of human colon cancer cells via RhoA/Rho-kinase signaling. Int J Colorectal Dis. 2013; 28:1479-1487.10.18632/oncotarget.10256Original article: Oncotarget. 2016; 7:47637-47649. doi:"} {"text": "This article has been corrected: Dr. Serban San-Maria was added to the author list.The authors sincerely apologize for this oversight.41363-41379. https://doi.org/10.18632/oncotarget.9133Original article: Oncotarget. 2016; 7:"} {"text": "The original version of this article unfortunThe corrected Reference 19 is given below.https://www.blacknote.com/wp-content/uploads/2017/12/LDDIStatement-2.pdf.19. Institute for Children\u2019s Environmental Health."} {"text": "This article has been corrected: The online version of figure 3 has been corrected:9766-9775. https://doi.org/10.18632/oncotarget.23919Original article: Oncotarget. 2018; 9:"} {"text": "In the original publication have twoIncorrect:Zoe Z. MarshmanPhilip P. BensonCorrect:Zoe MarshmanPhilip Benson"} {"text": "Present: The funding acknowledgements were omitted from the original paper.Correct: The proper funding acknowledgements are given below.doi: 10.18632/oncotarget.8862Original article: Oncotarget. 2016; 7:45094-45111."} {"text": "Present: There is a duplication of images within Figure 4BCorrect: The proper figure images are shown below. The authors sincerely apologize for this error.37966-37978. doi: 10.18632/oncotarget.9274Original article: Oncotarget. 2016; 7:"} {"text": "In the original publication two Goog3. Sherstyuk VP, Sarapulova OO, Shvalagin VV. Luminescent hybrid nanocomposites and prospects of molecular and nanophotonic systems in modern packaging and printing. Repino, St. Peterburg, Russia: Book of Abstracts of the 3-International Symposium \u201cMolecular Photonics\u201d; 2012. p. 79.https://scholar.google.com.ua/scholar?hl=uk&q=Luminescent+hybrid+nanocomposites+and+prospects+of+molecular+and+nanophotonic+systems+in+modern+packaging+and+printing&btnG=http://onlinereg.ru/mph2012/Molecular_photonics2012_Abstracts.pdf#page=7913. Sarapulova O Kyrychok T, Sherstiuk V, Orlov A. Modern printing technologies for micro- and nanoelectronics. Proceedings of IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO) April 16\u201319, 2013 Kyiv, Ukraine 2013: 151\u2013155.https://scholar.google.com.ua/scholar?q=Sarapulova+O+Kyrychok+T%2C+Sherstiuk+V%2C+Orlov+A.+Modern+printing+technologies+for+micro-+and+nanoelectronics.&btnG=&hl=uk&as_sdt=0%2C5"} {"text": "Correction to: Translational Psychiatry (2017) 7, e1011; doi:10.1038/tp.2016.281; published online 24 January 2017The 14th author's name was presented incorrectly. The correct listing is C Pantelis."} {"text": "In the original publication of this article , the accThe correct details of the NCBI accession numbers can be found below:Availability of data and materialsThe genomic sequencing data and assembled and annotated genomes are deposited at NCBI under bioproject accession numbers PRJNA304627 (K. pastoris), PRJNA304977 (K. phaffii wildtype), and PRJNA304976 (K. phaffii GS115). RNA-seq data are deposited at NCBI under the bioproject accession numbers PRJNA311606.In addition to this, please find the direct links to the data below:Transcriptome study:http://www.ncbi.nlm.nih.gov/bioproject/PRJNA311606http://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=311606Genome assemblies:http://www.ncbi.nlm.nih.gov/bioproject/PRJNA304627http://www.ncbi.nlm.nih.gov/bioproject/PRJNA304977http://www.ncbi.nlm.nih.gov/bioproject/PRJNA304976"} {"text": "This article has been corrected: Dr. Fu and Dr. Xu citations have been changed to affiliation 1 and affiliation 5 is now deleted.https://doi.org/10.18632/oncotarget.19382Original article: Oncotarget. 2017; 8:89364-89374."} {"text": "Phil. Trans. R. Soc. B371, 20150360 (doi:10.1098/rstb.2015.0360)After publication, a mistake was identified in equation (2.7); the denominators in the equation should have a minus sign rather than a plus. The corrected equation is provided here."} {"text": "This article has been corrected: Dr. Mei Li is now listed as the first correspondence author instead of Dr. Jian Yu in the correspondence section.9280-9292. https://doi.org/10.18632/oncotarget.14063Original article: Oncotarget. 2017; 8:"} {"text": "Present: Due to an error during figure assembly, the center panel of Figure Corrected: The corrected Figure 9135-49. doi: 10.18632/oncotarget.7035.Original article: Oncotarget. 2016; 7(8):"} {"text": "Present: The grant information is incomplete.Correct: Additional grant information is shown below.18736-18749. https://doi.org/10.18632/oncotarget.7702Original article: Oncotarget. 2016; 7:GRANT SUPPORTNational Natural Science Foundation of China ."} {"text": "Jackie E. MaharJackie E. Maharet al.). The article has been corrected online (https://wwwnc.cdc.gov/eid/article/24/1/17-0412_article)."} {"text": "Present: The currently listed corresponding author, John C. Herr, is deceased. Oncotarget wishes to express our condolences to his family and colleagues.Corrected: The new correspondence author information is as follows.30194-211. doi: 10.18632/oncotarget.4734.Original article: Oncotarget. 2015; 6(30):Correspondence to:Eusebio S. Pires,email:eusebiopires@gmail.com"} {"text": "There is an error in reference 71. The correct reference is:Drosophila Mushroom Body Neurons. PLoS ONE 4(12): e8392. https://doi.org/10.1371/journal.pone.000839271. Lin S, Huang Y, Lee T (2009) Nuclear Receptor Unfulfilled Regulates Axonal Guidance and Cell Identity of"} {"text": "This article has been corrected: Dr. Meiqing Lou is included as a co-corresponding author.706-717. https://doi.org/10.18632/oncotarget.23091Original article: Oncotarget. 2018; 9:"} {"text": "C. elegans. The correct citation is: Xie M, Roy R (2015) The Causative Gene in Chanarin-Dorfman Syndrome Regulates Lipid Droplet Homeostasis in C. elegans. PLoS Genet 11(6): e1005284. doi:10.1371/journal.pgen.1005284In the title of this article, the words \u201cChanarian Dorfman\u201d should read \u201cChanarin-Dorfman\u201d. The correct title is: The Causative Gene in Chanarin-Dorfman Syndrome Regulates Lipid Droplet Homeostasis in"} {"text": "Journal of Experimental Botany, Vol. 68, No. 15 pp. 4219\u20134232, 2017 doi: 10.1093/jxb/erx233The original published version of this article spelled an author\u2019s name incorrectly. The correct name is as follows: Kresanth Varatharajah."} {"text": "Present: Due to a proofreading error, one of the author\u2019s names was misspelled as: Nilofer Z. Azad.Correct: The proper spelling is as follows: Nilofer S. Azad. The publishers sincerely apologize for this oversight.25950-61. doi: 10.18632/oncotarget.7436.Original article: Oncotarget. 2016; 7(18):"} {"text": "Scientific Data 3:160047 doi: 10.1038/sdata.2016.47 (2016); Published 5 July 2016; Updated 13 September 2016Since publication, the authors have additionally deposited these data to figshare to further ensure that the data are easily accessible to all researchers:figsharehttps://dx.doi.org/10.6084/m9.figshare.c.3291368 (2016).Wang, L. & Chen, L."} {"text": "This article has been corrected: the 5th affiliation citation has been included to Dr. Jiun-Jie Wang along with affiliation 6th.https://doi.org/10.18632/oncotarget.15904Original article: Oncotarget. 2017; 8:62606-62621."} {"text": "This article has been corrected: Dr. Jian Chen was added to the author list.The authors sincerely apologize for this oversight.640-649. https://doi.org/10.18632/genesandcancer.151.Original article: Genes&Cancer. 2017;8:PMID: 28966725; PMCID: PMC5620009"} {"text": "Legionella pneumonia 2015EPI-NEWS 42/43, 201626 October 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2043%20-%202016.aspxEnhanced Surveillance of Mycobacterial Infections (ESMI) in Scotland: 2016 tuberculosis annual report for ScotlandHPS Weekly Report, 2016;50(43)25 October 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1643.pdfMycoplasma pneumoniae epidemicEPI-NEWS 41, 201612 October 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2041%20-%202016.aspxMiddle East respiratory coronavirus (MERS-CoV). Monitoring of suspected cases in France, October 2012\u2013 December 2015Bulletin \u00e9pid\u00e9miologique hebdomadaire, 32\u20133311 October 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/32-33/pdf/2016_32-33.pdfInfluenza activity in mainland France, season 2015\u20132016Bulletin \u00e9pid\u00e9miologique hebdomadaire, 32\u20133311 October 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/32-33/pdf/2016_32-33.pdfVTEC in Scotland 2015: enhanced surveillance, reference laboratory and clinical reporting dataHPS Weekly Report, 2016;50(42)18 October 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1642.pdfSalmonella trends in humans, farm animals and foodInfectieziekten Bulletin 2016; 27(8)October 2016, the Netherlandshttp://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Uitgaven/Infectieziekten_Bulletin/Jaargang_27_2016/Oktober_2016/Inhoud_oktober_2016/Trends_in_Salmonella_bij_de_mens_landbouwhuisdieren_en_in_voedselTrichinellosis outbreak after eating wild boar meat in Limburg and Antwerp restaurants in December 2014Vlaams Infectieziektebulletin; 3/2016October 2016, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/2016-3-Trichinellose-outbreak-%20A.forier.pdfInvasive meningococcal disease in Germany 2012 \u2013 2015Epidemiologisches Bulletin 43, 201631 October 2016ehttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2016/Ausgaben/43_16.pdf?__blob=publicationFilThe epidemiology of human papilloma virus in women aged 20\u201365 years living in remote villages in French Guiana: Adapting interventions to the territoryBulletin \u00e9pid\u00e9miologique hebdomadaire, 3418 October 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/34/pdf/2016_34.pdfCases of pertussis on the rise this autumnFolkh\u00e4lsomyndigheten website12 October 2016, Swedenhttps://www.folkhalsomyndigheten.se/nyheter-och-press/nyhetsarkiv/2016/oktober/fler-fall-av-kikhosta-i-host/Rubella screening of pregnant women by midwivesInfectieziekten Bulletin 2016; 27(8)October 2016, the Netherlandshttp://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Uitgaven/Infectieziekten_Bulletin/Jaargang_27_2016/Oktober_2016/Inhoud_oktober_2016/Rubellascreening_bij_zwangere_vrouwen_door_verloskundigenHIV infection and AIDS: Quarterly report to 30 June 2016HPS Weekly Report, 2016;50(41)11 October 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1641.pdfZika virus infection in a traveller returning from VietnamEpidemiologisches Bulletin 42, 201624 October 2016https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2016/Ausgaben/42_16.pdf?__blob=publicationFileInitial Danish experiences with Zika virus DiagnosticsEPI-NEWS 41, 201612 October 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2041%20-%202016.aspxChikungunya and dengue surveillance in mainland France, 2015Bulletin \u00e9pid\u00e9miologique hebdomadaire, 32\u20133311 October 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/32-33/pdf/2016_32-33.pdfRabies in Belgium, a potential danger? One caseVlaams Infectieziektebulletin; 3/2016October 2016, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/2016-3-Rabies-B-casus-F.Hoefkens.pdfNo urban myth: reception of monkeys with herpes B virus infectionInfectieziekten Bulletin 2016; 27(8)October 2016, the Netherlandshttp://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Uitgaven/Infectieziekten_Bulletin/Jaargang_27_2016/Oktober_2016/Inhoud_oktober_2016/Geen_broodjeaapverhaal_opvang_van_apen_met_herpes_B_virusinfectie"} {"text": "Fackler SW, Alexandrakis V, K\u00f6nig D, et al. Combinatorial study of Fe-Co-V hard magnetic thin films. Sci Technol Adv Mater. 2017;18:231\u2014238.http://dx.doi.org/10.1080/14686996.2017.1287520When the above article was first published online, an incorrect version of Figure 5(a) was inadvertently included. The correct figure is shown below.Taylor & Francis apologises for this error."} {"text": "Present: Due to an error in proofreading, Figures Correct: The proper figures are given below. The author sincerely apologizes for this error.36774-88. doi: 10.18632/oncotarget.4908.Original article: Oncotarget. 2015; 6(34):"} {"text": "Caenorhabditis elegans. PLoS Genet 12(8): e1006227. https://doi.org/10.1371/journal.pgen.1006227The second author's name is spelled incorrectly. The correct name is: Andreas Rechtsteiner. The correct citation is: Ahn JH, Rechtsteiner A, Strome S, Kelly WG (2016) A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in"} {"text": "Amphisorus kudakajimensis Using Calcein Acetoxymethyl Ester. PLoS ONE 11(11): e0165844. https://doi.org/10.1371/journal.pone.0165844The last author's name is spelled incorrectly. The correct name is: Takashi Nakamura. The correct citation is: Ohno Y, Fujita K, Toyofuku T, Nakamura T (2016) Cytological Observations of the Large Symbiotic Foraminifer http://www.jst.go.jp/global/english/about.html. The publisher apologizes for the errors.The following information is missing from the Funding section: This work was supported by JST/JICA SATREPS, URL:"} {"text": "R. Soc. open sci. 4, 160606. (Published 11 January 2017). (doi:10.1098/rsos.160606)This correction is to expand upon on the electronic supplementary material presented in the manuscript.https://dx.doi.org/10.6084/m9.figshare.c.3653213).In the corresponding electronic supplementary material file, additional information about acoustic calculations and data collection has been provided (http://dx.doi.org/10.5061/dryad.s6f4q.Additionally, 10-min sample recordings of both sample sites have been made available via Dryad:"} {"text": "This article has been corrected: Dr. John Yim was added to the author list.The authors sincerely apologize for this oversight.https://doi.org/10.18632/oncotarget.14476Original article: Oncotarget. 2017; 8:26414-26423."} {"text": "National Black HIV/AIDS Awareness Day is observed each year on February 7 to emphasize the continuing disproportionate impact of human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) on the U.S. black/African American (black) population.https://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-report-2016-vol-28.pdf).In 2014, non-Hispanic blacks represented 12% of the U.S. population (https://www.cdc.gov/features/BlackHIVAIDSAwareness.CDC supports a range of efforts to reduce the risk for acquiring or transmitting HIV infection among blacks. Additional information is available at"} {"text": "Present: Author contributions were not correctly attributed..Correct: The proper author contributions are shown below.Huang Jian and Shen Fangrong have contributed to this work and are co-first authors.13116-13125. doi: 10.18632/oncotarget.14471Original article: Oncotarget. 2017; 8:"} {"text": "Present: The images displayed in Figure Correct: The proper figure 84839-84850. doi: 10.18632/oncotarget.13321Original article: Oncotarget. 2016; 7:"} {"text": "Present: Due to an error in proofreading, a research project number was accidentally omitted from the Acknowledgments list.Correct: The correct numbers are provided below. The authors sincerely apologize for this oversight.33111-24. doi: 10.18632/oncotarget.8880.Original article: Oncotarget. 2016; 7(22):"} {"text": "Present: The author name \u2018Sung Min Kim\u2019 is spelled incorrectly.Correct: The proper spelling is \u2018Seong Min Kim\u2019.https://doi.org/10.18632/oncotarget.14818Original article: Oncotarget. 2017; 8:16912-16924."} {"text": "Vol. 112(11): 769-774, 2017.p. 769Phillip Noel Suffysshould read:Philip Noel Suffys"} {"text": "Present: The grant funding number is incorrect.Correct: The proper number is CMRPD891183. The authors sincerely apologize for this error.https://doi.org/10.18632/oncotarget.10057Original article: Oncotarget. 2016; 7:44047-44061."} {"text": "EditorThe following manuscript has been retracted from May-June 2015 issue on the request of theauthors who stated that \u201cafter publication, their group found that it was difficultto repeat the results. We believe that there may be some flaws or operational loopholes,hence we would like to retract this paper.\u201d- Retraction in: Pak J Med Sci 2015;31(3):672-677. doi:http://dx.doi.org/10.12669/pjms.313.7170 Link:http://pjms.com.pk/index.php/pjms/article/view/7170"} {"text": "Streptococcus suis was incorrectly described in the text of Streptococcus suis Serotype 2 Capsule In Vivo . It is a gram-positive bacterium. The article has been corrected online (https://wwwnc.cdc.gov/eid/article/22/10/15-1640_article)."} {"text": "R. Soc. open sci.4, 170975. (Published 11 October 2017). (doi:10.1098/rsos.170975)Table 1 was presented incorrectly in the published paper. The corrected table is shown below."} {"text": "This article has been corrected: Dr. Xu citation has been changed to affiliation 1 and affiliation 3 is now deleted.https://doi.org/10.18632/oncotarget.17946Original article: Oncotarget. 2017; 8:68795-68808."} {"text": "This article has been corrected: Dr. Gabriele Grunig was added to the author list.The authors sincerely apologize for this oversight.35609-35618. https://doi.org/10.18632/oncotarget.16011Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The correct author name is given below:Jinsong Bianhttps://doi.org/10.18632/oncotarget.23356Original article: Oncotarget. 2018; 9:11414-11426."} {"text": "Present: The Acknowledgment information is incomplete.Correct: The proper funding acknowledgments are given below.10.18632/oncotarget.2748Original article: Oncotarget. 2015; 6:1605-1617. doi:"} {"text": "The initials DW appear incorrectly in the Author Contributions. The correct contributions are: Conceptualization: AMBG WFH MAH. Data curation: MBK MAH. Formal analysis: MBK MAH. Investigation: MBK MAH. Methodology: AMBG WFH MAH. Resources: MBK AMBG WFH MAH. Software: MAH. Validation: MBK AMBG WFH MAH. Visualization: MBK. Writing\u2014original draft: MBK. Writing\u2014review & editing: MBK AMBG WFH MAH. The publisher apologizes for the error."} {"text": "R. Soc. open sci. 171717. (Published Online 14 February 2018). (doi:10.1098/rsos.171717)This correction concerns equation 2.17 and consequently figs."} {"text": "Present: The originally supplied Figure Correct: The proper Figure 10.18632/oncotarget.5548Original article: Oncotarget. 2015; 6:40053-67. doi:"} {"text": "There was an error in the Data Summary in the published article. PacBio assembly numbers beginning with CP0119XX should be CP0179XX, as shown below.https://www.ncbi.nlm.nih.gov/nuccore/CP017928; https://www.ncbi.nlm.nih.gov/nuccore/CP017929; https://www.ncbi.nlm.nih.gov/nuccore/CP017930; https://www.ncbi.nlm.nih.gov/nuccore/CP017931; https://www.ncbi.nlm.nih.gov/nuccore/CP017932; https://www.ncbi.nlm.nih.gov/nuccore/CP017933).CAV1015 CP017928\u2013CP017933 .CAV1016 CP017934\u2013CP017937 (The author apologizes for any inconvenience."} {"text": "Healthcare-associated infections and antibiotic resistanceProperties, frequency and distribution of vancomycin-resistant enterococci (VRE) in Germany - Update 2015/2016Epidemiologisches Bulletin 46, 201716 November 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/46_17.pdf?__blob=publicationFile\u00a0Food- and waterborne diseasesCampylobacter enteritis - risk factors and sources of infection in GermanyEpidemiologisches Bulletin 44, 20172 November 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/44_17.pdf?__blob=publicationFile\u00a0Listeria monocytogenes in the Netherlands, 2016Surveillance of Infectieziekten Bulletin 2017; 28(8)17 October 2017, the Netherlandshttp://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Uitgaven/Infectieziekten_Bulletin/Jaargang_28_2017/Oktober_2017/Inhoud_oktober_2017/Surveillance_van_Listeria_monocytogenes_in_Nederland_2016\u00a0HepatitidesHepatitis A 2015-2016EPI-NEWS 47, 201722 November 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2047%20-%202017.aspx\u00a0Vaccine-preventable diseasesMeningococcal disease 2016EPI-NEWS 49, 20176 December 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2049%20-%202017.aspx\u00a0Measles outbreak 2017Epi-Insight 2017;18(12)December 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/5731j3gwddpimcmkeer4wk?a=2&p=52679956&t=17517804\u00a0A polio-free world?EPI-NEWS 48, 201729 November 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2048%20-%202017.aspx\u00a0Laboratory confirmed cases of measles, mumps and rubella, England: July to September 2017Health Protection Report; 11(42)24 November 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/662499/hpr4217_mmr.pdf\u00a0Special issue: Vaccination of\u00a0young children: Data for\u00a0a\u00a0better understanding of\u00a0public actionBulletin \u00e9pid\u00e9miologique hebdomadaire19 October 2017, Francehttp://invs.santepubliquefrance.fr/Publications-et-outils/BEH-Bulletin-epidemiologique-hebdomadaire/Archives/2017/BEH-hors-serie-Vaccination-des-jeunes-enfants-des-donnees-pour-mieux-comprendre-l-action-publique\u00a0Invasive pneumococcal disease and adherence to pneumococcal vaccination in the childhood vaccination programme 2016EPI-NEWS 41, 201711 October 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2041%20-%202017.aspx\u00a0Respiratory diseases\u00a0Legionnaire\u2019s disease 2016EPI-NEWS 45, 20178 November 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2045%20-%202017.aspx\u00a0Enhanced Surveillance of Mycobacterial Infections (ESMI) in Scotland: 2017 tuberculosis annual report for ScotlandHPS Weekly Report 2017; 51(43)31 October 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1743.pdf\u00a0Influenza activity in France, season 2016-17Bulletin \u00e9pid\u00e9miologique hebdomadaire, 2210 October 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/22/pdf/2017_22.pdf\u00a0Hygiene and prevention practices of respiratory infections during the winter months: results from the 2016 Health Barometer, FranceBulletin \u00e9pid\u00e9miologique hebdomadaire, 2210 October 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/22/pdf/2017_22.pdf\u00a0Perceptions and behaviors of people aged 65 to 75 towards seasonal flu vaccination in France, 2016Bulletin \u00e9pid\u00e9miologique hebdomadaire, 2210 October 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/22/pdf/2017_22.pdf\u00a0Method to increase vaccination coverage of healthcare workers for seasonal influenza in health care institutionsVlaams Infectieziektebulletin; 2/2017October 2017, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/VIB%202017-2_HRES_0.pdf\u00a0Sexually transmitted diseasesSpecial edition: World AIDS Day, December\u00a01, 2017Bulletin \u00e9pid\u00e9miologique hebdomadaire, 29-3028 November 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/29-30/pdf/2017_29-30.pdf\u00a0HIV infection and AIDS: Quarterly report to 30 September 2017HPS Weekly Report 2017; 51(47)28 November 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1747.pdf\u00a0Estimation of the number of new HIV infections and the total number of people living with HIV in GermanyEpidemiologisches Bulletin 47, 201723 November 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/47_17.pdf?__blob=publicationFile\u00a0Shigella notified amongst MSM, June 2017Cluster of cases of multi-drug resistant Epi-Insight 2017;18(11)November 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/le4wjue46ls?a=2&p=52547623&t=17517804\u00a0HSE recommends antiretroviral therapy for all people living with HIV attending HIV services in IrelandEpi-Insight 2017;18(10)October 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/t8q985ffg1610gkzp9yxn5?a=2&p=52412028&t=17517804\u00a0HIV in Ireland 2016Epi-Insight 2017;18(10)October 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/t8q985ffg1610gkzp9yxn5?a=2&p=52412028&t=17517804\u00a0Genital chlamydia and gonorrhoea infection in Scotland: laboratory diagnoses 2007 \u2013 2016HPS Weekly Report 2017; 51(38)26 September 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1738.pdf\u00a0Gonococcal antibiotic surveillance in Scotland (GASS): prevalence, patterns and trends in 2016HPS Weekly Report 2017; 51(38)26 September 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1738.pdf\u00a0Zoonoses and vector-borne diseases Surveillance of human hantavirus infections in metropolitan France, 2012-2016Bulletin \u00e9pid\u00e9miologique hebdomadaire, 2324 October 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/23/pdf/2017_23.pdf\u00a0Zoonotic disease in ScotlandHPS Weekly Report 2017; 51(42)24 October 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1742.pdf\u00a0Infection with TBE virus in Denmark 2013-2016EPI-NEWS 40, 20174 October 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2040%20-%202017.aspx\u00a0Other\u00a0Special edition: Mayotte: epidemiological data for the assessment and prevention of health risksBulletin \u00e9pid\u00e9miologique hebdomadaire, 24-2531 October 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/24-25/pdf/2017_24-25.pdf\u00a0Reportable diseases in the summer of 2017Epi-Ice 10(4), 2017October 2017, Icelandhttps://www.landlaeknir.is/servlet/file/store93/item33182/EPI-ICE_October_2017.pdf\u00a0Outbreaks in the summer of 2017Epi-Ice 10(4), 2017October 2017, Icelandhttps://www.landlaeknir.is/servlet/file/store93/item33182/EPI-ICE_October_2017.pdf"} {"text": "Present: Figure Correct: The proper figure appears below.10.18632/oncotarget.8111Original article: Oncotarget. 2016; 7:23425-23438. doi:"} {"text": "This article has been corrected: The 2nd affiliation is added to the author given below:1,2Bou-Yue Peng97153-97164. https://doi.org/10.18632/oncotarget.21315Original article: Oncotarget. 2017; 8:"} {"text": "PLoS ONE 12(5): e0176821. https://doi.org/10.1371/journal.pone.0176821The second author\u2019s name is incorrect. The correct name is: Channa N. Jayasena. The correct citation is: d\u2019Anglemont de Tassigny X, Jayasena CN, Murphy KG, Dhillo WS, Colledge WH (2017) Mechanistic insights into the more potent effect of KP-54 compared to KP-10"} {"text": "Volume 8, Issue 5, pages 884\u2010893. First published: 18 March 2014.https://doi.org/10.1016/j.molonc.2014.03.003The Dub3 siRNA oligonucleotide sequence mentioned in this article is incorrect. The correct sequence of the used Dub3 siRNA oligo is GGAGAUCCAAAGGGAAGAAdTdT.The authors apologise for any inconvenience caused by this error."} {"text": "This article has been corrected: Dr. Sinha has been added in the author list with an equal contribution note along with Dr. Ryan and Dr. Bogan.103182-103206. https://doi.org/10.18632/oncotarget.20892Original article: Oncotarget. 2017; 8:"} {"text": "Present: Due to a technical error during image processing, an incorrect high resolution version of Figure Corrected: Correct Figure 12156-73. doi: 10.18632/oncotarget.3495.Original article: Oncotarget. 2015 May 20; 6(14):"} {"text": "The correct name is: Karimollah Hajian-Tilaki. The correct citation is: Omidvar S, Faramarzi M, Hajian-Tilaki K, Nasiri Amiri F (2018) Associations of psychosocial factors with pregnancy healthy life styles. PLoS ONE 13(1): e0191723. https://doi.org/10.2224/sbp.6703. In press.There is an error in reference 30. The correct reference is: Faramarzi M, Pasha H. Psychometric properties of Persian version of Prenatal Distress Questionnaire. Soc Behav Pers. 2018, 45."} {"text": "Sorghum bicolor (L.) Moench) and related model species. PLoS ONE 13(3): e0192678. https://doi.org/10.1371/journal.pone.0192678The third author's name is spelled incorrectly. The correct name is: Junaid Gamieldien. The correct citation is: Woldesemayat AA, Modise DM, Gamieldien J, Ndimba BK, Christoffels A (2018) Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum ("} {"text": "This article has been corrected: the title has been corrected.https://doi.org/10.18632/oncotarget.17051Original article: Oncotarget. 2017; 8:41078-41090."} {"text": "Danio rerio hars gene encodes both cytoplasmic and mitochondrial histidyl-tRNA synthetases. PLoS ONE12(9): e0185317. https://doi.org/10.1371/journal.pone.0185317The third author\u2019s name is spelled incorrectly. The correct name is: Christopher S Francklyn. The correct citation is: Waldron AL, Cahan SH, Francklyn CS, Ebert AM (2017) A single"} {"text": "While not members of the Board of Editors, invited editors serve an important role in the review process. Invited editors are experts in their fields of research who add an additional level of quality to the review process. An editor may assign a paper to an invited editor when he/she would like to have an additional expert opinion of the reviews or when the subject area falls outside the editor\u2019s primary area of expertise.On behalf of the editors of Dan I. AnderssonMartin Fabian BachmannShweta BansalFernando BaqueroChristopher F. BaslerJoseph Bondy-DenomyArpita BoseMichael J. BrennanJoseph BreseeRoland BroschC. Titus BrownRut Carballido-L\u00f3pezByron CaugheyJean CelliSwaine L. ChenPeter ChienJeff A. ColeVaughn S. CooperBryan R. CullenChristina A. CuomoAndrew J. DarwinRajendar DeoraFloyd E. DewhirstAlain FillouxKlas FlardhKevin FosterVance G. FowlerPhilippe GerardDeanna GibsonN. Louise GlassFIlipa Godoy-VitorinoVernita GordonJeffrey A. GralnickJean GruenbergKaren GuilleminJohn S. GunnDavid L. GutnickLynn E. HancockNancy D. HansonRobert L. HarrisonJeffrey P. HendersonBetsy HeroldKelly T. HughesDavid A. HunstadAlexander H\u00fcttenhoferMichael IbbaAkiko IwasakiJorgen JohanssonAndreas KapplerKrystyna M. KazmierczakCorby KistlerDavid M. KnipeLaura J. KnollArash KomeiliRichard J. KuhnMamuka KvaratskheliaNathaniel Roy LandauStanley M. LemonKim LewisDouglas R. LowyRebecca Marie LynchAndrew J. MacphersonWilliam MargolinEric MartensRachel M. McLoughlinDennis W. MetzgerJoachim Morschh\u00e4userJoseph MougousChristian MunzKevin MylesJulie OverbaughAndreas PeschelEverett C. PesciThomas PietschmannAnn M. PowersRichard A. ProctorMatthew Mark RamseyTimothy D. ReadAnthony R. RichardsonGloria Marcela RodriguezForest RohwerAntonis RokasTony RomeoSusan M. RosenbergPhilip C. RosenstielGian Maria RossoliniMonica J. RothCraig R. RoyRuth M. RuprechtMichael J. SadowskyJohn-Demian SauerChrista M. SchleperViviana SimonAbraham L. SonensheinJustin SonnenburgManjula SritharanGurol SuelNobuhiro SuzukiDaniel J. ThornhillRaphael ValdiviaSusana T. ValenteMarjan W. van der WoudeStefanie N. VogelMark J. WalkerJens WalterDavid S. WeissRoy D. WelchAngus C. WilsonAlan J. WolfeOtto O. YangFitnat H. YildizVincent B. YoungJae-Hyuk YuGongyi ZhangXinning ZhangThe time and effort of the following experts in handling articles have been essential to ensuring the high quality of our publications, and their help is greatly appreciated."} {"text": "Present: The 4th author's name, \u2018Ding-wei Wu,\u2019 is spelled incorrectly.Correct: The proper spelling is \u2018Wei-ding Wu\u2019.https://doi.org/10.18632/oncotarget.15513Original article: Oncotarget. 2017; 8:23155-23166."} {"text": "Present: The current funding information is incomplete.Correct: The complete funding information is given below.https://doi.org/10.18632/oncotarget.13056Original article: Oncotarget. 2017; 8:15943-15951."} {"text": "Present: The original figure Correct: The proper spelling appears in the figure below. The authors sincerely apologize for this error.10.18632/oncotarget.9251Original article: Oncotarget. 2016; 7:41217-41232. doi:"} {"text": "Baylisascaris procyonis\u2013Associated Meningoencephalitis in a Previously Healthy Adult, California, USA . The article has been corrected online (http://wwwnc.cdc.gov/eid/article/22/8/15-1939_article).The name of author Natalie Witek was misspelled in"} {"text": "Present: The acknowledgement information is incomplete.Correct: Additional acknowledgements are shown below.ACKNOWLEDGEMENTSThis work was co-financed by European Development Regional Fund (ERDF).10604-16. doi: 10.18632/oncotarget.3550Original article: Oncotarget. 2015; 6:"} {"text": "This article has been corrected: The correct Figure https://doi.org/10.18632/oncotarget.23046Original article: Oncotarget. 2017; 8:115164-115178."} {"text": "Present: Due to a technical error during image processing, the same picture set of control cells were used in TEM figures for both HCT116 wt and p53\u2212/\u2212 cells. Figure Corrected: Correct Figure 43679-97. doi: 10.18632/oncotarget.6030.Original article: Oncotarget. 2015; 6(41):"} {"text": "R. Soc. open sci.4, 170543. (Published 20 December 2017). (doi:10.1098/rsos.170543)The first sentence of \u00a74.2 currently reads \u2018Our pilot study (which was pre-registered with Open Science Framework: - osf.io),\u2026\u2019.https://osf.io/qbp7h/),\u2026\u2019.It should read: \u2018Our pilot study (which was pre-registered with Open Science Framework:"} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceptualization: LDP FARZ JDC. Data curation: LDP. Formal analysis: LDP FARZ. Funding acquisition: FARZ JDC MCGR. Investigation: LDP FARZ JDC MO ALCM ERJ APRT. Methodology: LDP FARZ JDC. Project administration: FARZ JDC MCGR. Resources: FARZ JDC MCGR. Software: LDP FARZ. Writing \u2013 original draft: LDP FARZ. Writing \u2013 review & editing: LDP FARZ JDC MO ALCM ERJ APRT."} {"text": "Lactic acid is shown to derive from sugar derived from corn or sugar beets.https://www.natureworksllc.comNatureWorks is a company making polylactic acid from lactic acid that has been produced by a microbial fermentation process.https://link.springer.com/chapter/10.1007/978-3-662-45209-7_74 platform chemistry.Succinic acid is emerging as an important bio\u2010product, due to its value in the food industry and also for the\u00a0chemical industry as a potential replacement for the current maleic anhydride Chttps://www1.eere.energy.gov/bioenergy/pdfs/ibr_arra_myriant.pdfThis page describes a biorefinery for producing bio\u2010succinic acid, located in the Port of Lake Providence, Louisiana, USA. The production capacity is 30 million pounds annually.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572532/Aspergillus species.This paper deals with metabolic reactions producing itaconic acid. Major microbial produces are https://www.omicsonline.org/open-access/fermentative-itaconic-acid-production-2376-0214.1000119.php?aid=28089This review covers itaconic acid, a platform chemical that is important in textile and pharmaceutical industries.https://en.wikipedia.org/wiki/Malolactic_fermentationThe malolactic acid fermentation is most important in the wine industry. During the process, the tart\u2010flavoured malic acid is transformed into the softer\u2010tasting product, lactic acid.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89131999000300001Aspergillus niger and Candida sp.This review article is on citric acid production. Citric acid is the largest organic acid fermentation product, and it is produced mainly by https://ccj.springeropen.com/articles/10.1186/s13065-017-0251-yThis review article brings out the important point that citric acid is produced in 4 billion ton quantities by biomass fermentation processes.https://genome.jgi.doe.gov/Aspni5/Aspni5.home.htmlAspergillus niger.This is the genome portal page for a major citric acid producing microorganism, https://www.omicsonline.org/scholarly/acetic-acid-fermentation-journals-articles-ppts-list.phpThis page on fermentation technology is focused on acetic acid fermentation. Some relevant links are provided to articles and conference proceedings.http://www.mdpi.com/2311-5637/3/2/21Propionic acid is produced through microbial fermentation. It has applications in the manufacture of cosmetics and pharmaceuticals.https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/alpha-linolenic-acidAlpha\u2010linoleic acid is considered an essential fatty acid for humans; and so, it is sought after by the food industry.http://www.sciencedirect.com/science/article/pii/S1369703X16302789Yarrowia lipolytica.Gamma\u2010linolenic acid is valued for pharmaceutical and nutraceutical applications. The present paper discusses its production using the yeast"} {"text": "Biol. Lett.12, 20160586. (Published online 18 October 2016) (doi:10.1098/rsbl.2016.0586)The caption for"} {"text": "Present: Due to an error in proofreading, figure Corrected: The proper figure 30831-30849. doi: 10.18632/oncotarget.5036.Original article: Oncotarget. 2015; 6(31):"} {"text": "Phil. Trans. R. Soc. B372, 20160274 (Published Online 11 September 2017) (doi:10.1098/rstb.2016.0274)The name of the first author, Marc Ringelhan, was spelt incorrectly as \u2018Marc Ringehan\u2019. Therefore, the author list should appear as follows:Marc Ringelhan, Jane A. McKeating and Ulrike Protzer"} {"text": "Nucl. Acids Res. 42 (12): 7489\u20137527. doi: 10.1093/nar/gku447The authors wish to correct reference 228 from:228. Naito T., Kobayashi I. Cell death programmed by selfish genes\u2013or, why are there restriction enzymes. Jikken Igaku 1995;13:1444\u20131447.To228. Naito T., Kusano K., Kobayashi I. Selfish behavior of restriction-modification systems. Science 1995;267:897\u2013899."} {"text": "Present section: Due to an error made during submission of the revised files, acknowledgements were omitted from this manuscript.Correct section: Corrected acknowledgements information is provided below. Authors sincerely apologize for this oversight.10433-47. doi: 10.18632/oncotarget.7197.Original article: Oncotarget. 2016; 7(9):"} {"text": "This article has been corrected: Dr. Shanbao Cai was moved to the first position in the author list.The authors sincerely apologize for this oversight.28420-28434. https://doi.org/10.18632/oncotarget.8546Original article: Oncotarget. 2016; 7:"} {"text": "Nature Communications8: Article number: 15653; DOI: 10.1038/ncomms15653 (2017); Published: 06152017; Updated: 083020172-weighted phantom images in reverse order, and Supplementary Fig. 4d is a duplicate of Fig. 3d. The corrected version of Supplementary Fig. 4 is shown below as Supplementary Fig. 4 of this Article contains errors. Supplementary Fig. 4c shows the T"} {"text": "Unfortunately both the HTML and the PDF versions of this article on the SChanges to in-text citations in HTML VersionDeletion of hyperlinks in HTML version to tables in other documentsCorrection of URLs in HTML versionhttp://leg2.state.va.us/DLS/h&sdocs.nsf/Search+All/?SearchView&SearchOrder=4&query=38.2-3419.1In Table 1, URL should be: http://leg2.state.va.us/DLS/h&sdocs.nsf/Search+All/?SearchView&earchOrder=4&query=38.2-3419.1In Footnote 4, URL should be: Changes to in-text citations in PDF VersionCorrection of URLs in PDF versionhttp://leg2.state.va.us/DLS/h&sdocs.nsf/Search+All/?SearchView&SearchOrder=4&query=38.2-3419.1In Table 1, URL should be: http://leg2.state.va.us/DLS/h&sdocs.nsf/Search+All/?SearchView&SearchOrder=4&query=38.2-3419.1In Endnote 2, URL should be: http://www.heritage.org/research/testimony/2013/06/health-care-consolidation-and-competition-after-ppaca. Accessed on September 13, 2016.In Endnote 11, URL should be:"} {"text": "Scientific Reports 10.1038/s41598-018-21892-y, published online 27 February 2018Correction to: In this Article, the Data availability section was omitted from the Additional Information section:http://www.ncbi.nlm.nih.gov/bioproject/396973.Data availability: The raw sequences archive has been deposited to GenBank: BioProject ID PRJNA396973"} {"text": "In the original publication the nameIncorrect version:Jeremy M. Aymar.Correct version:Jeremy M. Aymard."} {"text": "Present: Due to an error in grant support.Correct: The updated grant support are given below. The author sincerely apologizes for this error.10.18632/oncotarget.7897.Original article: Oncotarget. 2016; 7(15):20902-18. doi:"} {"text": "R. Soc. open sci.4, 160759 (Published online 22 March 2017). (doi:10.1098/rsos.160759)1.b and the resulting Rankine reciprocal is incorrect in fig. 9c. The correct arrangements are shown below.This correction concerns fig. 9 of"} {"text": "This erratum corrects article: \u2033 Antithyroid drug induced agranulocytosis: what still we need to learn \u2033 The Pan African Medical Journal. 2016;23:27. doi:10.11604/pamj.2016.23.27.8365 The original version of this article containe"} {"text": "Biol. Lett.11, 20150303. (Published online 8 July 2015) (doi:10.1098/rsbl.2015.0303)et al. [http://dx.doi.org/10.5061/dryad.pr318 [The data associated with Rutledge et al. are now ad.pr318 ."} {"text": "Present: Due to an error made during the assembly of Figure Correct: Correct Figure 14179-90. doi: 10.18632/oncotarget.3651.Original article: Oncotarget. 2015; 6(16):"} {"text": "Mycobacterium tuberculosis Infection among Asian Elephants in Captivity . The article has been corrected online (https://wwwnc.cdc.gov/eid/article/23/3/16-0726_article).The name of author Apurva Narechania was misspelled in"} {"text": "Adv. Sci.2015, 2, 1400006Vtot vs. fluorosurfactant concentration was inadvertently missed. Figure The authors wish to correct Figure"} {"text": "This article has an addendum: The below information has been added to this article. https://crln.acrl.org/index.php/crlnews/article/view/16837/18434https://doi.org/10.18632/oncotarget.24272Original article: Oncotarget. 2018; 9:5515-5516."} {"text": "The correct reference is: Posavac HD, Posavac SS, Posavac EJ. Exposure to media images of female attractiveness and concern with body weight among young women. Sex Roles. 1998; 38: 187\u2013201. doi:10.1002/eat.20663.Reference 15 is incorrect. The correct reference is: Glauert R, Rhodes G, Fink B, Grammer K. Body dissatisfaction and attentional bias to thin bodies. Int J Eat Disord. 2009; 43: 42\u201349. doi:10.1002/eat.20703.Reference 19 is incorrect. The correct reference is: Smith E, Rieger E. An investigation of the effect of body dissatisfaction on selective attention toward negative shape and weight-related information. Int J Eat Disord. 2010; 43: 358\u2013364. doi:10.1023/A:1023910315561.Refence 27 is incorrect. The correct reference is: Treynor W. Rumination reconsidered: A psychometric analysis. Cognit Ther Res. 2003; 27: 247\u2013259. doi:There is an error in"} {"text": "Nature Communications6: Article number: 8029; DOI: 10.1038/ncomms9029 (2015); Published 08202015; Updated 02072017Professors SonBinh T. Nguyen and Jiaxing Huang were inadvertently omitted from the list of corresponding authors in this Article. The correct information for correspondence is: \u2018Correspondence and requests for materials should be addressed to H.D.E. espinosa@northwestern.edu) or to J.H. jiaxing-huang@northwestern.edu) or to S.T.N. stn@northwestern.edu)."} {"text": "Approximately 24 million U.S. homes contain deteriorated lead-based paint and lead-contaminated house dust (https://www.cdc.gov/nceh/lead/.Additional information about childhood lead poisoning prevention is available at"} {"text": "Open Biol. 6, 160240. (Published online 7 December 2016). (doi:10.1098/rsob.160240)A correction is required for the manuscript detailed below: in Table 2, the significance levels for variable (16) should read: \u22120.010 and \u22120.460**."} {"text": "Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer.2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79\u20131.08]) (Pheterogeneity= 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84\u20130.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25\u20132.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results.We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01\u20131.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15\u20132.00]) for each standard deviation (SD) increase in BMI [4.6 kg/mOur results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior. Lung cancer is the leading cause of cancer mortality . Most luMendelian randomization (MR) is an analytical approach based on genetic markers of an exposure that is less sensitive to reverse causation and confounding than traditional regression analyses in observational studies . InheritThe goal of the current study was to use genetic variations associated with a range of metabolic factors, including obesity, body shape, dyslipidemia and hyperglycemia, to further investigate the causal relationship between these metabolic exposures and lung cancer. The method applied in this study is called two-sample MR, which combines summary statistics on genetic variant-exposure and genetic variant-outcome associations from different samples ,21. Furt2 < 0.01 in European 1000 Genomes Phase3 samples = 0.93 [0.79\u20131.08]), but an increased risk for squamous cell carcinoma (OR [95%CI] = 1.20 [1.01\u20131.43]) and small cell lung cancer (OR [95%CI] = 1.52 [1.15\u20132.00]) (Pheterogeneity = 0.10) . Analyse = 0.10) . Weighte = 0.10) . The MR- = 0.10) , with MR = 0.10) . Funnel = 0.10) or histo = 0.10) . Sensiti = 0.10) Tables. There was no consistent evidence of a causal effect of HDL on lung cancer overall , nor anyPheterogeneity= 0.16) . Stratif= 0.16) , with a = 0.16) .Fasting glucose showed little evidence for an association with overall lung cancer risk , nor for-3; MR likelihood-based approach), while the other metabolic genetic instruments were not associated with cigarette smoking (MR likelihood-based estimate per SD increase [95%CI] = -0.35 [-0.92:0.22] for LDL and 1.21 [-0.67:3.08] for fasting insulin). Additionally, each SD increase in LDL was inversely associated with BMI , while each SD increase in fasting was not associated with BMI ).Using MR-Base, we also evaluated the association between cigarette smoking for each genetic instrument associated with lung cancer risk, including BMI, LDL, and fasting insulin. Each SD increase in BMI increased cigarette consumption by 1.27 cigarettes Click here for additional data file.S2 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S3 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S4 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S5 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S6 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S7 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S8 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S9 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S10 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S11 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S12 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S13 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S14 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S15 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S16 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S17 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S18 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S19 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S20 Fig2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.95%CI: 95% Confidence Interval; P: P value. I(PDF)Click here for additional data file.S21 FigOR: Odds ratio; Int: Intercept; P: P value.(PDF)Click here for additional data file.S1 TableCHR: Chromosome. BP: Base pair. SE: Standard error. BMI: Body mass index. HDL: High-density lipoprotein, LDL: Low-density lipoprotein.(PDF)Click here for additional data file.S2 TableHDL: High-density lipoprotein, LDL: Low-density lipoprotein. Chol: Cholesterol. OR: Odds ratio. LCI: Lower confidence interval. UCI: Upper confidence interval. P: P value.(PDF)Click here for additional data file.S3 TableInt: Intercept. HDL: High-density lipoprotein, LDL: Low-density lipoprotein. Chol: Cholesterol. OR: Odds ratio. Est: Estimate. LCI: Lower confidence interval. UCI: Upper confidence interval. P: P value.(PDF)Click here for additional data file."} {"text": "Scientific Reports 10.1038/s41598-017-04773-8, published online 10 July 2017Correction to: The original PDF version of this Article contained an error in the order of corresponding authors.Correspondence and requests for materials should be addressed to S.Y. (email: shufen_yang@126.com) or J.Z. (email: jin_zhouxy@163.com) or J.S. now reads:Correspondence and requests for materials should be addressed to J.S. or J.Z. (email: jin_zhouxy@163.com) or S.Y. (email: shufen_yang@126.com)This has now been corrected in the PDF version of this Article."} {"text": "Present: The grant support section is incomplete.Correct: The complete grant support information appears below.4373-4386. https://doi.org/10.18632/oncotarget.13875Original article: Oncotarget. 2017; 8:FUNDINGFunds from Fondo Europeo de Desarrollo Regional (FEDER) and by grants from the Ministry of Economy and Competitiveness of Spain and Comunidad Aut\u00f3noma de Madrid grant S2010/BMD- 2470 (Oncocycle Program) to J.M. Paramio."} {"text": "Present: The images of cell migration were mistakenly duplicated at Fig.Correct: The corrected images appear below. The authors apologize for any confusion this error may have caused.28540-55. doi: 10.18632/oncotarget.8677Original article: Oncotarget. 2016; 7:"} {"text": "Present: Due to an error during figure assembly, Figure Correct: The proper Figure 10.18632/oncotarget.3397Original article: Oncotarget. 2015; 6:11434-46. doi:"} {"text": "VOLUME 105105(3) July, page 242http://dx.doi.org/10.5195/jmla.2017.98.Kokol P. Trend analysis of journal metrics: a new academic library service? J Med Libr Assoc. 2017 Jul;105(3):240\u20132. DOI:"} {"text": "DOI: 10.1093/sysbio/syx080.Garba M.K., Nye T.M.W., Boys R.J. 2017. Probabilistic Distances Between Trees. Sys. Biol. The following sentence was incorrect:dTV.\u201d\u201cThe total variation metric between distributions is defined by The correct sentence is below:\u201cThe total variation metric between distributions is defined by This has now been corrected in the original article."} {"text": "Nature Communications7: Article number: 12976 doi: ; DOI: 10.1038/ncomms12976 (2016); Published: 11232016; Updated: 11232016Drosophila larva in Fig. 3a is reproduced from the website http://www.prokop.co.uk/Research/Drosi-Info/nerve-cords.html with the kind permission of Dr Andreas Prokop.In Fig. 3 of this Article, an image attribution was inadvertently omitted. The drawing of a"} {"text": "Seasonal flu vaccine uptake in persons aged 65 years and olderEpi-Insight 2016;17(10)October 2016, Irelandhttp://ndsc.newsweaver.ie/epiinsight/pnpyh4q4puin0ykqgxo0gg?a=1&p=50883926&t=17517774Food- and waterborne diseasesSharp increase in campylobacter infectionFolkh\u00e4lsomyndigheten website3 October 2016, Swedenhttps://www.folkhalsomyndigheten.se/nyheter-och-press/nyhetsarkiv/2016/oktober/kraftig-okning-av-infektion-med-campylobacter/An oyster-associated norovirus outbreak following a corporate dinner \u2013 cohort study, Toulouse (France), January 2015Bulletin \u00e9pid\u00e9miologique hebdomadaire, 26\u2013276 September 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/26-27/pdf/2016_26-27.pdfHealthcare-associated infections and antibiotic resistanceCandidaemia in England, Wales and Northern Ireland: 2015Surveillance of Health Protection Report; 10(32)23 September 2016, UKhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/555332/hpr3216_cnddm.pdfPseudomonas spp. and Stenotrophomonas spp. in England: 2008\u20132015Health Protection Report; 10(32)Voluntary surveillance of bacteraemia caused by 23 September 2016, UKhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/555333/hpr3216_psdmns.pdfImmunisation \u2013 measles, mumps rubella, whooping cough and vaccine uptakeHPS Weekly Report, 2016;50(40)4 October 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1640.pdfQuarterly vaccination coverage statistics for children aged up to five years in the UK (COVER programme): April to June 2016Health Protection Report; 10(33)30 September 2016, UKhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/556895/HPR_COVER_Q1617_1_April_to_June_2016_v4.pdfLaboratory confirmed reports of invasive meningococcal disease in England: April to June 2016Health Protection Report; 10(33)30 September 2016, UKhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/557329/hpr3316_IMD.pdfPreliminary vaccine coverage estimates for the meningococcal B (MenB) immunisation programme for England, update to the end of August 2016Health Protection Report; 10(32)23 September 2016, UKhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/555057/hpr3216_menB.pdfNational rotavirus immunisation programme update: preliminary vaccine coverage for England, February 2016 to July 2016Health Protection Report; 10(32)23 September 2016, UKhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/555048/hpr3216_rtvrs_VC.pdfVaccine coverage estimate for the GP based catch-up meningococcal ACWY (MenACWY) immunisation programme for school leavers (becoming 18 before 31 August 2016) in England, cumulative data to end-August 2016Health Protection Report; 10(32)19 September 2016, UKhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/553736/hpr3216_menACWY_VCa.pdfMeningococcal disease in 2015EPI-NEWS 37, 201614 September 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2037%20-%202016.aspxMeasles cases in the Copenhagen areaEPI-NEWS 36, 20167 September 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2036%20-%202016.aspxSexually transmitted diseasesSyphilis in Scotland 2015: updateHPS Weekly Report, 2016;50(39)27 September 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1639.pdfChlamydia trachomatis and Neisseria gonorrhoeae infection in Scotland: laboratory diagnoses 2006 \u2013 2015HPS Weekly Report, 2016;50(39)27 September 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1639.pdfGonococcal antibiotic surveillance in Scotland (GASS): prevalence, patterns and trends in 2015HPS Weekly Report, 2016;50(39)27 September 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1639.pdfGonorrhoea 2015EPI-NEWS 38, 201621 September 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2038%20-%202016.aspxSyphilis 2015EPI-NEWS 36, 20167 September 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2036%20-%202016.aspxZoonoses and vector-borne diseasesIncidence of protozoal infection reported to HPS in 2015HPS Weekly Report, 2016;50(37)13 September 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1637.pdfGeneral bacterial and protozoal outbreaks of infectious intestinal disease reported to HPS in 2015HPS Weekly Report, 2016;50(36)6 September 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1636.pdfEscherichia coli (STEC) in the Netherlands, 2015Surveillance of Shiga-toxin producing Infectieziekten Bulletin 2016; 27(7)September 2016, the Netherlandshttp://www.rivm.nl/dsresource?objectid=rivmp:321901&type=org&disposition=inline&ns_nc=1HepatitidesHepatitis E outbreak associated with the consumption of a spit-roasted piglet, Brittany (France), 2013Bulletin \u00e9pid\u00e9miologique hebdomadaire, 26\u2013276 September 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/26-27/pdf/2016_26-27.pdfHepatitis B vaccination for injecting drug users: from vaccination programme to individual careInfectieziekten Bulletin 2016; 27(7)September 2016, the Netherlandshttp://www.rivm.nl/dsresource?objectid=rivmp:321901&type=org&disposition=inline&ns_nc=1OtherPseudomonas infections associated with ear-piercing after-care productsHealth Protection Report; 10(31)16 September 2016, UKhttps://www.gov.uk/government/publications/health-protection-report-volume-10-2016/hpr-volume-10-issue-31-news-16-september"} {"text": "Present: Two images of the same scene with different brightness were accidentally included in Figure Correct: The proper Figure https://doi.org/10.18632/oncotarget.10017Original article: Oncotarget. 2016; 7:46042-46055."} {"text": "In 2011, life expectancy at birth was 78.7 years for the total U.S. population, 76.3 years for males, and 81.1 years for females. Life expectancy was highest for Hispanics for both males and females. In each racial/ethnic group, females had higher life expectancies than males. Life expectancy ranged from 71.7 years for non-Hispanic black males to 83.7 years for Hispanic females.Source: National Center for Health Statistics. Deaths: final data for 2011. Available at http://www.cdc.gov/nchs/data/nvsr/nvsr63/nvsr63_03.pdf.Reported by: Arialdi Minino, aminino@cdc.gov, 301-458-4376."} {"text": "References 1, 2 and 3 are incomplete. The correct references should read as follows:1. Forsburg SL, Nurse P. Cell Cycle Regulation in the Yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annual Review of Cell Biology. 1991; 7(1):227\u201356. PMID: 18093482. Murray AW. Recycling the Cell Cycle: Cyclins Revisited. Cell. 2004; 116(2):221\u201334. PMID: 1474443310.1016/j.cub.2004.11.027 PMID: 155891393. Jorgensen P, Tyers M. How Cells Coordinate Growth and Division. Current Biology. 2004; 14(23):R1014-27. doi:The publisher apologizes for this error."} {"text": "This article has been corrected: The correct author name is given below:Juan R. Vi\u00f1a9100-9113. https://doi.org/10.18632/oncotarget.23888Original article: Oncotarget. 2018; 9:"} {"text": "Present: Due to an error made during the assembly of Figure Correct: Correct Figure 12326-39. doi: 10.18632/oncotarget.3619.Original article: Oncotarget. 2015; 6(14):"} {"text": "This article has been corrected: the institution information was updated to include the postal code.The authors sincerely apologize for this oversight.23360-23375. https://doi.org/10.18632/oncotarget.15579Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The institutional affiliation information for Dr. Gennaro Ciliberto was updated to include affiliation #17.The authors sincerely apologize for this oversight.https://doi.org/10.18632/oncotarget.16725Original article: Oncotarget. 2017; 8:30606-30616."} {"text": "Present: Due to an error in the production process, figures Corrected: The proper figure legends are provided below. The publisher sincerely apologizes for this oversight.20410-24. doi: 10.18632/oncotarget.7804.Original article: Oncotarget. 2016; 7(15):"} {"text": "This article has been corrected: the 1st affiliation has been revised.https://doi.org/10.18632/oncotarget.21365Original article: Oncotarget. 2017; 8:84417-84425."} {"text": "Healthcare-associated infections and antibiotic resistanceLaboratory surveillance of candidaemia in England, Wales and Northern Ireland: 2016Health Protection Report; 11(32)15 September 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/645312/hpr3217_cnddmia2016.pdfStaphylococcus aureus bacteraemia in England, Wales and Northern Ireland: 2016Laboratory surveillance of Health Protection Report; 11(29)18 August 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/638891/hpr2917_stph-aurs.pdfPseudomonas spp. and Stenotrophomonas spp. bacteraemia in England, Wales and Northern Ireland: 2016Laboratory surveillance of Health Protection Report; 11(25)21 July 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/631374/hpr2517_psdmns.pdfFood- and waterborne diseasesSalmonella Kottbus eventsEpidemiological and microbiological investigation of temporally parallel food-related Epidemiologisches Bulletin 38, 201721 September 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/38_17.pdf?__blob=publicationFileHepatitis A outbreak linked to the contamination of products from a bakery, Herault (France), 2014Bulletin \u00e9pid\u00e9miologique hebdomadaire, 2119 September 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/21/pdf/2017_21.pdfIncidence of protozoal infection reported to HPS in 2016HPS Weekly Report 2017; 51(37)19 September 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1737.pdfSalmonella in the Netherlands in 2016. In humans, farm animals and in foodTrends in Infectieziekten Bulletin 2017; 28(7)14 September 2017, the Netherlandshttp://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Uitgaven/Infectieziekten_Bulletin/Jaargang_28_2017/Infectieziekten_Bulletin_jaargang_28_nummer_7_september_2017/Inhoud_september_2017/Trends_in_Salmonella_in_Nederland_in_2016_Bij_de_mens_landbouwhuisdieren_en_in_voedselEscherichia coli (STEC) in the Netherlands, 2016Surveillance of shigatoxin-producing Infectieziekten Bulletin 2017; 28(7)14 September 2017, the Netherlandshttp://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Uitgaven/Infectieziekten_Bulletin/Jaargang_28_2017/Infectieziekten_Bulletin_jaargang_28_nummer_7_september_2017/Inhoud_september_2017/Surveillance_van_shigatoxine_producerende_Escherichia_coli_STEC_in_Nederland_2016STEC in Scotland 2016: enhanced surveillance and reference laboratory dataHPS Weekly Report 2017; 51(32)15 August 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1732.pdfHepatitidesAcute hepatitis B (England): annual report for 2016Health Protection Report; 11(31)8 September 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/643558/hpr3117_hepB_ann.pdfLaboratory reports of hepatitis A and C in England and Wales, January to March 2017Health Protection Report; 11(31)8 September 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/643539/hpr3117_hepAC.pdfViral hepatitis B and D in the year 2016Epidemiologisches Bulletin 31, 20173 August 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/31_17.pdf?__blob=publicationFileHepatitis C in the year 2016Epidemiologisches Bulletin 30, 201727 July 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/30_17.pdf?__blob=publicationFileVaccine-preventable diseasesVaccination coverage, knowledge, perceptions and attitudes of teenagers toward vaccination in Calvados and Orne districts , 2015\u20132016Bulletin \u00e9pid\u00e9miologique hebdomadaire, 2119 September 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/21/pdf/2017_21.pdfEpidemiology of invasive group B streptococcal infection in infants in Ireland: 2012\u20132017Epi-Insight 2017;18(9)September 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/nk1rq5laued1qsl0rhv973?a=2&p=52270887&t=17517804Invasive pneumococcal disease and the impact of pneumococcal conjugate vaccines in Ireland, 2008-2016Epi-Insight 2017;18(8)August 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/10namozldoj?a=2&p=52157231&t=17517804Laboratory confirmed cases of measles, mumps and rubella, England: April to June 2017Health Protection Report; 11(30)25 August 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/640460/hpr3017_mmr.pdfIncrease of invasive infections with group A streptococci in January\u2013April 2017EPI-NEWS 27a+b, 20175 July 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2027a%20-%202017.aspxInvasive meningococcal disease (laboratory reports in England): January to March 2017Health Protection Report; 11(23)30 June 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624164/hpr2317_IMD.pdfLaboratory confirmed cases of Pertussis (England): January to March 2017Health Protection Report; 11(23)30 June 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624162/hpr2317_prtsss.pdfQuarterly vaccination coverage statistics for children aged up to five years in the UK (COVER programme): January to March 2017Health Protection Report; 11(23)30 June 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/623860/hpr2317_COVER.pdfPneumococcal Polysaccharide Vaccine (PPV) coverage report, England, April 2016 to March 2017Health Protection Report; 11(23)30 June 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624133/hpr2317_PPV.pdfRespiratory diseasesLegionellosis in Scotland 2015\u20132016HPS Weekly Report 2017; 51(34)29 August 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1734.pdfSexually transmitted diseasesHIV infection and AIDS: Quarterly report to 30 June 2017HPS Weekly Report 2017; 51(36)12 September 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1736.pdfHIV 2016EPI-NEWS 36, 20176 September 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2036%20-%202017.aspxScreening of pregnant women for hepatitis B, HIV and syphilis, 2016EPI-NEWS 35, 201730 August 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2035%20-%202017.aspxChlamydia 2016EPI-NEWS 34, 201723 August 2017, Denmarkhttps://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2034%20-%202017.aspxSyphilis in Scotland 2016: updateHPS Weekly Report 2017; 51(33)22 August 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1733.pdfSexually transmitted infections: updating data of two sentinel surveillance systems active in Italy on 31 December 2015Not Ist Super Sanit\u00e0 2017;30(7-8)July\u2212August 2017, Italyhttp://www.iss.it/binary/publ/cont/ONLINE_lug_ago_2017.pdfSentinel surveillance of sexually transmitted infections based on clinical microbiology laboratoriesNot Ist Super Sanit\u00e0 2017;30(7-8)July\u2212August 2017, Italyhttp://www.iss.it/binary/publ/cont/ONLINE_lug_ago_2017.pdfAnnual report from the sentinel surveillance study of blood borne virus testing in England: data for January to December 2016Health Protection Report; 11(26)28 July 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/633797/hpr2617_bbv-ss.pdfHIV prevalence estimate among men who have sex with men attending gay venues in five French cities \u2013 PREVAGAY 2015Bulletin \u00e9pid\u00e9miologique hebdomadaire, 1818 July 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/18/pdf/2017_18.pdfOutbreak of hepatitis A among men who have sex with men, Rouen (France), December 2016 - April 2017Bulletin \u00e9pid\u00e9miologique hebdomadaire, 1818 July 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/18/pdf/2017_18.pdfZoonoses and vector-borne diseases Common animal associated infections quarterly report : second quarter 2017Health Protection Report; 11(28)11 August 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/637401/hpr2817_zoos.pdfTravel health: Malaria reported in Scotland 2016HPS Weekly Report 2017; 51(28)18 July 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1728.pdfOtherInfectious disease surveillance of migrant populations in Calais and Grande-Synthe, France, November 2015 \u2013 October 2016Bulletin \u00e9pid\u00e9miologique hebdomadaire, 19-205 September 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/19-20/pdf/2017_19-20.pdfCreutzfeldt-Jakob disease (CJD) biannual update (August 2017)Health Protection Report; 11(29)18 August 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/640136/hpr2917_CJD.pdfSeroprevalence of HIV infections, syphilis, hepatitis B, hepatitis C and hepatitis A in asylum seekers in SaxonyEpidemiologisches Bulletin 29, 201720 July 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/29_17.pdf?__blob=publicationFile"} {"text": "Carex rostrata var. borealis and C. stenolepis, Two Problematic Taxa in Carex Section Vesicariae (Cyperaceae). PLoS ONE 11(10): e0165430. doi:10.1371/journal.pone.0165430.The first author\u2019s surname is incorrectly preceded by an initial. The correct citation is: Pedersen ATM, Nowak MD, Brysting AK, Elven R, Bjor\u00e5 CS (2016) Hybrid Origins of"} {"text": "Colistin resistance in Gram-negative bacteria - the situation in GermanyEpidemiologisches Bulletin 46, 201621 November 2016, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2016/Ausgaben/46_16.pdf?__blob=publicationFileOnline survey on influenza vaccination among hospital staffEpidemiologisches Bulletin 47, 201628 November 2016, Germanyhttp://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2016/Ausgaben/47_16.pdf?__blob=publicationFileStreptococcus pneumoniae causing bacteraemia in England, Wales and Northern Ireland: 2015Surveillance of Health Protection Report; 10(40)18 November 2016, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/571420/hpr4016.pdfEpidemic occurrence of whooping coughEPI-NEWS 46, 201616 November 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2046%20-%202016.aspxThe first year with statutory registration of vaccinations in the Danish Vaccination RegisterEPI-NEWS 45, 20169 November 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2045%20-%202016.aspxSpecial edition: World AIDS Day, December 1, 2016Bulletin \u00e9pid\u00e9miologique hebdomadaire, 41-4229 November 2016, Francehttp://invs.santepubliquefrance.fr/beh/2016/41-42/pdf/2016_41-42.pdfHIV infection and AIDS: Quarterly report to 30 September 2016HPS Weekly Report, 2016;50(48)28 November 2016, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2016/1648.pdfEstimated number of new HIV infections and estimated total number of people with HIV in GermanyEpidemiologisches Bulletin 45, 201614 November 2016, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2016/Ausgaben/45_16.pdf?__blob=publicationFileSelected parasite infections detected using the PCR methodEPI-NEWS 44, 20162 November 2016, Denmarkhttp://www.ssi.dk/English/News/EPI-NEWS/2016/No%2044%20-%202016.aspxSpecial edition: Asylum seekers and infectious diseasesInfectieziekten Bulletin 2016; 27(9)November 2016, the Netherlandshttp://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Uitgaven/Infectieziekten_Bulletin/Jaargang_27_2016/November_2016/Inhoud_november_2016"} {"text": "Present: Due to an error during manuscript preparation, loading control (GAPDH) was omitted from Figure Corrected: Correct Figure 38166-80. doi: 10.18632/oncotarget.6241.Original article: Oncotarget. 2015; 6(35):"} {"text": "This article has been corrected: the authors first and last names order was updated.74910-74916. https://doi.org/10.18632/oncotarget.20456Original article: Oncotarget. 2017; 8:"} {"text": "The fourth author\u2019s name is spelled incorrectly. The correct name is: Joanna L. Elson.https://doi.org/10.1371/journal.pone.0186802The corrected citation is: Tomas C, Brown A, Strassheim V, Elson JL, Newton J, Manning P (2017) Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS ONE 12(10): e0186802."} {"text": "Biochemia Medica 2017;27(2):279-84. DOI: https://doi.org/10.11613/BM.2017.030. This is a correction for This Erratum corrects the section Potential conflict of interest, which was originally published. The publisher apologizes for this error."} {"text": "During 2009\u20132011, higher death rates for COPD among persons aged \u226555 years were associated with more rural localities, with rates increasing steadily from the least to the most rural county. For males, the age-adjusted COPD death rate in rural counties was 59% higher than in large central metropolitan counties . For females, the age-adjusted COPD death rate in rural counties was 39% higher than in large central metropolitan counties . COPD death rates for males were 21% to 47% higher than for females, with the largest differentials observed in nonmetropolitan counties .Sources: National Vital Statistics System. County-level mortality file. Available at http://www.cdc.gov/nchs/deaths.htm and http://wonder.cdc.gov/mortsql.html.http://www.cdc.gov/nchs/data/series/sr_02/sr02_166.pdf.Ingram DD, Franco SJ. 2013 NCHS urban-rural classification scheme for counties. Vital Health Stat 2014;2(166). Available at Reported by: Deborah D. Ingram, PhD, ddingram@cdc.gov, 301-458-4733."} {"text": "Present: Due to an error made during the final figure assembly, blots for U266 were mistakenly used in lieu of blots for JJN3 in Figure Correct: Corrected Figure 9296-308. doi: 10.18632/oncotarget.6974.Original article: Oncotarget. 2016; 7(8):"} {"text": "An error in the author byline has been corrected. The new citation is: Baluch F, Itti L (2010) Training Top-Down Attention Improves Performance on a Triple-Conjunction Search Task. PLoS ONE 5(2): e9127. doi:10.1371/journal.pone.0009127."} {"text": "The first author's name is spelled incorrectly. The correct name is Alexei V. Samsonovich. The citation should read: Samsonovich AV, Ascoli GA (2010) Principal Semantic Components of Language and the Measurement of Meaning. PLoS ONE 5(6): e10921. doi:10.1371/journal.pone.0010921"} {"text": "British Journal of Cancer (2002) 87, 1339\u20131339. doi:10.1038/sj.bjc.6600561www.bjcancer.com\u00a9 2002 Cancer Research UKCorrection to:British Journal of Cancer (2001) 84, 625\u2013929. doi:10.1054/sj.bjc.2001.1975 Unfortunately due to an error The correct version is printed below."} {"text": "Correction for:Caenorhabditis elegans. PLoS Biol 5(10): e259. doi:10.1371/journal.pbio.0050259Rea SL, Ventura N, Johnson TE (2007) Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in reas3@uthscsa.edu.The corresponding author's e-mail is incorrect. It should be:"} {"text": "Michal Lapidot's name was incorrectly listed as Lapidot Michal. The correct citation is: Lapidot M, Mizrahi-Man O, Pilpel Y (2008) Functional Characterization of Variations on Regulatory Motifs. PLoS Genet 4(3): e1000018. doi:10.1371/journal.pgen.1000018"} {"text": "Correction to:British Journal of Cancer (2005) 92, 2225\u20132232. doi:10.1038/sj.bjc.6602632Owing to an author error,"} {"text": "Correction to:British Journal of Cancer (2001) 85, 1211\u20131218. doi:10.1054/bjoc.2001.2053"} {"text": "British Journal of Cancer (2002) 87, 1340\u20131340. doi:10.1038/sj.bjc.6600571www.bjcancer.com\u00a9 2002 Cancer Research UKCorrection to:British Journal of Cancer (2002) 86, 1479\u20131486. doi:10.1038/sj.bjc.6600297 In the above paper an error occurred in the title.The correct title is printed below:c release in breast cancer cellsThe bisphosphonate zoledronic acid impairs Ras membrane localisation and induces cytochrome"} {"text": "Correction to:British Journal of Cancer (1999) 80, 1359\u20131365. doi:10.1038/sj.bjc.6690529"} {"text": "In the following article, references were misnumbered. Reference number 4 should be treated as reference number 3, and vice-versa.ViewpointKaur M., Develop advocacy for public health 2008; 33(2):71-72Correct references should be as follows:http://www.healthpromotionjournal.com/publications/global/1999-09/1999-09.htm3. Weinstein Y, Kaluski N. Country profile: Nutrition and education in Israel, Health Promotion: Global Perspectives, 1999 Vol. 2 No.4 Available from: 4. Chapman S. Public health advocacy: A primer. J Epidemiol Comm Health 2004;58:361-5"} {"text": "The second author's name contained an error. Sim Xueling should be Xueling Sim. The correct citation is: Ikram MK, Sim X, Jensen RA, Cotch MF, Hewitt AW, et al. (2010) Four Novel Loci Influence the Microcirculation In Vivo. PLoS Genet 6(10): e1001184. doi:10.1371/journal.pgen.1001184."} {"text": "British Journal of Cancer (2002) 86, 1981\u20131985. DOI: 10.1038/sj.bjc.6600444www.bjcancer.comCancer Research UK\u00a9 2002"} {"text": "British Journal of Cancer (2002) 87, 1479\u20131479. doi:10.1038/sj.bjc.6600636www.bjcancer.com\u00a9 2002 Cancer Research UK Correction to:British Journal of Cancer (2002) 86, 917\u2013923. doi: 10.1038/sj.bjc.6600156We have reviewed our data about the cloning of the novel putative SIR-like gene and we accept Dr Frye's assertions . We are"} {"text": "British Journal of Cancer (2002) 86, 1973\u20131980. DOI: 10.1038/sj.bjc.6600443www.bjcancer.comCancer Research UK\u00a9 2002"} {"text": "The fourth author's name was spelled incorrectly. The correct name is: Ivan A. Adzhubei. The correct citation is: Schmidt S, Gerasimova A, Kondrashov FA, Adzhubei IA, Kondrashov AS, et al. (2008) Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection. PLoS Genet 4(11): e1000281. doi:10.1371/journal.pgen.1000281"} {"text": "Correction for:10.1371/journal.pbio.0050300Kelsch W, Mosley CP, Lin CW, Lois C (2007) Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol 5(11): e300. doi:"} {"text": "Our survey paper containIn , page 7,In , page 10http://www.diabetesnet.com/diabetes_technology/insulin_pump_models.php;[50] http://www.childrenwithdiabetes.com/continuous.htm.[51] In , page 15"} {"text": "Correction to:British Journal of Cancer (2000) 83, 1664\u20131673. doi:10.1054/bjoc.2000.1501"} {"text": "British Journal of Cancer (2002) 87, 1480\u20131480. doi:10.1038/sj.bjc.6600652www.bjcancer.com\u00a9 2002 Cancer Research UKCorrection to:British Journal of Cancer 2001; 85 (Suppl 2): 1\u20135. doi:10.1054/bjoc.2001.1981 An error has been noted within Figure 1"} {"text": "British Journal of Cancer (2002) 86, 658. DOI: 10.1038/sj/bjc/6600055www.bjcancer.comCancer Research UK\u00a9 2002 With a research interest in angiogenesis and antiangiogenesis , I have Recently,"} {"text": "The first author's name is not spelled correctly. It should be: Dale J. Hedges. The correct citation is: Hedges DJ, Burges D, Powell E, Almonte C, Huang J, et al. (2009) Exome Sequencing of a Multigenerational Human Pedigree. PLoS ONE 4(12): e8232. doi:10.1371/journal.pone.0008232"} {"text": "The fourth author's name appears incorrectly. It should be: Hong Y. Choi. The correct citation should read: Ohazama A, Johnson EB, Ota MS, Choi HY, Porntaveetus T, et al. (2008) Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development. PLoS ONE 3(12): e4092. doi:10.1371/journal.pone.0004092"} {"text": "This URL is missing a tilde. The correct URL reads: http://www.biostat.wisc.edu/~aasmith/catcode/"} {"text": "British Journal of Cancer (2002) 86, 1666\u20131666. DOI: 10.1038/sj/bjc/6600308www.bjcancer.comCancer Research UK\u00a9 2002 Correction to:British Journal of Cancer (2001) 85, 493-496. DOI: 10.1054/bjoc.2001.1979The authors would like to acknowledge the Research into Childhood Cancer charity (RICC) for funding for the above project."} {"text": "Salmonella typhi. Ann Saudi Med [serial online] 2010 [cited 2010 Sep 5];30:313-6. Available from:http://www.saudiannals.net/text.asp?2010/30/4/313/65267Somily AM. An imported enteric fever caused by a quinolone-resistant Salmonella terminology was applied. The term Salmonella Typhi (and abbreviated form S Typhi) should have been used in the title and elsewhere, according to current nomenclature .Incorrect"} {"text": "Ageing: a global perspective. Volume 12, Issue 29, 1999.Keeffe J. Vision assessment and prescription of low vision devices. Comm Eye Health J 2004;17(49): 3\u20134.Minto H and Awan H. Establishing low vision services at secondary level. Comm Eye Health J 2004;17(49): 5.Watkinson S. Visual impairment in older people: the nurse's role. Nursing Standard 2005;19(17): 45\u201352. (Available to dowload free of charge from www.nursing-standard.co.uk)McNaughton et al. Low Vision Assessment. Butterworth-Heinemann Ltd, 2000. UK \u00a320 (plus postage and packing). Available from Waterstones: 71\u201374 North Street, Brighton, East Sussex BN1 1ZA, UK.manager@brighton.waterstones.co.ukEmail: Helpage International: www.helpage.orgLow Vision Online: www.lowvisiononline.unimelb.edu.auWHO: ageing and life course: www.who.int/ageing/en/Low Vision Kit. Includes information, E-charts and various materials to test vision and learn more about low vision. US $30 (incl. delivery). Available from the Centre for Eye Research Australia, 32 Gisborne Street, East Melbourne 3002, Victoria, Australia. Email: lowvisiononline-info@unimelb.edu.au"} {"text": "The author contributions are incorrect. The correct author contributions should read as follows: Conceived and designed the experiments: XY RGS QY. Performed the experiments: XY MA, FS. Analyzed the data: XY RKMK PT. Contributed reagents/materials/analysis tools: RKMK FS KY LDM PT. Wrote the paper: XY QY."} {"text": "Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point\u2010in\u2010time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein\u2010coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid\u20102019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC\u2010IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands ( The remaining 350 non\u2010sensory GPCRs mediate signalling by ligands that range in size from small molecules to peptides to large proteins; they are the targets for the majority of drugs in clinical usage , although only a minority of these receptors are exploited therapeutically. The first classification scheme to be proposed for GPCRs [http://www.ncbi.nlm.nih.gov/pubmed/8081729?dopt=AbstractPlus] divided them, on the basic of sequence homology, into six classes. These classes and their prototype members were as follows: Class A (rhodopsin\u2010like), Class B (secretin receptor family), Class C (metabotropic glutamate), Class D , Class E (cyclic AMP receptors) and Class F (frizzled/smoothened). Of these, classes D and E are not found in vertebrates. An alternative classification scheme \"GRAFS\" [http://www.ncbi.nlm.nih.gov/pubmed/15862553?dopt=AbstractPlus] divides vertebrate GPCRs into five classes, overlapping with the A\u2010F nomenclature, viz:G protein\u2010coupled receptors (GPCRs) are the largest class of membrane proteins in the human genome. The term \"7TM receptor\" is commonly used interchangeably with \"GPCR\", although there are some receptors with seven transmembrane domains that do not signal through G proteins. GPCRs share a common architecture, each consisting of a single polypeptide with an extracellular N\u2010terminus, an intracellular C\u2010terminus and seven hydrophobic transmembrane domains (TM1\u2010TM7) linked by three extracellular loops (ECL1\u2010ECL3) and three intracellular loops (ICL1\u2010ICL3). About 800 GPCRs have been identified in man, of which about half have sensory functions, mediating olfaction (\u02dc400), taste (33), light perception (10) and pheromone signalling (5) .Rhodopsin family (http://www.guidetopharmacology.org/GRAC/GPCRListForward?class=A), which includes receptors for a wide variety of small molecules, neurotransmitters, peptides and hormones, together with olfactory receptors, visual pigments, taste type 2 receptors and five pheromone receptors (V1 receptors).http://www.guidetopharmacology.org/GRAC/GPCRListForward?class=Adhesion GPCRs are phylogenetically related to class B receptors, from which they differ by possessing large extracellular N\u2010termini that are autoproteolytically cleaved from their 7TM domains at a conserved \"GPCR proteolysis site\" (GPS) which lies within a much larger (320 residue) \"GPCR autoproteolysis\u2010inducing\" (GAIN) domain, an evolutionary ancient mofif also found in polycystic kidney disease 1 (PKD1)\u2010like proteins, which has been suggested to be both required and sufficient for autoproteolysis [http://www.ncbi.nlm.nih.gov/pubmed/23850273?dopt=AbstractPlus].http://www.guidetopharmacology.org/GRAC/GPCRListForward?class=Frizzled consists of 10 Frizzled proteins (FZD(1\u201010)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the WNT family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH).Secretin family, encoded by 15 genes in humans. The ligands for receptors in this family are polypeptide hormones of 27\u2010141 amino acid residues; nine of the mammalian receptors respond to ligands that are structurally related to one another , glucose\u2010dependent insulinotropic polypeptide (GIP), secretin, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase\u2010activating polypeptide (PACAP) and growth\u2010hormone\u2010releasing hormone (GHRH)) [http://www.ncbi.nlm.nih.gov/pubmed/11790261?dopt=AbstractPlus].aNumbers in brackets refer to orphan receptors for which an endogenous ligand has been proposed in at least one publication, see [http://www.ncbi.nlm.nih.gov/pubmed/23686350?dopt=AbstractPlus]; b[http://www.ncbi.nlm.nih.gov/pubmed/19129093?dopt=AbstractPlus]; c[http://www.ncbi.nlm.nih.gov/pubmed/15034552?dopt=AbstractPlus]; d[http://www.ncbi.nlm.nih.gov/pubmed/15774036?dopt=AbstractPlus].2 adrenoceptor, the latter culminating in the award of the 2012 Nobel Prize in chemistry to Robert Lefkowitz and Brian Kobilka .Much of our current understanding of the structure and function of GPCRs is the result of pioneering work on the visual pigment rhodopsin and on the \u03b2Below is a curated list of pseudogenes that in humans are non\u2010coding for receptor protein. In some cases these have a shared ancestry with genes that encode functional receptors in rats and mice.https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:19240, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:16341, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:4529, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:16291, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:7959, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:4513, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:31924, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:31925, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:19103, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:19106, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:19107, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:20615, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:20640, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:20641, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:20642, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:43898, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:43905, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:20616. A more detailed listing containg further information can be viewed http://www.guidetopharmacology.org/GRAC//DATA/GPCR_pseudogenes.xlsx.https://www.genenames.org/cgi\u2010bin/genefamilies/set/141, and curated by https://genome.weizmann.ac.il/horde/ and https://senselab.med.yale.edu/ordb/.Olfactory receptors are also seven\u2010transmembrane spanning G protein\u2010coupled receptors, responsible for the detection of odorants. These are not currently included as they are not yet associated with extensive pharmacological data but are curated in the following databases: The gene list of olfactory receptors at Mol. Pharmacol.93: 266\u2010269 [https://www.ncbi.nlm.nih.gov/pubmed/29348268?dopt=AbstractPlus]Kenakin T. (2018) Is the Quest for Signaling Bias Worth the Effort? et al. (2018) Biased Agonism in Drug Discovery\u2010Is It Too Soon to Choose a Path? Mol. Pharmacol.93: 259\u2010265 [https://www.ncbi.nlm.nih.gov/pubmed/29326242?dopt=AbstractPlus]Michel MC et al. (2017) Discovery of new GPCR ligands to illuminate new biology. Nat. Chem. Biol.13: 1143\u20101151 [https://www.ncbi.nlm.nih.gov/pubmed/29045379?dopt=AbstractPlus]Roth BL et al. (2018) G Protein\u2010Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharmacol.93: 251\u2010258 [https://www.ncbi.nlm.nih.gov/pubmed/29298813?dopt=AbstractPlus]Sriram K http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=706\u2013 http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=975\u2013This set contains \u2019orphan\u2019 G protein coupled receptors where the endogenous ligand(s) is not known, and other 7TM receptors.NC\u2010IUPHAR[http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [http://www.ncbi.nlm.nih.gov/pubmed/23686350?dopt=AbstractPlus]. The GPCRs in Table 1 are all Class A, rhodopsin\u2010like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as\u2010yet unidentified endogenous ligands.Table 1 lists a number of putative GPCRs identified by Class A orphan GPCRs with putative endogenous ligandshttp://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=89, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=109 and http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=126 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=114).In addition the orphan receptors et al. (2015) Identification of a mast\u2010cell\u2010specific receptor crucial for pseudo\u2010allergic drug reactions. Nature519: 237\u201341 [https://www.ncbi.nlm.nih.gov/pubmed/25517090?dopt=AbstractPlus]McNeil BD This set contains class C \u2019orphan\u2019 G protein coupled receptors where the endogenous ligand(s) is not known.et al. (2017) Structural insight to mutation effects uncover a common allosteric site in class C GPCRs. Bioinformatics33: 1116\u20131120 [https://www.ncbi.nlm.nih.gov/pubmed/28011766?dopt=AbstractPlus]Harpse K http://www.ncbi.nlm.nih.gov/pubmed/12581520?dopt=AbstractPlus], TRPM5 [http://www.ncbi.nlm.nih.gov/pubmed/12581520?dopt=AbstractPlus] and IP3 [http://www.ncbi.nlm.nih.gov/pubmed/17925404?dopt=AbstractPlus] receptors in postreceptor signalling of taste receptors. Although predominantly associated with the oral cavity, taste receptors are also located elsewhere, including further down the gastrointestinal system, in the lungs and in the brain.Whilst the taste of acid and salty foods appear to be sensed by regulation of ion channel activity, bitter, sweet and umami tastes are sensed by specialised GPCR. Two classes of taste GPCR have been identified, T1R and T2R, which are similar in sequence and structure to Class C and Class A GPCR, respectively. Activation of taste receptors appears to involve gustducin\u2010 (G\u03b1t3) and G\u03b114\u2010mediated signalling, although the precise mechanisms remain obscure. Gene disruption studies suggest the involvement of PLC\u03b22 . T1R2/T1R3 heterodimers respond to sugars, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5411, and artificial sweeteners, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5432 [http://www.ncbi.nlm.nih.gov/pubmed/11509186?dopt=AbstractPlus].T1R3 acts as an obligate partner in T1R1/T1R3 and T1R2/T1R3 heterodimers, which sense umami or sweet, respectively. T1R1/T1R3 heterodimers respond to Positive allosteric modulators of T1R2/T1R3 have been reported [2363]. Such compounds enhance the sweet taste of sucrose mediated by these receptors, but are tasteless on their own.Pharmacol. Rev.71: 20\u201348 [https://www.ncbi.nlm.nih.gov/pubmed/30559245?dopt=AbstractPlus]Palmer RK. (2019) A Pharmacological Perspective on the Study of Taste. G protein\u2010coupled receptors \u2192 Orphan and other 7TM receptors \u2192 Taste 2 receptorshttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5433, but not 10 other bitter compounds [http://www.ncbi.nlm.nih.gov/pubmed/10761935?dopt=AbstractPlus], while T2R14 responded to at least eight different bitter tastants, including (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5344\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5344 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2291 [http://www.ncbi.nlm.nih.gov/pubmed/15178431?dopt=AbstractPlus].The composition and stoichiometry of bitter taste receptors is not yet established. Bitter receptors appear to separate into two groups, with very restricted ligand specificity or much broader responsiveness. For example, T2R5 responded to http://bitterdb.agri.huji.ac.il/dbbitter.php contains additional information on bitter compounds and receptors [http://www.ncbi.nlm.nih.gov/pubmed/21940398?dopt=AbstractPlus].Specialist database Pharmacol. Rev.71: 20\u201348 [https://www.ncbi.nlm.nih.gov/pubmed/30559245?dopt=AbstractPlus]Palmer RK. (2019) A Pharmacological Perspective on the Study of Taste. et al. (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein\u2010coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev.65: 967\u201386 [https://www.ncbi.nlm.nih.gov/pubmed/23686350?dopt=AbstractPlus]Davenport AP et al. (2016) Insight into SUCNR1 (GPR91) structure and function. Pharmacol. Ther.159: 56\u201365 [https://www.ncbi.nlm.nih.gov/pubmed/26808164?dopt=AbstractPlus]Gilissen J et al. (2015) G Protein\u2010Coupled Receptor (GPCR) Expression in Native Cells: \u201cNovel\u201d endoGPCRs as Physiologic Regulators and Therapeutic Targets. Mol. Pharmacol.88: 181\u20107 [https://www.ncbi.nlm.nih.gov/pubmed/25737495?dopt=AbstractPlus]Insel PA et al. (2017) Neuro\u2010psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein\u2010coupled receptors. Psychopharmacology (Berl.)234: 1181\u20101207 [https://www.ncbi.nlm.nih.gov/pubmed/28289782?dopt=AbstractPlus]Khan MZ et al. (2017) The emerging pharmacology and function of GPR35 in the nervous system. Neuropharmacology113: 661\u2013671 [https://www.ncbi.nlm.nih.gov/pubmed/26232640?dopt=AbstractPlus]Mackenzie AE et al. (2016) Identifying ligands at orphan GPCRs: current status using structure\u2010based approaches. Br. J. Pharmacol.173: 2934\u201051 [https://www.ncbi.nlm.nih.gov/pubmed/26837045?dopt=AbstractPlus]Ngo T NC\u2010IUPHAR Subcommittee on 5\u2010HT receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/7938165?dopt=AbstractPlus] and subsequently revised [http://www.ncbi.nlm.nih.gov/pubmed/8936345?dopt=AbstractPlus]) are, with the exception of the ionotropic 5\u2010HT3 class, GPCRs where the endogenous agonist is http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5. The diversity of metabotropic 5\u2010HT receptors is increased by alternative splicing that produces isoforms of the 5\u2010HT2A , 5\u2010HT2C , 5\u2010HT4, 5\u2010HT6 and 5\u2010HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5\u2010HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology . Most 5\u2010HT receptors (except 5\u2010ht1e and 5\u2010ht5b) play specific roles mediating functional responses in different tissues .5\u2010HT receptors displays a different pharmacology to the rodent forms of the receptor due to Thr335 of the human sequence being replaced by Asn in rodent receptors [http://www.ncbi.nlm.nih.gov/pubmed/18571247?dopt=AbstractPlus]. Wang et al. (2013) report X\u2010ray structures which reveal the binding modality of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=149 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=121 (DHE) to the 5\u2010HT1B receptor in comparison with the structure of the 5HT2B receptor [http://www.ncbi.nlm.nih.gov/pubmed/23519210?dopt=AbstractPlus]; some of these drugs adopt rather different conformations depending on the target receptor [http://www.ncbi.nlm.nih.gov/pubmed/29398112?dopt=AbstractPlus]. Various 5\u2010HT receptors have multiple partners in addition to G proteins, which may affect function and pharmacology [http://www.ncbi.nlm.nih.gov/pubmed/21777185?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3226 is a selective antagonist of the rodent 5\u2010HT1B receptor. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5434 (LSD) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=88 bind with high affinity to dopamine D4 and histamine H1 receptors respectively, and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=88 is a potent \u03b11 adrenoceptor antagonist, in addition to blocking 5\u2010HT2A receptors. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=139 (LSD) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=149 show a strong preference for arrestin recruitment over G protein coupling at the 5\u2010HT2B receptor, with no such preference evident at 5\u2010HT1B receptors, and they also antagonise 5\u2010HT7A receptors [http://www.ncbi.nlm.nih.gov/pubmed/23519215?dopt=AbstractPlus]. DHE (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=282), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=48 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=37 also show significant preference for arrestin recruitment over G protein coupling at 5\u2010HT2B receptors [http://www.ncbi.nlm.nih.gov/pubmed/23519215?dopt=AbstractPlus]. The 5\u2010HT2B (and other 5\u2010HT) receptors interact with immunocompetent cells [http://www.ncbi.nlm.nih.gov/pubmed/28265714?dopt=AbstractPlus]. The serotonin antagonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=206 was key to the discovery of the 5HT2C receptor [http://www.ncbi.nlm.nih.gov/pubmed/6519175?dopt=AbstractPlus], initially known as 5\u2010HT1C [http://www.ncbi.nlm.nih.gov/pubmed/28806488?dopt=AbstractPlus]. The human 5\u2010HT5A receptor may couple to several signal transduction pathways when stably expressed in C6 glioma cells [http://www.ncbi.nlm.nih.gov/pubmed/12558985?dopt=AbstractPlus] and rodent prefrontal cortex [http://www.ncbi.nlm.nih.gov/pubmed/22539842?dopt=AbstractPlus]. The human orthologue of the mouse 5\u2010ht5b receptor is non\u2010functional (stop codons); the 5\u2010ht1e receptor has not been cloned from mouse, or rat, impeding definition of its function [http://www.ncbi.nlm.nih.gov/pubmed/18571247?dopt=AbstractPlus]. In addition to accepted receptors, an \u2019orphan\u2019 receptor, unofficially termed5\u2010HT1P, has been described [http://www.ncbi.nlm.nih.gov/pubmed/10429737?dopt=AbstractPlus].Tabulated et al. (2011) 5\u2010HT(4) receptors, a place in the sun: act two. Curr Opin Pharmacol11: 87\u201093 [https://www.ncbi.nlm.nih.gov/pubmed/21342787?dopt=AbstractPlus]Bockaert J et al. (2011) 5\u2010HT receptors and reward\u2010related behaviour: a review. Neurosci Biobehav Rev35: 1419\u201049 [https://www.ncbi.nlm.nih.gov/pubmed/21402098?dopt=AbstractPlus]Hayes DJ et al. (1994) International Union of Pharmacology classification of receptors for 5hydroxytryptamine (Serotonin). Pharmacol. Rev.46: 157\u2010203 [https://www.ncbi.nlm.nih.gov/pubmed/7938165?dopt=AbstractPlus]Hoyer D et al. (2011)Serotonin 5\u2010HT7 receptor agents: Structure\u2010activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol. Ther.129: 120\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/20923682?dopt=AbstractPlus]Leopoldo M et al. (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol11: 59\u201067 [https://www.ncbi.nlm.nih.gov/pubmed/21420906?dopt=AbstractPlus]Meltzer HY et al. (2012) The 5\u2010HT(7) receptor in learning and memory. Hippocampus22: 762\u201071 [https://www.ncbi.nlm.nih.gov/pubmed/21484935?dopt=AbstractPlus]Roberts AJ NC\u2010IUPHAR Subcommittee on Muscarinic Acetylcholine Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/9647869?dopt=AbstractPlus]) are GPCRs of the Class A, rhodopsin\u2010like family where the endogenous agonist is http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=294. In addition to the agents listed in the table, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=289, its structural analogues http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=334 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3271, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=333, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3258 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5435 have been described as functionally selective agonists of the M1 receptor subtype via binding in a mode distinct from that utilized by non\u2010selective agonists . There are two pharmacologically characterised allosteric sites on muscarinic receptors, one defined by it binding http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=356, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=347 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=342, and the other defined by the binding of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=337, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=340, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=339 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=346 .Muscarinic acetylcholine receptors and M4 receptors (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3262) . The allosteric site for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=356 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=347 on M2 receptors can be labelled by [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=364 [http://www.ncbi.nlm.nih.gov/pubmed/12815174?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=290 is a functionally selective partial agonist that appears to interact in a bitopic mode with both the orthosteric and an allosteric site on the M2 muscarinic receptor [http://www.ncbi.nlm.nih.gov/pubmed/18723515?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3255, hybrid 1 and hybrid 2, are multivalent (bitopic) ligands that also achieve selectivity for M2 receptors by binding both to the orthosteric and a nearby allosteric site .The crystal structures of the Me.g.http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=307, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=321, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=328) in order to identify the involvement of particular subtypes. It should be noted that the measured affinities of antagonists (and agonists) in radioligand binding studies are sensitive to ionic strength and can increase over 10\u2010fold at low ionic strength compared to their values at physiological ionic strengths [http://www.ncbi.nlm.nih.gov/pubmed/497538?dopt=AbstractPlus].Although numerous ligands for muscarinic acetylcholine receptors have been described, relatively few selective antagonists have been described, so it is common to assess the rank order of affinity of a number of antagonists of limited selectivity Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. J Gen Physiol150: 1360\u20101372 [https://www.ncbi.nlm.nih.gov/pubmed/30190312?dopt=AbstractPlus]Burger WAC et al. (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev50: 279\u2010290 [https://www.ncbi.nlm.nih.gov/pubmed/9647869?dopt=AbstractPlus]Caulfield MP Handb Exp Pharmacol 3\u201028 [https://www.ncbi.nlm.nih.gov/pubmed/22222692?dopt=AbstractPlus]Eglen RM. (2012) Overview of muscarinic receptor subtypes. et al. (2014) Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov13: 549\u201060 [https://www.ncbi.nlm.nih.gov/pubmed/24903776?dopt=AbstractPlus]Kruse AC et al. (2012) Structure\u2010function studies of muscarinic acetylcholine receptors. Handb Exp Pharmacol 29\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/22222693?dopt=AbstractPlus]Leach K et al. (2012) The best of both worlds? Bitopic orthosteric/allosteric ligands of g proteincoupled receptors. Annu Rev Pharmacol Toxicol52: 153\u201078 [https://www.ncbi.nlm.nih.gov/pubmed/21910627?dopt=AbstractPlus]Valant C NC\u2010IUPHAR Subcommittee on Adenosine Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/11734617?dopt=AbstractPlus]) are activated by the endogenous ligand http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 . Crystal structures for the antagonist\u2010bound , agonist\u2010bound and G protein\u2010bound A2A adenosine receptors [http://www.ncbi.nlm.nih.gov/pubmed/27462812?dopt=AbstractPlus] have been described. The structures of an antagonist\u2010bound A1 receptor [http://www.ncbi.nlm.nih.gov/pubmed/28235198?dopt=AbstractPlus] and an adenosine\u2010bound A1 receptor\u2010Gi complex [http://www.ncbi.nlm.nih.gov/pubmed/29925945?dopt=AbstractPlus] have been resolved by cryo\u2010electronmicroscopy. Another structure of an antagonist\u2010bound A1 receptor obtained with X\u2010ray crystallography has also been reported [http://www.ncbi.nlm.nih.gov/pubmed/28712806?dopt=AbstractPlus].Adenosine receptors (2B adenosine receptor (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:265) with 79% identity to the A2B adenosine receptor cDNA coding sequence, but which is unable to encode a functional receptor [http://www.ncbi.nlm.nih.gov/pubmed/7558011?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=386 also exhibits antagonism at A2B receptors . Antagonists at A3 receptors exhibit marked species differences, such that only http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=474 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=470 are selective at the rat A3 receptor. In the absence of other adenosine receptors, [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=406 and [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=455 can also be used to label A2B receptors (KD ca. 30 and 60 nM respectively). [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=436 also binds to A1 receptors [http://www.ncbi.nlm.nih.gov/pubmed/9459566?dopt=AbstractPlus]. . . http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3279 has been described as a fluorescent antagonist for labelling A1 adenosine receptors in living cells, although activity at other adenosine receptors was not examined [http://www.ncbi.nlm.nih.gov/pubmed/15070776?dopt=AbstractPlus].Adenosine inhibits many intracellular ATP\u2010utilising enzymes, including adenylyl cyclase (P\u2010site). A pseudogene exists for the Aet al. (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev67: 74\u2010102 [https://www.ncbi.nlm.nih.gov/pubmed/25387804?dopt=AbstractPlus]Borea PA et al. (2017) Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol13: 41\u201051 [https://www.ncbi.nlm.nih.gov/pubmed/27829671?dopt=AbstractPlus]Cronstein BN et al. (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors\u2013an update. Pharmacol Rev63: 1\u201034 [https://www.ncbi.nlm.nih.gov/pubmed/21303899?dopt=AbstractPlus]Fredholm BB et al. (2017) Kinetic Aspects of the Interaction between Ligand and G Protein\u2010Coupled Receptor: The Case of the Adenosine Receptors. Chem Rev117: 38\u201066 [https://www.ncbi.nlm.nih.gov/pubmed/27088232?dopt=AbstractPlus]Guo D et al. (2011) Allosteric modulation of adenosine receptors. Biochim Biophys Acta1808: 1309\u201018 [https://www.ncbi.nlm.nih.gov/pubmed/20599682?dopt=AbstractPlus]G\u00f6bly\u00f6s A Biochim Biophys Acta1808: 1284\u20109 [https://www.ncbi.nlm.nih.gov/pubmed/20888790?dopt=AbstractPlus]Lasley RD. (2011) Adenosine receptors and membrane microdomains. et al. (2011) Adenosine receptor desensitization and trafficking. Biochim Biophys Acta1808: 1319\u201028 [https://www.ncbi.nlm.nih.gov/pubmed/20550943?dopt=AbstractPlus]Mundell S et al. (2018) New paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased agonism. Br J Pharmacol175: 4036\u20104046 [https://www.ncbi.nlm.nih.gov/pubmed/29679502?dopt=AbstractPlus]Vecchio EA etal. (2011)Normaland abnormalfunctions ofadenosine receptors inthecentral nervous system revealed by genetic knockout studies. Biochim Biophys Acta1808: 1358\u201079[https://www.ncbi.nlm.nih.gov/pubmed/21185258?dopt=AbstractPlus]Wei CJ http://www.ncbi.nlm.nih.gov/pubmed/22333914?dopt=AbstractPlus] containing a GPCR proteolytic site. The N\u2010terminus often shares structural homology with adhesive domains facilitating inter\u2010 and matricellular interactions and leading to the term adhesion GPCR . Several receptors have been suggested to function as mechanosensors . The nomenclature of these receptors was revised in 2015 as recommended byNC\u2010IUPHARand theAdhesion GPCR Consortium [http://www.ncbi.nlm.nih.gov/pubmed/25713288?dopt=AbstractPlus].Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysisinducing (GAIN) domain [Pharmacol Rev67: 338\u201067 [https://www.ncbi.nlm.nih.gov/pubmed/25713288?dopt=AbstractPlus]Hamann J et al. (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein\u2010coupled receptors. Sci Signal6: re3 [https://www.ncbi.nlm.nih.gov/pubmed/23695165?dopt=AbstractPlus]Langenhan T et al. (2013) Sticky signaling\u2013adhesion class G protein\u2010coupled receptors take the stage. Handb Exp Pharmacol234: 111\u2010125 [https://www.ncbi.nlm.nih.gov/pubmed/27832486?dopt=AbstractPlus]Liebscher I et al. (2016) Tethered Agonism: A Common Activation Mechanism of Adhesion GPCRs. Mol Pharmacol88: 617\u201023 [https://www.ncbi.nlm.nih.gov/pubmed/25956432?dopt=AbstractPlus]Monk KR et al. (2015) Adhesion G Protein\u2010Coupled Receptors: From In Vitro Pharmacology to In Vivo Mechanisms. Annu Rev Pharmacol Toxicol58: 429\u2010449 [https://www.ncbi.nlm.nih.gov/pubmed/28968187?dopt=AbstractPlus]Purcell RH et al. (2018) Adhesion G Protein\u2010Coupled Receptors as Drug Targets. The nomenclature of the Adrenoceptors has been agreed by theNC\u2010IUPHAR Subcommittee on Adrenoceptors [http://www.ncbi.nlm.nih.gov/pubmed/7938162?dopt=AbstractPlus], see also [http://www.ncbi.nlm.nih.gov/pubmed/7568329?dopt=AbstractPlus].1\u2010Adrenoceptors are activated by the endogenous agonists (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 and (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=485, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=483 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=515 are agonists and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=503 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=515 antagonists considered selective for \u03b11\u2010 relative to \u03b12\u2010adrenoceptors. . Some tissues possess \u03b11A\u2010adrenoceptors that display relatively low affinity in functional and binding assays for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=503 indicative of different receptor states or locations. \u03b11A\u2010adrenoceptor C\u2010terminal splice variants form homo\u2010 and heterodimers, but fail to generate a functional \u03b11L\u2010adrenoceptor [http://www.ncbi.nlm.nih.gov/pubmed/15266013?dopt=AbstractPlus]. \u03b11D\u2010Adrenoceptors form heterodimers with \u03b11B\u2010 or \u03b22\u2010adrenoceptors that show increased cell\u2010surface expression [http://www.ncbi.nlm.nih.gov/pubmed/15615865?dopt=AbstractPlus]. Recombinant \u03b11D\u2010adrenoceptors have been shown in some heterologous systems to be mainly located intracellularly but cell\u2010surface localization is encouraged by truncation of the Nterminus, or by co\u2010expression of \u03b11B\u2010 or \u03b22\u2010adrenoceptors . In blood vessels all three \u03b11\u2010adrenoceptor subtypes are located on the surface and intracellularly . Signalling is predominantly via Gq/11 but\u03b11\u2010adrenoceptors also couple toGi/o, Gs and G12/13. Several \u03b11A\u2010adrenoceptor agonists display ligand directed signalling bias relative to noradrenaline [http://www.ncbi.nlm.nih.gov/pubmed/20978120?dopt=AbstractPlus]. There are also differences between subtypes in coupling efficiency to different pathways. In vascular smooth muscle, the potency of agonists is related to the predominant subtype, \u03b11D\u2010 conveying greater agonist sensitivity than \u03b11A\u2010adrenoceptors [http://www.ncbi.nlm.nih.gov/pubmed/23373597?dopt=AbstractPlus].The \u03b12\u2010Adrenoceptors are activated by (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 and with lower potency by (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=520 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5442 are agonists and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=136 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=102 antagonists selective for \u03b12\u2010 relative to \u03b11\u2010adrenoceptors. ; catecholamines have a low affinity, while rilmenidine and moxonidine are selective ligands evoking hypotensive effects in vivo. I1\u2010imidazoline receptors cause central inhibition of sympathetic tone, I2\u2010imidazoline receptors are an allosteric binding site on monoamine oxidase B, and I3\u2010imidazoline receptors regulate insulin secretion from pancreatic \u03b2\u2010cells. \u03b12A\u2010adrenoceptor stimulation reduces insulin secretion from \u03b2\u2010islets [http://www.ncbi.nlm.nih.gov/pubmed/22645144?dopt=AbstractPlus], with a polymorphism in the 5\u2019\u2010UTR of the ADRA2A gene being associated with increased receptor expression in \u03b2\u2010islets and heightened susceptibility to diabetes [http://www.ncbi.nlm.nih.gov/pubmed/19965390?dopt=AbstractPlus]. \u03b12A\u2010 and \u03b12C\u2010adrenoceptors form homodimers [http://www.ncbi.nlm.nih.gov/pubmed/16605244?dopt=AbstractPlus]. Heterodimers between \u03b12A\u2010 and either the \u03b12C\u2010adrenoceptor or \u03bc opioid peptide receptor exhibit altered signalling and trafficking properties compared to the individual receptors . Signalling by \u03b12\u2010adrenoceptors is primarily via Gi/o, although the \u03b12A\u2010adrenoceptor also couples to Gs [http://www.ncbi.nlm.nih.gov/pubmed/7559592?dopt=AbstractPlus]. Imidazoline compounds display bias relative to each other at the \u03b12A\u2010adrenoceptor [http://www.ncbi.nlm.nih.gov/pubmed/12649300?dopt=AbstractPlus]. The noradrenaline reuptake inhibitor desipramine acts directly on the \u03b12A\u2010adrenoceptor to promote internalisation via recruitment of arrestin [http://www.ncbi.nlm.nih.gov/pubmed/21859713?dopt=AbstractPlus].http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 and (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505. Isoprenaline is selective for \u03b2\u2010adrenoceptors relative to \u03b11\u2010 and \u03b12\u2010adrenoceptors, while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=564 (pKi 8.2\u20109.2) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=132 (pKi 10.011.0) are relatively \u03b21 and \u03b22 adrenoceptor\u2010selective antagonists. (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=538 and (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5571 show selectivity for \u03b21\u2010 relative to \u03b22\u2010adrenoceptors. Pharmacological differences exist between human and mouse \u03b23\u2010adrenoceptors, and the \u2019rodent selective\u2019 agonists http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=567 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3462 have low efficacy at the human \u03b23\u2010adrenoceptor whereas http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=532 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3931 activate human \u03b23\u2010adrenoceptors [88]. \u03b23\u2010Adrenoceptors are resistant to blockade by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=564, but can be blocked by high concentrations of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=550. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=547 has reasonably high affinity at \u03b23\u2010adrenoceptors, but does not discriminate well between the three \u03b2\u2010 subtypes whereas http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3931 is more selective. [125I]\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=132, [125I]\u2010hydroxy benzylpindolol and [3H]\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=563 are high affinity radioligands that label \u03b21\u2010 and \u03b22\u2010 adrenoceptors and \u03b23\u2010adrenoceptors can be labelled with higher concentrations (nM) of [125I]\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=132 together with \u03b21\u2010 and \u03b22\u2010adrenoceptor antagonists. [3H]\u2010L748337 is a \u03b23\u2010selective radioligand [http://www.ncbi.nlm.nih.gov/pubmed/24183974?dopt=AbstractPlus]. Fluorescent ligands such as BODIPY\u2010TMR\u2010CGP12177 can be used to track \u03b2adrenoceptors at the cellular level [8]. Somewhat selective \u03b21adrenoceptor agonists are used short term to treat cardiogenic shock but, chronically, reduce survival. \u03b21\u2010Adrenoceptor\u2010preferring antagonists areused totreathypertension , cardiac arrhythmias and cardiac failure . Cardiac failure is also treated with carvedilol that blocks \u03b21\u2010 and \u03b22\u2010adrenoceptors, as well as \u03b11\u2010adrenoceptors. Short and long acting \u03b22\u2010adrenoceptor\u2010selective agonists are powerful bronchodilators used to treat respiratory disorders. Many first generation \u03b2\u2010adrenoceptor antagonists (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=564) block both \u03b21\u2010 and \u03b22\u2010adrenoceptors and there are no \u03b22adrenoceptor\u2010selective antagonists used therapeutically. The \u03b23\u2010adrenoceptor agonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7445 is used to control overactive bladder syndrome.\u03b2\u2010Adrenoceptors are activated by the endogenous agonists (\u2010)\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=562 can be used to define \u03b21\u2010 or \u03b22adrenoceptors when conducted in the presence of a \u03b21\u2010 or \u03b22adrenoceptor\u2010selective antagonist. A fluorescent analogue of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=532 can be used to study \u03b22\u2010adrenoceptors in living cells [http://www.ncbi.nlm.nih.gov/pubmed/12770928?dopt=AbstractPlus]. , where the isoforms display different signalling characteristics [http://www.ncbi.nlm.nih.gov/pubmed/11959793?dopt=AbstractPlus]. There are 3 \u03b2\u2010adrenoceptors in turkey that have a pharmacology that differs from the human \u03b2\u2010adrenoceptors [http://www.ncbi.nlm.nih.gov/pubmed/21152092?dopt=AbstractPlus]. Numerous polymorphisms have been described for the \u03b2\u2010adrenoceptors; some are associated with signalling and trafficking, altered susceptibility to disease and/or altered responses to pharmacotherapy [http://www.ncbi.nlm.nih.gov/pubmed/15090197?dopt=AbstractPlus]. All \u03b2\u2010adrenoceptors couple to Gs (activating adenylyl cyclase and elevating cAMP levels), but also activate Gi and \u03b2\u2010arrestin\u2010mediated signalling. Many \u03b21\u2010 and \u03b22\u2010adrenoceptor antagonists are agonists at \u03b23adrenoceptors (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3462 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=569). Many \u2018antagonists\u2019 of cAMP accumulation, for example http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=551 and bucindolol, weakly activate MAP kinase pathways and thus display \u2019protean agonism\u2019. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=550 acts as a neutral antagonist in most systems so far examined. Agonists also display biased signalling at the \u03b22\u2010adrenoceptor via Gs or arrestins [http://www.ncbi.nlm.nih.gov/pubmed/18086673?dopt=AbstractPlus]. X\u2010ray crystal structures have been described of the agonist bound [http://www.ncbi.nlm.nih.gov/pubmed/21228877?dopt=AbstractPlus] and antagonist bound forms of the \u03b21[http://www.ncbi.nlm.nih.gov/pubmed/18594507?dopt=AbstractPlus], agonist\u2010bound [http://www.ncbi.nlm.nih.gov/pubmed/17962520?dopt=AbstractPlus] and antagonist\u2010bound forms of the \u03b22\u2010adrenoceptor , as well as a fully active agonistbound, Gs protein\u2010coupled \u03b22\u2010adrenoceptor [http://www.ncbi.nlm.nih.gov/pubmed/21772288?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=551 and bucindolol bind to a site on the \u03b21\u2010adrenoceptor involving contacts in TM2, 3, and 7 and extracellular loop 2 that may facilitate coupling to arrestins [http://www.ncbi.nlm.nih.gov/pubmed/18594507?dopt=AbstractPlus]. Compounds displaying arrestinbiased signalling at the \u03b22\u2010adrenoceptor have a greater effect on the conformation of TM7, whereas full agonists for Gs coupling promote movement of TM5 and TM6 [http://www.ncbi.nlm.nih.gov/pubmed/22267580?dopt=AbstractPlus]. Recent studies using NMR spectroscopy demonstrate significant conformational flexibility in the \u03b22\u2010adrenoceptor that is stabilized by both agonist and G proteins highlighting the dynamic nature of interactions with both ligand and downstreamsignalling partners . Such flexibility likely has consequences for our understanding of biased agonism, and for the future therapeutic exploitation of this phenomenon.[Trends Pharmacol. Sci.32: 227\u201034 [https://www.ncbi.nlm.nih.gov/pubmed/21429598?dopt=AbstractPlus]Baker JG et al. (2011) Evolution of \u03b2\u2010blockers: from anti\u2010anginal drugs to ligand\u2010directed signalling. Pharmacol. Rev.46: 121\u2010136 [https://www.ncbi.nlm.nih.gov/pubmed/7938162?dopt=AbstractPlus]Bylund DB et al. (1994) International Union of Pharmacology nomenclature of adrenoceptors. Br. J. Pharmacol.159: 1022\u201038 [https://www.ncbi.nlm.nih.gov/pubmed/20132209?dopt=AbstractPlus]Evans BA et al. (2010) Ligand\u2010directed signalling at beta\u2010adrenoceptors. J. Mol. Cell. Cardiol.51: 518\u201028 [https://www.ncbi.nlm.nih.gov/pubmed/21118696?dopt=AbstractPlus]Jensen BC et al. (2011) Alpha\u20101\u2010adrenergic receptors: targets for agonist drugs to treat heart failure. Trends Pharmacol. Sci.32: 213\u20108 [https://www.ncbi.nlm.nih.gov/pubmed/21414670?dopt=AbstractPlus]Kobilka BK. (2011) Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol. Sci.36: 196\u2010202 [https://www.ncbi.nlm.nih.gov/pubmed/25771972?dopt=AbstractPlus]Langer SZ. (2015) a2\u2010Adrenoceptors in the treatment of major neuropsychiatric disorders. Am. J. Physiol., Cell Physiol.308: C505\u201020 [https://www.ncbi.nlm.nih.gov/pubmed/25631871?dopt=AbstractPlus]Michel MC et al. (2015) Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2504 (Ang II) are mediated by AT1 and AT2 receptors , which have around 30% sequence similarity. The decapeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=583, http://www.uniprot.org/uniprot/P01019), the octapeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2504, http://www.uniprot.org/uniprot/P01019) and the heptapeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=585, http://www.uniprot.org/uniprot/P01019) are endogenous ligands. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=590, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=587, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=592, etc. are clinically used AT1 receptor blockers.The actions of 1 receptors are predominantly coupled to Gq/11, however they are also linked to arrestin recruitment and stimulate G protein\u2010independent arrestin signalling [http://www.ncbi.nlm.nih.gov/pubmed/20427692?dopt=AbstractPlus]. Most species express a single AGTR1 gene, but two related agtr1a and agtr1b receptor genes are expressed in rodents. The AT2 receptor counteracts several of the growth responses initiated by the AT1 receptors. The AT2 receptor is much less abundant than the AT1 receptor in adult tissues and is upregulated in pathological conditions. AT1 receptor antagonists bearing substituted 4\u2010phenylquinoline moieties have been synthesized, which bind to AT1 receptors with nanomolar affinity and are slightly more potent than http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=590 in functional studies [http://www.ncbi.nlm.nih.gov/pubmed/15115399?dopt=AbstractPlus]. The antagonist activity of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3944 at the AT2 receptor has also been reported [http://www.ncbi.nlm.nih.gov/pubmed/3071214?dopt=AbstractPlus]. The AT1 and bradykinin B2 receptors have been proposed to form a heterodimeric complex [http://www.ncbi.nlm.nih.gov/pubmed/10993080?dopt=AbstractPlus]. \u03b2\u2010Arrestin1 prevents AT1\u2010B2 receptor heteromerization[http://www.ncbi.nlm.nih.gov/pubmed/30503206?dopt=AbstractPlus]. There is also evidence for an AT4 receptor that specifically binds http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5368 and is located in the brain and kidney. An additional putative endogenous ligand for the AT4 receptor has been described , a globin decapeptide) [http://www.ncbi.nlm.nih.gov/pubmed/9166749?dopt=AbstractPlus].ATet al. (2018) Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog. Nat. Struct. Mol. Biol.25: 570\u2010576 [https://www.ncbi.nlm.nih.gov/pubmed/29967536?dopt=AbstractPlus]Asada H et al. (2015) International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol. Rev.67: 754\u2010819 [https://www.ncbi.nlm.nih.gov/pubmed/26315714?dopt=AbstractPlus]Karnik SS et al. (2019) Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT_1R Initiated by van der Waals Attraction. J Chem Inf Model59: 373\u2010385 [https://www.ncbi.nlm.nih.gov/pubmed/30608150?dopt=AbstractPlus]Singh KD et al. (2019) Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell176: 468\u2010478.e11 [https://www.ncbi.nlm.nih.gov/pubmed/30639099?dopt=AbstractPlus]Wingler LM et al. (2019) Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell176: 479\u2010490.e12 [https://www.ncbi.nlm.nih.gov/pubmed/30639100?dopt=AbstractPlus]Wingler LM et al. (2015) Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell161: 833\u201044 [https://www.ncbi.nlm.nih.gov/pubmed/25913193?dopt=AbstractPlus]Zhang H NC\u2010IUPHAR Subcommittee on the apelin receptornomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/20605969?dopt=AbstractPlus]) responds to apelin, a 36 amino\u2010acid peptide derived initially from bovine stomach. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=606 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=605, http://www.uniprot.org/uniprot/Q9ULZ1) and [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=599]http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=599 are the predominant endogenous ligands which are cleaved from a 77 amino\u2010acid precursor peptide (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:16665http://www.uniprot.org/uniprot/Q9ULZ1) by a so far unidentified enzymatic pathway [http://www.ncbi.nlm.nih.gov/pubmed/9792798?dopt=AbstractPlus]. A second family of peptides discovered independently and named Elabela [http://www.ncbi.nlm.nih.gov/pubmed/24316148?dopt=AbstractPlus] or Toddler, that has little sequence similarity to apelin, is present, and functional at the apelin receptor in the adult cardiovascular system . Structure\u2010activity relationship Elabela analogues have been described [http://www.ncbi.nlm.nih.gov/pubmed/26986036?dopt=AbstractPlus].The apelin receptor . The apelin receptor may also act as a co\u2010receptor with CD4 for isolates of human immunodeficiency virus, with apelin blocking this function [http://www.ncbi.nlm.nih.gov/pubmed/11090199?dopt=AbstractPlus]. A modified apelin\u201013 peptide, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5354) was reported to block the hypotensive response to apelin in rat in vivo [http://www.ncbi.nlm.nih.gov/pubmed/15486224?dopt=AbstractPlus], however, this peptide exhibits agonist activity in HEK293 cells stably expressing the recombinant apelin receptor [http://www.ncbi.nlm.nih.gov/pubmed/12939143?dopt=AbstractPlus]. The apelin receptor antagonist, MM54, was reported to suppress tumour growth and increase survival in an intracranial xenograft mouse model of glioblastoma [http://www.ncbi.nlm.nih.gov/pubmed/29053791?dopt=AbstractPlus].Potency order determined for heterologously expressed human apelin receptor Neuroprotection of apelin and its signaling pathway. Peptides37: 171\u20103 [https://www.ncbi.nlm.nih.gov/pubmed/22820556?dopt=AbstractPlus]Cheng B et al. (2009) Structural insight into G\u2010protein coupled receptor binding by apelin. Biochemistry48: 537\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/19123778?dopt=AbstractPlus]Langelaan DN et al. (2018) Vascular effects of apelin: Mechanisms and therapeutic potential. Pharmacol. Ther.190: 139\u2010147 [https://www.ncbi.nlm.nih.gov/pubmed/29807055?dopt=AbstractPlus]Mughal A et al. (2013) The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol.219: R13\u201035 [https://www.ncbi.nlm.nih.gov/pubmed/23943882?dopt=AbstractPlus]O\u2019Carroll AM et al. (2010) International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol. Rev.62: 331\u201042 [https://www.ncbi.nlm.nih.gov/pubmed/20605969?dopt=AbstractPlus]Pitkin SL et al. (2015) Apelin, Elabela/Toddler, and biased agonists as novel therapeutic agents in the cardiovascular system. Trends Pharmacol. Sci.36: 560\u20107 [https://www.ncbi.nlm.nih.gov/pubmed/26143239?dopt=AbstractPlus]Yang P http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718. Selective agonists are promising drugs for the treatment of metabolic disorders, such as type II diabetes, obesity and atherosclerosis.The bile acid receptor (GPBA) responds to bile acids produced during the liver metabolism of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3945 has also been reported to inhibit inflammatory signalling through the NF\u03baB pathway [http://www.ncbi.nlm.nih.gov/pubmed/12960358?dopt=AbstractPlus]. Disruption of GPBA expression is reported to protect from cholesterol gallstone formation [http://www.ncbi.nlm.nih.gov/pubmed/16724960?dopt=AbstractPlus]. A new series of 5\u2010phenoxy\u20101,3\u2010dimethyl\u20101H\u2010pyrazole\u20104\u2010carboxamides have been reported as highly potent agonists [http://www.ncbi.nlm.nih.gov/pubmed/23337601?dopt=AbstractPlus].The triterpenoid natural product et al. (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis46: 302\u201012 [https://www.ncbi.nlm.nih.gov/pubmed/24411485?dopt=AbstractPlus]Duboc H et al. (2014) GPBA: a GPCR for bile acids and an emerging therapeutic target for disorders of digestion and sensation. Br. J. Pharmacol.171: 1156\u201066 [https://www.ncbi.nlm.nih.gov/pubmed/24111923?dopt=AbstractPlus]Lieu T et al. (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev.89: 147\u201091 [https://www.ncbi.nlm.nih.gov/pubmed/19126757?dopt=AbstractPlus]Lefebvre P et al. (2017) Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol5: 224\u2010233 [https://www.ncbi.nlm.nih.gov/pubmed/27639537?dopt=AbstractPlus]van Nierop FS 1, BB2, BB3 . BB1 and BB2 are activated by the endogenous ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=612 (GRP), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=613 (NMB) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3582) . http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=616 is a tetradecapeptide, originally derived from amphibians. The three Bn receptor subtypes couple primarily to the Gq/11 and G12/13 family of G proteins [http://www.ncbi.nlm.nih.gov/pubmed/18055507?dopt=AbstractPlus]. Each of these receptors is widely distributed in the CNS and peripheral tissues . Activation of BB1 and BB2 receptors causes a wide range of physiological/pathophysiogical actions, including the stimulation of normal and neoplastic tissue growth, smoothmuscle contraction, feeding behavior, secretion and many central nervous system effects including regulation of circadian rhythm and mediation of pruritus . A physiological role for the BB3 receptor has yet to be fully defined although recently studies suggest an important role in glucose and insulin regulation, metabolic homeostasis, feeding, regulation of body temperature, obesity, diabetes mellitus and growth of normal/neoplastic tissues .Mammalian bombesin (Bn) receptors comprise 3 subtypes: BBhttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=632,http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=632\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=632,http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=632,http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=632]http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=632) [http://www.ncbi.nlm.nih.gov/pubmed/9325344?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3946) has more than 200\u2010fold selectivity for BB3 receptors over BB1 and BB2 .All three human subtypes may be activated by [et al. (2015) Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin. Ther. Targets19: 1153\u201070 [https://www.ncbi.nlm.nih.gov/pubmed/26066663?dopt=AbstractPlus]Gonz\u00e1lez N et al. (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev.60: 1\u201042 [https://www.ncbi.nlm.nih.gov/pubmed/18055507?dopt=AbstractPlus]Jensen RT et al. (2017) Theranostic Prospects of Gastrin\u2010Releasing Peptide Receptor\u2010Radioantagonists in Oncology. PET Clin12: 297\u2010309 [https://www.ncbi.nlm.nih.gov/pubmed/28576168?dopt=AbstractPlus]Maina T et al. (2016) Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin. Ther. Targets20: 1055\u201073 [https://www.ncbi.nlm.nih.gov/pubmed/26981612?dopt=AbstractPlus]Moreno P et al. (2018) Recent insights into biological functions of mammalian bombesin\u2010like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes25: 36\u201041 [https://www.ncbi.nlm.nih.gov/pubmed/29120926?dopt=AbstractPlus]Qu X et al. (2015) Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides72: 128\u201044 [https://www.ncbi.nlm.nih.gov/pubmed/25976083?dopt=AbstractPlus]Ramos\u2010\u00c1lvarez I NC\u2010IUPHAR subcommittee on Bradykinin (kinin) Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/15734727?dopt=AbstractPlus]) are activated by the endogenous peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=649 (BK), [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=646]http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=646, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6383), Lys\u2010BK ), [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=644]http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=644, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6383), [Phospho\u2010Ser6]\u2010Bradykinin, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=639, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6383) (Ile\u2010SerBK), [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3578]http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3578, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6383) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3580]\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3580, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6383). Variation in pharmacology and activity of B1 and B2 receptor antagonists at species orthologs has been documented. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=667 is approved in North America and Europe for the treatment of acute attacks of hereditary angioedema.Bradykinin (or kinin) receptors Non\u2010peptide antagonists for kinin B1 receptors: new insights into their therapeutic potential for the management of inflammation and pain. Trends Pharmacol. Sci.27: 646\u201051 [https://www.ncbi.nlm.nih.gov/pubmed/17056130?dopt=AbstractPlus]Campos MM et al. (2009) The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease. Curr Opin Pharmacol9: 125\u201031 [https://www.ncbi.nlm.nih.gov/pubmed/19124274?dopt=AbstractPlus]Duchene J et al. (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov3: 845\u201052 [https://www.ncbi.nlm.nih.gov/pubmed/15459675?dopt=AbstractPlus]Marceau F et al. (1999) Pharmacological characterization of the bradykinin B2 receptor: inter\u2010species variability and dissociation between binding and functional responses. Br. J. Pharmacol.126: 1083\u201090 [https://www.ncbi.nlm.nih.gov/pubmed/10204994?dopt=AbstractPlus]Paquet JL et al. (2010) Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules15: 6598\u2010618 [https://www.ncbi.nlm.nih.gov/pubmed/20877247?dopt=AbstractPlus]Thornton E et al. (2012) Discovery and therapeutic potential of kinin receptor antagonists. Expert Opin Drug Discov7: 1129\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/23095011?dopt=AbstractPlus]Whalley ET NC\u2010IUPHAR Subcommittee on CGRP, AM, AMY, and CT receptorsnomenclature as agreed by the ) are generated by the genes https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:1440 (which codes for the CT receptor) and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:16709 . Their function and pharmacology are altered in the presence of RAMPs (receptor activity\u2010modifying proteins), which are single TM domain proteins of ca. 130 amino acids, identified as a family of three members; RAMP1, RAMP2 and RAMP3. There are splice variants of the CT receptor; these in turn produce variants of the AMY receptor [http://www.ncbi.nlm.nih.gov/pubmed/12037140?dopt=AbstractPlus], some of which can be potently activated by CGRP. The endogenous agonists are the peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=685 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=681\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=681, http://www.uniprot.org/uniprot/P06881) (formerly known as CGRP\u2010I), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=682 (formerly known as CGRP\u2010II), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=687 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=683 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=684 . There are species differences in peptide sequences, particularly for the CTs. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5369 {Pig} (CRSP) is another member of the family with selectivity for the CT receptor but it is not expressed in humans [http://www.ncbi.nlm.nih.gov/pubmed/12556539?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=702 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=703 are the most selective antagonists available, showing selectivity for CGRP receptors, with a particular preference for those of primate origin. CLR by itself binds no known endogenous ligand, but in the presence of RAMPs it gives receptors for CGRP, adrenomedullin and adrenomedullin 2/intermedin.This receptor family comprises a group of receptors for the calcitonin/CGRP family of peptides. The calcitonin (CT), amylin (AMY), calcitonin gene\u2010related peptide (CGRP) and adrenomedullin (AM) receptors has low affinity for 125I\u2010AMY binding sites, cells transfected with CTR and RAMPs can display potent CT functional responses. Transfection of human CTR with any RAMP can generate receptors with a high affinity for both salmon CT and AMY and varying affinity for different antagonists . The major human CTR splice variant (hCT(a), which does not contain an insert) with RAMP1 (i.e. the AMY1(a) receptor) has a high affinity for CGRP [http://www.ncbi.nlm.nih.gov/pubmed/26125036?dopt=AbstractPlus], unlike hCT(a)\u2010RAMP3 (i.e. AMY3(a) receptor) . However, the AMY receptor phenotype is RAMP\u2010type, splice variant and cell\u2010line\u2010dependent . Emerging data suggests that AMY1 could be a second CGRP receptor [http://www.ncbi.nlm.nih.gov/pubmed/29797087?dopt=AbstractPlus].It is important to note that a complication with the interpretation of pharmacological studies with AMY receptors in transfected cells is that most of this work has likely used a mixed population of receptors, encompassing RAMP\u2010coupled CTR as well as CTR alone. This means that although in binding assays human 2 receptors. Adrenomedullin 2/intermedin also has high affinity for the AM2 receptor [http://www.ncbi.nlm.nih.gov/pubmed/21658025?dopt=AbstractPlus]. CGRP\u2010(8\u201037) acts as an antagonist of CGRP (pKi 8) and inhibits some AM and AMY responses (pKi 6\u20107). It is weak at CT receptors. HumanAM\u2010(22\u201052)has some selectivity towardsAM receptors, but with modest potency (pKi 7), limiting its use [http://www.ncbi.nlm.nih.gov/pubmed/12970090?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=702 shows the greatest selectivity between receptors but still has significant affinity for AMY1 receptors [http://www.ncbi.nlm.nih.gov/pubmed/26125036?dopt=AbstractPlus].The ligands described have limited selectivity. Adrenomedullin has appreciable affinity for CGRP receptors. CGRP can show significant cross\u2010reactivity at AMY receptors and AMe.g. Ca2+, ERK, Akt), and G proteins can be activated [http://www.ncbi.nlm.nih.gov/pubmed/20633935?dopt=AbstractPlus]. There is evidence that CGRP\u2010RCP is important for the coupling of CLR to adenylyl cyclase [http://www.ncbi.nlm.nih.gov/pubmed/10903324?dopt=AbstractPlus].Gs is a prominent route for effector coupling for CLR and CTR but other pathways Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol.175: 3\u201017 [https://www.ncbi.nlm.nih.gov/pubmed/29059473?dopt=AbstractPlus]Hay DL et al. (2014) Calcitonin gene\u2010related peptide: physiology and pathophysiology. Physiol. Rev.94: 1099\u2010142 [https://www.ncbi.nlm.nih.gov/pubmed/25287861?dopt=AbstractPlus]Russell FA et al. (2016) Receptor Activity\u2010Modifying Proteins (RAMPs): New Insights and Roles. Annu. Rev. Pharmacol. Toxicol.56: 469\u201087 [https://www.ncbi.nlm.nih.gov/pubmed/26514202?dopt=AbstractPlus]Hay DL Annu. Rev. Pharmacol. Toxicol.55: 533\u201052 [https://www.ncbi.nlm.nih.gov/pubmed/25340934?dopt=AbstractPlus]Russo AF. (2015) Calcitonin gene\u2010related peptide (CGRP): a new target for migraine. et al. (2015) Bench\u2010to\u2010bedside pharmacology of adrenomedullin. Eur. J. Pharmacol.764: 140\u20108 [https://www.ncbi.nlm.nih.gov/pubmed/26144371?dopt=AbstractPlus]Kato J NC\u2010IUPHARprovisional nomenclature as recommended by [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L\u2010amino acids (particularly L\u2010Trp and L\u2010Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [http://www.ncbi.nlm.nih.gov/pubmed/24111791?dopt=AbstractPlus]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists , L\u2010amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function . Indeed, L\u2010amino acids have been identified as \"co\u2010agonists\", with both concomitant calcium and L\u2010amino acid binding required for full receptor activation . The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [http://www.ncbi.nlm.nih.gov/pubmed/25556167?dopt=AbstractPlus] or decreased extracellular ionic strength [http://www.ncbi.nlm.nih.gov/pubmed/9677383?dopt=AbstractPlus]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS.The calcium\u2010sensing receptor or neonatal severe hyperparathyroidism [http://www.ncbi.nlm.nih.gov/pubmed/27647839?dopt=AbstractPlus] and in Casr null mice , which exhibit similar increases in PTH secretion and blood calcium levels. Gain\u2010of\u2010function CaS mutations are associated with autosomal dominant hypocalcaemia and Bartter syndrome type V [http://www.ncbi.nlm.nih.gov/pubmed/27647839?dopt=AbstractPlus].The CaS receptor has a number of physiological functions, but it is best known for its central role in parathyroid and renal regulation of extracellular calcium homeostasis , but in some cell types can couple to Gs [http://www.ncbi.nlm.nih.gov/pubmed/20032198?dopt=AbstractPlus]. However, the CaS receptor can form heteromers with Class C GABAB and mGlu1/5 receptors [http://www.ncbi.nlm.nih.gov/pubmed/11489900?dopt=AbstractPlus], which may introduce further complexity in its signalling capabilities.The CaS receptor primarily couples to Ghttp://www.ncbi.nlm.nih.gov/pubmed/21406038?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24050279?dopt=AbstractPlus]. Further, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8375 is a novel peptide positive allosteric modulator of the receptor [http://www.ncbi.nlm.nih.gov/pubmed/23674604?dopt=AbstractPlus]. Agonists and positive allosteric modulators of the CaS receptor are termed Type I and II calcimimetics, respectively, and can suppress parathyroid hormone ) secretion [http://www.ncbi.nlm.nih.gov/pubmed/9520489?dopt=AbstractPlus]. Negative allosteric modulators are called calcilytics and can act to increase http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1785, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:9606) secretion [http://www.ncbi.nlm.nih.gov/pubmed/11561095?dopt=AbstractPlus].Multiple other small molecule chemotypes are positive and negative allosteric modulators of the CaS receptor Brown EM. (2013) Role of the calcium\u2010sensing receptor in extracellular calcium homeostasis. et al. (2018) The calcium\u2010sensing receptor in physiology and in calcitropic and noncal citropic diseases. Nat Rev Endocrinol15: 33\u201051 [https://www.ncbi.nlm.nih.gov/pubmed/30443043?dopt=AbstractPlus]Hannan FM et al. (2013) Calcium\u2010sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract. Res. Clin. Endocrinol. Metab.27: 315\u201031 [https://www.ncbi.nlm.nih.gov/pubmed/23856262?dopt=AbstractPlus]Conigrave AD et al. (2018) Discovery and Development of Calcimimetic and Calcilytic Compounds. Prog Med Chem57: 1\u201086 [https://www.ncbi.nlm.nih.gov/pubmed/29680147?dopt=AbstractPlus]Nemeth EF NC\u2010IUPHAR Subcommittee on Cannabinoid Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/21079038?dopt=AbstractPlus]) are activated by endogenous ligands that include N\u2010arachidonoylethanolamine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5444\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5444, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5445 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729. Potency determinations of endogenous agonists at these receptors are complicated by the possibility of differential susceptibility of endogenous ligands to enzymatic conversion [http://www.ncbi.nlm.nih.gov/pubmed/17876303?dopt=AbstractPlus].Cannabinoid receptors (1 and CB2 receptors [http://www.ncbi.nlm.nih.gov/pubmed/23108552?dopt=AbstractPlus]. Two of these medicines were developed to suppress nausea and vomiting produced by chemotherapy. These are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9071 (Cesamet\u00ae), a synthetic CB1/CB2 receptor agonist, and synthetic http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2424 , which can also be used as an appetite stimulant. The third medicine, Sativex\u00ae, contains mainly http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2424 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4150, both extracted from cannabis, and is used to treat multiple sclerosis and cancer pain.There are currently three licenced cannabinoid medicines each of which contains a compound that can activate CB1 and CB2 receptors may be labelled with . There is evidence for an allosteric site on the CB1 receptor [http://www.ncbi.nlm.nih.gov/pubmed/16113085?dopt=AbstractPlus]. All of the compounds listed as antagonists behave as inverse agonists in some bioassay systems [http://www.ncbi.nlm.nih.gov/pubmed/21079038?dopt=AbstractPlus]. For some cannabinoid receptor ligands, additional pharmacological targets that include GPR55 and GPR119 have been identified [http://www.ncbi.nlm.nih.gov/pubmed/21079038?dopt=AbstractPlus]. Moreover, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=114 although showing little structural similarity to CB1 and CB2 receptors, respond to endogenous agents that are structurally similar to the endogenous cannabinoid ligands [http://www.ncbi.nlm.nih.gov/pubmed/21079038?dopt=AbstractPlus].Both CBet al. (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev.54: 161\u2010202 [https://www.ncbi.nlm.nih.gov/pubmed/12037135?dopt=AbstractPlus]Howlett AC et al. (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB_1 and CB_2. Pharmacol. Rev.62: 588\u2010631 [https://www.ncbi.nlm.nih.gov/pubmed/21079038?dopt=AbstractPlus]Pertwee RG Curr. Med. Chem.17: 1360\u201081 [https://www.ncbi.nlm.nih.gov/pubmed/20166927?dopt=AbstractPlus]Pertwee RG. (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. NC\u2010IUPHARrecommended by ). The chemoattractant protein and adipokine, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2945 , has been shown to be the endogenous ligand for both chemerin family receptors. Chemerin1 was the founding family member, and when GPR1 was de\u2010orphanised it was re\u2010named Chermerin2 [http://www.ncbi.nlm.nih.gov/pubmed/29279348?dopt=AbstractPlus]. Chemerin1 is also activated by the lipid\u2010derived, antiinflammatory ligand http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3333 (RvE1), which is formed via the sequential metabolism of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3362 by aspirin\u2010modified cyclooxygenase and lipoxygenase . In addition, two GPCRs for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3934 (RvD1) have been identified: FPR2/ALX, the lipoxin A4 receptor, and GPR32, an orphan receptor [http://www.ncbi.nlm.nih.gov/pubmed/20080636?dopt=AbstractPlus].Nomenclature for the chemerin receptors is presented as Ki=9.2 [http://www.ncbi.nlm.nih.gov/pubmed/27742615?dopt=AbstractPlus].CCX832 (structure not disclosed) is a selective antagonist, pet al. (2018) International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) Nomenclature, Pharmacology, and Function. Pharmacol. Rev.70: 174\u2010196 [https://www.ncbi.nlm.nih.gov/pubmed/29279348?dopt=AbstractPlus]Kennedy AJ et al. (2018) Mechanisms and Functions of Chemerin in Cancer: Potential Roles in Therapeutic Intervention. Front Immunol9: 2772 [https://www.ncbi.nlm.nih.gov/pubmed/30555465?dopt=AbstractPlus]Shin WJ NC\u2010IUPHAR Subcommittee on Chemokine Receptorsnomenclature as agreed by the ) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Additional hematopoietic and non\u2010hematopoietic roles have been identified for many chemokines in the areas of embryonic development, immune cell proliferation, activation and death, viral infection, and as antibiotics, among others. Chemokine receptors can be divided by function into two main groups: G protein\u2010coupled chemokine receptors, which mediate leukocyte trafficking, and \"Atypical chemokine receptors\", which may signal through non\u2010G protein\u2010coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients [http://www.ncbi.nlm.nih.gov/pubmed/24218476?dopt=AbstractPlus].Chemokine receptors (n= 28), CXC and CX3C (n= 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n= 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high\u2010affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein\u2010coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors [http://www.ncbi.nlm.nih.gov/pubmed/25958743?dopt=AbstractPlus]. There can be substantial cross\u2010species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non\u2010chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co\u2010receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include bothstandard chemokine receptor names [http://www.ncbi.nlm.nih.gov/pubmed/10714678?dopt=AbstractPlus] and aliases.Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC , but their role in viral life cycles is not established. Viruses can exploit or subvert the chemokine system by producing chemokine antagonists and scavengers. Three chemokine receptor antagonists have now been approved by the FDA: 1) the CCR5 antagonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=806 (Pfizer) for treatment of HIV/AIDS in patients with CCR5\u2010using strains; and 2) the CXCR4 antagonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=844 (Sanofi) for hematopoietic stem cell mobilization with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4934 in patients undergoing transplantation in the context of chemotherapy for Hodgkins\u2019 Disease and multiple myeloma; and 3) the CCR4 blocking antibody Poteligeo for mycosis fungoides or Sezary syndrome.Specific chemokine receptors facilitate cell entry by microbes, such as ACKR1 for et al. (2015) An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15. Br. J. Pharmacol.172: 3945\u20109 [https://www.ncbi.nlm.nih.gov/pubmed/25958743?dopt=AbstractPlus]Bachelerie F et al. (2000) International Union of Pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev.52: 145\u2010176 [https://www.ncbi.nlm.nih.gov/pubmed/10699158?dopt=AbstractPlus]Murphy PM et al. (2012) Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol. Ther.133: 1\u201018 [https://www.ncbi.nlm.nih.gov/pubmed/21839114?dopt=AbstractPlus]Koelink PJ et al. (2012) Pharmacological modulation of chemokine receptor function. Br. J. Pharmacol.165: 1617\u201043 [https://www.ncbi.nlm.nih.gov/pubmed/21699506?dopt=AbstractPlus]Scholten DJ Pharmacol. Rev.54: 227\u20109 [https://www.ncbi.nlm.nih.gov/pubmed/12037138?dopt=AbstractPlus]Murphy PM. (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. NC\u2010IUPHAR Subcommittee on CCK receptorsnomenclature as agreed by the , with some alternatively spliced forms most often identified in neoplastic cells. The CCK receptor subtypes are distinguished by their peptide selectivity, with the CCK1 receptor requiring the carboxyl\u2010terminal heptapeptide\u2010amide that includes a sulfated tyrosine for high affinity and potency, while the CCK2 receptor requires only the carboxyl\u2010terminal tetrapeptide shared by each CCK and gastrin peptides. These receptors have characteristic and distinct distributions, with both present in both the central nervous system and peripheral tissues.Cholecystokinin receptors region, has been described to be present particularly in certain neoplasms where mRNA mis\u2010splicing has been commonly observed [http://www.ncbi.nlm.nih.gov/pubmed/12429993?dopt=AbstractPlus], but it is not clear that this receptor splice form plays a special role in carcinogenesis. Another alternative splicing event for the CCK2 receptor was reported [http://www.ncbi.nlm.nih.gov/pubmed/8415658?dopt=AbstractPlus], with alternative donor sites in exon 4 resulting in long (452 amino acids) and short (447 amino acids) forms of the receptor differing by five residues in ICL3, however, no clear functional differences have been observed.While a cancer\u2010specific CCK receptor has been postulated to exist, which also might be responsive to incompletely processed forms of CCK (Gly\u2010extended forms), this has never been isolated. An alternatively spliced form of the CCKRev Neurosci28: 573\u2010585 [https://www.ncbi.nlm.nih.gov/pubmed/28343167?dopt=AbstractPlus]Ballaz S. (2017) The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Regul. Pept.155: 6\u201010 [https://www.ncbi.nlm.nih.gov/pubmed/19345244?dopt=AbstractPlus]Dockray GJ. (2009) Cholecystokinin and gut\u2010brain signalling. et al. (2010) Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br. J. Pharmacol.159: 1009\u201021 [https://www.ncbi.nlm.nih.gov/pubmed/19922535?dopt=AbstractPlus]Cawston EE et al. (2006) Cholecystokinin and gastrin receptors. Physiol. Rev.86: 805\u201047 [https://www.ncbi.nlm.nih.gov/pubmed/16816139?dopt=AbstractPlus]Dufresne M NC\u2010IUPHAR subcommittee on the Class Frizzled GPCRsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/21079039?dopt=AbstractPlus]), are GPCRs originally identified in Drosophila [http://www.ncbi.nlm.nih.gov/pubmed/1334084?dopt=AbstractPlus], which are highly conserved across species. While SMO shows structural resemblance to the 10 FZDs, it is functionally separated as it mediates effects in the Hedgehog signaling pathway [http://www.ncbi.nlm.nih.gov/pubmed/21079039?dopt=AbstractPlus]. FZDs are activated by WNTs, which are cysteine\u2010rich lipoglycoproteins withfundamentalfunctions inontogeny and tissue homeostasis. FZD signalling was initially divided into two pathways, being either dependent on the accumulation of the transcription regulator http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5371 or being \u03b2\u2010catenin\u2010independent . WNT stimulation of FZDs can, in cooperation with the low density lipoprotein receptors https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6697 (http://www.uniprot.org/uniprot/O75197) and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6698 (http://www.uniprot.org/uniprot/O75581), lead to the inhibition of a constitutively active destruction complex, which results in the accumulation of \u03b2\u2010catenin and subsequently its translocation to the nucleus. \u03b2\u2010Catenin, in turn, modifies gene transcription by interacting with TCF/LEF transcription factors. \u03b2Catenin\u2010independent FZD signalling is far more complex with regard to the diversity of the activated pathways. WNT/FZD signalling can lead to the activation of heterotrimeric G proteins , the elevation of intracellular calcium [http://www.ncbi.nlm.nih.gov/pubmed/9389482?dopt=AbstractPlus], activation of cGMP\u2010specific PDE6 [http://www.ncbi.nlm.nih.gov/pubmed/12471263?dopt=AbstractPlus] and elevation of cAMP as well as RAC\u20101, JNK, Rho and Rho kinase signalling [http://www.ncbi.nlm.nih.gov/pubmed/19651774?dopt=AbstractPlus]. Novel resonance energy transfer\u2010based tools have allowed the study of the GPCR\u2010like nature of FZDs in greater detail. Upon ligand stimulation, FZDs undergo conformational changes and signal via heterotrimeric G proteins . Furthermore, the phosphoprotein Dishevelled constitutes a key player in WNT/FZD signalling. Importantly, FZDs exist in at least two distinct conformational states that regulate the pathway selection [http://www.ncbi.nlm.nih.gov/pubmed/30737406?dopt=AbstractPlus]. As with other GPCRs, members of the Frizzled family are functionally dependent on the arrestin scaffolding protein for internalization [http://www.ncbi.nlm.nih.gov/pubmed/12958365?dopt=AbstractPlus], as well as for \u03b2\u2010catenin\u2010dependent [http://www.ncbi.nlm.nih.gov/pubmed/17426148?dopt=AbstractPlus] and \u2010independent signalling. The pattern of cell signalling is complicated by the presence of additional ligands, which can enhance or inhibit FZD signalling (secreted Frizzled\u2010related proteins (sFRP), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5372 (WIF), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3704 or Dickkopf (DKK)), as well as modulatory (co)\u2010receptors with http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=304#Type XV RTKs: RYK, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=304#Type VIII RTKs: ROR1, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=304#Type VIII RTKs: ROR2 and Kremen, which may also function as independent signalling proteins.Receptors of the Class Frizzled , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3673 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3674 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3675 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3549 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3547 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3548 (pEC50 7.7\u20108.9 [http://www.ncbi.nlm.nih.gov/pubmed/30514810?dopt=AbstractPlus]), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3676 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3678 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3679 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3681 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3682 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3683 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3684 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3686 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3687, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3688 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3689 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3690 .Extracellular proteins that interact with FZDs:http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1063 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3700 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3691 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3692 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3693 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3694 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3695 .Extracellular proteins that interact with WNTs or LRPs:http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3701 , https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:18081 (http://www.uniprot.org/uniprot/Q9Y5W5), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3704 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3702 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3703 Small exogenous ligands: Foxy\u20105 [http://www.ncbi.nlm.nih.gov/pubmed/18927296?dopt=AbstractPlus], Box\u20105 [http://www.ncbi.nlm.nih.gov/pubmed/19901340?dopt=AbstractPlus], UM206 [http://www.ncbi.nlm.nih.gov/pubmed/21931076?dopt=AbstractPlus], and XWnt8 (http://www.uniprot.org/uniprot/P28026) also known as mini\u2010Wnt8.Ligands associated with SMO signalling:http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718, oxysterols .et al. (2009) Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol.10: [https://www.ncbi.nlm.nih.gov/pubmed/22935904?dopt=AbstractPlus]Angers S Cold Spring Harb Perspect Biol4: 468\u201077 [https://www.ncbi.nlm.nih.gov/pubmed/19536106?dopt=AbstractPlus]van Amerongen R. (2012) Alternative Wnt pathways and receptors. https://www.ncbi.nlm.nih.gov/pubmed/26969975?dopt=AbstractPlus]Schulte G.(2015)Frizzleds and WNT/\u03b2\u2010cateninsignaling\u2013The black boxof ligand\u2010receptor selectivity, 113\u201039 [et al. (2016) Frizzled Receptors in Development and Disease. Curr. Top. Dev. Biol.117: complex stoichiometry and activation kinetics. Eur. J. Pharmacol.763: 191\u20105 [https://www.ncbi.nlm.nih.gov/pubmed/26003275?dopt=AbstractPlus]Wang Y et al. (2018) Frizzleds as GPCRs \u2010 More Conventional Than We Thought! Trends Pharmacol. Sci.39: 828\u2010842 [https://www.ncbi.nlm.nih.gov/pubmed/30049420?dopt=AbstractPlus]Schulte G NC\u2010IUPHAR subcommittee on Complement peptide receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/23383423?dopt=AbstractPlus]) are activated by the endogenous 75 amino\u2010acid anaphylatoxin polypeptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3640 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=573 , generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3aR and C5aR), causing cell activation and triggering cellular degranulation that contributes to the local inflammation.Complement peptide receptors binds [125I]C5a with no clear signalling function, but has a putative role opposing inflammatory responses . Binding to this site may be displaced with the rank order http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=574 (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:1331)> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=573 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5367 to compete . C5a2 appears to lack G protein signalling and has been termed a decoy receptor [http://www.ncbi.nlm.nih.gov/pubmed/19100624?dopt=AbstractPlus]. However, C5a2 does recruit arrestin after ligand binding, which might provide a signaling pathway for this receptor , and forms heteromers with C5a1. C5a, but not C5a\u2010des Arg, induces upregulation of heteromer formation between complement C5a receptors C5a1 and C5a2 [http://www.ncbi.nlm.nih.gov/pubmed/24060963?dopt=AbstractPlus]. There are also reports of pro\u2010inflammatory activity of C5a2, mediated by HMGB1, but the signaling pathway that underlies this is currently unclear (reviewed in [http://www.ncbi.nlm.nih.gov/pubmed/23239822?dopt=AbstractPlus]). More recently, work in T cells has shown that C5a1 and C5a2 act in opposition to each other and that altering the equilibrium between the two receptors, by differential expression or production of C5a\u2010des Arg (which favours C5a2), can affect the final cellular response [http://www.ncbi.nlm.nih.gov/pubmed/27313051?dopt=AbstractPlus].et al. (2016) A novel \"complement\u2010metabolism\u2010inflammasome axis\" as a key regulator of immune cell effector function. Eur. J. Immunol.46: 1563\u201073 [https://www.ncbi.nlm.nih.gov/pubmed/27184294?dopt=AbstractPlus]Arbore G et al. (2018) Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance. Mol. Immunol.101: 176\u2010181 [https://www.ncbi.nlm.nih.gov/pubmed/30449309?dopt=AbstractPlus]Coulthard LG et al. (2017) Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol. Immunol.89: 44\u201058 [https://www.ncbi.nlm.nih.gov/pubmed/28600003?dopt=AbstractPlus]Laumonnier Y et al. (2013) C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J.27: 855\u201064 [https://www.ncbi.nlm.nih.gov/pubmed/23239822?dopt=AbstractPlus]Li R et al. (2007) Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol.152: 429\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/17603557?dopt=AbstractPlus]Monk PN et al. (2018) Intracellular complement activation\u2010An alarm raising mechanism? Semin. Immunol.38: 54\u201062 [https://www.ncbi.nlm.nih.gov/pubmed/29631809?dopt=AbstractPlus]Reichhardt MP NC\u2010IUPHAR subcommittee on Corticotropin\u2010releasing Factor Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/12615952?dopt=AbstractPlus]) receptors are activated by the endogenous peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=912 , a 41 aminoacid peptide, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=919 , 40 amino\u2010acids, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=921 , 38 amino\u2010acids and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=928 , 38 amino\u2010acids. CRF1 and CRF2 receptors are activated non\u2010selectively by CRH and UCN. CRF2 receptors are selectively activated by UCN2 and UCN3. Binding to CRF receptors can be conducted using radioligands [125I]Tyr0\u2010CRF or .A CRF binding protein has been identified The Corticotropin\u2010Releasing Factor Family: Physiology of the Stress Response. Physiol. Rev.98: 2225\u20102286 [https://www.ncbi.nlm.nih.gov/pubmed/30109816?dopt=AbstractPlus]Deussing JM et al. (2003) International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin\u2010releasing factor and their ligands. Pharmacol Rev.55: 21\u201026 [https://www.ncbi.nlm.nih.gov/pubmed/12615952?dopt=AbstractPlus]Hauger RL Br. J. Pharmacol.166: 85\u201097 [https://www.ncbi.nlm.nih.gov/pubmed/21883143?dopt=AbstractPlus]Grammatopoulos DK. (2012) Insights into mechanisms of corticotropin\u2010releasing hormone receptor signal transduction. et al. (2011) Members of CRF family and their receptors: from past to future. Curr. Med. Chem.18: 2583\u2010600 [https://www.ncbi.nlm.nih.gov/pubmed/21568890?dopt=AbstractPlus]Liapakis G et al. (2016) Corticotropin\u2010Releasing Factor Receptors and Their Interacting Proteins: Functional Consequences. Mol. Pharmacol.90: 627\u2010632 [https://www.ncbi.nlm.nih.gov/pubmed/27612874?dopt=AbstractPlus]Slater PG et al. (2017) Structures of the First Extracellular Domain of CRF Receptors. Curr Mol Pharmacol10: 318\u2010324 [https://www.ncbi.nlm.nih.gov/pubmed/28103782?dopt=AbstractPlus]Zelenay V NC\u2010IUPHAR Subcommittee on Dopamine Receptorsnomenclature as agreed by the Beaulieu JM et al. (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev.63: 182\u2010217 [https://www.ncbi.nlm.nih.gov/pubmed/21303898?dopt=AbstractPlus]Beaulieu JM Synapse65: 892\u2010909 [https://www.ncbi.nlm.nih.gov/pubmed/21308799?dopt=AbstractPlus]Cumming P. (2011) Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. et al. (2010) Dopamine D2\u2010D3 receptor heteromers: pharmacological properties and therapeutic significance. Curr Opin Pharmacol10: 100\u20107 [https://www.ncbi.nlm.nih.gov/pubmed/19896900?dopt=AbstractPlus]Maggio R et al. (2011) Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders. Med. Sci. Monit.17: RA215\u201020 [https://www.ncbi.nlm.nih.gov/pubmed/21873960?dopt=AbstractPlus]Pt\u00e1cek R et al. (1998) Dopamine Receptors. In The IUPHAR Compendium of Receptor Characterization and Classification Edited by Girdlestone D: IUPHAR Media: 141\u2010151Schwartz J\u2010C Pharmacol. Ther.128: 37\u201060 [https://www.ncbi.nlm.nih.gov/pubmed/20547182?dopt=AbstractPlus]Undieh AS. (2010) Pharmacology of signaling induced by dopamine D(1)\u2010like receptor activation. NC\u2010IUPHAR Subcommittee on Endothelin Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/12037137?dopt=AbstractPlus]) are activated by the endogenous 21 amino\u2010acid peptides endothelins 1\u20103 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=990 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1004 ).Endothelin receptors and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3886 [http://www.ncbi.nlm.nih.gov/pubmed/30413709?dopt=AbstractPlus] have been reported.Splice variants of the ETet al. (2013) Endothelin receptor antagonists. Handb Exp Pharmacol218: 199\u2010227 https://www.ncbi.nlm.nih.gov/pubmed/24092342?dopt=AbstractPlusClozel M Pharmacol. Rev.54: 219\u201026 https://www.ncbi.nlm.nih.gov/pubmed/12037137?dopt=AbstractPlusDavenport AP. (2002) International Union of Pharmacology. XXIX. Update on endothelin receptor nomenclature. et al. (2016) Endothelin. Pharmacol. Rev.68: 357\u2010418 https://www.ncbi.nlm.nih.gov/pubmed/26956245?dopt=AbstractPlusDavenport AP et al. (2018) New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol Res67: S37\u2010S54 https://www.ncbi.nlm.nih.gov/pubmed/29947527?dopt=AbstractPlusDavenport AP et al. (2014) Endothelin@25 \u2010 new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12. Br. J. Pharmacol.171: 5555\u201072 https://www.ncbi.nlm.nih.gov/pubmed/25131455?dopt=AbstractPlusMaguire JJ NC\u2010IUPHAR Subcommittee on the G protein\u2010coupled estrogen receptornomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/26023144?dopt=AbstractPlus]) was identified following observations of estrogen\u2010evoked http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 signalling in breast cancer cells [http://www.ncbi.nlm.nih.gov/pubmed/8078914?dopt=AbstractPlus], which mirrored the differential expression of an orphan 7\u2010transmembrane receptor GPR30 [http://www.ncbi.nlm.nih.gov/pubmed/9367686?dopt=AbstractPlus]. There are observations of both cell\u2010surface and intracellular expression of the GPER receptor . Selective agonist/ antagonists for GPER have been characterized [http://www.ncbi.nlm.nih.gov/pubmed/26023144?dopt=AbstractPlus]. Antagonists of the nuclear estrogen receptor, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1015 [http://www.ncbi.nlm.nih.gov/pubmed/11043579?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1016 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2820 [http://www.ncbi.nlm.nih.gov/pubmed/24379833?dopt=AbstractPlus], as well as the flavonoid \u2019phytoestrogens\u2019 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2826 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5346 [http://www.ncbi.nlm.nih.gov/pubmed/15090535?dopt=AbstractPlus], are agonists of GPER. A complete review of GPER pharmacology has been recently published [http://www.ncbi.nlm.nih.gov/pubmed/26023144?dopt=AbstractPlus]. The roles of GPER in physiological systems throughout the body and in cancer have also been reviewed .The G protein\u2010coupled estrogen receptor Twenty years of the G protein\u2010coupled estrogen receptor GPER: Historical and personal perspectives. J. Steroid Biochem. Mol. Biol.176: 4\u201015 https://www.ncbi.nlm.nih.gov/pubmed/28347854?dopt=AbstractPlusBarton M et al. (2015) The G\u2010protein coupled estrogen receptor, GPER: The inside and inside\u2010out story. Mol. Cell. Endocrinol.418 Pt 3: 207\u201019 https://www.ncbi.nlm.nih.gov/pubmed/26190834?dopt=AbstractPlusGaudet HM et al. (2015) International Union of Basic and Clinical Pharmacology. XCVII. G Protein\u2010Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol. Rev.67: 505\u201040 https://www.ncbi.nlm.nih.gov/pubmed/26023144?dopt=AbstractPlusProssnitz ER et al. (2015) What have we learned about GPER function in physiology and disease from knockout mice? J. Steroid Biochem. Mol. Biol.153: 114\u201026 https://www.ncbi.nlm.nih.gov/pubmed/26189910?dopt=AbstractPlusProssnitz ER http://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00510000502765 (NC\u2010IUPHAR Subcommittee on the formylpeptide receptor familynomenclature agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/19498085?dopt=AbstractPlus]) respond to exogenous ligands such as the bacterial product http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1022 (fMLP) and endogenous ligands such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1031 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3570 , amyloid \u03b242, serum amyloid A and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1026, derived from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5370 .The http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=35 receptor page.Note that the data for FPR2/ALX are also reproduced on the et al. (2015) The Role of Formylated Peptides and Formyl Peptide Receptor 1 in Governing Neutrophil Function during Acute Inflammation. Am. J. Pathol.185: 1172\u20101184 https://www.ncbi.nlm.nih.gov/pubmed/25791526?dopt=AbstractPlusDorward DA et al. (2010) Therapeutic anti\u2010inflammatory potential of formyl\u2010peptide receptor agonists. Pharmacol. Ther.127: 175\u201088 https://www.ncbi.nlm.nih.gov/pubmed/20546777?dopt=AbstractPlusDufton N et al. (2012) G protein\u2010coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma. Int. Immunopharmacol.14: 283\u20108 https://www.ncbi.nlm.nih.gov/pubmed/22863814?dopt=AbstractPlusLiu M et al. (2011) N\u2010formyl peptide receptor 3 (FPR3) departs from the homologous FPR2/ALX receptor with regard to the major processes governing chemoattractant receptor regulation, expression at the cell surface, and phosphorylation. J. Biol. Chem.286: 26718\u201031 https://www.ncbi.nlm.nih.gov/pubmed/21543323?dopt=AbstractPlusRabiet MJ et al. (2012) Anti\u2010inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti\u2010inflammatory system. Prostaglandins Other Lipid Mediat.98: 94\u2010100 https://www.ncbi.nlm.nih.gov/pubmed/22123264?dopt=AbstractPlusYazid S et al. (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev.61: 119\u201061 https://www.ncbi.nlm.nih.gov/pubmed/19498085?dopt=AbstractPlusYe RD NC\u2010IUPHAR Subcommittee on free fatty acid receptorsnomenclature as agreed by the ) are activated by free fatty acids. Long\u2010chain saturated and unsaturated fatty acids (including C14.0 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2806), C16:0 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1055), C18:1 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1054), C18:2 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1052), C18:3, (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1049), C20:4 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391), C20:5,n\u20103 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3362) and C22:6,n\u20103 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1051)) activate FFA1 and FFA4 receptors , while short chain fatty acids (C2 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058), C3 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062), C4 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059) and C5 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1061)) activate FFA2 and FFA3 receptors. The crystal structure for agonist bound FFA1 has been described [http://www.ncbi.nlm.nih.gov/pubmed/25043059?dopt=AbstractPlus].Free fatty acid receptors and long (377 amino acids) splice variants of human FFA4 have been reported . https://www.genenames.org/data/gene\u2010symbol\u2010report/%23!/hgnc_id/HGNC:4535 is a structurally\u2010unrelated G protein\u2010coupled receptor which has been found to respond to medium chain fatty acids [http://www.ncbi.nlm.nih.gov/pubmed/16966319?dopt=AbstractPlus].et al. (2016) The Pharmacology and Function of Receptors for Short\u2010Chain Fatty Acids. Mol. Pharmacol.89: 388\u201098 https://www.ncbi.nlm.nih.gov/pubmed/26719580?dopt=AbstractPlusBolognini D et al. (2013) The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol. Metab.24: 398\u2010407 https://www.ncbi.nlm.nih.gov/pubmed/23631851?dopt=AbstractPlusMancini AD et al. (2017) Complex Pharmacology of Free Fatty Acid Receptors. Chem. Rev.117: 67\u2010110 https://www.ncbi.nlm.nih.gov/pubmed/27299848?dopt=AbstractPlusMilligan G Biochem. Pharmacol.110\u2010111: 1\u201015 https://www.ncbi.nlm.nih.gov/pubmed/26827942?dopt=AbstractPlusMoniri NH. (2016) Free\u2010fatty acid receptor\u20104 (GPR120): Cellular and molecular function and its role in metabolic disorders. et al. (2008) International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, \u20102, and \u20103: pharmacology and pathophysiological functions. Pharmacol. Rev.60: 405\u201017 [https://www.ncbi.nlm.nih.gov/pubmed/19047536?dopt=AbstractPlus]Stoddart LA et al. (2014) Treatment of type 2 diabetes by free Fatty Acid receptor agonists. Front Endocrinol (Lausanne)5: 137 [https://www.ncbi.nlm.nih.gov/pubmed/25221541?dopt=AbstractPlus]Watterson KR B receptors are formed from the heterodimerization of two similar 7TM subunits termed GABAB1 and GABAB2 . GABAB receptors are widespread in the CNS and regulate both pre\u2010 and postsynaptic activity. The GABAB1 subunit, when expressed alone, binds both antagonists and agonists, but the affinity of the latter is generally 10\u2010100fold less than for the native receptor. Co\u2010expression of GABAB1 and GABAB2 subunits allows transport of GABAB1 to the cell surface and generates a functional receptor that can couple to signal transduction pathways such as high\u2010voltage\u2010activated Ca2+ channels , or inwardly rectifying potassium channels (Kir3) . The GABAB1 subunit harbours the GABA (orthosteric)\u2010binding site within an extracellular domain (ECD) venus flytrap module (VTM), whereas the GABAB2 subunit mediates G protein\u2010coupled signalling . The two subunits interact by direct allosteric coupling [http://www.ncbi.nlm.nih.gov/pubmed/21063387?dopt=AbstractPlus], such that GABAB2 increases the affinity of GABAB1 for agonists and reciprocally GABAB1 facilitates the coupling of GABAB2 to G proteins . GABAB1 and GABAB2 subunits assemble in a 1:1 stoichiometry by means of a coiled\u2010coil interaction between \u03b1\u2010helices within their carboxy\u2010termini that masks an endoplasmic reticulum retention motif (RXRR) within the GABAB1 subunit but other domains of the proteins also contribute to their heteromerization . Recent evidence indicates that higher order assemblies of GABAB receptor comprising dimers of heterodimers occur in recombinant expression systems and in vivo and that such complexes exhibit negative functional cooperativity between heterodimers . Adding further complexity, KCTD (potassium channel tetramerization proteins) 8, 12, 12b and 16 associate as tetramers with the carboxy terminus of the GABAB2 subunit to impart altered signalling kinetics and agonist potency to the receptor complex and are reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/20655485?dopt=AbstractPlus]. The molecular complexity of GABAB receptors is further increased through association with trafficking and effector proteins and reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/27905440?dopt=AbstractPlus]. Four isoforms of the human GABAB1 subunit have been cloned. The predominant GABAB1a and GABAB1b isoforms, which are most prevalent in neonatal and adult brain tissue respectively, differ in their ECD sequences as a result of the use of alternative transcription initiation sites. GABAB1a\u2010containing heterodimers localise todistal axonsand mediate inhibition of glutamate release in the CA3\u2010CA1 terminals, and GABA release onto the layer 5 pyramidal neurons, whereas GABAB1b\u2010containing receptors occur within dendritic spines and mediate slow postsynaptic inhibition . Only the 1a and 1b variants are identified as components of native receptors [http://www.ncbi.nlm.nih.gov/pubmed/12037141?dopt=AbstractPlus]. Additional GABAB1 subunit isoforms have been described in rodents and humans [http://www.ncbi.nlm.nih.gov/pubmed/21124972?dopt=AbstractPlus] and reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/15269338?dopt=AbstractPlus].Functional GABASubunits50 values for the inhibition of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5381 binding to rat cerebral cortex membranes, are from . CGP27492 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1081), CGP35024 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1080) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1082 act as antagonists at human GABAA\u03c11 receptors, with potencies in the low micromolar range [http://www.ncbi.nlm.nih.gov/pubmed/21428811?dopt=AbstractPlus]. In addition to the ligands listed in the table, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=707 binds to the VTM of the GABAB1 subunit to act as a positive allosteric modulator of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 [http://www.ncbi.nlm.nih.gov/pubmed/10692480?dopt=AbstractPlus]. Synthetic positive allosteric modulators with low, or no, intrinsic activity include http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1079, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5446, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5503 [http://www.ncbi.nlm.nih.gov/pubmed/21181127?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5504 . The site of action of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1079 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5446 appears to be on the heptahelical domain of the GABAB2 subunit . In the presence of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1079 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5446, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1069 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1068 behave as partial agonists [http://www.ncbi.nlm.nih.gov/pubmed/21428811?dopt=AbstractPlus]. A negative allosteric modulator of GABAB activity has been reported [http://www.ncbi.nlm.nih.gov/pubmed/25050158?dopt=AbstractPlus]. Knock\u2010out of the GABAB1 subunit in C57B mice causes the development of severe tonic\u2010clonic convulsions that prove fatal within a month of birth, whereas GABAB1\u2010/\u2010 BALB/c mice, although also displaying spontaneous epileptiform activity, are viable. The phenotype of the latter animals additionally includes hyperalgesia, hyperlocomotion , hyperdopaminergia, memory impairment and behaviours indicative of anxiety . A similar phenotype has been found for GABAB2\u2010/\u2010 BALB/c mice [http://www.ncbi.nlm.nih.gov/pubmed/15240800?dopt=AbstractPlus].Potencies of agonists and antagonists listed in the table, quantified as ICet al. (2002) International Union of Pharmacology. XXXIII. Mammalian gammaaminobutyricacid(B) receptors: structure and function. Pharmacol Rev.54: 247\u2010264 [https://www.ncbi.nlm.nih.gov/pubmed/12037141?dopt=AbstractPlus]Bowery NG Future Med Chem3: 163\u201075 [https://www.ncbi.nlm.nih.gov/pubmed/21428811?dopt=AbstractPlus]Froestl W. (2011) An historical perspective on GABAergic drugs. et al. (2012) Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat. Rev. Neurosci.13: 380\u201094 [https://www.ncbi.nlm.nih.gov/pubmed/22595784?dopt=AbstractPlus]Gassmann M et al. (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature540: 60\u201068 [https://www.ncbi.nlm.nih.gov/pubmed/27905440?dopt=AbstractPlus]Pin JP NC\u2010IUPHARprovisional nomenclature as recommended by [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by the endogenous peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3592 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3594 . Human http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3592 is a 30 amino\u2010acid non\u2010amidated peptide [http://www.ncbi.nlm.nih.gov/pubmed/1714839?dopt=AbstractPlus]; in other species, it is 29 amino acids long and C\u2010terminally amidated. Amino acids 1\u201314 of galanin are highly conserved in mammals, birds, reptiles, amphibia and fish. Shorter peptide species and N\u2010terminally extended forms have been reported.Galanin receptors (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5356) is a high\u2010affinity agonist at GAL1/GAL2 (pKi 9), and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5357) is selective for GAL2 and GAL3 compared with GAL1 [http://www.ncbi.nlm.nih.gov/pubmed/15944007?dopt=AbstractPlus]. [125I]\u2010[Tyr26]galanin binds to all three subtypes with Kd values generally reported to range from 0.05 to 1 nM, depending on the assay conditions used . Porcine galanin\u2010(3\u201029) does not bind to cloned GAL1, GAL2 or GAL3 receptors, but a receptor that is functionally activated by porcine galanin\u2010(3\u201329) has been reported in pituitary and gastric smooth muscle cells . Additional galanin receptor subtypes are also suggested from studies with chimeric peptides , which act as antagonists in functional assays in the cardiovascular system [http://www.ncbi.nlm.nih.gov/pubmed/7693918?dopt=AbstractPlus], spinal cord [http://www.ncbi.nlm.nih.gov/pubmed/1373497?dopt=AbstractPlus], locus coeruleus, hippocampus [http://www.ncbi.nlm.nih.gov/pubmed/1720557?dopt=AbstractPlus] and hypothalamus , but exhibit agonist activity at some peripheral sites . The chimeric peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3896, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3897, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3898, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3899 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3861 are agonists at GAL1 receptors expressed endogenously in Bowes human melanoma cells [http://www.ncbi.nlm.nih.gov/pubmed/10601261?dopt=AbstractPlus], and at heterologously expressed recombinant GAL1, GAL2 and GAL3 receptors . Recent studies have described the synthesis of a series of novel, systemically\u2010active, galanin analogues, with modest preferential binding at the GAL2 receptor. Specific chemical modifications to the galanin backbone increased brain levels of these peptides after i.v. injection and several of these peptides exerted a potent antidepressant\u2010like effect in mouse models of depression [http://www.ncbi.nlm.nih.gov/pubmed/23600864?dopt=AbstractPlus].et al. (2005) International Union of Pharmacology. XLVI. G protein\u2010coupled receptor list. Pharmacol Rev57: 279\u2010288 [https://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]Foord SM et al. (2015) Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol. Rev.67: 118\u201075 [https://www.ncbi.nlm.nih.gov/pubmed/25428932?dopt=AbstractPlus]Lang R et al. (2011) The galanin peptide family in inflammation. Neuropeptides45: 1\u20108 [https://www.ncbi.nlm.nih.gov/pubmed/21087790?dopt=AbstractPlus]Lang R et al. (2011) Galanin\u2010like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction. Front Neuroendocrinol32: 1\u20109 [https://www.ncbi.nlm.nih.gov/pubmed/20558195?dopt=AbstractPlus]Lawrence C et al. (2012) Galanin receptors and ligands. Front Endocrinol (Lausanne)3: 146 [https://www.ncbi.nlm.nih.gov/pubmed/23233848?dopt=AbstractPlus]Webling KE NC\u2010IUPHAR Subcommittee for the Ghrelin receptornomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/16382107?dopt=AbstractPlus]) is activated by a 28 amino\u2010acid peptide originally isolated from rat stomach, where it is cleaved from a 117 aminoacid precursor . The human gene encoding the precursor peptide has 83% sequence homology to rat preproghrelin, although the mature peptides from rat and human differ by only two amino acids [http://www.ncbi.nlm.nih.gov/pubmed/11549267?dopt=AbstractPlus]. Alternative splicing results in the formation of a second peptide, [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3600 with equipotent biological activity [http://www.ncbi.nlm.nih.gov/pubmed/10801861?dopt=AbstractPlus]. A unique post\u2010translational modification [http://www.ncbi.nlm.nih.gov/pubmed/18267071?dopt=AbstractPlus] occurs in both peptides, essential for full activity in binding to ghrelin receptors in the hypothalamus and pituitary, and for the release of growth hormone from the pituitary [http://www.ncbi.nlm.nih.gov/pubmed/10604470?dopt=AbstractPlus]. Structure activity studies showed the first five N\u2010terminal amino acids to be the minimum required for binding [http://www.ncbi.nlm.nih.gov/pubmed/11087562?dopt=AbstractPlus], and receptor mutagenesis has indicated overlap of the ghrelin binding site with those for small molecule agonists and allosteric modulators of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1099 function [http://www.ncbi.nlm.nih.gov/pubmed/18923064?dopt=AbstractPlus]. In cell systems, the ghrelin receptor is constitutively active [http://www.ncbi.nlm.nih.gov/pubmed/15383539?dopt=AbstractPlus], but this is abolished by a naturally occurring mutation (A204E) that results in decreased cell surface receptor expression and is associated with familial short stature [http://www.ncbi.nlm.nih.gov/pubmed/16511605?dopt=AbstractPlus].The ghrelin receptor has been shown to bind (as [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3810) and have effects in the cardiovascular system [http://www.ncbi.nlm.nih.gov/pubmed/12969753?dopt=AbstractPlus], which raises the possible existence of different receptor subtypes in peripheral tissues and the central nervous system. A potent inverse agonist has been identified . http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3535, described as a ghrelin receptor agonist (pKi 7.8 and pD2 7.5 at human recombinant ghrelin receptors), has been shown to stimulate ghrelin receptor mediated food intake and gastric emptying but not elicit release of growth hormone, or modify ghrelin stimulated growth hormone release, thus pharmacologically discriminating the orexigenic and gastrointestinal actions of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1099 from the release of growth hormone [http://www.ncbi.nlm.nih.gov/pubmed/18719021?dopt=AbstractPlus]. A number of selective antagonists have been reported, including peptidomimetic [http://www.ncbi.nlm.nih.gov/pubmed/22798076?dopt=AbstractPlus] and non\u2010peptide small molecules including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5870 .[Trends Neurosci.34: 31\u201040 [https://www.ncbi.nlm.nih.gov/pubmed/21035199?dopt=AbstractPlus]Andrews ZB. (2011) The extra\u2010hypothalamic actions of ghrelin on neuronal function. et al. (2010) Current and potential roles of ghrelin in clinical practice. J. Endocrinol. Invest.33: 823\u201038 [https://www.ncbi.nlm.nih.gov/pubmed/21293171?dopt=AbstractPlus]Angelidis G et al. (2011) Metabolic status regulates ghrelin function on energy homeostasis. Neuroendocrinology93: 48\u201057 [https://www.ncbi.nlm.nih.gov/pubmed/21124019?dopt=AbstractPlus]Briggs DI et al. (2014) Novel and conventional receptors for ghrelin, desacyl\u2010ghrelin, and pharmacologically related compounds. Pharmacol. Rev.66: 984\u20101001 [https://www.ncbi.nlm.nih.gov/pubmed/25107984?dopt=AbstractPlus]Callaghan B et al. (2005) International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol. Rev.57: 541\u20106 [https://www.ncbi.nlm.nih.gov/pubmed/16382107?dopt=AbstractPlus]Davenport AP NC\u2010IUPHAR Subcommittee on the Glucagon receptor familynomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/12615957?dopt=AbstractPlus]) are activated by the endogenous peptide (27\u201044 aa) hormones http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1136 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5194 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1140 , glucose\u2010dependent insulinotropic polypeptide ), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2270 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3643 . One common precursor (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:4191) generates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1136 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5194 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1140 peptides [http://www.ncbi.nlm.nih.gov/pubmed/11179772?dopt=AbstractPlus]. For a recent review on review the current understanding of the structures of GLP\u20101 and GLP\u20101R, the molecular basis of their interaction, and the signaling events associated with it, see de Graaf et al., 2016 [http://www.ncbi.nlm.nih.gov/pubmed/27630114?dopt=AbstractPlus].The glucagon family of receptors , specifically J Diabetes Investig10: 196\u2010201 [https://www.ncbi.nlm.nih.gov/pubmed/30099845?dopt=AbstractPlus]Ahr\u00e9n B. (2019) Glucagon\u2010like peptide\u20101 receptor agonists for type 2 diabetes: A rational drug development. et al. (2018) Glucagon\u2010like peptide 1 in health and disease. Nat Rev Endocrinol14: 390\u2010403 [https://www.ncbi.nlm.nih.gov/pubmed/29728598?dopt=AbstractPlus]Andersen A et al. (2019) Glucagon\u2010like peptide\u20101 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes Metab. Res. Rev.35: e3070 [https://www.ncbi.nlm.nih.gov/pubmed/30156747?dopt=AbstractPlus]Gentilella R et al. (2016) Glucagon\u2010Like Peptide\u20101 and Its Class B G Protein\u2010Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev.68: 954\u20101013 [https://www.ncbi.nlm.nih.gov/pubmed/27630114?dopt=AbstractPlus]Graaf Cd et al. (2019) A Review of Practical Issues on the Use of Glucagon\u2010Like Peptide\u20101 Receptor Agonists for the Management of Type 2 Diabetes. Diabetes Ther10: 5\u201019 [https://www.ncbi.nlm.nih.gov/pubmed/30506340?dopt=AbstractPlus]Romera I et al. (2014) GLP\u20101 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy34: 1174\u201086 [https://www.ncbi.nlm.nih.gov/pubmed/25382096?dopt=AbstractPlus]Trujillo JM et al. (2017) Cryo\u2010EM structure of the activated GLP\u20101 receptor in complex with a G protein. Nature546: 248\u2010253 [https://www.ncbi.nlm.nih.gov/pubmed/28538729?dopt=AbstractPlus]Zhang Y provisional nomenclature [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by a non\u2010covalent heterodimeric glycoprotein made up of a common \u03b1\u00a0chainGlycoprotein hormone receptors https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:1885, http://www.uniprot.org/uniprot/P01215), with a unique \u03b2\u00a0chain that confers the biological specificity to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1157 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1159 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1160 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3920 . There is binding cross\u2010reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [http://www.ncbi.nlm.nih.gov/pubmed/2542111?dopt=AbstractPlus]. Structure of follicle\u2010stimulating hormone in complex with the entire ectodomain of its receptor. Proc. Natl. Acad. Sci. U.S.A.109: 12491\u20106 https://www.ncbi.nlm.nih.gov/pubmed/22802634?dopt=AbstractPlusJiang X et al. TSH receptor mutations and disease. http://www.thyroidmanager.org/chapter/tsh\u2010receptor\u2010mutations\u2010and\u2010diseases/. Accessed on 2017\u201002\u201023.Kleinau G et al. (2009) Follicle stimulating hormone receptor mutations and reproductive disorders. Prog Mol Biol Transl Sci89: 115\u201031 https://www.ncbi.nlm.nih.gov/pubmed/20374735?dopt=AbstractPlusTao YX et al. (2013) Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum. Reprod. Update19: 583\u2010602 https://www.ncbi.nlm.nih.gov/pubmed/23686864?dopt=AbstractPlusTroppmann B 1 and GnRH2 receptors have been cloned from numerous species, most of which express two or three types of GnRH receptor . http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1162 (p\u2010Glu\u2010His\u2010Trp\u2010Ser\u2010Tyr\u2010Gly\u2010LeuArg\u2010Pro\u2010Gly\u2010NH2) is a hypothalamic decapeptide also known as luteinizing hormone\u2010releasing hormone, gonadoliberin, luliberin, gonadorelin or simply as GnRH. It is a member of a family of similar peptides found in many species including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1164 . Receptors for three forms of GnRH exist in some species but only GnRH I and GnRH II and their cognate receptors have been found in mammals . GnRH1 receptors are expressed by pituitary gonadotrophs, where they mediate the effects of GnRH on gonadotropin hormone synthesis and secretion that underpin central control of mammalian reproduction. GnRH analogues are used in assisted reproduction and to treat steroid hormone\u2010dependent conditions [http://www.ncbi.nlm.nih.gov/pubmed/12072036?dopt=AbstractPlus]. Notably, agonists cause desensitization of GnRH\u2010stimulated gonadotropin secretion and the consequent reduction in circulating sex steroids is exploited to treat hormone\u2010dependent cancers of the breast, ovary and prostate [http://www.ncbi.nlm.nih.gov/pubmed/12072036?dopt=AbstractPlus]. GnRH1 receptors are selectively activated by GnRH I and all lack the COOH\u2010terminal tails found in other GPCRs. GnRH2 receptors do have COOH\u2010terminal tails and (where tested) are selective for GnRH II over GnRH I. GnRH2 receptors are expressed by some primates but not by humans [http://www.ncbi.nlm.nih.gov/pubmed/12538601?dopt=AbstractPlus]. Phylogenetic classifications divide GnRH receptors into three [http://www.ncbi.nlm.nih.gov/pubmed/15082521?dopt=AbstractPlus] or five groups [http://www.ncbi.nlm.nih.gov/pubmed/25344287?dopt=AbstractPlus] and highlight examples of gene loss through evolution, with humans retaining only one ancient gene.GnRH1 and GnRH2 receptors couple primarily to Gq/11 [http://www.ncbi.nlm.nih.gov/pubmed/10734055?dopt=AbstractPlus] but coupling to Gs and Gi is evident in some systems . GnRH2 receptors may also mediate (heterotrimeric) G protein\u2010independent signalling to protein kinases [http://www.ncbi.nlm.nih.gov/pubmed/15059960?dopt=AbstractPlus]. There is increasing evidence for expression of GnRH receptors on hormone\u2010dependent cancer cells where they can exert antiproliferative and/or proapoptotic effects and mediate effects of cytotoxins conjugated to GnRH analogues . In some human cancer cell models http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1164 is more potent than http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1162 , implying mediation by GnRH2 receptors [http://www.ncbi.nlm.nih.gov/pubmed/12237622?dopt=AbstractPlus], but GnRH2 receptors are not expressed by humans because the human GNRHR2 gene contains a frame shift and internal stop codon [http://www.ncbi.nlm.nih.gov/pubmed/12538601?dopt=AbstractPlus]. The possibility remains that this gene generates GnRH2 receptor\u2010related proteins (other than the full\u2010length receptor) that mediate responses to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1164 (see [http://www.ncbi.nlm.nih.gov/pubmed/11861490?dopt=AbstractPlus]). Alternatively, evidence for multiple active GnRH receptor conformations raises the possibility that GnRH1 receptor\u2010mediated proliferation inhibition in hormone\u2010dependent cancer cells is dependent upon a conformation that couples to Gi rather than Gq/11 proteins as in pituitary cells . Loss\u2010of\u2010function mutations in the GnRH1 receptor and deficiency of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1162 are associated with hypogonadotropic hypogonadism although some \u2019loss of function\u2019 mutations may actually prevent trafficking of \u2019functional\u2019 GnRH1 receptors to the cell surface, as evidenced by recovery of function by nonpeptide antagonists [http://www.ncbi.nlm.nih.gov/pubmed/12843188?dopt=AbstractPlus]. Human GnRH1 receptors are poorly expressed at the cell surface because of failure to meet structural quality control criteria for endoplasmic reticulum exit , and this increases susceptibility to point mutations that further impair trafficking . GnRH receptor signalling may require receptor oligomerisation .GnRHet al. (2017) Expression and Role of Gonadotropin\u2010Releasing Hormone 2 and Its Receptor in Mammals. Front Endocrinol (Lausanne)8: 269 https://www.ncbi.nlm.nih.gov/pubmed/29312140?dopt=AbstractPlusDesaulniers AT et al. (2012) GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr. Rev.33: 784\u2010811 https://www.ncbi.nlm.nih.gov/pubmed/22778172?dopt=AbstractPlusLimonta P In Knobil and Neill's Physiology of Reproduction (4th edition). Edited by Plant TM and Zeleznik AJ.: Elsevier Inc.: [ISBN: 9780123971753]McArdle CA and Roberson MS.. (2015) Gonadotropes and gonadotropin\u2010releasing hormone signaling. et al. (2004) Gonadotropin\u2010releasing hormone receptors. Endocr Rev25: 235\u2010275 https://www.ncbi.nlm.nih.gov/pubmed/15082521?dopt=AbstractPlusMillar RP et al. (2014) Chaperoning G protein\u2010coupled receptors: from cell biology to therapeutics. Endocr. Rev.35: 602\u201047 https://www.ncbi.nlm.nih.gov/pubmed/24661201?dopt=AbstractPlusTao YX provisional nomenclature), although showing little structural similarity to CB1 and CB2 cannabinoid receptors, respond to endogenous agents analogous to the endogenous cannabinoid ligands, as well as some natural/synthetic cannabinoid receptor ligands [http://www.ncbi.nlm.nih.gov/pubmed/21079038?dopt=AbstractPlus]. Although there are multiple reports to indicate that GPR18, GPR55 and GPR119 can be activated in vitro by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3635, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4028 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2661, respectively, there is a lack of evidence for activation by these lipid messengers in vivo. As such, therefore, these receptors retain their orphan status.GPR18, GPR55 and GPR119 International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein\u2010coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev.65: 967\u201086 https://www.ncbi.nlm.nih.gov/pubmed/23686350?dopt=AbstractPlusDavenport AP et al. (2016) Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochem. Pharmacol.119: 66\u201075 https://www.ncbi.nlm.nih.gov/pubmed/27569424?dopt=AbstractPlusHassing HA et al. (2017) Cannabinoid Receptor\u2010Related Orphan G Protein\u2010Coupled Receptors. Adv Pharmacol80: 223\u2010247 https://www.ncbi.nlm.nih.gov/pubmed/28826536Irving A et al. (2015) GPR55: from orphan to metabolic regulator? Pharmacol. Ther.145: 35\u201042 https://www.ncbi.nlm.nih.gov/pubmed/24972076?dopt=AbstractPlusLiu B et al. (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB_1 and CB_2. Pharmacol. Rev.62: 588\u2010631 https://www.ncbi.nlm.nih.gov/pubmed/21079038?dopt=AbstractPlusPertwee RG NC\u2010IUPHAR Subcommittee on Histamine Receptorsnomenclature as agreed by the ) are activated by the endogenous ligand http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204. Marked species differences exist between histamine receptor orthologues [http://www.ncbi.nlm.nih.gov/pubmed/9311023?dopt=AbstractPlus]. The human and rat H3 receptor genes are subject to significant splice variance [http://www.ncbi.nlm.nih.gov/pubmed/16415177?dopt=AbstractPlus]. The potency order of histamine at histamine receptor subtypes is H3 = H4 > H2 > H1 [http://www.ncbi.nlm.nih.gov/pubmed/26084539?dopt=AbstractPlus]. Some agonists at the human H3 receptor display significant ligand bias [http://www.ncbi.nlm.nih.gov/pubmed/27864425?dopt=AbstractPlus]. Antagonists of all 4 histamine receptors have clinical uses: H1 antagonists for allergies (e.g.http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1222), H2 antagonists for acid\u2010reflux diseases (e.g.http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1234), H3 antagonists for narcolepsy and H4 antagonists for atopic dermatitis [http://www.ncbi.nlm.nih.gov/pubmed/26084539?dopt=AbstractPlus] and vestibular neuritis (AUV) , entered and completed vestibular neuritis (AUV) Phase IIa efficacy and safety trials, respectively) .Histamine receptors The histamine autoreceptor is a short isoform of the H_3 receptor. Br. J.Pharmacol.166: 1860\u201071 https://www.ncbi.nlm.nih.gov/pubmed/22356432?dopt=AbstractPlusGbahou F et al. (2016) The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol. Pharmacol.90: 649\u2010673 https://www.ncbi.nlm.nih.gov/pubmed/27563055?dopt=AbstractPlusNieto\u2010Alamilla G et al. (2015) International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol. Rev.67: 601\u201055 https://www.ncbi.nlm.nih.gov/pubmed/26084539?dopt=AbstractPlusPanula P et al. (2008) Cloning and characterization of dominant negative splice variants of the human histamine H4 receptor. Biochem. J.414: 121\u201031 [https://www.ncbi.nlm.nih.gov/pubmed/18452403?dopt=AbstractPlus]van Rijn RM http://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00500000271913, nomenclature as agreed by theNC\u2010IUPHARSubcommittee on Hydroxycarboxylic acid receptors ) respond to organic acids, including the endogenous hydroxy carboxylic acids 3\u2010hydroxy butyric acid and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932, as well as the lipid lowering agents http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588 (niacin), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1596 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1595 . These receptors were provisionally described as nicotinic acid receptors, although nicotinic acid shows submicromolar potency at HCA2 receptors only and is unlikely to be the natural ligand .The hydroxycarboxylic acid family of receptors and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:4486 (http://www.uniprot.org/uniprot/O00270). Lactate activates HCA1 on adipocytes in an autocrine manner. It inhibits lipolysis and thereby promotes anabolic effects. HCA2 and HCA3 regulate adipocyte lipolysis and immune functions under conditions of increased FFA formation through lipolysis . HCA2 agonists acting mainly through the receptor on immune cells exert antiatherogenic and anti\u2010inflammatory effects. HCA2 is also a receptor for butyrate and mediates some of the beneficial effects of short\u2010chain fatty acids produced by gut microbiota. HCA3 has been shown to be activated by aromatic D\u2010amino acids.Further closely\u2010related GPCRs include the et al. (2008) Nicotinic acid receptor agonists. J. Med. Chem.51: 7653\u201062 https://www.ncbi.nlm.nih.gov/pubmed/18983141?dopt=AbstractPlusBoatman PD et al. (2016) Anti\u2010inflammatory effects of the hydroxycarboxylic acid receptor 2. Metab. Clin. Exp.65: 102\u201013 https://www.ncbi.nlm.nih.gov/pubmed/26773933?dopt=AbstractPlusGraff EC et al. (2013) Recent advances in niacin and lipid metabolism. Curr. Opin. Lipidol.24: 239\u201045 [https://www.ncbi.nlm.nih.gov/pubmed/23619367?dopt=AbstractPlus]Kamanna VS Trends Endocrinol.Metab.28: 227\u2010236 https://www.ncbi.nlm.nih.gov/pubmed/28087125?dopt=AbstractPlusOffermanns S. (2017) Hydroxy\u2010Carboxylic Acid Receptor Actions in Metabolism. et al. (2011) International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy\u2010carboxylic Acid Receptors . Pharmacol. Rev.63: 269\u201090 https://www.ncbi.nlm.nih.gov/pubmed/21454438?dopt=AbstractPlusOffermanns S et al. (2015) Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation. Trends Mol Med21: 245\u201055 https://www.ncbi.nlm.nih.gov/pubmed/25766751?dopt=AbstractPlusOffermanns S NC\u2010IUPHAR Subcommittee on the kisspeptin receptornomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/21079036?dopt=AbstractPlus]), like neuropeptide FF (NPFF), prolactin\u2010releasing peptide (PrP) and QRFP receptors responds to endogenous peptides with an arginine\u2010phenylalanine amide (RFamide) motif. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1288 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1284 (KP13) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1283 (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6341) (KP10) are biologically\u2010active peptides cleaved from the https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:6341 (http://www.uniprot.org/uniprot/Q15726) gene product. Kisspeptins have roles in, for example, cancer metastasis, fertility/puberty regula tion and glucose homeostasis.The kisspeptin receptor The role of kisspeptin neurons in reproduction and metabolism. J. Endocrinol.238: R173\u2010R183 https://www.ncbi.nlm.nih.gov/pubmed/30042117?dopt=AbstractPlusHarter CJL et al. (2013) Structure, synthesis, and phylogeny of kisspeptin and its receptor. Adv. Exp. Med. Biol.784: 9\u201026 https://www.ncbi.nlm.nih.gov/pubmed/23550000?dopt=AbstractPlusKanda S et al. (2010) International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function. Pharmacol. Rev.62: 565\u201078 https://www.ncbi.nlm.nih.gov/pubmed/21079036?dopt=AbstractPlusKirby HR et al. (2009) Kisspeptin signaling in the brain. Endocr. Rev.30: 713\u201043 https://www.ncbi.nlm.nih.gov/pubmed/19770291?dopt=AbstractPlusOakley AE et al. (2014) Molecular evolution of GPCRs: Kisspeptin/kisspeptin receptors. J. Mol. Endocrinol.52: T101\u201017 https://www.ncbi.nlm.nih.gov/pubmed/24577719?dopt=AbstractPlusPasquier J NC\u2010IUPHAR subcommittee on Leukotriene Receptorsnomenclature as agreed by the ) are activated by the endogenous ligands leukotrienes (LT), synthesized from lipoxygenase metabolism of arachidonic acid. The human BLT1 receptor is the high affinity LTB4 receptor whereas the BLT2 receptor in addition to being a low\u2010affinity LTB4 receptor also binds several other lipoxygenase\u2010products, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3404, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2481, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3401, and the thromboxane synthase product http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6159. The BLT receptors mediate chemotaxis and immunomodulation in several leukocyte populations and are in addition expressed on non\u2010myeloid cells, such as vascular smooth muscle and endothelial cells. In addition to BLT receptors, LTB4 has been reported to bind to the peroxisome proliferator activated receptor (PPAR) \u03b1 [http://www.ncbi.nlm.nih.gov/pubmed/9890897?dopt=AbstractPlus] and the vanilloid TRPV1 ligand\u2010gated nonselective cation channel [http://www.ncbi.nlm.nih.gov/pubmed/16207832?dopt=AbstractPlus]. The receptors for the cysteinyl\u2010leukotrienes aretermed CysLT1 and CysLT2 and exhibit distinct expression patterns in human tissues, mediating for example smooth muscle cell contraction, regulation of vascular permeability, and leukocyte activation. There is also evidence in the literature for additional CysLT receptor subtypes, derived from functional in vitro studies, radioligand binding and in mice lacking both CysLT1 and CysLT2 receptors [http://www.ncbi.nlm.nih.gov/pubmed/24588652?dopt=AbstractPlus]. Cysteinyl\u2010leukotrienes have also been suggested to signal through the P2Y12 receptor , GPR17 [http://www.ncbi.nlm.nih.gov/pubmed/16990797?dopt=AbstractPlus] and GPR99 [http://www.ncbi.nlm.nih.gov/pubmed/23504326?dopt=AbstractPlus].The leukotriene receptors (NC\u2010IUPHAR subcommittee on Leukotriene and Lipoxin Receptorsnomenclatureas agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/24588652?dopt=AbstractPlus]) is activated by the endogenous lipidderived, anti\u2010inflammatory ligands lipoxin A4 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1034) and 15\u2010epiLXA4 . The FPR2/ALX receptor also interacts with endogenous peptide and protein ligands, such as MHC binding peptide [http://www.ncbi.nlm.nih.gov/pubmed/10748237?dopt=AbstractPlus] as well as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1031 (ANXA1) and its N\u2010terminal peptides . In addition, a soluble hydrolytic product of protease action on the urokinase\u2010type plasminogen activator receptor has been reported to activate the FPR2/ALX receptor [http://www.ncbi.nlm.nih.gov/pubmed/11818541?dopt=AbstractPlus]. Furthermore, FPR2/ALX has been suggested to act as a receptor mediating the proinflammatory actions of the acute\u2010phase reactant, serum amyloid A . The agonist activity of the lipid mediators described has been questioned , which may derive from batchto\u2010batch differences, partial agonism or biased agonism. Results from Cooray et al. (2013) [http://www.ncbi.nlm.nih.gov/pubmed/24108355?dopt=AbstractPlus] have addressed this issue and the role of homodimers and heterodimers in intracellular signaling. A receptor selective for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5216 has been suggested from functional studies . Note that the data for FPR2/ALX are also reproduced on the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=23.The FPR2/ALX receptor (nomenclature agreed by theNC\u2010IUPHAR subcommittee on Oxoeicosanoid Receptors [http://www.ncbi.nlm.nih.gov/pubmed/15001665?dopt=AbstractPlus]) are activated by endogenous chemotactic eicosanoid ligands oxidised at the C\u20105 position, with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3391 the most potent agonist identified for this receptor. Initial characterization of the heterologously expressed OXE receptor suggested that polyunsaturated fatty acids, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1051 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3362, acted as receptor antagonists [http://www.ncbi.nlm.nih.gov/pubmed/12065583?dopt=AbstractPlus].Oxoeicosanoid receptors International Union of Pharmacology XLIV. Nomenclature for the Oxoeicosanoid Receptor. Pharmacol. Rev.56: 149\u2010157 https://www.ncbi.nlm.nih.gov/pubmed/15001665?dopt=AbstractPlusBrink C et al. (2003) International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol. Rev.55: 195\u2010227 https://www.ncbi.nlm.nih.gov/pubmed/12615958?dopt=AbstractPlusBrink C et al. (2011) International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol. Rev.63: 539\u201084 https://www.ncbi.nlm.nih.gov/pubmed/21771892?dopt=AbstractPlusB\u00e4ck M et al. (2014) Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br. J. Pharmacol.171: 3551\u201074 https://www.ncbi.nlm.nih.gov/pubmed/24588652?dopt=AbstractPlusB\u00e4ck M et al. (2012) Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin. Exp. Allergy42: 1313\u201020 https://www.ncbi.nlm.nih.gov/pubmed/22925317?dopt=AbstractPlusLaidlaw TM NC\u2010IUPHAR Subcommittee on Lysophospholipid (LPA) receptors Lysophospholipid Receptorsnomenclature as agreed by the ) are activated by the endogenous phospholipid http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2906. The first receptor, LPA1, was identified as ventricular zone gene\u20101 (vzg\u20101) [http://www.ncbi.nlm.nih.gov/pubmed/8922387?dopt=AbstractPlus], leading to deorphanisation of members of the endothelial differentiation gene (edg) family as other LPA receptors along with sphingosine 1phosphate (S1P) receptors. Additional LPA receptor GPCRs were later identified. Gene names have been codified as LPAR1, etc. to reflect the receptor function of proteins. The crystal structure of LPA1 was solved and demonstrates extracellular LPA access to the binding pocket, consistent with proposed delivery via autotaxin [http://www.ncbi.nlm.nih.gov/pubmed/26091040?dopt=AbstractPlus]. These studies have also implicated cross\u2010talk with endocannabinoids via phosphorylated intermediates that can also activate these receptors. The identified receptors can account for most, although not all, LPA\u2010induced phenomena in the literature, indicating that a majority of LPA\u2010dependent phenomena are receptor\u2010mediated. Binding affinities of unlabeled, natural LPA and AEApto LPA1 weremeasured using backscattering interferometry (pKd = 9) [http://www.ncbi.nlm.nih.gov/pubmed/30463988?dopt=AbstractPlus]. Binding affinities were 77\u2010fold lower than than values obtained using radioactivity [http://www.ncbi.nlm.nih.gov/pubmed/19386608?dopt=AbstractPlus]. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Independent validation by multiple groups has been reported in the peer\u2010reviewed literature for all six LPA receptors described in the tables, including further validation using a distinct read\u2010out via a novel TGF\u03b1 \u201cshedding\u201d assay [http://www.ncbi.nlm.nih.gov/pubmed/22983457?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2906 has also been described as an agonist for the transient receptor potential (Trp) ion channel TRPV1 [http://www.ncbi.nlm.nih.gov/pubmed/22101604?dopt=AbstractPlus] and TRPA1 [http://www.ncbi.nlm.nih.gov/pubmed/28176353?dopt=AbstractPlus]. LPA was originally proposed to be a ligand for GPCR35, but data show that in fact it is a receptor for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6479 [http://www.ncbi.nlm.nih.gov/pubmed/25411203?dopt=AbstractPlus]. All of these proposed non\u2010GPCR receptor identities require confirmation and are not currently recognized as bona fide LPA receptors.Lysophosphatidic acid (LPA) receptors International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol. Rev.62: 579\u201087 https://www.ncbi.nlm.nih.gov/pubmed/21079037?dopt=AbstractPlusChun J et al. (2014) Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br. J. Pharmacol.171: 3575\u201094 https://www.ncbi.nlm.nih.gov/pubmed/24602016?dopt=AbstractPlusKihara Y et al. (2015) Lysophosphatidic Acid signaling in the nervous system. Neuron85: 669\u201082 https://www.ncbi.nlm.nih.gov/pubmed/25695267?dopt=AbstractPlusYung YC NC\u2010IUPHAR Subcommittee on Lysophospholipid receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/24602016?dopt=AbstractPlus]) are activated by the endogenous lipid http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 (S1P). Originally cloned as orphan members of the endothelial differentiation gene (edg) family, current gene names have been designated as S1P1R through S1P5R [http://www.ncbi.nlm.nih.gov/pubmed/2160972?dopt=AbstractPlus]. S1PRs, particularly S1P1, are expressed throughout all mammalian organ systems. Ligand delivery occurs via two known carriers (or \u201cchaperones\u201d): albumin and HDLbound apolipoprotein M (ApoM), the latter of which elicits biased agonist signaling by S1P1 in multiple cell types . The five S1PRs, two chaperones, and active cellular metabolism have complicated analyses of receptor ligand binding in native systems. Signaling pathways and physiological roles have been characterized through radioligand binding in heterologous expression systems, targeted deletion of the different S1PRs, and most recently, mouse models that report in vivo S1P1R activation . A crystal structure of an S1P1\u2010T4 fusion protein confirmed aspects and binding, specificity, and receptor activation determined previously through biochemical and genetic studies . http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2407 (FTY720), the first drug to target any of the lysophospholipid receptors, binds to four of the five S1PRs, and was the first oral therapy for multiple sclerosis [http://www.ncbi.nlm.nih.gov/pubmed/30625282?dopt=AbstractPlus]. The mechanisms of action of fingolimod and other S1PR modulating drugs in development include binding S1PRs in multiple organ systems, e.g., immune and nervous systems, although the precise nature of their receptor interactions requires clarification .Sphingosine 1\u2010phosphate (S1P) receptors (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2407 (FTY720) is phosphorylated in vivo [http://www.ncbi.nlm.nih.gov/pubmed/16078855?dopt=AbstractPlus] to generatean agonist with activity at S1P1, S1P3, S1P4 and S1P5 receptors . Many of the physiological consequences of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2924 administration, as well as those of other currently described S1P1 agonists, may involve functional antagonism via ubiquitination and subsequent degradation of S1P1 [http://www.ncbi.nlm.nih.gov/pubmed/17237497?dopt=AbstractPlus]. Additionally, receptor specificities of the different compounds may depend on the functional assay system utilized and from which species the receptor sequence originated.The FDA\u2010approved immunomodulator et al. (2016) To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacol. Res.113: 521\u2010532 https://www.ncbi.nlm.nih.gov/pubmed/27663260?dopt=AbstractPlusChew WS et al. (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol. Rev.62: 579\u201087 https://www.ncbi.nlm.nih.gov/pubmed/21079037?dopt=AbstractPlusChun J et al. (2012) Sphingosine\u20101\u2010phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol.30: 69\u201094 https://www.ncbi.nlm.nih.gov/pubmed/22149932?dopt=AbstractPlusCyster JG et al. (2017) Sphingosine 1\u2010Phosphate Receptor 1 Signaling in Mammalian Cells. Molecules22: https://www.ncbi.nlm.nih.gov/pubmed/28241498?dopt=AbstractPlusPyne NJ et al. (2013) Sphingosine\u20101\u2010phosphate and its receptors: structure, signaling, and influence. Annu. Rev. Biochem.82: 637\u201062 https://www.ncbi.nlm.nih.gov/pubmed/23527695?dopt=AbstractPlusRosen H et al. (2017) Vascular and Immunobiology of the Circulatory Sphingosine 1\u2010Phosphate Gradient. Annu. Rev. Physiol.79: 67\u201091 https://www.ncbi.nlm.nih.gov/pubmed/27813829?dopt=AbstractPlusYanagida K provisional nomenclature as recommended byNC\u2010IUPHAR [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by an endogenous nonadecameric cyclic peptide identical in humans and rats generated from a precursor , which also produces http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5374 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5375 .Melanin\u2010concentrating hormone (MCH) receptors Recent updates on the melanin\u2010concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J. Mol. Neurosci.43: 115\u201021 [https://www.ncbi.nlm.nih.gov/pubmed/20582487?dopt=AbstractPlus]Chung S et al. (2010) Cellular models for the study of the pharmacology and signaling of melaninconcentrating hormone receptors. J. Recept. Signal Transduct. Res.30: 385\u2010402 [https://www.ncbi.nlm.nih.gov/pubmed/21083507?dopt=AbstractPlus]Eberle AN et al. (2005) International Union of Pharmacology. XLVI. G protein\u2010coupled receptor list. Pharmacol Rev57: 279\u2010288 [https://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]Foord SM et al. (2014) Meta\u2010analysis of melanin\u2010concentrating hormone signaling\u2010deficient mice on behavioral and metabolic phenotypes. PLoS ONE9: e99961 [https://www.ncbi.nlm.nih.gov/pubmed/24924345?dopt=AbstractPlus]Takase K provisional nomenclature as recommended byNC\u2010IUPHAR [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by members of the melanocortin family , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3606\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3606, http://www.uniprot.org/uniprot/P01189) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1333\u2010http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1333, http://www.uniprot.org/uniprot/P01189) forms; \u03b4 form is not found in mammals) and adrenocorticotrophin ). Endogenous antagonists include http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3609 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1335 . ACTH(1\u201024) was approved by the US FDA as a diagnostic agent for adrenal function test, whilst NDP\u2010MSH was approved by EMA for the treatment of erythropoietic protoporphyria. Several synthetic melanocortin receptor agonists are under clinical development.Melanocortin receptors Synaptic changes induced by melanocortin signalling. Nat. Rev. Neurosci.15: 98\u2010110 [https://www.ncbi.nlm.nih.gov/pubmed/24588018?dopt=AbstractPlus]Caruso V et al. (2005) International Union of Pharmacology. XLVI. G protein\u2010coupled receptor list. Pharmacol Rev57: 279\u2010288 [https://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]Foord SM et al. (2011) Physiological roles of the melanocortin MC_3 receptor. Eur. J. Pharmacol.660: 13\u201020 [https://www.ncbi.nlm.nih.gov/pubmed/21211527?dopt=AbstractPlus]Renquist BJ NC\u2010IUPHAR Subcommittee on Melatonin Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/20605968?dopt=AbstractPlus]) are activated by the endogenous ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=224 and clinically used drugs like http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1356, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=198 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7393.Melatonin receptors \u2010AMMTC displays an \u02dc400\u2010fold greater agonist potency than (+)\u2010AMMTC at rat MT1 receptors (see http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3385 for structure) [http://www.ncbi.nlm.nih.gov/pubmed/10433507?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1363 is an MT1/MT2 non\u2010selective competitive melatonin receptor antagonist with about 15\u201025 fold selectivity for the MT2 receptor [http://www.ncbi.nlm.nih.gov/pubmed/9737724?dopt=AbstractPlus]. MT1/MT2 heterodimers present differentpharmacological profiles from MT1 and MT2 receptors [http://www.ncbi.nlm.nih.gov/pubmed/15266022?dopt=AbstractPlus]. The MT3 binding site of hamster brain and peripheral tissues such as kidney and testis, also termed the ML2 receptor, binds selectively http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5396http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5396 [http://www.ncbi.nlm.nih.gov/pubmed/8773460?dopt=AbstractPlus]. Pharmacological investigations of 3MT binding sites have primarily been conducted in hamster tissues. At this site, The endogenous ligand http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5451 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3393 [http://www.ncbi.nlm.nih.gov/pubmed/7798906?dopt=AbstractPlus] appear to function as agonists, while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=503 [http://www.ncbi.nlm.nih.gov/pubmed/9283717?dopt=AbstractPlus] functions as an antagonist. The 3MT binding site of hamster kidney was also identified as the hamster homologue of human quinone reductase 2 . The 3MT binding site activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3393 in eye ciliary body is positively coupled to adenylyl cyclase and regulates chloride secretion [http://www.ncbi.nlm.nih.gov/pubmed/25344385?dopt=AbstractPlus]. Xenopus melanophores and chick brain express a distinct receptor coupled to the Gi/o family of G proteins, for which GPR50 has recently been suggested to be a mammalian counterpart [http://www.ncbi.nlm.nih.gov/pubmed/18400093?dopt=AbstractPlus] although http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=224 does not bind to GPR50 receptors. Several variants of the MTNR1B gene have been associated with increased type 2 diabetes risk [http://www.ncbi.nlm.nih.gov/pubmed/30531911?dopt=AbstractPlus].et al. (2018) Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol.175: 3263\u20103280 [https://www.ncbi.nlm.nih.gov/pubmed/28707298?dopt=AbstractPlus]Cecon E et al. (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein\u2010coupled melatonin receptors. Pharmacol. Rev.62: 343\u201080 [https://www.ncbi.nlm.nih.gov/pubmed/20605968?dopt=AbstractPlus]Dubocovich ML et al. (2016) Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol.173: 2702\u201025 [https://www.ncbi.nlm.nih.gov/pubmed/27314810?dopt=AbstractPlus]Jockers R et al. (2019) Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol15: 105\u2010125 [https://www.ncbi.nlm.nih.gov/pubmed/30531911?dopt=AbstractPlus]Karamitri A et al. (2016) MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu. Rev. Pharmacol. Toxicol.56: 361\u201083 [https://www.ncbi.nlm.nih.gov/pubmed/26514204?dopt=AbstractPlus]Liu J et al. (2014) MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J. Med. Chem.57: 3161\u201085 [https://www.ncbi.nlm.nih.gov/pubmed/24228714?dopt=AbstractPlus]Zlotos DP NC\u2010IUPHAR Subcommittee on Metabotropic Glutamate Receptors[1899]nomenclature as agreed by the ) area family of G protein\u2010coupled receptors activated by the neurotransmitter glutamate. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group\u2010I (mGlu1 and mGlu5), Group\u2010II (mGlu2 and mGlu3) and Group\u2010III (see Further reading).Metabotropic glutamate (mGlu) receptors domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted . mGlu form constitutive dimers crosslinked by a disulfide bridge. Recent studies revealed the possible formation of heterodimers between either group\u2010I receptors, or within and between group\u2010II and \u2010III receptors [http://www.ncbi.nlm.nih.gov/pubmed/20826542?dopt=AbstractPlus]. Although well characterized in transfected cells, co\u2010localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain .Structurally, mGlu are composed of three juxtaposed domains: a core G protein\u2010activating seven\u2010transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine\u2010rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi\u2010lobed extracellular domain where glutamate binds. The structures of the VFTD of mGluhttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1411, N\u2010acetylaspartylglutamate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1405) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5447. Group\u2010I mGlu receptors may be activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1367 and (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1366)http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1366 [http://www.ncbi.nlm.nih.gov/pubmed/8532171?dopt=AbstractPlus] and antagonized by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1392 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3350 . Group\u2010III mGlu receptors may be activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1410 and (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1406)http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1406 [http://www.ncbi.nlm.nih.gov/pubmed/10336568?dopt=AbstractPlus]. An example of an antagonist selective for mGlu receptors is http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1378, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [http://www.ncbi.nlm.nih.gov/pubmed/9680254?dopt=AbstractPlus]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as \u2018potentiators\u2019 of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.The endogenous ligands of mGlu are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1405 as an agonist at mGlu3 receptors was questioned on the basis of contamination with glutamate , but this has been refuted [http://www.ncbi.nlm.nih.gov/pubmed/21740441?dopt=AbstractPlus].The activity of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1391http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1391 [http://www.ncbi.nlm.nih.gov/pubmed/12695537?dopt=AbstractPlus] and [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5392http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5392 [http://www.ncbi.nlm.nih.gov/pubmed/15976016?dopt=AbstractPlus] at mGlu1 receptors and [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1425http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1425 [http://www.ncbi.nlm.nih.gov/pubmed/11814808?dopt=AbstractPlus] and [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5394http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5394 [http://www.ncbi.nlm.nih.gov/pubmed/12438526?dopt=AbstractPlus] at mGlu5 receptors; ). Although a number of radioligands have been used to examine binding in native tissues, correlation with individual subtypes is limited. Many pharmacological agents have not been fully tested across all known subtypes of mGlu receptors and may have unappreciated biased or neutral activity at other subtypes [http://www.ncbi.nlm.nih.gov/pubmed/29514854?dopt=AbstractPlus]. Potential differences linked to the species (e.g. human versus rat or mouse) of the receptors and the receptor splice variants are generally not known. The influence of receptor expression level on pharmacology and selectivity has not been controlled for in most studies, particularly those involving functional assays of receptor coupling.Radioligand binding using a variety of radioligands has been conducted on recombinant receptors at mGlu5 receptors. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1377 also exhibits agonist activity at NMDA glutamate receptors [http://www.ncbi.nlm.nih.gov/pubmed/9106476?dopt=AbstractPlus], and is an antagonist at all Group\u2010III mGluRs with an IC50 of 30\u03bcM. A potential novel metabotropic glutamate receptor coupled to phosphoinositide turnover has been observed in rat brain; it is activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5449 (ineffective as an agonist at recombinant Group I metabotropic glutamate receptors), but is resistant to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1378 [http://www.ncbi.nlm.nih.gov/pubmed/9353394?dopt=AbstractPlus]. There are also reports of a distinct metabotropic glutamatereceptor coupled tophospholipase D in ratbrain, which does not readily fit into the current classification Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol.37: 205\u2010237 [https://www.ncbi.nlm.nih.gov/pubmed/9131252?dopt=AbstractPlus]Conn PJ et al. (2006) Metabotropic glutamate receptors. Cell Tissue Res.326: 483\u2010504 [https://www.ncbi.nlm.nih.gov/pubmed/16847639?dopt=AbstractPlus]Ferraguti F et al. (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology60: 1017\u201041 [https://www.ncbi.nlm.nih.gov/pubmed/21036182?dopt=AbstractPlus]Nicoletti F et al. (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol.50: 295\u2010322 [https://www.ncbi.nlm.nih.gov/pubmed/20055706?dopt=AbstractPlus]Niswender CM et al. (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature540: 60\u201068 [https://www.ncbi.nlm.nih.gov/pubmed/27905440?dopt=AbstractPlus]Pin JP et al. (2011) The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein\u2010coupled receptors. Neuropharmacology60: 82\u201092 [https://www.ncbi.nlm.nih.gov/pubmed/20713070?dopt=AbstractPlus]Rondard P provisional nomenclature) are activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1458 , a 22 amino\u2010acid peptide derived from a precursor , which may also generate a http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5376 . These receptors promote gastrointestinal motility and are suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics , although for many of these molecules the evidence is sparse.Motilin receptors are not usually detected in rodents, although brain and other responses to motilin and the macrolide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1444 have been reported and the mechanism of these actions is obscure . Notably, in some non\u2010laboratory rodents (e.g. the North American kangaroo rat (Dipodomys) and mouse (Microdipodops) a functional form of motilin may exist but the motilin receptor is non\u2010functional [http://www.ncbi.nlm.nih.gov/pubmed/15027861?dopt=AbstractPlus]. Marked differences in ligand affinities for the motilin receptor in dogs and humans may be explained by significant differences in receptor structure [http://www.ncbi.nlm.nih.gov/pubmed/23189978?dopt=AbstractPlus]. Note that for the complex macrolide structures, selectivity of action has often not been rigorously examined and other actions are possible . Small molecule motilin receptor agonists are now described . The motilin receptor does not appear to have constitutive activity [http://www.ncbi.nlm.nih.gov/pubmed/12907757?dopt=AbstractPlus]. Although not proven, the existence of biased agonism at the receptor has been suggested . A truncated 5\u2010transmembrane structure has been identified but this is without activity when transfected into a host cell [http://www.ncbi.nlm.nih.gov/pubmed/10381885?dopt=AbstractPlus]. Receptor dimerisation has not been reported.In terms of structure, the motilin receptor has closest homology with the ghrelin receptor. Thus, the human motilin receptor shares 52% overall amino acid identity with the ghrelin receptor and 86% in the transmembrane regions [et al. (2009) Motilin and ghrelin as prokinetic drug targets. Pharmacol. Ther.123: 207\u201023 [https://www.ncbi.nlm.nih.gov/pubmed/19427331?dopt=AbstractPlus]De Smet B etal. (2018) A randomized, double\u2010blind, placebo\u2010controlled trial of camicinal in Parkinson's disease. Mov. Disord.33: 329\u2010332 [https://www.ncbi.nlm.nih.gov/pubmed/29278279?dopt=AbstractPlus]Marrinan SL et al. (2016) Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat Rev Gastroenterol Hepatol13: 38\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/26392067?dopt=AbstractPlus]Sanger GJ NC\u2010IUPHARprovisional nomenclature as recommended by [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by the endogenous 25 amino acid peptide neuromedin U , NmU\u201025), a peptide originally isolated from pig spinal cord [http://www.ncbi.nlm.nih.gov/pubmed/3839674?dopt=AbstractPlus]. In humans, NmU\u201025 appears to be the sole product of a precursor gene showing a broad tissue distribution, but which is expressed at highest levels in the upper gastrointestinal tract, CNS, bone marrow and fetal liver. Much shorter versions of NmU are found in some species, but not in human, and are derived at least in some instances from the proteolytic cleavage of the longer NmU. Despite species differences in NmU structure, the C\u2010terminal region is highly conserved and contains biological activity. Neuromedin S ) has also been identified as an endogenous agonist [http://www.ncbi.nlm.nih.gov/pubmed/15635449?dopt=AbstractPlus]. NmS33 is, as its name suggests, a 33 amino\u2010acid product of a precursor protein derived from a single gene and contains an amidated Cterminal heptapeptide identical to NmU. NmS\u201033 appears to activate NMU receptors with equivalent potency to NmU\u201025.Neuromedin U receptors , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3858 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3863 [http://www.ncbi.nlm.nih.gov/pubmed/15331768?dopt=AbstractPlus]. A range of radiolabelled ( 125I\u2010), fluorescently labelled and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 labelled versions of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1470 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1468 are now commercially available.NMU1 and NMU2 couple predominantly to Get al. (2004) Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol. Rev.56: 231\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/15169928?dopt=AbstractPlus]Brighton PJ et al. (2009) Neuromedin U: physiology, pharmacology and therapeutic potential. Fundam Clin Pharmacol23: 149\u201057 [https://www.ncbi.nlm.nih.gov/pubmed/19645813?dopt=AbstractPlus]Budhiraja S et al. (2009) Emerging pharmacology and physiology of neuromedin U and the structurally related peptide neuromedin S. Br. J. Pharmacol.158: 87\u2010103 [https://www.ncbi.nlm.nih.gov/pubmed/19519756?dopt=AbstractPlus]Mitchell JD Endocrinology150: 2985\u20107 [https://www.ncbi.nlm.nih.gov/pubmed/19549882?dopt=AbstractPlus]Novak CM. (2009) Neuromedin S and U. provisional nomenclature [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]), which exhibit high affinities for neuropeptide FF and RFamide related peptides . NPFF1 is broadly distributed in the central nervous system with the highest levels found in the limbic system and the hypothalamus. NPFF2 is present in high density in the superficial layers of the mammalian spinal cord where it is involved in nociception and modulation of opioid functions.The Neuropeptide FF receptor family contains two subtypes, NPFF1 and NPFF2 (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:4523 (http://www.uniprot.org/uniprot/Q9NYM4) shows sequence similarities with NPFF1, NPFF2, PrRP and QRFP receptors. The antagonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1486 is selective for NPFF receptors, but does not distinguish between the NPFF1 and NPFF2 subtypes .An orphan receptor et al. (2010) Opioid\u2010modulating properties of the neuropeptide FF system. Biofactors36: 423\u20109 [https://www.ncbi.nlm.nih.gov/pubmed/20803521?dopt=AbstractPlus]Moul\u00e9dous L et al. (2006) Structure\u2010activity relationships of neuropeptide FF and related peptidic and non\u2010peptidic derivatives. Peptides27: 990\u20106 [https://www.ncbi.nlm.nih.gov/pubmed/16490282?dopt=AbstractPlus]Vyas N et al. (2008) Modulatory role of neuropeptide FF system in nociception and opiate analgesia. Neuropeptides42: 1\u201018 [https://www.ncbi.nlm.nih.gov/pubmed/17854890?dopt=AbstractPlus]Yang HY provisional nomenclature [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) responds to the 20 amino\u2010acid peptide neuropeptide S derived from a precursor .The neuropeptide S receptor . The human NPS receptor Asn107Ile displayed similar binding affinity buthigher NPSpotency (by approx. 10\u2010fold) than human NPS receptor Asn107 [http://www.ncbi.nlm.nih.gov/pubmed/16144971?dopt=AbstractPlus]. Several epidemiological studies reported an association between Asn107Ile receptor variant and susceptibility to panic disorders . The SNP Asn107Ile has also been linked to sleep behavior [http://www.ncbi.nlm.nih.gov/pubmed/17903308?dopt=AbstractPlus], inflammatory bowel disease [http://www.ncbi.nlm.nih.gov/pubmed/17854592?dopt=AbstractPlus], schizophrenia [http://www.ncbi.nlm.nih.gov/pubmed/22078257?dopt=AbstractPlus], increased impulsivity and ADHD symptoms [http://www.ncbi.nlm.nih.gov/pubmed/23325374?dopt=AbstractPlus]. Interestingly, a carboxy\u2010terminal splice variant of human NPS receptor was found to be overexpressed in asthmatic patients [http://www.ncbi.nlm.nih.gov/pubmed/15073379?dopt=AbstractPlus].Multiple single\u2010nucleotide polymorphisms (SNP) and several splice variants have been identified in the human NPS receptor. The most interesting of these is an Asn\u2010Ile exchange at position 107 Brain neuropeptide S: via GPCR activation to a powerful neuromodulator of socio\u2010emotional behaviors. Cell Tissue Res.375: 123\u2010132 [https://www.ncbi.nlm.nih.gov/pubmed/30112573?dopt=AbstractPlus]Grund T et al. (2010) Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor. Med Res Rev30: 751\u201077 [https://www.ncbi.nlm.nih.gov/pubmed/19824051?dopt=AbstractPlus]Guerrini R et al. (2017) Neuropeptide S receptor ligands: a patent review (2005\u20102016). Expert Opin Ther Pat27: 347\u2010362 [https://www.ncbi.nlm.nih.gov/pubmed/27788040?dopt=AbstractPlus]Ruzza C et al. (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic\u2010like effects. Neuron43: 487\u2010497 [https://www.ncbi.nlm.nih.gov/pubmed/15312648?dopt=AbstractPlus]Xu YL provisional nomenclature [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) is activated by two 23\u2010amino\u2010acid peptides, neuropeptide W ) and neuropeptide B ) . C\u2010terminally extended forms of the peptides and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1502 ) also activate NPBW1[http://www.ncbi.nlm.nih.gov/pubmed/12401809?dopt=AbstractPlus]. Unique to both forms of neuropeptide B is the N\u2010terminal bromination of the first tryptophan residue, and it is from this post\u2010translational modification that the nomenclature NPB is derived. These peptides were first identified from bovine hypothalamus and therefore are classed as neuropeptides. Endogenous variants of the peptides without the N\u2010terminal bromination, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1499 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1500 , were not found to be major components of bovine hypothalamic tissue extracts. The NPBW2 receptor is activated by the short and C\u2010terminal extended forms of neuropeptide W and neuropeptide B [http://www.ncbi.nlm.nih.gov/pubmed/12401809?dopt=AbstractPlus].The neuropeptide BW receptor 1 and 0.98\u201021 nM (NPBW2).\u2010/\u2010 mice show changes in social behavior, suggesting that the NPBW1pathway may have animportant role in theemotional responses of social interaction [http://www.ncbi.nlm.nih.gov/pubmed/21390312?dopt=AbstractPlus].NPBW1http://www.ncbi.nlm.nih.gov/pubmed/26136644?dopt=AbstractPlus]. It has been reported that neuropeptide W may have a key role in the gating of stressful stimuli when mice are exposed to novel environments [http://www.ncbi.nlm.nih.gov/pubmed/27140610?dopt=AbstractPlus].For a review of the contribution of neuropeptide B/W to social dominance, see Watanabe and Yamamoto, 2015 . Computational insights into the binding of antagonists to this receptor have also been described [http://www.ncbi.nlm.nih.gov/pubmed/24938207?dopt=AbstractPlus].Two antagonists have been discovered and reported to have affinity for NPBW1, ML181 and ML250, the latter exhibiting improved selectivity (100 fold) for NPBW1 compared to MCH1 receptors [Front Endocrinol (Lausanne)4: 23 [https://www.ncbi.nlm.nih.gov/pubmed/23515889?dopt=AbstractPlus]Sakurai T. (2013) NPBWR1 and NPBWR2: Implications in Energy Homeostasis, Pain, and Emotion. et al. (2006) Neuropeptide B and W: neurotransmitters in an emerging G\u2010protein\u2010coupled receptor system. Br. J. Pharmacol.148: 1033\u201041 [https://www.ncbi.nlm.nih.gov/pubmed/16847439?dopt=AbstractPlus]Singh G NC\u2010IUPHAR Subcommittee on Neuropeptide Y Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/9549761?dopt=AbstractPlus]) are activated by the endogenous peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1504 , neuropeptide Y\u2010(3\u201036), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1514 , PYY\u2010(3\u201036) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1512 (PP). The receptor originally identified as the Y3 receptor has been identified as the http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=71 . The y6 receptor is a functional gene product in mouse, absent in rat, but contains a frame\u2010shift mutation in primates producing a truncated non\u2010functional gene [http://www.ncbi.nlm.nih.gov/pubmed/8641440?dopt=AbstractPlus]. Many of the agonists exhibit differing degrees of selectivity dependent on the species examined. For example, the potency of PP is greater at the rat Y4 receptor than at the human receptor [http://www.ncbi.nlm.nih.gov/pubmed/9802391?dopt=AbstractPlus]. In addition, many agonists lack selectivity for individual subtypes, but can exhibit comparable potency against pairs of NPY receptor subtypes, or have not been examined for activity at all subtypes. [125I]\u2010PYY or [125I]\u2010NPY can be used to label Y1, Y2, Y5 and y6 subtypes non\u2010selectively, while Bowers ME et al. (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY and pancreatic polypeptide receptors. Pharmacol. Rev.50: 143\u2010150 [https://www.ncbi.nlm.nih.gov/pubmed/9549761?dopt=AbstractPlus]Michel MC et al. (2013) Neuropeptide Y receptors: how to get subtype selectivity. Front En docrinol (Lausanne)4: 5 [https://www.ncbi.nlm.nih.gov/pubmed/23382728?dopt=AbstractPlus]Pedragosa\u2010Badia X et al. (2011) The neuropeptide Y system: pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther.131: 91\u2010113 [https://www.ncbi.nlm.nih.gov/pubmed/21439311?dopt=AbstractPlus]Zhang L nomenclature as recommended byNC\u2010IUPHAR [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by the endogenous tridecapeptide neurotensin (pGlu\u2010Leu\u2010Tyr\u2010Glu\u2010Asn\u2010Lys\u2010Pro\u2010Arg\u2010Arg\u2010Pro\u2010Tyr\u2010Ile\u2010Leu) derived from a precursor , which also generates neuromedin N, an agonist at the NTS2 receptor. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3830) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1574) may be used to label NTS1 and NTS2 receptors at 0.1\u20100.3 and 3\u20105 nM concentrations respectively.Neurotensin receptors appears to be a lowefficacy agonist at the NTS2 receptor [http://www.ncbi.nlm.nih.gov/pubmed/9851594?dopt=AbstractPlus], while the NTS1 receptor antagonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1582 is an agonist at NTS2 receptors [http://www.ncbi.nlm.nih.gov/pubmed/9851594?dopt=AbstractPlus]. An additional protein, provisionally termed NTS3 , has been suggested to bind lipoprotein lipase and mediate its degradation [http://www.ncbi.nlm.nih.gov/pubmed/10085125?dopt=AbstractPlus]. It has been reported to interact with the NTS1 receptor [http://www.ncbi.nlm.nih.gov/pubmed/12360476?dopt=AbstractPlus] and the NTS2 receptor [http://www.ncbi.nlm.nih.gov/pubmed/19891061?dopt=AbstractPlus], and has beenimplicated in hormone trafficking and/or neurotensin uptake. A splice variant of the NTS2 receptor bearing 5 transmembrane domains has been identified in mouse [http://www.ncbi.nlm.nih.gov/pubmed/9001400?dopt=AbstractPlus] and later in rat [http://www.ncbi.nlm.nih.gov/pubmed/15637074?dopt=AbstractPlus].et al. (2013) Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne)4: 36 https://www.ncbi.nlm.nih.gov/pubmed/23526754?dopt=AbstractPlusBoules M et al. (2012) Neurotensin and its receptors in the control of glucose homeostasis. Front Endocrinol (Lausanne)3: 143 https://www.ncbi.nlm.nih.gov/pubmed/23230428?dopt=AbstractPlusMazella J et al. (2009) Cancer, chemistry, and the cell: molecules that interact with the neurotensin receptors. ACS Chem. Biol.4: 503\u201025 https://www.ncbi.nlm.nih.gov/pubmed/19462983?dopt=AbstractPlusMyers RM et al. (2017) Oncogenic role of neurotensin and neurotensin receptors in various cancers. Clin. Exp. Pharmacol. Physiol.44: 841\u2010846 https://www.ncbi.nlm.nih.gov/pubmed/28556374?dopt=AbstractPlusOuyang Q http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1614 (met), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1613 (leu), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1643 (\u03b2\u2010end), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3737 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1620 (dynA), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1622 (dynB), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3669 (Big dyn), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1681 (N/OFQ); http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1623 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3668 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, \u03bc, \u03b4 and \u03ba, is well established, and NC\u2010IUPHAR considers this nomenclature appropriate, along with the symbols spelled out , and the acronyms, MOP, DOP, and KOP. . The human N/OFQ receptor, NOP, is considered \u2019opioid\u2010related\u2019 rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [http://www.ncbi.nlm.nih.gov/pubmed/8137918?dopt=AbstractPlus], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1627 and many other opioid analgesics, as well as antagonists such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1638, however only for the \u03bc receptor.Opioid and opioid\u2010like receptors are activated by a variety of endogenous peptides including [\u03bc\u2010receptor in particular may be subject to extensive alternative splicing [http://www.ncbi.nlm.nih.gov/pubmed/24076545?dopt=AbstractPlus], these putative isoforms have not been correlated with any of the subtypesof receptor proposed inyears past. Opioid receptors may heterodimerize with each other or with other 7TM receptors [http://www.ncbi.nlm.nih.gov/pubmed/10385123?dopt=AbstractPlus], and give rise to complexes with a unique pharmacology, however, evidence for such heterodimers in native cells is equivocal and the consequences of this heterodimerization for signalling remains largely unknown. For \u03bc\u2010opioid receptors at least, dimerization does not seem to be required for signalling [http://www.ncbi.nlm.nih.gov/pubmed/19542234?dopt=AbstractPlus]. A distinct met\u2010enkephalin receptor lacking structural resemblance to the opioid receptors listed has been identified and termed an opioid growth factor receptor [http://www.ncbi.nlm.nih.gov/pubmed/11890982?dopt=AbstractPlus].Three naloxone\u2010sensitive opioid receptor genes havebeen identified in humans, and while the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1623 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3668 have been identified as highly selective, putative endogenous agonists for the \u03bc\u2010opioid receptor. At present, however, the mechanisms for endomorphin synthesis in vivo have not been established, and there is no gene identified that encodes for either. Thus, the status of these peptides as endogenous ligands remains unproven.\u03bc\u2010receptors [http://www.ncbi.nlm.nih.gov/pubmed/19116204?dopt=AbstractPlus] and the identification of biased signalling by opioid receptor ligands, in particular, compounds previously characterized as antagonists [http://www.ncbi.nlm.nih.gov/pubmed/17702750?dopt=AbstractPlus]. Pathway bias for agonists makes general rank orders of potency and efficacy somewhat obsolete, so these do not appear in the table. As ever, the mechanisms underlying the acute and long term regulation of opiod receptor function are the subject of intense investigation and debate.Two areas of increasing importance in defining opioid receptor function are the presence of functionally relevant single nucleotide polymorphisms in human \u03bc and \u03b4 receptors, notably thepositive allosteric modulators and silent allosteric \u201cantagonists\u201d outlined in . Negative allosteric modulation of opioid receptors has been previously suggested [http://www.ncbi.nlm.nih.gov/pubmed/16489449?dopt=AbstractPlus], whether all compounds are acting at a similar site remains to be established.The richness of opioid receptor pharmacology has been enhanced with the recent discovery of allosteric modulators of et al. (2012) \u03ba\u2010opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci.35: 587\u201096 https://www.ncbi.nlm.nih.gov/pubmed/22709632?dopt=AbstractPlusButelman ER et al. (2015) Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br. J. Pharmacol.172: 317\u201023 https://www.ncbi.nlm.nih.gov/pubmed/24528283?dopt=AbstractPlusCox BM et al. (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol. Sci.32: 581\u201090 https://www.ncbi.nlm.nih.gov/pubmed/21925742?dopt=AbstractPlusPradhan AA et al. (2013) Regulation of \u03bc\u2010opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev.65: 223\u201054 https://www.ncbi.nlm.nih.gov/pubmed/23321159?dopt=AbstractPlusWilliams JT NC\u2010IUPHAR Subcommittee on Orexin receptors(nomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by the endogenous polypeptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1697 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1699 derived from a common precursor, https://www.genenames.org/data/gene\u2010symbol\u2010report/%23!/hgnc_id/HGNC:4847, by proteolytic cleavage and some typical peptide modifications [http://www.ncbi.nlm.nih.gov/pubmed/9491897?dopt=AbstractPlus]. Currently the only orexin receptor ligand in clinical use is http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2890,whichisused as a hypnotic. Orexin receptor crystal structures have been solved .Orexin receptors q/11 proteins is rather speculative and based on the strong activation of phospholipase C, though recent studies in recombinant cells also stress the importance of Gq/11 [http://www.ncbi.nlm.nih.gov/pubmed/27237973?dopt=AbstractPlus]. Coupling of both receptors to Gi/o and Gs has also been reported . For most native cellular responses observed, the G protein pathway is unknown. The relative potency order of endogenous ligands depends on the cellular signal transduction machinery [http://www.ncbi.nlm.nih.gov/pubmed/23034387?dopt=AbstractPlus]. Similarly, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1700, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9305 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10277 may show variable selectivity for OX2 receptors and are also likely to activate OX1 receptors . Many antagonists and radioligands are not well\u2010characterized, and thus the affinities are uncertain. Among radioligands, \u2010TCS 1102 [http://www.ncbi.nlm.nih.gov/pubmed/24376396?dopt=AbstractPlus] and Rhodamine Green\u2010orexinA [http://www.ncbi.nlm.nih.gov/pubmed/11266181?dopt=AbstractPlus] are also useful radioligand tools. Orexin receptors have been reported to be able to form complexes with each other and some other GPCRs as well as \u03c31 receptors, which might affect the signaling and pharmacology . Loss\u2010of\u2010function mutations in the gene encoding the OX2 receptor underlie canine hereditary narcolepsy [http://www.ncbi.nlm.nih.gov/pubmed/10458611?dopt=AbstractPlus]. Antagonists of the orexin receptors are the focus of major drug discovery efforts for their potential to treat insomnia and other disorders of wakefulness [http://www.ncbi.nlm.nih.gov/pubmed/26317591?dopt=AbstractPlus], while agonists would likely be useful in human narcolepsy.The primary coupling of orexin receptors to Get al. (2015) Orexin/hypocretin role in reward: implications for opioid and other addictions. Br. J. Pharmacol.172: 334\u201048 [https://www.ncbi.nlm.nih.gov/pubmed/24641197?dopt=AbstractPlus]Baimel C Neuropharmacology [https://www.ncbi.nlm.nih.gov/pubmed/30347195?dopt=AbstractPlus]Burdakov D. (2018) Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Am. J. Physiol., Cell Physiol.304: C2\u201032 [https://www.ncbi.nlm.nih.gov/pubmed/23034387?dopt=AbstractPlus]Kukkonen JP. (2013) Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. et al. (2016) Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders. Curr Psychiatry Rep18: 7 [https://www.ncbi.nlm.nih.gov/pubmed/26733323?dopt=AbstractPlus]Li SB et al. (2014) Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat. Neurosci.17: 1298\u2010303 [https://www.ncbi.nlm.nih.gov/pubmed/25254979?dopt=AbstractPlus]Mahler SV NC\u2010IUPHARNomenclature as recommended by [http://www.ncbi.nlm.nih.gov/pubmed/23686350?dopt=AbstractPlus].et al. (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein\u2010coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev.65: 967\u201086 [https://www.ncbi.nlm.nih.gov/pubmed/23686350?dopt=AbstractPlus]Davenport AP Oxgr1. Curr. Opin. Nephrol. Hypertens.26: 426\u2010433 [https://www.ncbi.nlm.nih.gov/pubmed/28771454]Grimm PR and Welling PA (2017) alpha\u2010Ketoglutarate drives electroneutral NaCl reabsorption in intercalated cells by activating a G\u2010protein coupled receptor. NC\u2010IUPHAR Subcommittee on P2Y Receptorsnomenclature as agreed by the ) are activated by the endogenous ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1734, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1749 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1783. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established and so it might be appropriate to use wording such as \u2019http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1734\u2010preferring P2Y receptor\u2019 or \u2019P2Y1\u2010like\u2019, etc., until further, as yet undefined, corroborative criteria can be applied . Clinically used drugs acting on these receptors include the dinucleoside polyphosphate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1736, agonist of the P2Y2 receptor subtype, approved in Japan for the management of dry eye disease [http://www.ncbi.nlm.nih.gov/pubmed/24511227?dopt=AbstractPlus], and the P2Y12 receptor antagonists http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7562, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1765 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1776, all approved as antiplatelet drugs .P2Y receptors was also shown to be a biased agonist at P2Y11, this is still under debate . A group of single nucleotide polymorphisms in the P2Y12 gene, forming the so called P2Y12 H2 haplotype, has been associated with increased platelet responsiveness to ADP, increased risk of peripheral arterial disease and with coronary artery disease [http://www.ncbi.nlm.nih.gov/pubmed/17803810?dopt=AbstractPlus]. The platelet\u2010type bleeding disorder due to P2Y12 receptor defects is an autosomal recessive condition characterized by mild to moderate mucocutaneous bleeding and excessive bleeding after surgery or trauma. The defect is due to the inability of ADP to induce platelet aggregation [http://www.ncbi.nlm.nih.gov/pubmed/12578987?dopt=AbstractPlus]. The P2Y13 receptor Met\u2010158\u2010Thr polymorphism, which is in linkage disequilibrium with the P2Y12 locus, is not associated with acute myocardial infarction, diabetes mellitus or related risk factors [http://www.ncbi.nlm.nih.gov/pubmed/18213371?dopt=AbstractPlus]. The P2Y14 receptor was previously considered to exclusively bind sugar nucleotides such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1783 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1782 [http://www.ncbi.nlm.nih.gov/pubmed/10753868?dopt=AbstractPlus]. However, more recent evidence with several cell lines has demonstrated that http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1749 (UDP) is 5\u2010fold more potent than http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1783 [http://www.ncbi.nlm.nih.gov/pubmed/19759354?dopt=AbstractPlus]. UDP was also shown to competitively antagonise the UDP\u2010glucose response at the human recombinant P2Y14 receptor [http://www.ncbi.nlm.nih.gov/pubmed/18252808?dopt=AbstractPlus].Single nucleotide polymorphisms of the P2YRet al. (2006) International Union of Pharmacology LVIII: update on the P2Y G protein\u2010coupled nucleotide receptors: frommolecular mechanisms andpathophysiology totherapy. Pharmacol. Rev.58: 281\u2010341 [https://www.ncbi.nlm.nih.gov/pubmed/16968944?dopt=AbstractPlus]Abbracchio MP et al. (2015) Nucleotides Acting at P2Y Receptors: Connecting Structure and Function. Mol. Pharmacol.88: 220\u201030 [https://www.ncbi.nlm.nih.gov/pubmed/25837834?dopt=AbstractPlus]Jacobson KA et al. (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology104: 50\u201061 [https://www.ncbi.nlm.nih.gov/pubmed/26519900?dopt=AbstractPlus]von K\u00fcgelgen I NC\u2010IUPHAR Subcommittee on Parathyroid Hormone Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/25713287?dopt=AbstractPlus]) are family B G protein\u2010coupled receptors. The parathyroid hormone (PTH)/parathyroid hormone\u2010related peptide (PTHrP) receptor (PTH1 receptor) is activated by precursor\u2010derived peptides: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1785 (84 amino acids), and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3738 (141 amino\u2010acids) and related peptides (PTH\u2010(1\u201034), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1790, http://www.uniprot.org/uniprot/P12272)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor\u2010derived peptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1815 (39 amino acids). [125I]PTH may be used to label both PTH1 and PTH2 receptors.The parathyroid hormone receptors (The parathyroid hormone type 1 receptor (PTHR) is the canonical GPCR for PTH and PTHrP. It is coupled to Gs and Gq and regulates the development of bone, heart, mammary glands and other tissues in response to PTHrP, and blood concentrations of calcium and phosphate ions, as well as vitamin D, in response to PTH. Another important action of the PTH/PTHR system is to stimulate bone formation when the hormone is intermittently administrated (daily injection).http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1785 is an agonist at human PTH2 receptors, it fails to activate the rodent orthologues. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1815 is a weak antagonist at PTH1 receptors [http://www.ncbi.nlm.nih.gov/pubmed/11159842?dopt=AbstractPlus].Although et al. (2015) PTH receptor\u20101 signalling\u2010mechanistic insights and therapeutic prospects. Nat Rev Endocrinol11: 712\u201024 [https://www.ncbi.nlm.nih.gov/pubmed/26303600?dopt=AbstractPlus]Cheloha RW et al. (2015) International Union of Basic and Clinical Pharmacology. XCIII. The Parathyroid Hormone Receptors\u2010Family B G Protein\u2010Coupled Receptors. Pharmacol. Rev.67: 310\u201037 [https://www.ncbi.nlm.nih.gov/pubmed/25713287?dopt=AbstractPlus]Gardella TJ et al. (2014) Endosomal generation of cAMP in GPCR signaling. Nat. Chem. Biol.10: 700\u20106 [https://www.ncbi.nlm.nih.gov/pubmed/25271346?dopt=AbstractPlus]Vilardaga JP http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1831, 1\u2010O\u2010alkyl\u20102\u2010acetyl\u2010sn\u2010glycero\u20103\u2010phosphocholine) is an ether phospholipid mediator associated with platelet coagulation, but also subserves inflammatory roles. The PAF receptor is activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1831 and other suggested endogenous ligands are oxidized phosphatidylcholine [http://www.ncbi.nlm.nih.gov/pubmed/10497200?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2508 [http://www.ncbi.nlm.nih.gov/pubmed/9038918?dopt=AbstractPlus]. It may also be activated by bacterial lipopolysaccharide [http://www.ncbi.nlm.nih.gov/pubmed/1333988?dopt=AbstractPlus].Platelet\u2010activating factor (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1859 Kd 44.6 nM) is currently unavailable.Note that a previously recommended radioligand International Union of Pharmacology. XLVI. G protein\u2010coupled receptor list. Pharmacol Rev57: 279\u2010288 [https://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]Foord SM et al. (2000) Platelet\u2010activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res.39: 41\u201082 [https://www.ncbi.nlm.nih.gov/pubmed/10729607?dopt=AbstractPlus]Ishii S et al. (2000) Platelet\u2010activating factor and related lipid mediators. Annu. Rev. Biochem.69: 419\u201045 [https://www.ncbi.nlm.nih.gov/pubmed/10966465?dopt=AbstractPlus]Prescott SM 1 and PKR2 respond to the cysteine\u2010rich 81\u201086 amino\u2010acid peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1866 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1867 (protein Bv8 homologue). An orthologue of PROK1 from black mamba (Dendroaspis polylepis) venom, mamba intestinal toxin 1 is a potent, nonselective agonist at prokineticin receptors [http://www.ncbi.nlm.nih.gov/pubmed/12054613?dopt=AbstractPlus], while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5362, an orthologue of PROK2 from amphibians , is equipotent at recombinant PKR1 and PKR2 [http://www.ncbi.nlm.nih.gov/pubmed/16113687?dopt=AbstractPlus], and has high potency in macrophagechemotaxis assays, which arelost in PKR1null mice.Prokineticin receptors, PKRPROKR1 are associated with Hirschsprung's disease [http://www.ncbi.nlm.nih.gov/pubmed/21858136?dopt=AbstractPlus], while genetic mutations in PROKR2 are associated with hypogonadotropic hypogonadism with anosmia [http://www.ncbi.nlm.nih.gov/pubmed/23596439?dopt=AbstractPlus], hypopituitarism with pituitary stalk interruption [http://www.ncbi.nlm.nih.gov/pubmed/22466334?dopt=AbstractPlus] and Hirschsprung's disease [http://www.ncbi.nlm.nih.gov/pubmed/21858136?dopt=AbstractPlus]. PKR2 has been recently identified as a receptor for T. cruzi natural infection [http://www.ncbi.nlm.nih.gov/pubmed/25324134?dopt=AbstractPlus].Genetic mutations in et al. (2011) Prokineticin receptor 1 (PKR1) signalling in cardiovascular and kidney functions. Cardiovasc. Res.92: 191\u20108 [https://www.ncbi.nlm.nih.gov/pubmed/21856786?dopt=AbstractPlus]Boulberdaa M et al. (2018) The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell\u2010Dependent Angiogenesis. Physiol. Rev.98: 1055\u20101082 [https://www.ncbi.nlm.nih.gov/pubmed/29537336?dopt=AbstractPlus]Negri L et al. (2012) Bv8/PK2 and prokineticin receptors: a druggable pronociceptive system. Curr Opin Pharmacol12: 62\u20106 [https://www.ncbi.nlm.nih.gov/pubmed/22136937?dopt=AbstractPlus]Negri L et al. (2007) Bv8/Prokineticin proteins and their receptors. Life Sci.81: 1103\u201016 [https://www.ncbi.nlm.nih.gov/pubmed/17881008?dopt=AbstractPlus]Negri L et al. (2008) Prokineticin\u2010signaling pathway. Int. J. Biochem. Cell Biol.40: 1679\u201084 [https://www.ncbi.nlm.nih.gov/pubmed/18440852?dopt=AbstractPlus]Ngan ES https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:17945, http://www.uniprot.org/uniprot/P81277) for PrRP generates 31 and 20\u2010amino\u2010acid versions. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3665 is a 43 amino acid peptide derived from https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:29982 (http://www.uniprot.org/uniprot/P83859) and is also known as P518 or 26RFa. RFRP is an RF amide\u2010related peptide [http://www.ncbi.nlm.nih.gov/pubmed/11025660?dopt=AbstractPlus] derived from a FMRFamide\u2010related peptide precursor , which is cleaved to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3736 , neuropeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5340 , neuropeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5373 and neuropeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4016 (neuropeptide NPVF).The precursor (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:4523 (http://www.uniprot.org/uniprot/Q9NYM4) shows sequence similarities with NPFF1, NPFF2, PrRP and QRFP receptors.The orphan receptor et al. (2006) Prolactin releasing peptide (PrRP): an endogenous regulator of cell growth. Peptides27: 1099\u2010103 [https://www.ncbi.nlm.nih.gov/pubmed/16500730?dopt=AbstractPlus]Samson WK et al. (2010) Roles of prolactin\u2010releasing peptide and RFamide related peptides in the control of stress and food intake. FEBS J.277: 4998\u20105005 [https://www.ncbi.nlm.nih.gov/pubmed/21126313?dopt=AbstractPlus]Takayanagi Y NC\u2010IUPHAR Subcommittee on Prostanoid Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/21752876?dopt=AbstractPlus]) are activated by the endogenous ligands prostaglandins http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1881, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1882, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1884, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483, prostacyclin [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1915] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4482. Measurement of the potency of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1915 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4482 is hampered by their instability in physiological salt solution; they are often replaced by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1917 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1888, respectively, in receptor characterization studies.Prostanoid receptors coupling . The number of EP3 receptor (protein) variants are variable depending on species, with five in human, three in rat and three in mouse. Putative receptor(s) for prostamide F (which as yet lack molecular correlates) and which preferentially recognize http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5456 and its analogues (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1958) have been identified, together with moderate\u2010potency antagonists (e.g.http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5455) [http://www.ncbi.nlm.nih.gov/pubmed/18700152?dopt=AbstractPlus].The EPhttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3386, used in in vitro studies, has a EC50 of 15nM which is the concentration of the compound giving half\u2010maximal stimulation of inositol phosphate turnover in HEK\u2010293 cells expressing the human FP receptor [http://www.ncbi.nlm.nih.gov/pubmed/17076623?dopt=AbstractPlus].The free acid form of AL\u201012182, http://www.ncbi.nlm.nih.gov/pubmed/1830308?dopt=AbstractPlus] and STA2 [http://www.ncbi.nlm.nih.gov/pubmed/8242228?dopt=AbstractPlus] use human platelets as the source of TP receptors for competition radio\u2010ligand binding assays to determine the indicated activity values.References given alongside the TP receptor agonists I\u2010BOP and in the BEAS\u20102B human airway epithelial cell line [http://www.ncbi.nlm.nih.gov/pubmed/21173040?dopt=AbstractPlus] is available. This receptor is selectively activated by 15R\u201017,18,19,20\u2010tetranor\u201016\u2010m\u2010tolylisocarbacyclin (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5864) and 15R\u2010Deoxy 17,18,19,20\u2010tetranor\u201016m\u2010tolyl\u2010isocarbacyclin (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5865). However, molecular biological evidence for an IP2 subtype is currently lacking.Pharmacological evidence for a second IP receptor, denoted IPet al. (2011) International union of basic and clinical pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol. Rev.63: 471\u2010538 [https://www.ncbi.nlm.nih.gov/pubmed/21752876?dopt=AbstractPlus]Woodward DF NC\u2010IUPHAR Subcommittee on Proteinase\u2010activated Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/12037136?dopt=AbstractPlus]) are unique members of the GPCR superfamily activated by proteolytic cleavage of their amino terminal exodomains. Agonist proteinase\u2010induced hydrolysis unmasks a tethered ligand (TL) at the exposed amino terminus, which acts intramolecularly at the binding site in the body of the receptor to effect transmembrane signalling. TL sequences at human PAR1\u20104 are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5361, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3740, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5360 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3739, respectively. With the exception of PAR3, synthetic peptides with these sequences are able to act as agonists at their respective receptors. Several proteinases, including neutrophil elastase, cathepsin G and chymotrypsin can have inhibitory effects at PAR1 and PAR2 such that they cleave the exodomain of the receptor without inducing activation of G\u03b1q\u2010coupled calcium signalling, thereby preventing activation by activating proteinases but not by agonist peptides. Neutrophil elastase (NE) cleavage of PAR1 and PAR2 can however activate MAP kinase signaling by exposing a TL that is different from the one revealed by trypsin [http://www.ncbi.nlm.nih.gov/pubmed/22212680?dopt=AbstractPlus]. PAR2 ectivation by NE regulates inflammation and pain responses and triggers mucin secretion from airway epithelial cells [http://www.ncbi.nlm.nih.gov/pubmed/23392769?dopt=AbstractPlus].Proteinase\u2010activated receptors , generated by the action of Factor X on liver\u2010derived prothrombin ; trypsin, generated by the action of enterokinase on pancreatic\u2010derived trypsinogen ; tryptase, a family of enzymes secreted from mast cells; cathepsin G generated from leukocytes; liver\u2010derived protein C generated in plasma by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4453 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6655 .Endogenous serine proteases (EC 3.4.21.) active at the proteinase\u2010activated receptors include: et al. (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther.130: 248\u201082 https://www.ncbi.nlm.nih.gov/pubmed/21277892?dopt=AbstractPlusAdams MN et al. (2012) Allosteric modulation of protease\u2010activated receptor signaling. Mini Rev Med Chem12: 804\u201011 https://www.ncbi.nlm.nih.gov/pubmed/22681248?dopt=AbstractPlusCanto I et al. (2010) The role of thrombin and protease\u2010activated receptors in pain mechanisms. Thromb. Haemost.103: 1145\u201051 https://www.ncbi.nlm.nih.gov/pubmed/20431855?dopt=AbstractPlusGarc\u00eda PS et al. (2002) International Union of Pharmacology. XXVIII. Proteinase\u2010activated receptors. Pharmacol. Rev.54: 203\u201017 https://www.ncbi.nlm.nih.gov/pubmed/12037136?dopt=AbstractPlusHollenberg MD et al. (2012) Targeting proteinase\u2010activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov11: 69\u201086 https://www.ncbi.nlm.nih.gov/pubmed/22212680?dopt=AbstractPlusRamachandran R et al. (2010) Signal transduction by protease\u2010activated receptors. Br. J. Pharmacol.160: 191\u2010203 https://www.ncbi.nlm.nih.gov/pubmed/20423334?dopt=AbstractPlusSoh UJ NC\u2010IUPHAR Subcommittee on the QRFP receptornomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/28613414?dopt=AbstractPlus]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [http://www.ncbi.nlm.nih.gov/pubmed/11574155?dopt=AbstractPlus]. However, the reported cDNA (AF411117) is a chimera with bases 1\u2010127 derived from chromosome 1 and bases 155\u20101368 derived from chromosome 4. When corrected, QRFPR encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors.The human gene encoding the QRFP receptor (http://www.guidetopharmacology.org/GRAC/ (http://www.uniprot.org/uniprot/9NYM4) shows sequence similarities with the QRFP receptor, as well as with the NPFF1, NPFF2, and PrRP receptors.The orphan receptor et al. (2011) The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front Neuroendocrinol32: 387\u201097 https://www.ncbi.nlm.nih.gov/pubmed/21530572?dopt=AbstractPlusChartrel N et al. (2006) Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP. Peptides27: 1073\u201086 https://www.ncbi.nlm.nih.gov/pubmed/16500002?dopt=AbstractPlusFukusumi S et al. (2017) The Arg\u2010Phe\u2010amide peptide 26RFa/glutamine RF\u2010amide peptide and its receptor: IUPHAR Review 24. Br. J. Pharmacol.174: 3573\u20103607 https://www.ncbi.nlm.nih.gov/pubmed/28613414?dopt=AbstractPlusLeprince J NC\u2010IUPHAR Subcommittee on Relaxin family peptide receptorsnomenclature as agreed by the ) may be divided into two pairs, RXFP1/2 and RXFP3/4. Endogenous agonists at these receptors are heterodimeric peptide hormones structurally related to insulin: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1988 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1989 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1990 , insulin\u2010like peptide 3 ) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2000 . Species homologues of relaxin have distinct pharmacology and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1989 interacts with RXFP1, RXFP2 and RXFP3, whereas mouse and rat relaxin selectively bind to and activate RXFP1 [http://www.ncbi.nlm.nih.gov/pubmed/15956680?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1990 is the ligand for RXFP3 but it also binds to RXFP1 and RXFP4 and has differential affinity for RXFP2 between species [http://www.ncbi.nlm.nih.gov/pubmed/15956681?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2000 is the ligand for RXFP4 but is a weak antagonist of RXFP3. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1989 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1995 have multiple complex binding interactions with RXFP1 [http://www.ncbi.nlm.nih.gov/pubmed/27088579?dopt=AbstractPlus] and RXFP2 [http://www.ncbi.nlm.nih.gov/pubmed/30594862?dopt=AbstractPlus] which direct the N\u2010terminal LDLa modules of the receptors together with a linker domain to act as a tethered ligand to direct receptor signaling [http://www.ncbi.nlm.nih.gov/pubmed/16963451?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2000 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1990 interact with their receptors using distinct residues in their B\u2010chains for binding, and activation, respectively .Relaxin family peptide receptors is the cognate peptide ligand for RXFP1 and is in extended Phase III clinical trials for the treatment of acute heart failure [http://www.ncbi.nlm.nih.gov/pubmed/23273292?dopt=AbstractPlus]. Relaxin has vasodilatory, anti\u2010fibrotic, angiogenic, anti\u2010apoptotic and anti\u2010inflammatory effects. A small molecule allosteric agonists http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8322 has been developed , and a relaxin B\u2010chain mimetic peptide B7\u201033 has been developed which that has cell specific signaling properties [http://www.ncbi.nlm.nih.gov/pubmed/30155023?dopt=AbstractPlus]. The antifibrotic actions of relaxin are dependent on the angiotensin receptor AT2 [http://www.ncbi.nlm.nih.gov/pubmed/24429402?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1995 is the cognate peptide for RXFP2 and is a circulating hormone that in males is essential for testicular descent in utero [http://www.ncbi.nlm.nih.gov/pubmed/10391220?dopt=AbstractPlus] and in females has important roles in ovarian follicle function [http://www.ncbi.nlm.nih.gov/pubmed/30204868?dopt=AbstractPlus]. In adults, INSL3 has potential roles in testicular function [http://www.ncbi.nlm.nih.gov/pubmed/20952422?dopt=AbstractPlus] and the musculoskeletal system [http://www.ncbi.nlm.nih.gov/pubmed/30625346?dopt=AbstractPlus]. RXFP2 is also present in brain, associated with cortico\u2010thalamic motor circuits [http://www.ncbi.nlm.nih.gov/pubmed/18706979?dopt=AbstractPlus]. cAMP elevation is the major signalling pathway for both RXFP1 and RXFP2 , but RXFP1 also activates MAP kinases, nitric oxide signalling, and tyrosine kinase phosphorylation; and relaxin can interact with glucocorticoid receptors [http://www.ncbi.nlm.nih.gov/pubmed/17293890?dopt=AbstractPlus]. Receptor expression profiles suggest that RXFP3 is a brain neuropeptide receptor and RXFP4 a gut hormone receptor. The brain relaxin\u20103/RXFP3 system modulates feeding via effects in hypothalamus , anxiety , reward and motivated, goal\u2010directed behaviours , and spatial and social memory . Of the other relaxin peptides, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1990 is anagonist atRXFP3 and RXFP4 whereashttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2000 is an agonist at RXFP4 and a weak antagonist at RXFP3. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2000 is secreted from enteroendocrine L cells and the INSL5/RXFP4 system affects food intake [http://www.ncbi.nlm.nih.gov/pubmed/25028498?dopt=AbstractPlus] and glucose homeostasis [http://www.ncbi.nlm.nih.gov/pubmed/25514935?dopt=AbstractPlus]. RXFP3 and RXFP4 couple to Gi/o and inhibit adenylyl cyclase , and also cause Erk1/2 phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/20159943?dopt=AbstractPlus]. RXFP4 also causes phosphorylation of p38MAPK, Akt and S6RP [http://www.ncbi.nlm.nih.gov/pubmed/27243554?dopt=AbstractPlus] and GLP\u20101 secretion in vitro [http://www.ncbi.nlm.nih.gov/pubmed/29535183?dopt=AbstractPlus]. There is evidence that at RXFP3, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1989 is a biased ligand compared to the cognate ligand http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1990 [http://www.ncbi.nlm.nih.gov/pubmed/20159943?dopt=AbstractPlus].et al. (2013) Relaxin family peptides and their receptors. Physiol. Rev.93: 405\u201080 https://www.ncbi.nlm.nih.gov/pubmed/23303914?dopt=AbstractPlusBathgate RA et al. (2010) Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol7: 48\u201058 https://www.ncbi.nlm.nih.gov/pubmed/19935741?dopt=AbstractPlusDu XJ et al. (2015) International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1\u20104, the receptors for relaxin family peptides. Pharmacol. Rev.67: 389\u2010440 https://www.ncbi.nlm.nih.gov/pubmed/25761609?dopt=AbstractPlusHalls ML etal. (2011) Relaxin family peptides in the male reproductive system\u2010a critical appraisal. Mol. Hum. Reprod.17: 71\u201084 https://www.ncbi.nlm.nih.gov/pubmed/20952422?dopt=AbstractPlusIvell R 1\u2010SST5; NC\u2010IUPHAR Subcommittee on Somatostatin Receptorsnomenclature as agreed by the [http://www.ncbi.nlm.nih.gov/pubmed/30232095?dopt=AbstractPlus]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin\u201014 ) and somatostatin\u201028 ). http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2007 {Mouse, Rat} has also been suggested to be an endogenous ligand for somatostatin receptors [http://www.ncbi.nlm.nih.gov/pubmed/8622767?dopt=AbstractPlus].Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor , has affinity for SST2, SST4 and SST5 receptors and is a potent inhibitor of GH secretion .. The Succinate receptor has been identified as being activated by physiological levels of the Kreb's cycle intermediate succinate and other dicarboxylic acids such as maleate in 2004. Since its pairing with its endogenous ligand, the receptor has been the focus of intensive research and its role has been evidenced in various (patho)physiological processes such as regulation of renin production, retinal angiogenesis, inflammation or immune response.SUCNR1, one giving a protein of 330 amino acids (AA) and the other one 334\u2010AA. Wittenberger et al. [http://www.ncbi.nlm.nih.gov/pubmed/11273702?dopt=AbstractPlus] noted that the 330\u2010AA protein was more likely to be expressed given the Kozak sequence surrounding the second ATG. Some databases report SUCNR1 as being 334\u2010AA long.In humans, there is the possibility of two open\u2010reading frames (ORFs) for et al. (2012) The succinate receptor as a novel therapeutic target for oxidative and metabolic stress\u2010related conditions. Front Endocrinol (Lausanne)3:22 [https://www.ncbi.nlm.nih.gov/pubmed/22649411?dopt=AbstractPlus]Ariza AC et al. (2016) GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun. Signal14:3[https://www.ncbi.nlm.nih.gov/pubmed/26759054?dopt=AbstractPlus]de Castro Fonseca M et al. (2016) Insight into SUCNR1 (GPR91) structure and function. Pharmacol. Ther.159: 56\u201065[https://www.ncbi.nlm.nih.gov/pubmed/26808164?dopt=AbstractPlus]Gilissen J et al. (2018) Multiple faces of succinate beyond metabolism in blood. Haematologica103: 1586\u20101592[https://www.ncbi.nlm.nih.gov/pubmed/29954939?dopt=AbstractPlus]Grimolizzi F NC\u2010IUPHARprovisional nomenclature as recommended by [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by the endogenous peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2098 (SP), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2089) , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2090 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2091 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3667 (https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:11517) . The neurokinins (A and B) are mammalian members of the tachykinin family, which includes peptides of mammalian and nonmammalian origin containing the consensus sequence: Phe\u2010x\u2010Gly\u2010LeuMet. Marked species differences in in vitro pharmacology exist for all three receptors, in the context of nonpeptide ligands. Antagonists such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3490 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7623 were approved by FDA and EMA, in combination with other antiemetic agents, for the prevention of nausea and vomiting associated with emetogenic cancer chemotherapy.Tachykinin receptors on the NK1 receptor. There are additional subtypes of tachykinin receptor;an orphan receptor (Swis\u2010sProt http://www.ncbi.nlm.nih.gov/protein/266702/) with structural similarities to the NK3 receptor was found to respond to NKB when expressed in Xenopus oocytes or Chinese hamster ovary cells .The NKet al. (2011) Neurokinin\u20101 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann. N. Y. Acad. Sci.1217: 83\u201095[https://www.ncbi.nlm.nih.gov/pubmed/21091716?dopt=AbstractPlus]Douglas SD et al. (2005) International Union of Pharmacology. XLVI. G protein\u2010coupled receptor list. Pharmacol Rev57: 279\u2010288[https://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]Foord SM et al. (2008) The neurokinin 1 receptor: a potential new target for anti\u2010platelet therapy? Curr Opin Pharmacol8: 114\u20109[https://www.ncbi.nlm.nih.gov/pubmed/18296119?dopt=AbstractPlus]Jones S et al. (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol. Rev.94: 265\u2010301[https://www.ncbi.nlm.nih.gov/pubmed/24382888?dopt=AbstractPlus]Steinhoff MS et al. (2018) Crystal structure of the human NK_1 tachykinin receptor. Proc. Natl. Acad. Sci. U.S.A.115: 13264\u201013269[https://www.ncbi.nlm.nih.gov/pubmed/30538204?dopt=AbstractPlus]Yin J NC\u2010IUPHARprovisional nomenclature as recommended by [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by the endogenous tripeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2139 (pGlu\u2010His\u2010ProNH2). http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2139 and TRH analogues fail to distinguish TRH1 and TRH2 receptors [http://www.ncbi.nlm.nih.gov/pubmed/12683933?dopt=AbstractPlus]. [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3836) is able to label both TRH1 and TRH2 receptors with Kd values of 13 and 9 nM respectively. Synthesis and biology of ring\u2010modified L\u2010Histidine containing TRH analogues has been reported [http://www.ncbi.nlm.nih.gov/pubmed/26854379?dopt=AbstractPlus].Thyrotropin\u2010releasing hormone (TRH) receptors TRH\u2010like peptides. Physiol Res60: 207\u201015[https://www.ncbi.nlm.nih.gov/pubmed/21114375?dopt=AbstractPlus]B\u00edlek R et al. (2005) International Union of Pharmacology. XLVI. G protein\u2010coupled receptor list. Pharmacol Rev57: 279\u2010288[https://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]Foord SM Front Neuroendocrinol31: 134\u201056[https://www.ncbi.nlm.nih.gov/pubmed/20074584?dopt=AbstractPlus]Nillni EA. (2010) Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. http://www.ncbi.nlm.nih.gov/pubmed/11459929?dopt=AbstractPlus], where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor (nomenclature as agreed by theNC\u2010IUPHAR Subcommittee for the Trace amine receptor [http://www.ncbi.nlm.nih.gov/pubmed/19325074?dopt=AbstractPlus]) has affinity for the endogenous trace amines http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2150, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2144 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2149 in addition to the classical amine http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 [http://www.ncbi.nlm.nih.gov/pubmed/11459929?dopt=AbstractPlus]. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain [http://www.ncbi.nlm.nih.gov/pubmed/19482011?dopt=AbstractPlus] with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co\u2010expressed [http://www.ncbi.nlm.nih.gov/pubmed/21670104?dopt=AbstractPlus]. In addition to trace amines, receptors can be activated by amphetamine\u2010like psychostimulants, and endogenous thyronamines.Trace amine\u2010associated receptors were discovered from a search for novel 5\u2010HT receptors for detailed discussion. The product of the gene TAAR2 appears to respond to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2144 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2150 and to couple through Gs [http://www.ncbi.nlm.nih.gov/pubmed/11459929?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_168, in some individuals, and http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_169 are pseudogenes in man, although functional in rodents. The signalling characteristics and pharmacology of http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_170 , http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_171http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_171 , http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_172 and http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_173http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=115#show_object_173 are lacking. The thyronamines, endogenous derivatives of thyroid hormone, have affinity for rodent cloned trace amine receptors, including TA1 [http://www.ncbi.nlm.nih.gov/pubmed/15146179?dopt=AbstractPlus]. An antagonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5457 has recently been described with a pKi of 9.1 at the mouse TA1 but >5.3 for human TA1 [http://www.ncbi.nlm.nih.gov/pubmed/21237643?dopt=AbstractPlus].In addition to TAet al. (2009) International Union of Pharmacology. LXXII. Recommendations for trace amine receptor nomenclature. Pharmacol. Rev.61: 1\u20108 [https://www.ncbi.nlm.nih.gov/pubmed/19325074?dopt=AbstractPlus]Maguire JJ et al. (2016) Trace Amines and the Trace Amine\u2010Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front Neurosci10: 148 [https://www.ncbi.nlm.nih.gov/pubmed/27092049?dopt=AbstractPlus]Pei Y NC\u2010IUPHAR Subcommittee on the Urotensin receptornomenclature as agreed by the ) is activated by the endogenous dodecapeptide http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2153 , originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish . Several structural forms of U\u2010II exist in fish and amphibians. The goby orthologue was used to identify U\u2010II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 . Human http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2153), an 11\u2010amino\u2010acid peptide [http://www.ncbi.nlm.nih.gov/pubmed/9861051?dopt=AbstractPlus], retains the cyclohexapeptide sequence of goby U\u2010II that is thought to beimportant in ligand binding . This sequence is also conserved in the deduced amino\u2010acid sequence of rat http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2155 {Rat} (14 amino\u2010acids) and mouse http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2154 {Mouse} (14 amino\u2010acids), although the N\u2010terminal is more divergent from the human sequence [http://www.ncbi.nlm.nih.gov/pubmed/10486557?dopt=AbstractPlus]. A second endogenous ligand for the UT has been discovered in rat [http://www.ncbi.nlm.nih.gov/pubmed/17628210?dopt=AbstractPlus]. This is the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2156 , an octapeptide that is derived from a different gene, but shares the C\u2010terminal sequence (CFWKYCV) common to U\u2010II from other species. Identical sequences to rat http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2156) are predicted for the mature mouse and human peptides [http://www.ncbi.nlm.nih.gov/pubmed/18710417?dopt=AbstractPlus]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [http://www.ncbi.nlm.nih.gov/pubmed/25535277?dopt=AbstractPlus].The urotensin\u2010II (U\u2010II) receptor elicits both vasoconstrictor and vasodilator responses.In the human vasculature, human et al. (2005) International Union of Pharmacology. XLVI. G protein\u2010coupled receptor list. Pharmacol Rev57: 279\u2010288[https://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]Foord SM et al. (2010) A rat brain atlas of urotensin\u2010II receptor expression and a review of central urotensin\u2010II effects. Naunyn Schmiedebergs Arch. Pharmacol.382:1\u201031[https://www.ncbi.nlm.nih.gov/pubmed/20422157?dopt=AbstractPlus]Hunt BD et al. (2010) Urotensin\u2010II receptor modulators as potential drugs. J. Med. Chem.53: 2695\u2010708[https://www.ncbi.nlm.nih.gov/pubmed/20043680?dopt=AbstractPlus]Maryanoff BE et al. (2010) Role of urotensin II in health and disease. Am.J.Physiol.Regul.Integr.Comp. Physiol.298: R1156\u201072[https://www.ncbi.nlm.nih.gov/pubmed/20421634?dopt=AbstractPlus]Ross B et al. (2015) International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II\u2010related peptide, and their receptor: from structure to function. Pharmacol. Rev.67: 214\u201058[https://www.ncbi.nlm.nih.gov/pubmed/25535277?dopt=AbstractPlus]Vaudry H NC\u2010IUPHARnomenclature as recommended by [http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=AbstractPlus]) are activated by the endogenous cyclic nonapeptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2168 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2174 . These peptides are derived from precursors which also produce neurophysins . Vasopressin and oxytocin differ at only 2 amino acids (positions 3 and 8). There are metabolites of these neuropeptides that may be biologically active [http://www.ncbi.nlm.nih.gov/pubmed/8258377?dopt=AbstractPlus].Vasopressin (AVP) and oxytocin (OT) receptors exhibit low affinity at human V2 receptors [http://www.ncbi.nlm.nih.gov/pubmed/9773787?dopt=AbstractPlus]. Similarly, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2170 is more V2 selective in the rat than in the human [http://www.ncbi.nlm.nih.gov/pubmed/9264324?dopt=AbstractPlus]. The gene encoding the V2 receptor is polymorphic in man, underlying nephrogenic diabetes insipidus [http://www.ncbi.nlm.nih.gov/pubmed/9756088?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2187 is selective only for the human and bovine V1B receptors [http://www.ncbi.nlm.nih.gov/pubmed/12446593?dopt=AbstractPlus], while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2191 has high affinity for the rat V1B receptor [http://www.ncbi.nlm.nih.gov/pubmed/17300166?dopt=AbstractPlus]. Knockouts of vasopressin and oxytocin receptors have systemspecific defects which include behavioural deficits .Vasopressin and oxytocin receptors have a characteristic and sometimes overlapping distribution in a number of tissues including brain. There are phylogenetic, ontogenetic and sex\u2010specific differences in the levels and distribution of these receptors, particularly in the brain. The VAm. J. Physiol., Cell Physiol.303: C1115\u201024[https://www.ncbi.nlm.nih.gov/pubmed/22932685?dopt=AbstractPlus]Knepper MA. (2012) Systems biology in physiology: the vasopressin signaling network in kidney. et al. (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev.92: 1813\u201064[https://www.ncbi.nlm.nih.gov/pubmed/23073632?dopt=AbstractPlus]Koshimizu TA et al. (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J. Neuroendocrinol.24: 609\u201028[https://www.ncbi.nlm.nih.gov/pubmed/22375852?dopt=AbstractPlus]Manning M et al. (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci.12: 524\u201038[https://www.ncbi.nlm.nih.gov/pubmed/21852800?dopt=AbstractPlus]Meyer\u2010Lindenberg A et al. (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci.35: 649\u201059[https://www.ncbi.nlm.nih.gov/pubmed/22974560?dopt=AbstractPlus]Neumann ID NC\u2010IUPHAR Subcommittee on Vasoactive Intestinal Peptide Receptorsnomenclature as agreed by the ) are activated by the endogenous peptides http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1152 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2258 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2257), peptide histidine isoleucineamide , peptide histidine methionineamide (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2274)) and peptide histidine valine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3706)). VPAC1 and VPAC2 receptors display comparable affinity for the PACAP peptides, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2257) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2258), and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1152 , whereas http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2257 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2258) are >100 fold more potent than http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1152) as agonists of most isoforms of the PAC1 receptor. However, one splice variant of the human PAC1 receptor has been reported to respond to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2258), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2257) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1152) with comparable affinity [http://www.ncbi.nlm.nih.gov/pubmed/10583729?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2272 [http://www.ncbi.nlm.nih.gov/pubmed/11068102?dopt=AbstractPlus] has been used as a selective VPAC2 receptor antagonist in a number of physiological studies, but has been reported to have significant activity at VPAC1 and PAC1 receptors [http://www.ncbi.nlm.nih.gov/pubmed/16930633?dopt=AbstractPlus]. The selective PAC1 receptor agonist http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2264, was extracted from the salivary glands of sand flies and has no sequence homology to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1152) or the PACAP peptides [http://www.ncbi.nlm.nih.gov/pubmed/8995389?dopt=AbstractPlus]. Two deletion variants of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2264, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3305 [http://www.ncbi.nlm.nih.gov/pubmed/9928019?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2265 [http://www.ncbi.nlm.nih.gov/pubmed/10438479?dopt=AbstractPlus] have been reported to be PAC1 receptor antagonists, but these peptides have not been extensively characterised.Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase\u2010activating peptide (PACAP) receptors and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2258); these might result from differences in G protein coupling and second messenger mechanisms [http://www.ncbi.nlm.nih.gov/pubmed/8967982?dopt=AbstractPlus], or from alternative splicing of PAC1 receptor mRNA [http://www.ncbi.nlm.nih.gov/pubmed/8396727?dopt=AbstractPlus].Subtypes of PACet al. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase\u2010activating polypeptide. Pharmacol Rev50: 265\u2010270[https://www.ncbi.nlm.nih.gov/pubmed/9647867?dopt=AbstractPlus]Harmar AJ et al. (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase\u2010activating polypeptide: IUPHAR review 1. Br. J. Pharmacol.166: 4\u201017[https://www.ncbi.nlm.nih.gov/pubmed/22289055?dopt=AbstractPlus]Harmar AJ et al. (2012) Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides46: 61\u201070[https://www.ncbi.nlm.nih.gov/pubmed/21621841?dopt=AbstractPlus]Reglodi D et al. (2012) Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? J. Mol. Neurosci.48: 403\u201012[https://www.ncbi.nlm.nih.gov/pubmed/22610912?dopt=AbstractPlus]Smith CB"} {"text": "This article has been corrected: The correct author information is given below:Satdarshan P. Monga1475-1490. https://doi.org/10.18632/oncotarget.26668Original article: Oncotarget. 2019; 10:1475\u20131490."} {"text": "Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point\u2010in\u2010time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14752. Enzymes are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein\u2010coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid\u20102019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC\u2010IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands ( The Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC\u2010IUBMB) classifies enzymes into families, using a four number code, on the basis of the reactions they catalyse. There are six main families:EC 1.\u2010.\u2010.\u2010 Oxidoreductases;EC 2.\u2010.\u2010.\u2010 Transferases;EC 3.\u2010.\u2010.\u2010 Hydrolases;EC 4.\u2010.\u2010.\u2010 Lyases;EC 5.\u2010.\u2010.\u2010 Isomerases;EC 6.\u2010.\u2010.\u2010 Ligases.http://www.ncbi.nlm.nih.gov/pubmed/17139284?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24016212?dopt=AbstractPlus], which is not to say that they are of modest importance.Although there are many more enzymes than receptors in biology, and many drugs that target prokaryotic enzymes are effective medicines, overall the number of enzyme drug targets is relatively small .A number of organophosphorus compounds inhibit acetylcholinesterase and cholinesterase irreversibly, including pesticides such as chlorpyrifos\u2010oxon, and nerve agents such as tabun, soman and sarin. AChE is unusual in its exceptionally high turnover rate which has been calculated at 740 000/min/molecule , which is insensitive to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5179 [http://www.ncbi.nlm.nih.gov/pubmed/20147294?dopt=AbstractPlus]. Other forms of adenosine deaminase act on ribonucleic acids and may be divided into two families: https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:228 (http://www.uniprot.org/uniprot/Q9BUB4) deaminates transfer RNA; https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:225 ; https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:226 andhttps://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:227 act on double\u2010stranded RNA. Particular polymorphisms of the ADA gene result in loss\u2010of\u2010function and severe combined immunodeficiency syndrome. Adenosine deaminase is able to complex with dipeptidyl peptidase IV to form a cell\u2010surface activity [http://www.ncbi.nlm.nih.gov/pubmed/8101391?dopt=AbstractPlus].An extracellular adenosine deaminase activity, termed ADA2 or adenosine deaminase growth factor Adenosinergic signaling in epilepsy. et al. (2015) Moonlighting adenosine deaminase: a target protein for drug development. Med Res Rev35: 85\u2013125 https://www.ncbi.nlm.nih.gov/pubmed/24933472?dopt=AbstractPlusCort\u00e9s A Nat Rev Mol Cell Biol17: 83\u201396 https://www.ncbi.nlm.nih.gov/pubmed/26648264?dopt=AbstractPlusNishikura K. (2016) A\u2010to\u2010I editing of coding and non\u2010coding RNAs by ADARs. Neuroscience338: 1\u201318 https://www.ncbi.nlm.nih.gov/pubmed/26500181?dopt=AbstractPlusSawynok J. (2016) Adenosine receptor targets for pain. et al. (2015) Role of S\u2010adenosylhomocysteine in cardiovascular disease and its potential epi\u2010genetic mechanism. Int. J. Biochem. Cell Biol. 67: 158\u201366 https://www.ncbi.nlm.nih.gov/pubmed/26117455?dopt=AbstractPlusXiao Y http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276 as co\u2010substrate and co\u2010factor, respectively. In humans, as well as in other mammals, there are two distinct L\u2010Tryptophan hydroxylase 2 genes. In humans, these genes are located on chromosomes 11 and 12 and encode two different homologous enzymes, TPH1 and TPH2.The amino acid hydroxylases (monooxygenases), EC.1.14.16.\u2010, are iron\u2010containing enzymes which utilise molecular oxygen and et al. (2015) Serotonergic gene variation in substance use pharmacotherapy: a systematic review. Pharmacogenomics16: 1307\u201314 https://www.ncbi.nlm.nih.gov/pubmed/26265436?dopt=AbstractPlusBauer IE et al. (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys508: 1\u201312 https://www.ncbi.nlm.nih.gov/pubmed/21176768?dopt=AbstractPlusDaubner SC et al. (2013) Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life65: 341\u20139 https://www.ncbi.nlm.nih.gov/pubmed/23457044?dopt=AbstractPlusFlydal MI et al. (2013) Mechanisms of tryptophan and tyrosine hydroxylase. IUBMB Life65: 350\u20137 https://www.ncbi.nlm.nih.gov/pubmed/23441081?dopt=AbstractPlusRoberts KM et al. (2014) Complex molecular regulation of tyrosine hydroxylase. J Neural Transm121: 1451\u201381 https://www.ncbi.nlm.nih.gov/pubmed/24866693?dopt=AbstractPlusTekin I et al. (2017) Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets21: 167\u2013180 https://www.ncbi.nlm.nih.gov/pubmed/27973928?dopt=AbstractPlusWalen K http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 is a basic amino acid with a guanidino sidechain. As an amino acid, metabolism of L\u2010arginine to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725, catalysed by arginase, forms the last step of the urea production cycle. L\u2010Ornithine may be utilised as a precursor of polyamines (see http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=240) or recycled via http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5324 to L\u2010arginine. L\u2010Arginine http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=240#Decarboxylases to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4127, although the prominence of this pathway in human tissues is uncertain. L\u2010Arginine may be used as a precursor for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5325 formation in the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496 synthesis pathway under the influence of arginine:glycine amidinotransferase with L\u2010ornithine as a byproduct. Nitric oxide synthase uses L\u2010arginine to generate nitric oxide, with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 also as a byproduct. L\u2010Arginine in proteins may be subject to post\u2010translational modification through methylation, catalysed by protein arginine methyltransferases. Subsequent proteolysis can liberate asymmetric http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5229 (ADMA), which is an endogenous inhibitor of nitric oxide synthase activities. ADMA is hydrolysed by dimethylarginine dimethylhydrolase activities to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5177.N\u2010methyltransferases encompass histone arginine N\u2010methyltransferases and myelin basic protein N\u2010methyltransferases . They are dimeric or tetrameric enzymes which use http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4786 as a methyl donor, generating http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5265 as a by\u2010product. They generate both mono\u2010methylated and di\u2010methylated products; these may be symmetric (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5271) or asymmetric (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5229) versions, where both guanidine nitrogens are monomethylated or one of the two is dimethylated, respectively.Protein arginine http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=254.Information on members of this family may be found in the http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=3.5.3.1) are manganese\u2010containing isoforms, which appear to show differential distribution, where the ARG1 isoform predominates in the liver and erythrocytes, while ARG2 is associated more with the kidney.Arginase are cytoplasmic enzymes which hydrolyse http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5229 to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5177 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722.Dimethylarginine dimethylaminohydrolases are a family of oxidoreductases that synthesize nitric oxide (NO.) via the NADPH and oxygen\u2010dependent consumption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 with the resultant by\u2010product, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722. There are 3 NOS isoforms and they are related by their capacity to produce NO, highly conserved organization of functional domains and significant homology at the amino acid level. NOS isoforms are functionally distinguished by the cell type where they are expressed, intracellular targeting and transcriptional and post\u2010translation mechanisms regulating enzyme activity. The nomenclature suggested by NC\u2010IUPHAR of NOS I, II and III [http://www.ncbi.nlm.nih.gov/pubmed/9228663?dopt=AbstractPlus] has not gained wide acceptance, and the 3 isoforms are more commonly referred to as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) which reflect the location of expression (nNOS and eNOS) and inducible expression (iNOS). All are dimeric enzymes that shuttle electrons from NADPH, which binds to a C\u2010terminal reductase domain, through the flavins FAD and FMN to the oxygenase domain of the other monomer to enable the BH4\u2010dependent reduction of heme bound oxygen for insertion into the substrate, L\u2010arginine. Electron flow from reductase to oxygenase domain is controlled by calmodulin binding to canonical calmodulin binding motif located between these domains. eNOS and nNOS isoforms are activated at concentrations of calcium greater than 100 nM, while iNOS shows higher affinity for Ca2+/http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 with great avidity and is essentially calcium\u2010independent and constitutively active. Efficient stimulus\u2010dependent coupling of nNOS and eNOS is achieved via subcellular targeting through respective N\u2010terminal PDZ and fatty acid acylation domains whereas iNOS is largely cytosolic and function is independent of intracellular location. nNOS is primarily expressed in the brain and neuronal tissue, iNOS in immune cells such as macrophages and eNOS in the endothelial layer of the vasculature although exceptions in other cells have been documented. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5213 and related modified arginine analogues are inhibitors of all three isoforms, with IC50 values in the micromolar range.Nitric oxide synthases Nitric Oxide Signaling in T Cell\u2010Mediated Immunity et al. (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov14: 623\u201341 https://www.ncbi.nlm.nih.gov/pubmed/26265312?dopt=AbstractPlusLundberg JO et al. (2016) Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene575: 584\u201399 https://www.ncbi.nlm.nih.gov/pubmed/26428312?dopt=AbstractPlusOliveira\u2010Paula GH BrJPharmacol176: 177\u2013188 https://www.ncbi.nlm.nih.gov/pubmed/30402946Stuehr DJ and Haque MM (2019) Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br J Pharmacol176: 147\u2013154 https://www.ncbi.nlm.nih.gov/pubmed/30357812Wallace JL (2019) Nitric oxide in the gastrointestinal tract: opportunities for drug development. et al. (2016) Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers. J Diabetes Res2016: 1982096 https://www.ncbi.nlm.nih.gov/pubmed/26770984?dopt=AbstractPlusLai L et al. (1997) International Union of Pharmacology Nomenclature in Nitric Oxide Re\u2010search. Pharmacol. Rev. 49: 137\u201342 https://www.ncbi.nlm.nih.gov/pubmed/9228663?dopt=AbstractPlusMoncada S et al. (2015) The crucial role of l\u2010arginine in macrophage activation: What you need to know about it. Life Sci. 137: 44\u20138 https://www.ncbi.nlm.nih.gov/pubmed/26188591?dopt=AbstractPlusPekarova M et al. (2017) Arginase Inhibitors: A Rational Approach Over One Century. Med Res Rev37: 475\u2013513 https://www.ncbi.nlm.nih.gov/pubmed/27862081?dopt=AbstractPlusPudlo M et al. (2016) Benefits of L\u2010Arginine on Cardiovascular System. Mini Rev Med Chem16: 94\u2013103 https://www.ncbi.nlm.nih.gov/pubmed/26471966?dopt=AbstractPlusSudar\u2010Milovanovic E Carbonic anhydrases facilitate the interconversion of water and carbon dioxide with bicarbonate ions and protons (EC 4.2.1.1), with over a dozen gene products identified in man. The enzymes function in acid\u2010base balance and the movement of carbon dioxide and water. They are targetted for therapeutic gain by particular antiglaucoma agents and diuretics.Bioorg Med Chem21: 1570\u201370 https://www.ncbi.nlm.nih.gov/pubmed/22607884Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F and Sly WS. (2013) Structure, function and applications of carbonic anhydrase isozymes. Expert Opin Drug Discov12: 61\u201388 https://www.ncbi.nlm.nih.gov/pubmed/27783541Supuran CT (2017) Advances in structure\u2010based drug discovery of carbonic anhydrase inhibitors. Future Med Chem10: 561\u2013573 https://www.ncbi.nlm.nih.gov/pubmed/29478330Supuran CT (2018) Carbonic anhydrase activators. 3\u2010 or CO2 into target molecules. Two groups of carboxylase activities, some of which are bidirectional, can be defined on the basis of the cofactor requirement, making use of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 (EC 6.4.1.\u2010) or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5286 (EC 4.1.1.\u2010).The carboxylases allow the production of new carbon\u2010carbon bonds by introducing HCOhttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2478 are able to activate ACC1/ACC2 activity allosterically. PCC is able to function in forward and reverse modes as a ligase (carboxylase) or lyase (decarboxylase) activity, respectively. Loss\u2010of\u2010function mutations in GGCX are associated with clotting disorders.Dicarboxylic acids including 2 and the indicated products from acidic substrates, requiring http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 as a co\u2010factor.The decarboxylases generate COet al. (2010) Structural biology of S\u2010adenosylmethionine decarboxylase. Amino Acids38: 451\u201360 . Complexes involving SPT3 appeared more broad in substrate selectivity, with incorporation of myristoylCoA prominent for SPT1/SPT3/ssSPTa complexes, while SP1/SPT3/ssSPTb complexes had similar activity with C16, C18 and C20 acylCoAs [http://www.ncbi.nlm.nih.gov/pubmed/19416851?dopt=AbstractPlus].The functional enzyme is a heterodimer of SPT1 (LCB1) with either SPT2 (LCB2) or SPT3 (LCB2B); the small subunits of SPT (ssSPTa or ssSPTb) bind to the heterodimer to enhance enzymatic activity. The complexes of SPT1/SPT2/ssSPTa and SPT1/SPT2/ssSPTb were most active with palmitoylCoA as substrate, with the latter complex also showing some activity with stearoylCoA .DEGS1 activity is inhibited by a number of natural products, including Following translocation from the ER to the Golgi under the influence of the ceramide transfer protein, sphingomyelin synthases allow the formation of sphingomyelin by the transfer of phosphocholine from the phospholipid phosphatidylcholine. Sphingomyelin synthase\u2010related protein 1 is structurally related but lacks sphingomyelin synthase activity.Also known as sphingomyelinase.http://www.ncbi.nlm.nih.gov/pubmed/8808629?dopt=AbstractPlus] and polycomb protein EED [http://www.ncbi.nlm.nih.gov/pubmed/20080539?dopt=AbstractPlus] allow coupling between TNF receptors and neutral sphingomyelinase phosphodiesterases.Protein FAN . In normal cells, tissues and organs, precise co\u2010ordination of these proteins ensures expression of only those genes required to specify phenotype or which are required at specific times, for specific functions. Chromatin modifications allow DNA modifications not coded by the DNA sequence to be passed on through the genome and underlies heritable phenomena such as X chromosome inactivation, aging, heterochromatin formation, reprogramming, and gene silencing (epigenetic control).Chromatin modifying enzymes, and other chromatin\u2010modifying proteins, fall into three broad categories: http://www.ncbi.nlm.nih.gov/pubmed/17320507?dopt=AbstractPlus].To date at least eight distinct types of modifications are found on histones. These include small covalent modifications such as acetylation, methylation, and phosphorylation, the attachment of larger modifiers such as ubiquitination or sumoylation, and ADP ribosylation, proline isomerization and deimination. Chromatin modifications and the functions they regulate in cells are reviewed by Kouzarides (2007) , where awide variety of cellular and protein abberations are known to perturb chromatin structure, gene transcription and ultimately cellular pathways . Due to the reversible nature of epigenetic modifications, chromatin regulators are very tractable targets for drug discovery and the development of novel therapeutics. Indeed, small molecule inhibitors of writers and erasers are already being used in the clinic. The search for the next generation of compounds with improved specificity against chromatin\u2010associated proteins is an area of intense basic and clinical research [http://www.ncbi.nlm.nih.gov/pubmed/25974248?dopt=AbstractPlus]. Current progress in this field is reviewed by Sim\u00f3\u2010Riudalbas and Esteller (2015) [http://www.ncbi.nlm.nih.gov/pubmed/25039449?dopt=AbstractPlus].Dysregulated epigenetic control can be associated with human diseases such as cancer .Classes I, II and IV use Znhttp://www.ncbi.nlm.nih.gov/pubmed/19608861?dopt=AbstractPlus] such as microtubules [http://www.ncbi.nlm.nih.gov/pubmed/12024216?dopt=AbstractPlus], the hsp90 chaperone [http://www.ncbi.nlm.nih.gov/pubmed/15916966?dopt=AbstractPlus] and the tumour suppressor p53 [http://www.ncbi.nlm.nih.gov/pubmed/11099047?dopt=AbstractPlus].HDACs have more general protein deacetylase activity, being able to deacetylate lysine residues in non\u2010histone proteins , making HDACs attractive molecular targets in the search for novel mechanisms to treat cancer [http://www.ncbi.nlm.nih.gov/pubmed/24382387?dopt=AbstractPlus]. Several small molecule HDAC inhibitors are already approved for clinical use: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7006, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6852, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7489, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7009 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8305. HDACs and HDAC inhibitors currently in development as potential anti\u2010cancer therapeutics are reviewed by Sim\u00f3\u2010Riudalbas and Esteller (2015) [http://www.ncbi.nlm.nih.gov/pubmed/25039449?dopt=AbstractPlus].Dysregulated HDACactivity has been identified in cancer cells and tumour tissues . Four families of membranous adenylyl cyclase are distinguishable: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 \u2010stimulated , Ca2+\u2010 and G\u03b2\u03b3\u2010inhibitable , G\u03b2\u03b3\u2010stimulated and Ca2+\u2010insensitive , and forskolin\u2010insensitive (AC9) forms. A soluble adenylyl cyclase (AC10) lacks membrane spanning regions and is insensitive to G proteins.It functions as a cytoplasmic bicarbonate (pH\u2010insensitive) sensor [http://www.ncbi.nlm.nih.gov/pubmed/10915626?dopt=AbstractPlus].Adenylyl cyclase, http://www.ncbi.nlm.nih.gov/pubmed/24006339?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24008337?dopt=AbstractPlus]. AC3 shows only modest in vitro activation by Ca2+/CaM.Many of the activators and inhibitors listed are only somewhat selective or have not been tested against all AC isoforms . Once activated, Epacs induce an enhanced activity of the monomeric G proteins, Rap1 and Rap2 by facilitating binding of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1742 in place of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2410, leading to activation of http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=244 [http://www.ncbi.nlm.nih.gov/pubmed/11715024?dopt=AbstractPlus].Epacs are members of a family of guanine nucleotide exchange factors The role of Epac in the heart. Cell. Mol. Life Sci. 74: 591\u2010606 https://www.ncbi.nlm.nih.gov/pubmed/27549789?dopt=AbstractPlusFujita T Physiol Rev98: 919\u20101053 https://www.ncbi.nlm.nih.gov/pubmed/29537337Robichaux WG and Cheng X. (2018) Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. et al. (2017) Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg. Med. Chem. Lett. 27: 1633\u20101639 https://www.ncbi.nlm.nih.gov/pubmed/28283242?dopt=AbstractPlusWang P http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=3.1.4.17, catalyse the hydrolysis of a 3\u2019,5\u2019\u2010cyclic nucleotide . http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=388 is a nonselective inhibitor with an IC50 value in the millimolar range for all isoforms except PDE 8A, 8B and 9A. A 2\u2019,3\u2019\u2010cyclic nucleotide 3\u2019\u2010phosphodiesterase (http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=3.1.4.37 CNPase) activity is associated with myelin formation in the development of the CNS.3\u2019,5\u2019\u2010Cyclic nucleotide phosphodiesterases , PDE1A, 1B and 1C appear to act as soluble homodimers, while PDE2A is a membrane\u2010bound homodimer. PDE3A and PDE3B are membrane\u2010bound.http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 specific. The potency of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5292 at other members of the PDE4 family has not been reported. PDE4B\u2010D long forms are inhibited by extracellular signal\u2010regulated kinase (ERK)\u2010mediated phosphorylation . PDE4A\u2010D splice variants can be membrane\u2010bound or cytosolic [http://www.ncbi.nlm.nih.gov/pubmed/12444918?dopt=AbstractPlus]. PDE4 isoforms may be labelled with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5313.PDE4 isoforms are essentially http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 specific and is activated by the a\u2010subunit of transducin (Gat) and inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4743, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2919 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 with potencies lower than those observed for PDE5A. Defects in PDE6B are a cause of retinitis pigmentosa and congenital stationary night blindness.PDE6 is a membrane\u2010bound tetramer composed of two catalytic chains (PDE6A or PDE6C and PDE6B), an inhibitory chain (PDE6G or PDE6H) and the PDE6D chain. The enzyme is essentially Cell. Signal. 28: 713\u20108 https://www.ncbi.nlm.nih.gov/pubmed/26498857?dopt=AbstractPlusKlussmann E. (2016) Protein\u2010protein interactions of PDE4 family members \u2010 Functions, interactions and therapeutic value. et al. (2018) Targeting phosphodiesterase 5 as a therapeutic option against myocardial ischaemia/reperfusion injury and for treating heart failure. Br. J. Pharmacol. 175: 223\u2010231 https://www.ncbi.nlm.nih.gov/pubmed/28213937?dopt=AbstractPlusKorkmaz\u2010Ic\u00f6z S et al. (2018) Phosphodiesterase\u20104 Inhibitors for the Treatment of Inflammatory Diseases. Front Pharmacol9: 1048 https://www.ncbi.nlm.nih.gov/pubmed/30386231Li H Life Sci230: 150\u2010161 https://www.ncbi.nlm.nih.gov/pubmed/31125564Mehta A and Patel BM. (2019) Therapeutic opportunities in colon cancer: Focus on phosphodiesterase inhibitors. et al. (2019) Experimental and investigational phosphodiesterase inhibitors in development for asthma. Expert Opin Investig Drugs28: 261\u2010266 https://www.ncbi.nlm.nih.gov/pubmed/30678501Ntontsi P J Cereb Blood Flow Metab38: 189\u2010203 https://www.ncbi.nlm.nih.gov/pubmed/29256324Pauls MM. (2018) The effect of phosphodiesterase\u20105 inhibitors on cerebral blood flow in humans: A systematic review. et al. (2018) Inhibitors of phosphodiesterase as cancer therapeutics. Eur J Med Chem150: 742\u2010756 https://www.ncbi.nlm.nih.gov/pubmed/29574203Peng T et al. (2018) Fragment\u2010Based Drug Discovery of Phosphodiesterase Inhibitors. J Med Chem61: 1415\u20131424 https://www.ncbi.nlm.nih.gov/pubmed/28800229Svensson F et al. (2018) Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal49: 105\u2010115 https://www.ncbi.nlm.nih.gov/pubmed/29902522Wahlang B et al. (2018) Phosphodiesterase 10 Inhibitors \u2010 Novel Perspectives for Psychiatric and Neurodegenerative Drug Discovery. Curr Med Chem25: 3455\u20103481 https://www.ncbi.nlm.nih.gov/pubmed/29521210Zagorska A The cytochrome P450 enzyme family (CYP450), E.C. 1.14.\u2010.\u2010, were originally defined by their strong absorbance at 450 nm due to the reduced carbon monoxide\u2010complexed haem component of the cytochromes. They are an extensive family of haemcontaining monooxygenases with a huge range of both endogenous and exogenous substrates. These include sterols, fat\u2010soluble vitamins, pesticides and carcinogens as well as drugs. The substrates of some orphan CYP are not known. Listed below are the human enzymes; their relationship with rodent CYP450 enzyme activities is obscure in that the species orthologuemay not catalyse the metabolism of the same substrates. Although the majority of CYP450 enzyme activities are concentrated in the liver, the extrahepatic enzyme activities also contribute to patho/physiological processes. Genetic variation of CYP450 isoforms is widespread and likely underlies a significant proportion of the individual variation to drug administration.et al. (2016) Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev68: 168\u2010241 https://www.ncbi.nlm.nih.gov/pubmed/26721703?dopt=AbstractPlusBackman JT et al. (2017) Cytochrome P450 eicosanoids in cerebrovascular function and disease. Pharmacol Ther179: 31\u201046 https://www.ncbi.nlm.nih.gov/pubmed/28527918?dopt=AbstractPlusDavis CM et al. (2016) Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure\u2010Function Perspective. J Med Chem. 59: 5131\u201048 https://www.ncbi.nlm.nih.gov/pubmed/26689671?dopt=AbstractPlusGhosh D et al. (2015) Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 147: 24\u201030 https://www.ncbi.nlm.nih.gov/pubmed/25448748?dopt=AbstractPlusGo RE et al. (2016) Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci37: 625\u2010640 https://www.ncbi.nlm.nih.gov/pubmed/27267697?dopt=AbstractPlusGuengerich FP Pharmacol Ther192: 1\u201019 https://www.ncbi.nlm.nih.gov/pubmed/29964123?dopt=AbstractPlusImig JD. (2018) Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. et al. (2017) Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today22: 366\u2010376 https://www.ncbi.nlm.nih.gov/pubmed/27693711?dopt=AbstractPlusIsvoran A et al. (2017) Cytochrome P450\u2010derived eicosanoids and heart function. Pharmacol Ther179: 47\u201383 https://www.ncbi.nlm.nih.gov/pubmed/28551025?dopt=AbstractPlusJamieson KL et al. (2018) Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim Biophys Acta1866: 178\u2010204 https://www.ncbi.nlm.nih.gov/pubmed/28668640?dopt=AbstractPlusMak PJ et al. (2016) Cholesterol 24\u2010hydroxylase: Brain cholesterol metabolism and beyond. Biochim Biophys Acta1861: 1911\u20101920 https://www.ncbi.nlm.nih.gov/pubmed/27663182?dopt=AbstractPlusMoutinho M et al. (2018) Keeping the spotlight on cytochrome P450. Biochim Biophys Acta1866: 80\u201087 https://www.ncbi.nlm.nih.gov/pubmed/28599858?dopt=AbstractPlusShalan H DNA topoisomerases regulate the supercoiling of nuclear DNA to influence the capacity for replication or transcription. The enzymatic function of this series of enzymes involves cutting the DNA to allow unwinding, followed by re\u2010attachment to reseal the backbone. Members of the family are targetted in anti\u2010cancer chemotherapy.et al. (2017) Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev37: 404\u2010438 https://www.ncbi.nlm.nih.gov/pubmed/27687257?dopt=AbstractPlusBansal S et al. (2017) Type I DNA Topoisomerases. J. Med. Chem. 60: 2169\u20102192 https://www.ncbi.nlm.nih.gov/pubmed/28072526?dopt=AbstractPlusCapranico G et al. (2017) DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov. Today22: 510\u2010518 https://www.ncbi.nlm.nih.gov/pubmed/27856347?dopt=AbstractPlusNagaraja V et al. (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17: 703\u2010721 https://www.ncbi.nlm.nih.gov/pubmed/27649880?dopt=AbstractPlusPommier Y et al. (2016) The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev8: 101\u2010111 https://www.ncbi.nlm.nih.gov/pubmed/28510219?dopt=AbstractPlusSeol Y http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729 (2\u2010AG), and N\u2010acylethanolamines, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 . The glycerol esters and ethanolamides are synthesised and hydrolysed by parallel, independent pathways. Mechanisms for release and re\u2010uptake of endocannabinoids are unclear, although potent and selective inhibitors of facilitated diffusion of endocannabinoids across cell membranes have been developed [http://www.ncbi.nlm.nih.gov/pubmed/29531087?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2535 (https://www.uniprot.org/uniprot/Q01469) has been suggested to act as a canonical intracellular endocannabinoid transporter in vivo [http://www.ncbi.nlm.nih.gov/pubmed/28584105?dopt=AbstractPlus]. For the generation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729, the key enzyme involved is diacylglycerol lipase (DAGL), whilst several routes for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 synthesis have been described, the best characterized of which involves N\u2010acylphosphatidylethanolamine\u2010phospholipase D . A transacylation enzyme which forms N\u2010acylphosphatidylethanolamines has been identified as a cytosolic enzyme, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:24791 (http://www.uniprot.org/uniprot/Q3MJ16) [http://www.ncbi.nlm.nih.gov/pubmed/27399000?dopt=AbstractPlus]. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities .The principle endocannabinoids are 2\u2010acylglycerol esters, such as N\u2010acylethanolamine biosynthesis other than through NAPE\u2010PLD activity have been identified [http://www.ncbi.nlm.nih.gov/pubmed/23394527?dopt=AbstractPlus].Routes for http://www.ncbi.nlm.nih.gov/pubmed/22969151?dopt=AbstractPlus], but may also regulate lysophosphatidylserine levels [http://www.ncbi.nlm.nih.gov/pubmed/25580854?dopt=AbstractPlus]. Loss\u2010of\u2010function mutations in ABHD12 are associated with a disorder known as PHARC [http://www.ncbi.nlm.nih.gov/pubmed/20797687?dopt=AbstractPlus].ABHD12 is a 398\u2010aa protein, with serine hydrolase activity. It has a molecular weight of 45 kDa. A single TM is predicted at 75\u201095, with an extracellular catalytic domain. ABHD12 is a monoacylglycerol hydrolase [http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus] and a limited range of inhibitors have been assessed at this enzyme activity. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729 has been reported to be hydrolysed by multiple enzyme activities from neural preparations [http://www.ncbi.nlm.nih.gov/pubmed/29751000?dopt=AbstractPlus], including https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:21398 (http://www.uniprot.org/uniprot/Q9BV23) [http://www.ncbi.nlm.nih.gov/pubmed/26989199?dopt=AbstractPlus] and carboxylesterase 1 . https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:21398 (http://www.uniprot.org/uniprot/Q9BV23) has also been described as a triacylglycerol lipase and ester hydrolase [http://www.ncbi.nlm.nih.gov/pubmed/27247428?dopt=AbstractPlus], while https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:15868 (http://www.uniprot.org/uniprot/Q8N2K0) is also able to hydrolyse lysophosphatidylserine [http://www.ncbi.nlm.nih.gov/pubmed/2397193?dopt=AbstractPlus]. https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:15868 (http://www.uniprot.org/uniprot/Q8N2K0) has been described to be inhibited selectively by pentacyclic triterpenoids, such as oleanolic acid [http://www.ncbi.nlm.nih.gov/pubmed/24879289?dopt=AbstractPlus].Many of the compounds described as inhibitors are irreversible and so potency estimates will vary with incubation time. FAAH2 is not found in rodents .http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 as substrate, these products are hydroperoxyeicosatetraenoic acids (HPETEs). In humans there are five lipoxygenases, the 5S\u2010(arachidonate : oxygen 5\u2010oxidoreductase), 12R\u2010, 12S\u2010(arachidonate : oxygen 12\u2010oxidoreductase), and two distinct 15S\u2010(arachidonate : oxygen 15\u2010oxidoreductase) LOXs that oxygenate arachidonic acid in different positions along the carbon chain and form the corresponding 5S\u2010, 12S\u2010, 12R\u2010, or 15S\u2010hydroperoxides, respectively.The lipoxygenases (LOXs) are a structurally related family of non\u2010heme iron dioxygenases that function in the production, and in some cases metabolism, of fatty acid hydroperoxides. For http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=1.13.11.40, arachidonate:oxygen 8\u2010oxidoreductase) may be the mouse orthologue of 15\u2010LOX\u20102 [http://www.ncbi.nlm.nih.gov/pubmed/12432921?dopt=AbstractPlus]. Some general LOX inhibitors are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4265 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5180. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5297 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5155 are used as 5\u2010lipoxygenase inhibitors, while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5144 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5162 are 12\u2010lipoxygenase inhibitors. The specificity of these inhibitors has not been rigorously assessed with all LOX forms: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5144, along with other flavonoids, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5182 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5215, also inhibits 15\u2010LOX\u20101 [http://www.ncbi.nlm.nih.gov/pubmed/12628491?dopt=AbstractPlus].An 8\u2010LOX(4 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214), produced by 5\u2010LOX activity, and lipoxins may be subject to further oxidative metabolism; \u03c9\u2010hydroxylation is mediated by http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242#show_object_1344 and http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242#show_object_1345, while \u00df\u2010oxidation in mitochondria and peroxisomes proceeds in a manner dependent on coenzyme A conjugation. Conjugation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214 at the 6 position with reduced glutathione to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3354 occurs under the influence of leukotriene C4 synthase, with the subsequent formation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3352, all three of which are agonists at http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=35. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 formation is catalysed by \u03b3\u2010glutamyltransferase, and subsequently dipeptidase 2 removes the terminal http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3352. Leukotriene A4 hydrolase converts the 5,6\u2010epoxide LTA4 to the 5\u2010hydroxylated LTB4, an agonist for http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=35. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214 is also acted upon by 12S\u2010LOX to produce the trihydroxyeicosatetraenoic acids lipoxins http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1034 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5216. Treatment with a LTA4 hydrolase inhibitor in a murine model of allergic airway inflammation increased LXA4 levels, in addition to reducing http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2487, in lung lavage fluid [http://www.ncbi.nlm.nih.gov/pubmed/20110560?dopt=AbstractPlus]. LTA4 hydrolase is also involved in biosynthesis of http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=134. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4139 has been reported to increase endogenous formation of 18S\u2010hydroxyeicosapentaenoate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5105) compared with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3400, a resolvin precursor. Both enantiomers may be metabolised by human recombinant 5\u2010LOX; recombinant LTA4 hydrolase converted chiral 5S(6)\u2010epoxide\u2010containing intermediates to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3333 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5106 [http://www.ncbi.nlm.nih.gov/pubmed/21206090?dopt=AbstractPlus].Leukotriene Ahttp://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00250000001675), which also includes aminopeptidase B and aminopeptidase B\u2010like 1 . Dipeptidase 1 and 2 are members of a family of membrane dipeptidases, which also includes for which http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 appears not to be a substrate.LTA4H is a member of a family of arginyl aminopeptidases The double\u2010edged role of 12/15\u2010lipoxygenase during inflammation and immunity. Biochim. Biophys. Acta1862: 371\u2013381 https://www.ncbi.nlm.nih.gov/pubmed/27480217?dopt=AbstractPlusAckermann JA et al. (2017) The Cardiovascular Pharmacology of Nonsteroidal Anti\u2010Inflammatory Drugs. Trends Pharmacol. Sci. 38: 733\u2013748 https://www.ncbi.nlm.nih.gov/pubmed/28651847?dopt=AbstractPlusGrosser T J Clin Invest128: 2680\u20132690 https://www.ncbi.nlm.nih.gov/pubmed/30108195Haeggstrom JZ. (2018) Leukotriene biosynthetic enzymes as therapeutic targets. et al. (2019) Beyond leukotriene formation\u2010The noncanonical functions of 5\u2010lipoxygenase. Prostaglandins Other Lipid Mediat142: 24\u201332 https://www.ncbi.nlm.nih.gov/pubmed/30930090Hafner AK Br J Pharmacol176: 1038\u20131050 https://www.ncbi.nlm.nih.gov/pubmed/29468666Mitchell JA and Kirkby NS. (2019) Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. et al. (2015) Perspective of microsomal prostaglandin E2 synthase\u20101 as drug target in inflammation\u2010related disorders. Biochem. Pharmacol. 98: 1\u201315 https://www.ncbi.nlm.nih.gov/pubmed/26123522?dopt=AbstractPlusKoeberle A et al. (2015) Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta1851: 308\u201330 https://www.ncbi.nlm.nih.gov/pubmed/25316652?dopt=AbstractPlusKuhn H et al. (2015) Cyclooxygenase inhibitors: From pharmacology to clinical read\u2010outs. Biochim. Biophys. Acta1851: 422\u201332 https://www.ncbi.nlm.nih.gov/pubmed/25263946?dopt=AbstractPlusPatrignani P et al. (2015) 5\u2010Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta1851: 331\u20139 https://www.ncbi.nlm.nih.gov/pubmed/25152163?dopt=AbstractPlusR\u00e5dmark O et al. (2017) Role of prostacyclin synthase in carcinogenesis. Prostaglandins Other Lipid Mediat. 133: 49\u201352 https://www.ncbi.nlm.nih.gov/pubmed/28506876?dopt=AbstractPlusSasaki Y et al. (2017) Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog. Lipid Res. 66: 50\u201368 https://www.ncbi.nlm.nih.gov/pubmed/28392405?dopt=AbstractPlusSeo MJ et al. (2016) COX\u20101 Inhibitors: Beyond Structure Toward Therapy. Med Res Rev36: 641\u201371 https://www.ncbi.nlm.nih.gov/pubmed/27111555?dopt=AbstractPlusVitale P http://www.ncbi.nlm.nih.gov/pubmed/8126575?dopt=AbstractPlus] where GABA is principally accumulated in vesicles through the action of the vesicular inhibitory amino acid transporter http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=219. The role of \u03b3\u2010aminobutyraldehyde dehydrogenase (ALDH9A1) in neurotransmitter GABA synthesis is less clear. Following release from neurons, GABA may interact with either GABAA or GABAB receptors and may be accumulated in neurones and glia through the action of members of the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=144. Successive metabolism through GABA transaminase and succinate semialdehyde dehydrogenase generates succinic acid, which may be further metabolized in the mitochondria in the tricarboxylic acid cycle.The inhibitory neurotransmitter \u03b3\u2010aminobutyrate is generated in neurones by glutamic acid decarboxylase. GAD1 and GAD2 are differentially expressed during development, whereGAD2 is thought to subserve a trophic role in early life and is distributed throughout the cytoplasm. GAD1 is expressed in later life and is more associated with nerve terminals , although this mechanism of action has been questioned [http://www.ncbi.nlm.nih.gov/pubmed/15302681?dopt=AbstractPlus]. The aminosteroid http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5283 has been described as an inhibitor of phosphoinositide\u2010specific PLC [http://www.ncbi.nlm.nih.gov/pubmed/2338654?dopt=AbstractPlus], although its selectivity among the isoforms is untested and it has been reported to occupy the H1 histamine receptor [http://www.ncbi.nlm.nih.gov/pubmed/11138848?dopt=AbstractPlus].Phosphoinositide\u2010specific phospholipase C , catalyses the hydrolysis of https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:9063, http://www.uniprot.org/uniprot/Q15111; https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:9064, http://www.uniprot.org/uniprot/Q9UPR0 and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:29185, http://www.uniprot.org/uniprot/Q4KWH8) form a family with PLC\u03b4 and PLC\u03b61 isoforms, but appear to lack catalytic activity. PLC\u2010\u03b42 has been cloned from bovine sources [http://www.ncbi.nlm.nih.gov/pubmed/1848183?dopt=AbstractPlus].A series of PLC\u2010like proteins Phosphoinositide\u2010specific phospholipase C in health and disease. J. Lipid Res.56: 1853\u201360 https://www.ncbi.nlm.nih.gov/pubmed/25821234?dopt=AbstractPlusCocco L et al. (2016) Topological organisation of the phosphatidylinositol 4,5\u2010bisphosphatephospholipase C resynthesis cycle: PITPs bridge the ER\u2010PM gap. Biochem. J. 473: 4289\u20134310 https://www.ncbi.nlm.nih.gov/pubmed/27888240?dopt=AbstractPlusCockcroft S Life Sci. 137: 116\u201324 https://www.ncbi.nlm.nih.gov/pubmed/26239437?dopt=AbstractPlusLitosch I. (2015) Regulating G protein activity by lipase\u2010independent functions of phospholipase C. et al. (2017) Regulation and physiological functions of mammalian phospholipase C. J. Biochem. 161: 315\u2013321 https://www.ncbi.nlm.nih.gov/pubmed/28130414?dopt=AbstractPlusNakamura Y et al. (2016) The sperm phospholipase C\u2010\u03b6 and Ca2+ signalling at fertilization in mammals. Biochem. Soc. Trans. 44: 267\u201372 https://www.ncbi.nlm.nih.gov/pubmed/26862214?dopt=AbstractPlusSwann K 2 cleaves the sn\u20102 fatty acid of phospholipids, primarily phosphatidylcholine, to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2508 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391. Most commonly\u2010used inhibitors are either non\u2010selective within the family of phospholipase A2 enzymes or have activity against other eicosanoid\u2010metabolising enzymes.Phospholipase A2\u20101B, sPLA2\u20102A, sPLA2\u20102D, sPLA2\u20102E, sPLA2\u20102F, sPLA2\u20103, sPLA2\u201010 and sPLA2\u201012AsPLA2\u20104A, cPLA2\u20104B, cPLA2\u20104C, cPLA2\u20104D, cPLA2\u20104E and cPLA2\u20104FcPLA2\u2010G5, iPLA2\u2010G6, PLA2\u2010G7 and PAFAH2 (platelet\u2010activating factor acetylhydrolase 2)PLA2\u20102C suggests a lack of catalytic activity, while PLA2\u201012B appears to be catalytically inactive [http://www.ncbi.nlm.nih.gov/pubmed/14516201?dopt=AbstractPlus]. A further fragment has been identified with sequence similarities to Group II PLA2 members. Otoconin 90 (OC90) shows sequence homology to PLA2\u2010G10.The sequence of PLA2 has been identified which shows modest selectivity for sPLA2\u20101B over sPLA2\u20102A, and also binds snake toxin phospholipase A2 [http://www.ncbi.nlm.nih.gov/pubmed/7548076?dopt=AbstractPlus]. The binding protein appears to have clearance function for circulating secretory phospholipase A2, as well as signalling functions, and is a candidate antigen for idiopathic membraneous nephropathy [http://www.ncbi.nlm.nih.gov/pubmed/19571279?dopt=AbstractPlus].A binding protein for secretory phospholipase A2\u2010G7 and PAFAH2 also express platelet\u2010activating factor acetylhydrolase activity (http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=3.1.1.47).PLABiochim Biophys Acta Mol Cell Biol Lipids1864: 772\u2013783 https://www.ncbi.nlm.nih.gov/pubmed/30010011Astudillo AM. (2019) Selectivity of phospholipid hydrolysis by phospholipase A2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. etal. (2019) Cytosolic phospholipase A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids1864: 838\u2013845 https://www.ncbi.nlm.nih.gov/pubmed/30905348Kita Y Biochim Biophys Acta Mol Cell Biol Lipids1864: 766\u2013771 https://www.ncbi.nlm.nih.gov/pubmed/30905345Mouchlis VD and Dennis EA. (2019) Phospholipase A2 catalysis and lipid. mediator lipidomics. et al. (2019) Group IID, IIE, IIF and III secreted phospholipase A2s. Biochim Biophys Acta Mol Cell Biol Lipids. 1864: 803\u2013818 https://www.ncbi.nlm.nih.gov/pubmed/30905347Murakami M Biochim Biophys Acta Mol Cell Biol Lipids1864: 819\u2013826 https://www.ncbi.nlm.nih.gov/pubmed/30308324Samuchiwal SK and Balestrieri B. (2019) Harmful and protective roles of group V phospholipase A2: Current perspectives and future directions. Biochim Biophys Acta Mol Cell Biol Lipids. 1864: 932\u2013940 https://www.ncbi.nlm.nih.gov/pubmed/30077006Shayman JA and Tesmer JJG. (2019) Lysosomal phospholipase A2. http://www.ncbi.nlm.nih.gov/pubmed/2186929?dopt=AbstractPlus].Phosphatidylcholine\u2010specific phospholipase D catalyses the formation of phosphatidic acid from phosphatidylcholine. In addition, the enzyme can make use of alcohols, such as butanol in a transphosphatidylation reaction . This enzyme activity appears to be enhanced by polyamines in the physiological range [http://www.ncbi.nlm.nih.gov/pubmed/12047899?dopt=AbstractPlus] and fails to transphosphatidylate with alcohols [http://www.ncbi.nlm.nih.gov/pubmed/10428468?dopt=AbstractPlus].A lysophospholipase D activity , PLD4 and PLD5 . PLD3 has been reported to be involved in myogenesis [http://www.ncbi.nlm.nih.gov/pubmed/22428023?dopt=AbstractPlus]. PLD4 is described not to have phospholipase D catalytic activity [http://www.ncbi.nlm.nih.gov/pubmed/21085684?dopt=AbstractPlus], but has been associated with inflammatory disorders . Sequence analysis suggests that PLD5 is catalytically inactive.Three further, less well\u2010characterised isoforms are PLD3 Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov16: 351\u2010367 https://www.ncbi.nlm.nih.gov/pubmed/28209987?dopt=AbstractPlusBrown HA Trends Pharmacol. Sci. 36: 137\u201044 https://www.ncbi.nlm.nih.gov/pubmed/25661257?dopt=AbstractPlusFrohman MA. (2015) The phospholipase D superfamily as therapeutic targets. et al. (2015) Physiological and pathophysiological roles for phospholipase D. J. Lipid Res. 56: 2229\u201037 https://www.ncbi.nlm.nih.gov/pubmed/25926691?dopt=AbstractPlusNelson RK Lipid phosphate phosphatases, divided into phosphatidic acid phosphatases or lipins catalyse the dephosphorylation of phosphatidic acid (and other phosphorylated lipid derivatives) to generate inorganic phosphate and diacylglycerol. PTEN, a phosphatase and tensin homolog is a phosphatidylinositol 3,4,5\u2010trisphosphate 3\u2010phosphatase which acts as a tumour suppressor by reducing cellular levels of PI 3,4,5\u2010P, thereby toning down activity of PDK1 and PKB. Loss\u2010of\u2010function mutations are frequently identified as somatic mutations in cancers.Trends Neurosci40: 83\u201091 https://www.ncbi.nlm.nih.gov/pubmed/28081942Knafo S and Esteban JA. (2017) PTEN: Local and Global Modulation of Neuronal Function in Health and Disease. et al. (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol19: 547\u2010562 https://www.ncbi.nlm.nih.gov/pubmed/29858604Lee YR et al. (2019) PTEN\u2010opathies: from biological insights to evidence\u2010based precision medicine. J Clin Invest129: 452\u2010464 https://www.ncbi.nlm.nih.gov/pubmed/30614812Yehia L Phosphatidylinositol may be phosphorylated at either 3\u2010 or 4\u2010 positions on the inositol ring by PI 3\u2010kinases or PI 4\u2010kinases, respectively.2). There is evidence that PI3K can also phosphorylate serine/threonine residues on proteins. In addition to the classes described below, further serine/threonine protein kinases, including https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:795 (http://www.uniprot.org/uniprot/Q13315) and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:3942 (http://www.uniprot.org/uniprot/P42345), have been described to phosphorylate phosphatidylinositol and have been termed PI3Krelated kinases. Structurally, PI3Ks have common motifs of at least one C2, calcium\u2010binding domain and helical domains, alongside structurally\u2010conserved catalytic domains. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6060 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6004 are widely\u2010used inhibitors of PI3K activities. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6060 is irreversible and shows modest selectivity between Class I and Class II PI3K, while LY294002 is reversible and selective for Class I compared to Class II PI3K.Phosphatidylinositol 3\u2010kinases catalyse the introduction of a phosphate into the 3\u2010position of phosphatidylinositol (PI), phosphatidylinositol 4\u2010phosphate (PIP) or phosphatidylinositol 4,5\u2010bisphosphate (PIPClass I PI3Ks (EC 2.7.1.153) phosphorylate phosphatidylinositol 4,5\u2010bisphosphate to generate phosphatidylinositol 3,4,5\u2010trisphosphate and are heterodimeric, matching catalytic and regulatory subunits. Class IA PI3Ks include p110\u03b1, p110\u00df and p110\u03b4 catalytic subunits, with predominantly p85 and p55 regulatory subunits. The single catalytic subunit that forms Class IB PI3K is p110\u03b3. Class IA PI3Ks are more associated with receptor tyrosine kinase pathways, while the Class IB PI3K is linkedmore with GPCR signalling.Class II PI3Ks (EC 2.7.1.154) phosphorylate phosphatidylinositol to generate phosphatidylinositol 3\u2010phosphate . Three monomeric members exist, PI3KC2\u03b1, \u00df and \u00df, and include Ras\u2010binding, Phox homology and two C2domains.class III PI3K isoform (EC 2.7.1.137) is a heterodimer formed of a catalytic subunit (VPS34) and regulatory subunit (VPS15).The only Phosphatidylinositol 4\u2010kinasesPhosphatidylinositol 4\u2010kinases (EC 2.7.1.67) generate phosphatidylinositol 4\u2010phosphate and may be divided into higher molecular weight type III and lower molecular weight type II forms.et al. (2017) [http://www.ncbi.nlm.nih.gov/pubmed/28802037?dopt=AbstractPlus].PI3K activation is one of the most important signal transduction pathways used to transmit signals from cell\u2010surface receptors to regulate intracellular processes . PI3K catalytic (and regulatory) subunits play vital roles in normal cell function and in disease. Progress made in developing PI3K\u2010targeted agents as potential therapeutics for treating cancer and other diseases is reviewed by Fruman http://www.ncbi.nlm.nih.gov/pubmed/9367159?dopt=AbstractPlus]. This enzyme family is also known as type I PIP(5)Ks.Type I PIP kinases are required for the production of the second messenger phosphatidylinositol 4,5\u2010bisphosphate P2) by phosphorylating PtdIns(4)P [http://www.ncbi.nlm.nih.gov/pubmed/9367159?dopt=AbstractPlus]. This enzyme family is also known as type II PIP(5)Ks.Type II PIP kinases are essential for the production of the second messenger phosphatidylinositol 4,5\u2010bisphosphate P2) by phosphorylating PtdIns(5)P ) and induces proteasomal degradation of SK1 [http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus]. ABC294640 is in clinical trials for advanced cholangiocarcinoma, advanced hepatocellular carcinoma and refractory/relapsed multiple myeloma .et al. (2016) Sphingosine Kinases: Emerging Structure\u2010Function Insights. Trends Biochem. Sci. 41: 395\u2010409 https://www.ncbi.nlm.nih.gov/pubmed/27021309?dopt=AbstractPlusAdams DR et al. (2016) Sphingosine kinase inhibitors: a review of patent literature (2006\u20102015). Expert Opin Ther Pat26: 1409\u20101416 https://www.ncbi.nlm.nih.gov/pubmed/27539678?dopt=AbstractPlusLynch KR et al. (2016) Recent advances in the development of sphingosine kinase inhibitors. Cell. Signal. 28: 1349\u201063 https://www.ncbi.nlm.nih.gov/pubmed/27297359?dopt=AbstractPlusPitman MR et al. (2018) An intrinsic lipid\u2010binding interface controls sphingosine kinase 1 function. J. Lipid Res. 59: 462\u2010474 https://www.ncbi.nlm.nih.gov/pubmed/29326159?dopt=AbstractPlusPulkoski\u2010Gross MJ et al. (2017) Sphingosine Kinase 2 in Autoimmune/Inflammatory Disease and the Development of Sphingosine Kinase 2 Inhibitors. Trends Pharmacol. Sci. 38: 581\u2010591 https://www.ncbi.nlm.nih.gov/pubmed/28606480?dopt=AbstractPlusPyne NJ et al. (2018) Sphingosine Kinases as Druggable Targets. Handb Exp Pharmacolhttps://www.ncbi.nlm.nih.gov/pubmed/29460151?dopt=AbstractPlusPyne S http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6060 also inhibits type III phosphatidylinositol 4\u2010kinases and polo\u2010like kinase [http://www.ncbi.nlm.nih.gov/pubmed/15664519?dopt=AbstractPlus]. PIK93 also inhibits PI 3\u2010kinases [http://www.ncbi.nlm.nih.gov/pubmed/16647110?dopt=AbstractPlus]. Adenosine activates http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=3.et al. (2018) Phosphoinositide 3\u2010kinase inhibitors in advanced breast cancer: A systematic review and meta\u2010analysis. Eur J Cancer91: 38\u201046 https://www.ncbi.nlm.nih.gov/pubmed/29331750Raphael J et al. (2019) Upstream regulators of phosphoinositide 3\u2010kinase and their role in diseases. J Cell Physiol. https://www.ncbi.nlm.nih.gov/pubmed/30710358Wang D et al. (2018) Phosphatidylinositol 3\u2010Kinase, Growth Disorders, and Cancer. N Engl J Med379: 2052\u20102062 https://www.ncbi.nlm.nih.gov/pubmed/30462943Goncalves MD 2 is generated by phosphorylation of PI 4\u2010phosphate or PI 5\u2010phosphate by type I PI 4\u2010phosphate 5\u2010kinases or type II PI 5\u2010phosphate 4\u2010kinases.PIPet al. (2015) Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim. Biophys. Acta1851: 832\u201043 https://www.ncbi.nlm.nih.gov/pubmed/25449648?dopt=AbstractPlusCauvin C J. Lipid Res. 57: 1987\u20101994 https://www.ncbi.nlm.nih.gov/pubmed/27623846?dopt=AbstractPlusIrvine RF. (2016) A short history of inositol lipids. et al. (2016) Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C. J. Cell. Physiol. 231: 1645\u201055 https://www.ncbi.nlm.nih.gov/pubmed/26626942?dopt=AbstractPlusPoli A http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=1.14.99.3, converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4349 into http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5153 and carbonmonoxide, utilizing http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 as cofactor.Haem oxygenase ), http://www.ncbi.nlm.nih.gov/pubmed/15246535?dopt=AbstractPlus]. The chemical http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5279 acts as a haem oxygenase inhibitor in rat liver with an IC50 value of 11 nM [http://www.ncbi.nlm.nih.gov/pubmed/6947237?dopt=AbstractPlus].The existence of a third non\u2010catalytic version of haem oxygenase, HO3, has been proposed, although this has been suggested to be a pseudogene .Hydrogen sulfide is a gasotransmitter, with similarities to nitric oxide and carbon monoxide. Although the enzymes indicated below have multiple enzymatic activities, the focus here is the generation of hydrogen sulphide Selectivity of commonly used pharmacological inhibitors for cystathionine \u03b2 synthase (CBS) and cystathionine \u03b3 lyase (CSE). Br J Pharmacol. 169: 922\u201032 https://www.ncbi.nlm.nih.gov/pubmed/23488457?dopt=AbstractPlusAsimakopoulou A et al. (2017) International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol. Rev. 69: 497\u2010564 https://www.ncbi.nlm.nih.gov/pubmed/28978633?dopt=AbstractPlusSzabo C http://www.uniprot.org/uniprot/P23141), but predominates in the liver, where it is responsible for the hydrolysis of many aliphatic, aromatic and steroid esters. Hormone\u2010sensitive lipase is also a relatively non\u2010selective esterase associated with steroid ester hydrolysis and triglyceride metabolism, particularly in adipose tissue. Endothelial lipase is secreted from endothelial cells and regulates circulating cholesterol in high density lipoproteins.Listed in this section are hydrolases not accumulated in other parts of the Concise Guide, such as monoacylglycerol lipase and acetylcholinesterase. Pancreatic lipase is the predominant mechanism of fat digestion in the alimentary system; its inhibition is associated with decreased fat absorption. CES1 is present at lower levels in the gut than CES2 The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 276: 121\u2010144 https://www.ncbi.nlm.nih.gov/pubmed/28258700Allard B et al. (2018) CD39\u2010adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal14: 109\u2010120 https://www.ncbi.nlm.nih.gov/pubmed/29332180Kishore BK et al. (2018) Carboxylesterase 1 genes: systematic review and evaluation of existing genotyping procedures. Drug Metab Pers Ther33: 3\u201014 https://www.ncbi.nlm.nih.gov/pubmed/29427553Rasmussen HB et al. (2018) Carboxylesterase Inhibitors: An Update. Curr Med Chem. 25: 1627\u20101649 https://www.ncbi.nlm.nih.gov/pubmed/29210644Zou LW myo\u2010inositol is a component of the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=244, where the principal second messenger is inositol 1,4,5\u2010trisphosphate, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222, which acts at intracellular ligand\u2010gated ion channels, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=123 to elevate intracellular calcium. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 is recycled to inositol by phosphatases or phosphorylated to form other active inositol polyphosphates. Inositol produced from dephosphorylation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 is recycled into membrane phospholipid under the influence of phosphatidyinositol synthase activity (CDP\u2010diacylglycerol\u2010inositol 3\u2010phosphatidyltransferase [http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=2.7.8.11]).The sugar alcohol D\u2010http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=2.7.1.127, http://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00250000001260) catalyse the generation of inositol 1,3,4,5\u2010tetrakisphosphate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5202) from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222. IP3 kinase activity is enhanced in the presence of calcium/http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 [http://www.ncbi.nlm.nih.gov/pubmed/2559811?dopt=AbstractPlus].Inositol 1,4,5\u2010trisphosphate 3\u2010kinases generates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5119, 4\u2010phosphatases generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5099 and 5\u2010phosphatases (http://www.genome.jp/dbget\u2010bin/www_bget?ec:3.1.3.36 or http://www.genome.jp/dbget\u2010bin/www_bget?ec:3.1.3.56) generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5098.Members of this family exhibit phosphatase activity towards IPhttp://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=281.Information on members of this family may be found in the In vitro analysis suggested http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5202 were poor substrates for SKIP, synaptojanin 1 and synaptojanin 2, but suggested that http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2387 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2353 were more efficiently hydrolysed [http://www.ncbi.nlm.nih.gov/pubmed/15474001?dopt=AbstractPlus].http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=3.1.3.25, IMPase, myo\u2010inositol\u20101(or 4)\u2010phosphate phosphohydrolase) is a magnesium\u2010dependent homodimer which hydrolyses myoinositol monophosphate to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 and phosphate. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5195 may be a physiological phosphate acceptor. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5212 is a nonselective un\u2010competitive inhibitor more potent at IMPase 1 than IMPase 2 . IMPase activity may be inhibited competitively by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5208 , although the enzyme selectivity is not yet established.Inositol monophosphatase A tale of two inositol trisphosphates. et al. (2016) Phosphate, inositol and polyphosphates. Biochem. Soc. Trans. 44: 253\u20109 https://www.ncbi.nlm.nih.gov/pubmed/26862212?dopt=AbstractPlusLivermore TM et al. (2017) Probes for manipulating and monitoring IP_3. Cell Calcium64: 57\u201064 https://www.ncbi.nlm.nih.gov/pubmed/27887748?dopt=AbstractPlusMiyamoto A et al. (2017) Inositol\u20101,4,5\u2010trisphosphate 3\u2010kinase\u2010A (ITPKA) is frequently over\u2010expressed and functions as an oncogene in several tumor types. Biochem. Pharmacol. 137: 1\u20109 https://www.ncbi.nlm.nih.gov/pubmed/28377279?dopt=AbstractPlusWindhorst S http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=2.7.11.1) use the co\u2010substrate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 to phosphorylate serine and/or threonine residues on target proteins. Analysis of the human genome suggests the presence of 518 protein kinases in man (divided into 15 subfamilies), with over 100 protein kinase\u2010like pseudogenes [http://www.ncbi.nlm.nih.gov/pubmed/12471243?dopt=AbstractPlus]. It is beyond the scope of the Concise Guide to list all these protein kinase activities, but full listings are available on the \u2019Detailed page\u2019 provided for each enzyme.Protein kinases , which in turn may be activated by G\u03b112/13 subunits [http://www.ncbi.nlm.nih.gov/pubmed/9641915?dopt=AbstractPlus].Rho kinase is activated by members of the Rho small G protein family, which are activated by GTP exchange factors, such as et al. (2016) Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J. Med. Chem. 59: 2269\u2010300 https://www.ncbi.nlm.nih.gov/pubmed/26486225?dopt=AbstractPlusFeng Y et al. (2015) Developing novel methods to search for substrates of protein kinases such as Rho\u2010kinase. Biochim. Biophys. Acta1854: 1663\u20106 https://www.ncbi.nlm.nih.gov/pubmed/25770685?dopt=AbstractPlusNishioka T et al. (2016) RhoA/Rho\u2010Kinase in the Cardiovascular System. Circ. Res. 118: 352\u201066 https://www.ncbi.nlm.nih.gov/pubmed/26838319?dopt=AbstractPlusShimokawa H http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2341).Protein kinase C is the target for the tumour\u2010promoting phorbol esters, such as tetradecanoyl\u2010\u03b2\u2010phorbol acetate Dynamics and Membrane Interactions of Protein Kinase C. et al. (2017) Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends Pharmacol. Sci. 38: 438\u2010447 https://www.ncbi.nlm.nih.gov/pubmed/28283201?dopt=AbstractPlusNewton AC et al. (2016) Protein Kinase C \u03b4: a Gatekeeper of Immune Homeostasis. J. Clin. Immunol. 36: 631\u201040 https://www.ncbi.nlm.nih.gov/pubmed/27541826?dopt=AbstractPlusSalzer E et al. (2016) The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17: 104\u201012 https://www.ncbi.nlm.nih.gov/pubmed/26551880?dopt=AbstractPlusHukelmann JL et al. (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell169: 361\u2010371 https://www.ncbi.nlm.nih.gov/pubmed/28388417?dopt=AbstractPlusSaxton RA http://www.ncbi.nlm.nih.gov/pubmed/24879308?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22512864?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/25561469?dopt=AbstractPlus].Five of the cyclin\u2010dependent kinases are involved in the phosphorylation of serine residues in the C\u2010terminal domain of RNA polymerase II, the enzyme that is responsible for the transcription of protein\u2010coding genes into mRNA in eukaryotes. Phosphorylation of RNA polymerase II at Ser5 is essential for transcriptional initiation, and phosphorylation of Ser 2 contributes to transcriptional elongation and termination. All five of the C\u2010terminal domain kinases can phosphorylate Ser5, but only CDK9, CDK12, and CDK13 can phosphorylate at Ser2 [http://www.ncbi.nlm.nih.gov/pubmed/26115571?dopt=AbstractPlus], with detailed content covering CDK4 and CDK6 inhibitors that are under clinical evaluation. Data produced by Jorda et al. (2018) highlights the caution that must be used when deploying commercially available CDK inhibitors as pharmacological probes [http://www.ncbi.nlm.nih.gov/pubmed/30234987?dopt=AbstractPlus], as most of them are more promiscuous in their selectivity than indicated. To make their findings easily accessible the Jorda data is hosted on the http://rustreg.upol.cz/CDKiDB/.The development of CDK inhibitors as anticancer drugs is reviewed in .Since it is beyond the scope of the Guide to list all peptidase and proteinase activities, this summary focuses on selected enzymes of significant pharmacological interest that have ligands directed against them. For those interested in detailed background we recommend the MEROPS database (with whhttp://www.ncbi.nlm.nih.gov/pubmed/2881207?dopt=AbstractPlus] in the generation of amyloid beta (A\u03b2) . Given that the accumulation and aggregation of A\u03b2 in the brain is pivotal in the development of Alzheimer's disease (AD), inhibition of PS activity is one mechanism being investigated as a therapeutic option for AD [http://www.ncbi.nlm.nih.gov/pubmed/11378516?dopt=AbstractPlus]. Several small molecule inhibitors of PS\u20101 have been investigated, with some reaching early clinical trials, but none have been formally approved. Dewji et al. (2015) have reported that small peptide fragments of human PS\u20101 can significantly inhibit A\u03b2 production both in vitro and when infused in to the brains of APP transgenic mice [http://www.ncbi.nlm.nih.gov/pubmed/25923432?dopt=AbstractPlus]. The most active small peptides in this report were http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8344 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8345, from the amino\u2010terminal domain of PS\u20101.Presenilin (PS)\u20101 or \u20102 act as the catalytic component/ essential co\u2010factor of the \u03b3\u2010secretase complex responsible for the final carboxy\u2010terminal cleavage of amyloid precursor protein (APP) ) on functional and structural bases into gelatinases, collagenases, stromyelinases and matrilysins, as well as membrane type\u2010MMP (MT\u2010MMP).Matrix metalloproteinases (MMP) are calcium\u2010 and zinc\u2010dependent proteinases regulating the extracellular matrix and are often divided proteins are endogenous inhibitors acting to chelate MMP proteins: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5309 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5310 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5311 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5312 ADAM metalloproteinases cleave cell\u2010surface or transmembrane proteins to generate soluble and membrane\u2010limited products.ADAMTS (with thrombospondin motifs) metalloproteinases cleave cell\u2010surface or transmembrane proteins to generate soluble and membrane\u2010limited products.http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=739.Information on members of this family may be found in the http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000235812;r=14:70712470\u201070714518), AC136428.3\u20102 (ENSG00000185520) and ADAMDEC1 .Additional ADAM family members include AC123767.2 , AL160191.3 , AC139425.3\u20101 (ENSG00000225577), and AC126339.6\u20101 (ENSG00000225734).http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6878 has been used for imaging purposes.Folate hydrolase is also known as NAALADase as it is responsible for the hydrolysis of N\u2010acetaspartylglutamate to form N\u2010acetylaspartate and L\u2010glutamate. In the gut, the enzyme assists in the assimilation of folate by hydrolysing dietary poly\u2010gamma\u2010glutamylfolate. The enzyme is highly expressed in the prostate, and its expression is up\u2010regulated in cancerous tissue. A tagged version of the antibody http://www.ncbi.nlm.nih.gov/pubmed/16142822?dopt=AbstractPlus]. This catalytic core enables the degradation of peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the cleavage site. The \u03b25 subunit is the principal target of the approved drug proteasome inhibitor http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6391.The T1 macropain beta subunits form the catalytic proteinase core of the 20S proteasome complex . Therapeutics which inhibit PCSK9 are viewed as potentially lucrative replacements for statins, upon statin patent expiry. Several monoclonal antibodies including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6744, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7343, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7730, RG\u20107652 and LY3015014 are under development. One RNAi therapeutic, code named ALN\u2010PCS02, is also in development .One member of this family has garnered intense interest as a clinical drug target. As liver PCSK9 acts to maintain cholesterol homeostasis, it has become a target of intense interest for clinical drug development. Inhibition of PCSK9 can lower low\u2010density cholesterol (LDL\u2010C) by clearing LDLR\u2010bound LDL particles, thereby lowering circulating cholesterol levels. It is hypothesised that this action may improve outcomes in patients with atherosclerotic cardiovascular disease ) and induces proteasomal degradation of SK1 [http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus]. ABC294640 is in clinical trials for advanced cholangiocarcinoma, advanced hepatocellular carcinoma and refractory/relapsed multiple myeloma .et al. (2016) Sphingosine Kinases: Emerging Structure\u2010Function Insights. Trends Biochem. Sci. 41: 395\u2010409 https://www.ncbi.nlm.nih.gov/pubmed/27021309?dopt=AbstractPlusAdams DR et al. (2016) Sphingosine kinase inhibitors: a review of patent literature (2006\u20102015). Expert Opin Ther Pat26: 1409\u20101416 https://www.ncbi.nlm.nih.gov/pubmed/27539678?dopt=AbstractPlusLynch KR et al. (2016) Recent advances in the development of sphingosine kinase inhibitors. Cell. Signal. 28: 1349\u201063 https://www.ncbi.nlm.nih.gov/pubmed/27297359?dopt=AbstractPlusPitman MR et al. (2018) An intrinsic lipid\u2010binding interface controls sphingosine kinase 1 function. J. Lipid Res. 59: 462\u2010474 https://www.ncbi.nlm.nih.gov/pubmed/29326159?dopt=AbstractPlusPulkoski\u2010Gross MJ et al. (2017) Sphingosine Kinase 2 in Autoimmune/Inflammatory Disease and the Development of Sphingosine Kinase 2 Inhibitors. Trends Pharmacol. Sci. 38: 581\u2010591 https://www.ncbi.nlm.nih.gov/pubmed/28606480?dopt=AbstractPlusPyne NJ et al. (2018) Sphingosine Kinases as Druggable Targets. Handb Exp Pharmacolhttps://www.ncbi.nlm.nih.gov/pubmed/29460151?dopt=AbstractPlusPyne S http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911. The phenotype of Sgpp1(\u2010/\u2010) mice differ with genetic background. Sgpp2(\u2010/\u2010) mice are also available. No specific SGPP inhibitors available [http://www.ncbi.nlm.nih.gov/pubmed/22052905?dopt=AbstractPlus].SGPP1 and SGPP2 are non\u2010redundant endoplasmic reticulum enzymes that dephosphorylate intracellular et al. (2013) Sphingosine\u20101\u2010phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J. Biol. Chem. 288: 18381\u201091 https://www.ncbi.nlm.nih.gov/pubmed/23637227?dopt=AbstractPlusAllende ML et al. (2016) Sphingosine\u20101\u2010phosphate phosphatase 2 promotes disruption of mucosal integrity, and contributes to ulcerative colitis in mice and humans. FASEB J. 30: 2945\u201058 https://www.ncbi.nlm.nih.gov/pubmed/27130484?dopt=AbstractPlusHuang WC et al. (2011) Sphingosine\u20101\u2010phosphate phosphohydrolase\u20101 regulates ER stress\u2010induced autophagy. Cell Death Differ. 18: 350\u201061 https://www.ncbi.nlm.nih.gov/pubmed/20798685?dopt=AbstractPlusL\u00e9pine S et al. (2000) Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine\u20101\u2010 phosphate and induces cell death. Proc. Natl. Acad. Sci. U.S.A. 97: 7859\u201064 https://www.ncbi.nlm.nih.gov/pubmed/10859351?dopt=AbstractPlusMandala SM et al. (2016) Sphingosine\u20101\u2010phosphate Phosphatase 2 Regulates Pancreatic Islet \u03b2\u2010Cell Endoplasmic Reticulum Stress and Proliferation. J. Biol. Chem. 291: 12029\u201038 https://www.ncbi.nlm.nih.gov/pubmed/27059959?dopt=AbstractPlusTaguchi Y http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6626 (2\u2010Acetyl\u20105\u2010tetrahydroxybutyl imidazole) inhibits the enzyme activity in intact cell preparations [http://www.ncbi.nlm.nih.gov/pubmed/16151014?dopt=AbstractPlus]. Recessive mutations in the S1P lyase (SGPL1) gene underlie a recently identified sphingolipidosis: SPL Insufficiency Syndrome (SPLIS) [http://www.ncbi.nlm.nih.gov/pubmed/30274713?dopt=AbstractPlus]. A Phase 2 clinical trial of LX3305 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9851) for rheumatoid arthritis has been completed .et al. (2018) A novel mutation in sphingosine\u20101\u2010phosphate lyase causing congenital brain malformation. Brain Dev. 40: 480\u2010483 https://www.ncbi.nlm.nih.gov/pubmed/29501407?dopt=AbstractPlusBamborschke D et al. (2019) Sphingosine phosphate lyase insufficiency syndrome (SPLIS): A novel inborn error of sphingolipid metabolism. Adv Biol Regul71: 128\u2010140 https://www.ncbi.nlm.nih.gov/pubmed/30274713Choi YJ et al. (2017) Mutations in sphingosine\u20101\u2010phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J. Clin. Invest. 127: 912\u2010928 https://www.ncbi.nlm.nih.gov/pubmed/28165339?dopt=AbstractPlusLovric S et al. (2017) Sphingosine\u20101\u2010phosphate lyase mutations cause primary adrenal insufficiency and steroid\u2010resistant nephrotic syndrome. J. Clin. Invest. 127: 942\u2010953 https://www.ncbi.nlm.nih.gov/pubmed/28165343?dopt=AbstractPlusPrasad R http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635, respectively, are synthesized in the thyroid gland by sequential metabolism of tyrosine residues in the glycosylated homodimeric protein thyroglobulin under the influence of the haem\u2010containing protein iodide peroxidase. Iodide peroxidase/TPO is a haem\u2010containing enzyme, from the same structural family as eosinophil peroxidase , lactoperoxidase and myeloperoxidase . Circulating thyroid hormone is bound to thyroxine\u2010binding globulin .The thyroid hormones triiodothyronine and thyroxine, usually abbreviated as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635 to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2636 . DIO1 is also able to deiodinate RT3 to form 3,3\u2032\u2010diidothyronine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6648). Iodotyrosine deiodinase is a 1TM homodimeric enzyme.These are 1 TM selenoproteins that remove an iodine from et al. (2015) Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor\u2010mediated impact on vertebrate development. Biochim. Biophys. Acta1849: 130\u201041 https://www.ncbi.nlm.nih.gov/pubmed/24844179?dopt=AbstractPlusDarras VM et al. (2015) Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol11: 642\u2010652 https://www.ncbi.nlm.nih.gov/pubmed/26416219?dopt=AbstractPlusGereben B et al. (2017) Novel thyroid hormone analogues, enzyme inhibitors andmimetics, and their action. Mol. Cell. Endocrinol. 458: 91\u2010104 https://www.ncbi.nlm.nih.gov/pubmed/28408161?dopt=AbstractPlusMondal S et al. (2015) New insights into the structure and mechanism of iodothyronine deiodinases. J. Mol. Endocrinol. 55: R37\u201052 https://www.ncbi.nlm.nih.gov/pubmed/26390881?dopt=AbstractPlusSchweizer U et al. (2017) Thyroid hormone metabolism in innate immune cells. J. Endocrinol. 232: R67\u2010R81 https://www.ncbi.nlm.nih.gov/pubmed/27852725?dopt=AbstractPlusvan der Spek AH et al. (2015) Challenges and Opportunities in the Discovery of New Therapeutics Targeting the Kynurenine Pathway. J. Med. Chem. 58: 8762\u201082 https://www.ncbi.nlm.nih.gov/pubmed/26207924?dopt=AbstractPlusDounay AB et al. (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology112: 297\u2010306 https://www.ncbi.nlm.nih.gov/pubmed/27245499?dopt=AbstractPlusErhardt S et al. (2017) L\u2010Tryptophan\u2010kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Neuropharmacology112: 264\u2010274 https://www.ncbi.nlm.nih.gov/pubmed/26767951?dopt=AbstractPlusFujigaki H et al. (2016) Kynurenine\u20103\u2010monooxygenase: a review of structure, mechanism, and inhibitors. Drug Discov. Today21: 315\u201024 https://www.ncbi.nlm.nih.gov/pubmed/26589832?dopt=AbstractPlusSmith JR et al. (2017) Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell. Mol. Life Sci. 74: 2899\u20102916 https://www.ncbi.nlm.nih.gov/pubmed/28314892?dopt=AbstractPlusSong P http://www.ncbi.nlm.nih.gov/pubmed/8621375?dopt=AbstractPlus]. Protein farnesyltransferase catalyses the post\u2010translational formation of a thioether linkage between the C\u20101 of an isoprenyl group and a cysteine residue fourth from the C\u2010terminus of a protein [http://www.ncbi.nlm.nih.gov/pubmed/7756316?dopt=AbstractPlus]. Farnesyltransferase is a dimer, composed of an alpha and beta subunit and requires Mg2+ and Zn2+ ions as cofactors. The active site is located between the subunits. Prenylation creates a hydrophobic domain on protein tails which acts as a membrane anchor.Farnesyltransferase is a member of the prenyltransferases family which also includes geranylgeranyltransferase types I (EC 2.5.1.59) and II (EC 2.5.1.60) .Classes I, II and IV use Znhttp://www.ncbi.nlm.nih.gov/pubmed/19608861?dopt=AbstractPlus] such as microtubules [http://www.ncbi.nlm.nih.gov/pubmed/12024216?dopt=AbstractPlus], the hsp90 chaperone [http://www.ncbi.nlm.nih.gov/pubmed/15916966?dopt=AbstractPlus] and the tumour suppressor p53 [http://www.ncbi.nlm.nih.gov/pubmed/11099047?dopt=AbstractPlus].HDACs have more general protein deacetylase activity, being able to deacetylate lysine residues in non\u2010histone proteins , making HDACs attractive molecular targets in the search for novel mechanisms to treat cancer [http://www.ncbi.nlm.nih.gov/pubmed/24382387?dopt=AbstractPlus]. Several small molecule HDAC inhibitors are already approved for clinical use: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7006, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6852, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7489, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7009 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8305. HDACs and HDAC inhibitors currently in development as potential anti\u2010cancer therapeutics are reviewed by Sim\u00f3\u2010Riudalbas and Esteller (2015) [http://www.ncbi.nlm.nih.gov/pubmed/25039449?dopt=AbstractPlus].Dysregulated HDACactivity has been identified in cancer cells and tumour tissues . Overexpression and/or increased PADI activity is observed in several diseases, including rheumatoid arthritis, Alzheimer's disease, multiple sclerosis, lupus, Parkinson's disease, and cancer [http://www.ncbi.nlm.nih.gov/pubmed/23175390?dopt=AbstractPlus]. Pharmacological PADI inhibition reverses protein\u2010hypercitrullination and disease in mouse models of multiple sclerosis [http://www.ncbi.nlm.nih.gov/pubmed/23118341?dopt=AbstractPlus].In humans, the peptidyl arginine deiminases PAD4: pathophysiology, current therapeutics and future perspective in rheumatoid arthritis. Expert Opin. Ther. Targets21: 433\u2010447 https://www.ncbi.nlm.nih.gov/pubmed/28281906?dopt=AbstractPlusKoushik S et al. (2016) Peptidyl Arginine Deiminases and Neurodegenerative Diseases. Curr. Med. Chem. 23: 104\u201014 https://www.ncbi.nlm.nih.gov/pubmed/26577926?dopt=AbstractPlusTu R Neurochem. Int. 67: 23\u201031 https://www.ncbi.nlm.nih.gov/pubmed/24508404?dopt=AbstractPlusWhiteley CG. (2014) Arginine metabolising enzymes as targets against Alzheimers\u2019 disease. small G\u2010proteins, are a family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP). They are a type of G\u2010protein found in the cytosol that are homologous to the alpha subunit of heterotrimeric G\u2010proteins, but unlike the alpha subunit of G proteins, a small GTPase can function independently as a hydrolase enzyme to bind to and hydrolyze a guanosine triphosphate (GTP) to form guanosine diphosphate (GDP). The best\u2010known members are the Ras GTPases and hence they are sometimes called Ras subfamily GTPases.The RAS proteins are small membrane\u2010localised G protein\u2010likemolecules of 21 kd. They act as an on/off switch linking receptor and non\u2010receptor tyrosine kinase activation to downstream cytoplasmic or nuclear events. Binding of GTP activates the switch, and hydrolysis of the GTP to GDP inactivates the switch.http://www.ncbi.nlm.nih.gov/pubmed/7900159?dopt=AbstractPlus], which leads to increased cell proliferation and decreased apoptosis [http://www.ncbi.nlm.nih.gov/pubmed/17721087?dopt=AbstractPlus]. Because of their importance in oncogenic transformation these proteins have become the targets of intense drug discovery effort [http://www.ncbi.nlm.nih.gov/pubmed/22004085?dopt=AbstractPlus].The RAS proto\u2010oncogenes are the most frequently mutated class of proteins in human cancers. Common mutations compromise the GTP\u2010hydrolysing ability of the proteins causing constitutive activation [http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=897.Information on members of this family may be found in the et al. (2017) Deciphering the RAS/ERK pathway in vivo. Biochem. Soc. Trans. 45: 27\u201036 https://www.ncbi.nlm.nih.gov/pubmed/28202657?dopt=AbstractPlusDorard C et al. (2017) The RAS\u2010Effector Interaction as a Drug Target. Cancer Res. 77: 221\u2010226 https://www.ncbi.nlm.nih.gov/pubmed/28062402?dopt=AbstractPlusKeeton AB et al. (2016) Ras Conformational Ensembles, Allostery, and Signaling. Chem. Rev. 116: 6607\u201065 https://www.ncbi.nlm.nih.gov/pubmed/26815308?dopt=AbstractPlusLu S et al. (2016) Direct small\u2010molecule inhibitors of KRAS: from structural insights to mechanism\u2010based design. Nat Rev Drug Discov15: 771\u2010785 https://www.ncbi.nlm.nih.gov/pubmed/27469033?dopt=AbstractPlusOstrem JM et al. (2017) Drugging RAS: Know the enemy. Science355: 1158\u20101163 https://www.ncbi.nlm.nih.gov/pubmed/28302824?dopt=AbstractPlusPapke B et al. (2016) Pharmacological modulation of oncogenic Ras by natural products and their derivatives: Renewed hope in the discovery of novel anti\u2010Ras drugs. Pharmacol. Ther. 162: 35\u201057 https://www.ncbi.nlm.nih.gov/pubmed/27016467?dopt=AbstractPlusQuah SY et al. (2017) RAS Proteins and Their Regulators in Human Disease. Cell170: 17\u201033 https://www.ncbi.nlm.nih.gov/pubmed/28666118?dopt=AbstractPlusSimanshu DK http://www.genenames.org/cgi\u2010bin/genefamilies/set/388, http://www.genenames.org/cgi\u2010bin/genefamilies/set/388 ).The Rab family of proteins is a member of the Ras superfamily of monomeric G proteins. Rab GTPases regulate many steps of membrane traffic, including vesicle formation, vesicle movement along actin and tubulin networks, and membrane fusion. These processes make up the route through which cell surface proteins are trafficked from the Golgi to the plasma membrane and are recycled. Surface protein recycling returns proteins to the surface whose function involves carrying another protein or substance inside the cell, such as the transferrin receptor, or serves as a means of regulating the number of a certain type of protein molecules on the surface ( see http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=938.Information on members of this family may be found in the"} {"text": "NORDLAND study. PLoS ONE 14(6): e0218521. https://doi.org/10.1371/journal.pone.0218521The third author\u2019s name is incorrect. The correct name is: Knut-Tore Lappegard. The correct citation is: Catalan-Matamoros D, Lopez-Villegas A, Tore-Lappegard K, Lopez-Liria R (2019) Patients' experiences of remote communication after pacemaker implant: The"} {"text": "This article has been corrected: The correct author affiliation information is given below:1,2Hong Zhao84102-84111. https://doi.org/10.18632/oncotarget.21106Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The authors recently became aware that the antibody used for 5545-5561. https://doi.org/10.18632/oncotarget.23798 Original article: Oncotarget. 2018; 9:5545\u20135561."} {"text": "This article has been corrected: The correct author name is given below:Sepideh Saadatmand24335-24346. https://doi.org/10.18632/oncotarget.25262Original article: Oncotarget. 2018; 9:"} {"text": "Correction to: Mol Med 22:224\u2013232, 2016DOI 10.2119/molmed.2016.00003Following publication of the original article (Sonkar et al."} {"text": "This article has been corrected: The corrected author name is given below:Christina Gavegnano94040-94053. https://doi.org/10.18632/oncotarget.21541Original article: Oncotarget. 2017; 8:"} {"text": "Correction to: BMC Health Services Research (2018) 18:575https://doi.org/10.1186/s12913-018-3368-3Following publication of the original article , the autTable Table Incorrect values:1.088(0.621\u20131.906)Single vs. Non-Users:1.067(0.721\u20131.581)Multiple vs. Single:Correct values:1.061(0.721\u20131.563)Single vs. Non-Users:1.047(0.815\u20131.345)Multiple vs. Single:"} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceptualization: HZ RWM FGG. Data curation: HZ RG KM FGG. Formal analysis: HZ RG MW FGG. Funding acquisition: HZ YPZ. Investigation: HZ MW FGG. Methodology: HZ MW FGG. Project administration: HZ YPZ. Resources: HZ FGG. Software: HZ FGG. Supervision: HZ RWM YPZ FGG. Validation: HZ RWM JCA RG PRMF GGM ABQ NLO MW YPZ FGG. Visualization: HZ JCA RG PRMF KM GGM ABQ NLO MW YPZ FGG. Writing\u2013original draft: HZ JCA RG PRMF GGM ABQ MW FGG. Writing\u2013review & editing: HZ RWM JCA RG PRMF KM GGM ABQ NLO MW YPZ FGG."} {"text": "This article has been corrected: The correct author name is given below:Takuro Uchida25075-25088. https://doi.org/10.18632/oncotarget.25308Original article: Oncotarget. 2018; 9:"} {"text": "There is an error in the Correction published on July 5, 2019. The third author\u2019s name is incorrect in the citation. The publisher apologizes for this error.NORDLAND study. PLoS ONE 14(6): e0218521. https://doi.org/10.1371/journal.pone.0218521.The correct citation is: Catalan-Matamoros D, Lopez-Villegas A, Lappegard KT, Lopez-Liria R (2019) Patients' experiences of remote communication after pacemaker implant: The"} {"text": "Correction to: BMC Microbiology (2018) 18:191.https://doi.org/10.1186/s12866-018-1329-yFollowing publication of the original article , we haveftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Stemphylium_lycopersici/latest_assembly_versions/GCA_001191545.1_ASM119154v1/GCA_001191545.1_ASM119154v1_protein.faa.gz) is:The correct citation for the data presented in section \u201cMaterials and Methods - Sequence data and preparation\u201d ."} {"text": "This article has been corrected: The corrected author name is given below:Ruiqi Chenhttps://doi.org/10.18632/oncotarget.19386Original article: Oncotarget. 2017; 8:84863-84876."} {"text": "This article has been corrected: The correct Author name is given below:Stephen D. Robinsonhttps://doi.org/10.18632/oncotarget.23378Original article: Oncotarget. 2018; 9:3815-3829."} {"text": "VOLUME 107107(3) July, page 302http://dx.doi.org/10.5195/jmla.2019.712.Martin ER. Social justice and the medical librarian. J Med Libr Assoc. 2019 Jul;107(3):291\u2013303. DOI: Page 302: The quote by Martin Luther King Jr. should be:\u2014Injustice anywhere is a threat to justice everywhere. Martin Luther King [41]"} {"text": "This article has been corrected: During production, the author name for this article was given incorrectly. The proper author name is shown below.N. Andres Parrahttps://doi.org/10.18632/oncotarget.26437Original article: Oncotarget. 2018; 9:37125-37136."} {"text": "Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point\u2010in\u2010time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14753. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein\u2010coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid\u20102019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC\u2010IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands ( Cellular membranes are hydrophobic and, therefore, effective barriers to separate them allowing the formation of gradients, which can be exploited, for example, in the generation of energy. Membrane transporters carry solutes across cell membranes, which would otherwise be impermeable to them. The energy required for active transport processes is obtained from ATP turnover or by exploiting ion gradients.ATP\u2010driven transporters can be divided into three major classes: P\u2010type ATPases; F\u2010type or V\u2010type ATPases and ATP\u2010binding cassette transporters. The first of these, P\u2010type ATPases, are multimeric proteins, which transport (primarily) inorganic cations. The second, F\u2010type or V\u2010type ATPases, are proton\u2010coupled motors, which can function either as transporters or as motors. Last, are ATP\u2010binding cassette transporters, heavily involved in drug disposition as well as transporting endogenous solutes.The second largest family of membrane proteins in the human genome, after the G protein\u2010coupled receptors, are the SLC solute carrier family. Within the solute carrier family, there are a great variety of solutes transported, from simple inorganic ions to amino acids and sugars to relatively complex organic molecules like haem. The solute carrier family includes 65 families of almost 400 members. Many of these overlap in terms of the solutes that they carry. For example, amino acids accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43 families. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles. Some SLC family members remain orphan transporters, in as much as a physiological function has yet to be dtermined. Within the SLC super\u2010family, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TM domain protein. Membrane topology predictions for other families suggest 3,4,6,7,8,9,10,11,12,13 or 14 TM domains. The SLC transporters include members which function as antiports, where solute movement in one direction is balanced by a solute moving in the reverse direction. Symports allow concentration gradients of one solute to allow co\u2010transport of a second solute across a membrane. A third, relatively small group are equilibrative transporters, which allow solutes to travel across membranes down their concentration gradients. A more complex family of transporters, the SLC27 fatty acid transporters also express enzymatic function. Many of the transporters also express electrogenic properties of ion channels.http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=200\u2013 ATP\u2010binding cassette transporters are ubiquitous membrane proteins characterized by active ATP\u2010dependent movement of a range of substrates, including ions, lipids, peptides, steroids. Individual subunits are typically made up of two groups of 6TM\u2010spanning domains, with two nucleotide\u2010binding domains (NBD). The majority of eukaryotic ABC transporters are \u2018full\u2019 transporters incorporating both TM and NBD entities. Some ABCs, notably the ABCD and ABCG families are half\u2010transporters with only a single membrane spanning domain and one NBD, and are only functional as homo\u2010 or heterodimers. Eukaryotic ABC transporters convey substrates from the cytoplasm, either out of the cell or into intracellular organelles. Their role in the efflux of exogenous compounds, notably chemotherapeutic agents, has led to considerable interest.http://www.ncbi.nlm.nih.gov/pubmed/16586097?dopt=AbstractPlus].To date, 12 members of the human ABCA subfamily are identified. They share a high degree of sequence conservation and have been mostly related with lipid trafficking in a wide range of body locations. Mutations in some of these genes have been described to cause severe hereditary diseases related with lipid transport, such as fatal surfactant deficiency or harlequin ichthyosis. In addition, most of them are hypothesized to participate in the subcellular sequestration of drugs, thereby being responsible for the resistance of several carcinoma cell lines against drug treatment .ABCD4 ; https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:70 ; https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:71 and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:72 (http://www.uniprot.org/uniprot/Q9NUQ8).A further group of ABC transporter\u2010like proteins have been identified to lack membrane spanning regions and are not believed to be functional transporters, but appear to have a role in protein translation [et al. (2015) Peroxisomal ABC transporters: functions and mechanism. Biochem. Soc. Trans. 43: 959\u201065 https://www.ncbi.nlm.nih.gov/pubmed/26517910?dopt=AbstractPlusBaker A Biochem. Soc. Trans. 43: 889\u201093 https://www.ncbi.nlm.nih.gov/pubmed/26517899?dopt=AbstractPlusBeis K. (2015) Structural basis for the mechanism of ABC transporters. et al. (2016) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 370: 153\u201064 https://www.ncbi.nlm.nih.gov/pubmed/26499806?dopt=AbstractPlusChen Z et al. (2011) Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br. J. Pharmacol. 164: 1753\u201066 https://www.ncbi.nlm.nih.gov/pubmed/21488864?dopt=AbstractPlusKemp S et al. (2011) The ABCG family of membrane\u2010associated transporters: you don't have to be big to be mighty. Br. J. Pharmacol. 164: 1767\u201079 https://www.ncbi.nlm.nih.gov/pubmed/21175590?dopt=AbstractPlusKerr ID et al. (2017) The Role of Oxysterols in Human Cancer. Trends Endocrinol. Metab. 28: 485\u2010496 https://www.ncbi.nlm.nih.gov/pubmed/28410994?dopt=AbstractPlusKloudova A et al. (2015) Structure and mechanism of ATP\u2010dependent phospholipid transporters. Biochim. Biophys. Acta1850: 461\u2010475 https://www.ncbi.nlm.nih.gov/pubmed/24746984?dopt=AbstractPlusL\u00f3pez\u2010Marqu\u00e9s RL etal. (2016) Impact of Membrane Drug Transporters on Resistance to Small\u2010Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol. Sci. 37: 904\u2010932 https://www.ncbi.nlm.nih.gov/pubmed/27659854?dopt=AbstractPlusNeul C et al. (2017) ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev37: 987\u20101050 https://www.ncbi.nlm.nih.gov/pubmed/28005280?dopt=AbstractPlusPe\u00f1a\u2010Sol\u00f3rzano D et al. (2018) Revisiting the role of ABC transporters in multidrug\u2010resistant cancer. Nat Rev Cancer18: 452\u2010464 [https://www.ncbi.nlm.nih.gov/pubmed/29643473]Robey RW et al. (2017) Targeted pharmacotherapies for defective ABC transporters. Biochem. Pharmacol. 136: 1\u201011 https://www.ncbi.nlm.nih.gov/pubmed/28245962?dopt=AbstractPlusVauthier V 1 or V1) and a membrane complex (Fo or Vo). Within each ATPase complex, the two individual sectors appear to function as connected opposing rotary motors, coupling catalysis of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 synthesis or hydrolysis to proton transport. Both the F\u2010type and V\u2010type ATPases have been assigned enzyme commission number http://www.genome.jp/kegg\u2010bin/search_brite?option=\u2010a&search_string=3.6.3.14The F\u2010type (ATP synthase) and the V\u2010type (vacuolar or vesicular proton pump) ATPases, although having distinct sub\u2010cellular locations and roles, exhibit marked similarities in subunit structure and mechanism. They are both composed of a \u2018soluble\u2019 complex (termed F+\u2010transporting), is a mitochondrial membrane\u2010associated multimeric complex consisting of two domains, an F0 channel domain in the membrane and an F1 domain extending into the lumen. Proton transport across the inner mitochondrial membrane is used to drive the synthesis of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713, although it is also possible for the enzyme to function as an AT\u2010Pase. The ATP5O subunit ), acts as a connector between F1 and F0 motors.The F\u2010type ATPase, also known as ATP synthase or ATP phosphohydrolase .Thehttp://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=157.Information on members of this family may be found in the et al. (2015) Hybrid rotors in F1F(o) ATP synthases: subunit composition, distribution, and physiological significance. Biol. Chem. 396: 1031\u201342 https://www.ncbi.nlm.nih.gov/pubmed/25838297?dopt=AbstractPlusBrandt K Prog. Biophys. Mol. Biol. 119: 94\u2013102 https://www.ncbi.nlm.nih.gov/pubmed/26140992?dopt=AbstractPlusKrah A. (2015) Linking structural features from mitochondrial and bacterial F\u2010type ATP synthases to their distinct mechanisms of ATPase inhibition. et al. (2014) Eukaryotic V\u2010ATPase: novel structural findings and functional insights. Biochim. Biophys. Acta1837: 857\u201379 https://www.ncbi.nlm.nih.gov/pubmed/24508215?dopt=AbstractPlusMarshansky V et al. (2017) Catalytic robustness and torque generation of the F_1\u2010ATPase. Biophys Rev9: 103\u2013118 https://www.ncbi.nlm.nih.gov/pubmed/28424741?dopt=AbstractPlusNoji H et al. (2013) Single\u2010molecule analysis of the rotation of F_1\u2010ATPase under high hydrostatic pressure. Biophys. J. 105: 1635\u201342 https://www.ncbi.nlm.nih.gov/pubmed/24094404?dopt=AbstractPlusOkuno D Phosphorylation\u2010type ATPases (EC 3.6.3.\u2010) are associated with membranes and the transport of ions or phospholipids. Characteristics of the family are the transient phosphorylation of the transporters at an aspartate residue and the interconversion between E1 and E2 conformations in the activity cycle of the transporters, taken to represent \u2018half\u2010channels\u2019 facing the cytoplasm and extracellular/luminal side of the membrane, respectively.Sequence analysis across multiple species allows the definition of five subfamilies, P1\u2010P5. The P1 subfamily includes heavy metal pumps, such as the copper ATPases. The P2 subfamily includes calcium, sodium/potassium and proton/potassium pumps. The P4 and P5 subfamilies include putative phospholipid flippases.+/K+\u2010ATPase is an integral membrane protein which regulates the membrane potential of the cell by maintaining gradients of Na+ and K+ ions across the plasma membrane, also making a small, direct contribution to membrane potential, particularly in cardiac cells. For every molecule of ATP hydrolysed, the Na+/K+\u2010ATPase extrudes three Na+ ions and imports two K+ ions. The active transporter is a heteromultimer with incompletely defined stoichiometry, possibly as tetramers of heterodimers, each consisting of one of four large, ten TM domain catalytic \u03b1 subunits and one of three smaller, single TM domain glycoprotein \u03b2\u2010subunits. Additional protein partners known as FXYD proteins appear to associate with and regulate the activity of the pump.The cell\u2010surface Nahttp://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=158.Information on members of this family may be found in the +/K+\u2010ATPases are inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4826 and cardiac glycosides, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4726, as well as potentially endogenous cardiotonic steroids [http://www.ncbi.nlm.nih.gov/pubmed/19325075?dopt=AbstractPlus].Na2+\u2010ATPase (SERCA) is an intracellular membrane\u2010associated pump for sequestering calcium from the cytosol into intracellular organelles, usually associated with the recovery phase following excitation of muscle and nerves.The sarcoplasmic/endoplasmic reticulum Ca2+\u2010ATPase (PMCA) is a cell\u2010surface pump for extruding calcium from the cytosol, usually associated with the recovery phase following excitation of cells. The active pump is a homodimer, each subunit of which is made up of ten TM segments, with cytosolic C\u2010 and N\u2010termini and two large intracellular loops.The plasma membrane Ca2+\u2010ATPases (SPCA) allow accumulation of calcium and manganese in the Golgi apparatus.Secretory pathway Cahttp://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=159.Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4672 has been described to activate SERCA in kidney microsomes [http://www.ncbi.nlm.nih.gov/pubmed/1417961?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5350 [http://www.ncbi.nlm.nih.gov/pubmed/2530215?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5351 [http://www.ncbi.nlm.nih.gov/pubmed/1832668?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5486are widely employed to block SERCA. Thapsigargin has also been described to block the TRPV1 vanilloid receptor [http://www.ncbi.nlm.nih.gov/pubmed/12054538?dopt=AbstractPlus].The fungal toxin 2+ while SERCA transports 2 Ca2+.The stoichiometry of flux through the PMCA differs from SERCA, with the PMCA transporting 1 Cahttp://www.ncbi.nlm.nih.gov/pubmed/10615129?dopt=AbstractPlus].Loss\u2010of\u2010function mutations in SPCA1 appear to underlie Hailey\u2010Hailey disease .The Hhttp://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=160.Information on members of this family may be found in the +/K+\u2010ATPase is inhibited by proton pump inhibitors used for treating excessive gastric acid secretion, including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5487 and a metabolite of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5488.The gastric He.g. https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:798, http://www.uniprot.org/uniprot/O00244).Copper\u2010transporting ATPases convey copper ions across cell\u2010surface and intracellular membranes. They consist of eight TM domains and associate with multiple copper chaperone proteins , https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:30213 (http://www.uniprot.org/uniprot/Q9NQ11), https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:24113 (http://www.uniprot.org/uniprot/Q9H7F0), https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:25422 (http://www.uniprot.org/uniprot/Q4VNC1) and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:31789 (http://www.uniprot.org/uniprot/Q4VNC0).A further series of structurally\u2010related proteins have been identified in the human genome, with as yet undefined function, including et al. (2016) Na+\u2010K+\u2010ATPase, a new class of plasma membrane receptors. Am. J. Physiol., Cell Physiol. 310: C491\u20135 https://www.ncbi.nlm.nih.gov/pubmed/26791490?dopt=AbstractPlusAperia A et al. (2017) The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem. Biophys. Res. Commun. 483: 1116\u20131124 https://www.ncbi.nlm.nih.gov/pubmed/27480928?dopt=AbstractPlusBrini M Cell Calcium69: 28\u201336 https://www.ncbi.nlm.nih.gov/pubmed/27553475?dopt=AbstractPlusBruce JIE. (2018) Metabolic regulation of the PMCA: Role in cell death and survival. et al. (2017) Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem. Pharmacol. 125: 1\u201311 https://www.ncbi.nlm.nih.gov/pubmed/27553475?dopt=AbstractPlusDiederich M et al. (2016) The calcium\u2010signaling toolkit: Updates needed. Biochim. Biophys. Acta1863: 1337\u201343 https://www.ncbi.nlm.nih.gov/pubmed/26658643?dopt=AbstractPlusDubois C Biochim. Biophys. Acta1853: 2018\u201324 https://www.ncbi.nlm.nih.gov/pubmed/25535949?dopt=AbstractPlusKrebs J. (2015) The plethora of PMCA isoforms: Alternative splicing and differential expression. et al. (2016) Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension. Pharmacol. Ther. 159: 23\u201334 https://www.ncbi.nlm.nih.gov/pubmed/26820758?dopt=AbstractPlusLittle R et al. (2015) Structure and mechanism of ATP\u2010dependent phospholipid transporters. Biochim. Biophys. Acta1850: 461\u2013475 https://www.ncbi.nlm.nih.gov/pubmed/24746984?dopt=AbstractPlusL\u00f3pez\u2010Marqu\u00e9s RL IUBMB Life67: 737\u201345 https://www.ncbi.nlm.nih.gov/pubmed/26422816?dopt=AbstractPlusMigocka M. (2015) Copper\u2010transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. et al. (2016) Multifaceted plasmamembrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. Biochim. Biophys. Acta1863: 1351\u201363 https://www.ncbi.nlm.nih.gov/pubmed/26707182?dopt=AbstractPlusPad\u00e1nyi R et al. (2016) Lipid somersaults: Uncovering the mechanisms of protein\u2010mediated lipid flipping. Prog. Lipid Res. 64: 69\u201384 https://www.ncbi.nlm.nih.gov/pubmed/27528189?dopt=AbstractPlusPomorski TG et al. (2016) P2C\u2010Type ATPases and Their Regulation. Mol. Neurobiol. 53: 1343\u201354 https://www.ncbi.nlm.nih.gov/pubmed/25631710?dopt=AbstractPlusRetamales\u2010Ortega R et al. (2017) Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. IUBMB Life69: 218\u2013225 https://www.ncbi.nlm.nih.gov/pubmed/28164426?dopt=AbstractPlusTadini\u2010Buoninsegni F The SLC superfamily of solute carriers is the second largest family of membrane proteins after G protein\u2010coupled receptors, but with a great deal fewer therapeutic drugs that exploit them. As with the ABC transporters, however, they play a major role in drug disposition and so can be hugely influential in determining the clinical efficacy of particular drugs.48 families are identified on the basis of sequence similarities, but many of them overlap in terms of the solutes that they carry. For example, amino acid accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles.Within the SLC superfamily, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TMdomain protein. Membrane topology predictions for other families suggest 3, 4 6, 7, 8, 9, 10, 11, 12, 13, or 14 TM domains.Functionally, members may be divided into those dependent on gradients of ions , exchange of solutes or simple equilibrative gating. For many members, the stoichiometry of transport is not yet established. Furthermore, one family of transporters also possess enzymatic activity (SLC27), while many members function as ion channels (e.g. SLC1A7/EAAT5), which increases the complexity of function of the SLC superfamily.http://www.ncbi.nlm.nih.gov/pubmed/8103691?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17088867?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14530974?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14612154?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9790568?dopt=AbstractPlus].The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 [http://www.ncbi.nlm.nih.gov/pubmed/10734120?dopt=AbstractPlus]. The crystal structure of a glutamate transporter homologue (GltPh) from Pyrococcus horikoshii supports this topology and indicates that the transporter assembles as a trimer, where each monomer is a functional unit capable of substrate permeation reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/20708631?dopt=AbstractPlus]). This structural data is in agreementwith the proposed quaternary structure for EAAT2 [http://www.ncbi.nlm.nih.gov/pubmed/15265858?dopt=AbstractPlus] and several functional studies that propose the monomer is the functional unit . Recent evidence suggests that EAAT3 and EAAT4 may assemble as heterotrimers [http://www.ncbi.nlm.nih.gov/pubmed/21127051?dopt=AbstractPlus]. The activity of glutamate transporters located upon both neurones and glia (predominantly EAAT 1 and 2) serves, dependent upon their location, to regulate excitatory neurotransmission, maintain low ambient extracellular concentrations of glutamate (protecting against excitotoxicity) and provide glutamate for metabolism including the glutamate\u2010glutamine cycle. The http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138 that maintains the ion gradients that drive transport has been demonstrated to co\u2010assemble with EAAT1 and EAAT2 [http://www.ncbi.nlm.nih.gov/pubmed/19553454?dopt=AbstractPlus]. Recent evidence supports altered glutamate transport and novel roles in brain for splice variants of EAAT1 and EAAT2 . Three patients with dicarboxylic aminoaciduria (DA) were recently found to have loss\u2010of\u2010function mutations in EAAT3 [http://www.ncbi.nlm.nih.gov/pubmed/21123949?dopt=AbstractPlus]. DA is characterized by excessive excretion of the acidic amino acids glutamate and aspartate and EAAT3 is the predominant glutamate/aspartate transporter in the kidney. Enhanced expression of EAAT2 resulting fromadministration of \u00df\u2010lactam antibiotics (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5326) is neuroprotective and occurs through NF\u2010?B\u2010mediated EAAT2 promoter activation reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/21792905?dopt=AbstractPlus]). http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=86 activation (e.g. by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1056) also leads to enhanced expression of EAAT though promoter activation [http://www.ncbi.nlm.nih.gov/pubmed/17213861?dopt=AbstractPlus]. In addition, several translational activators of EAAT2 have recently been described [http://www.ncbi.nlm.nih.gov/pubmed/20508255?dopt=AbstractPlus] along with treatments that increase the surface expression of EAAT2 , or prevent its down\u2010regulation (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/21730107?dopt=AbstractPlus]). A thermodynamically uncoupled Cl\u2010 flux, activated by Na+ and glutamate (Na+ and aspartate in the case of GltPh [http://www.ncbi.nlm.nih.gov/pubmed/21730107?dopt=AbstractPlus]), is sufficiently large, in the instances of EAAT4 and EAAT5, to influence neuronal excitability . Indeed, it has recently been suggested that the primary function of EAAT5 is as a slow anion channel gated by glutamate, rather than a glutamate transporter [http://www.ncbi.nlm.nih.gov/pubmed/21641307?dopt=AbstractPlus].Glutamate transporters present the unusual structural motif of 8TM segments and 2 re\u2010entrant loops . KB (or Ki) values derived in uptake assays are generally higher (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus]). In addition to acting as a poorly transportable inhibitor of EAAT2, \u20104\u2010methylglutamate, also known as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4317, is a competitive substrate for EAAT1 and additionally is a potent kainate receptor agonist [http://www.ncbi.nlm.nih.gov/pubmed/8996224?dopt=AbstractPlus] which renders the compound unsuitable for autoradiographic localisation of EAATs [http://www.ncbi.nlm.nih.gov/pubmed/17590480?dopt=AbstractPlus]. Similarly, at concentrations that inhibit EAAT2, dihydrokainate binds to kainate receptors [http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5327 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4531 are both non\u2010substrate inhibitors with a preference for EAAT2 over EAAT3 and EAAT1 . http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4626 is a non\u2010substrate inhibitor with modest selectivity for EAAT3 over EAAT1 (>10\u2010fold) and EAAT2 (5\u2010fold) . Analogously, L\u2010\u03b2\u2010threo\u2010benzyl\u2010aspartate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4625) is a competitive nonsubstrate inhibitor that preferentially blocks EAAT3 versus EAAT1, or EAAT2 [http://www.ncbi.nlm.nih.gov/pubmed/16183084?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4075 demonstrates low affinity binding (KD\u22456.0 \u03bcM) to EAAT1 and EAAT2 in rat brain homogenates [http://www.ncbi.nlm.nih.gov/pubmed/11389172?dopt=AbstractPlus] and EAAT1 in murine astrocyte membranes [http://www.ncbi.nlm.nih.gov/pubmed/14994336?dopt=AbstractPlus], whereas http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4492 binds with high affinity to all EAATs other than EAAT3 [http://www.ncbi.nlm.nih.gov/pubmed/17047096?dopt=AbstractPlus]. The novel isoxazole derivative http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5328 may interact at the same site as TBOA and preferentially inhibit reverse transport of glutamate [http://www.ncbi.nlm.nih.gov/pubmed/18451317?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4573 induces substrate\u2010like currents at EAAT4, but does not elicit heteroexchange of [3H]\u2010aspartate in synaptosome preparations, inconsistentwith the behaviour of a substrate inhibitor [http://www.ncbi.nlm.nih.gov/pubmed/11299317?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5352, a compound isolated from the venom from the spider Parawixia bistriata is a selective enhancer of the glutamate uptake through EAAT2 but not through EAAT1 or EAAT3 . In addition to the agents listed in the table, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4497 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4516 act as non\u2010selective competitive substrate inhibitors of all EAATs. Zn2+ and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 are putative endogenous modulators of EAATs with actions that differ across transporter subtypes (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/15324920?dopt=AbstractPlus]).The K+\u2010dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr and their structure is predicted to be similar to that of the glutamate transporters . ASCT1 and ASCT2 also exhibit thermodynamically uncoupled chloride channel activity associated with substrate transport . Whereas EAATs counter\u2010transport K+ (see above) ASCTs do not and their function is independent of the intracellular concentration of K+ [http://www.ncbi.nlm.nih.gov/pubmed/8910405?dopt=AbstractPlus].ASC transporters mediate Nahttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4704 [http://www.ncbi.nlm.nih.gov/pubmed/14502423?dopt=AbstractPlus]. At low pH (5.5) both ASCT1 and ASCT2 are able to exchange acidic amino acids such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5329 and glutamate . In addition to the inhibitors tabulated above, HgCl2, methylmercury and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5331, at low micromolar concentrations, non\u2010competitively inhibit ASCT2 by covalent modificiation of cysteine residues [http://www.ncbi.nlm.nih.gov/pubmed/20599776?dopt=AbstractPlus].The substrate specificity of ASCT1 may extend to et al. (2007) Transporters for L\u2010glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol. 150: 5\u201317 https://www.ncbi.nlm.nih.gov/pubmed/17088867?dopt=AbstractPlusBeart PM et al. (2016) The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem. Int. 98: 4\u201318 https://www.ncbi.nlm.nih.gov/pubmed/27233497?dopt=AbstractPlusBjrn\u2010Yoshimoto WE et al. (2016) Molecular physiology of EAAT anion channels. Pflugers Arch. 468: 491\u2013502 https://www.ncbi.nlm.nih.gov/pubmed/26687113?dopt=AbstractPlusFahlke C J. Neurochem. 134: 982\u20131007 https://www.ncbi.nlm.nih.gov/pubmed/26096891?dopt=AbstractPlusFontana AC. (2015) Current approaches to enhance glutamate transporter function and expression. et al. (2014) SLC1 glutamate transporters. Pflugers Arch. 466: 3\u201324 https://www.ncbi.nlm.nih.gov/pubmed/24240778?dopt=AbstractPlusGrewer C et al. (2015) Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol20: 116\u201323 https://www.ncbi.nlm.nih.gov/pubmed/25466154?dopt=AbstractPlusJensen AA et al. (2013) The SLC1 high\u2010affinity glutamate and neutral amino acid transporter family. Mol. Aspects Med. 34: 108\u201320 https://www.ncbi.nlm.nih.gov/pubmed/23506861?dopt=AbstractPlusKanai Y et al. (2015) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell. Mol. Life Sci. 72: 3489\u2013506 https://www.ncbi.nlm.nih.gov/pubmed/26033496?dopt=AbstractPlusTakahashi K http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654, inositol (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495) and related hexoses. Three classes of glucose transporter can be identified, separating GLUT1\u20104 and 14, GLUT6, 8, 10 and 12; and GLUT5, 7, 9 and 11. Modelling suggests a 12 TM membrane topology, with intracellular termini, with functional transporters acting as homodimers or homotetramers.The SLC2 family transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, but not http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654, in the direction of the concentration gradient and may be inhibited non\u2010selectively by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4285 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5334. GLUT1 is the major glucose transporter in brain, placenta and erythrocytes, GLUT2 is found in the pancreas, liver and kidneys, GLUT3 is neuronal and placental, while GLUT4 is the insulin\u2010responsive transporter found in skeletal muscle, heart and adipose tissue. GLUT14 appears to result from gene duplication of GLUT3 and is expressed in the testes [http://www.ncbi.nlm.nih.gov/pubmed/12504846?dopt=AbstractPlus].Class I transporters are able to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654 and appear to be insensitive to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5334. Class II transporters appear to be predominantly intracellularly located.Class II transporters transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4285 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5334 [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus].Proton\u2010coupled inositol transporters are expressed predominantly in the brain and can be inhibited by IUBMB Life62: 315\u201333 https://www.ncbi.nlm.nih.gov/pubmed/20209635?dopt=AbstractPlusAugustin R. (2010) The protein family of glucose transport facilitators: It's not only about glucose after all. et al. (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am. J. Physiol., Cell Physiol. 306: C879\u201386 https://www.ncbi.nlm.nih.gov/pubmed/24598362?dopt=AbstractPlusKlip A et al. (2009) Themolecular basis of insulin\u2010stimulated glucose uptake: signalling, trafficking and potential drug targets. J. Endocrinol. 203: 1\u201318 https://www.ncbi.nlm.nih.gov/pubmed/19389739?dopt=AbstractPlusLeney SE et al. (2013) The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34: 121\u201038 https://www.ncbi.nlm.nih.gov/pubmed/23506862?dopt=AbstractPlusMueckler M et al. (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 447: 480\u20109 https://www.ncbi.nlm.nih.gov/pubmed/12750891?dopt=AbstractPlusUldry M The SLC3 and SLC7 families combine to generate functional transporters, where the subunit composition is a disulphide\u2010linked combination of a heavy chain (SLC3 family) with a light chain (SLC7 family).SLC3 family members are single TM proteins with extensive glycosylation of the exterior C\u2010terminus, which heterodimerize with SLC7 family members in the endoplasmic reticulum and assist in the plasma membrane localization of the transporter.http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=168.Information on members of this family may be found in the \u2010 and sodium\u2010independent transport of cationic amino acids (system y+), apparently as an exchange mechanism. These transporters are sensitive to inhibition by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5335.SLC7 family members may be divided into two major groups: cationic amino acid transporters (CATs) and glycoprotein\u2010associated amino acid transporters (gpaATs). Cationic amino acid transporters are 14 TM proteins, which mediate pHhttp://www.ncbi.nlm.nih.gov/pubmed/12049641?dopt=AbstractPlus], while SLC7A14 has yet to be characterized. Glycoprotein\u2010associated amino acid transporters are 12 TM proteins, which heterodimerize with members of the SLC3 family to act as cell\u2010surface amino acid exchangers.CAT4 appears to be non\u2010functional in heterologous expression Majumdar D et al. (2013) The divergence, actions, roles, and relatives of sodium\u2010coupled bicarbonate transporters. Physiol. Rev. 93: 803\u2010959 [https://www.ncbi.nlm.nih.gov/pubmed/23589833?dopt=AbstractPlus]Parker MD et al. (2016) Band 3, the human red cell chloride/bicarbonate anion exchanger , in a structural context. Biochim. Biophys. Acta1858: 1507\u201032 [https://www.ncbi.nlm.nih.gov/pubmed/27058983?dopt=AbstractPlus]Reithmeier RA et al. (2013) The SLC4 family of bicarbonate (HCO_3\u2010) transporters. Mol. Aspects Med. 34: 159\u201082 [https://www.ncbi.nlm.nih.gov/pubmed/23506864?dopt=AbstractPlus]Romero MF et al. (2015) Regulators of Slc4 bicarbonate transporter activity. Front Physiol6: 166 [https://www.ncbi.nlm.nih.gov/pubmed/26124722?dopt=AbstractPlus]Thornell IM +/substrate co\u2010transporters for glucose (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, monocarboxylates, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 and I\u2010 . Members of the SLC5 and SLC6 families, along with other unrelated Na+ cotransporters (i.e. Mhp1 and BetP), share a common structural core that contains an inverted repeat of 5TM \u03b1\u2010helical domains [http://www.ncbi.nlm.nih.gov/pubmed/19631523?dopt=AbstractPlus].The SLC5 family of sodium\u2010dependent glucose transporters includes, in mammals, the Nahttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4757, a natural dihydrocholine glucoside, that exhibits modest selectivity towards SGLT2 (see [http://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlus] for an extensive review). SGLT1 is predominantly expressed in the small intestine, mediating the absorption of glucose (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536), but also occurs in the brain, heart and in the late proximal straight tubule of the kidney. The expression of SGLT2 is almost exclusively restricted to the early proximal convoluted tubule of the kidney, where it is largely responsible for the renal reabsorption of glucose. SGLT3 is not a transporter but instead acts as a glucosensor generating an inwardly directed flux of Na+ that causes membrane depolarization [http://www.ncbi.nlm.nih.gov/pubmed/13130073?dopt=AbstractPlus].Detailed characterisation of members of the hexose transporter family is limited to SGLT1, 2 and 3, which are all inhibited in a competitive manner by http://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlus] for a detailed quantification). Although SGLT1 and SGLT2 have been described as high\u2010 and lowaffinity sodium glucose co\u2010transporters, respectively, recent work suggests that they have a similar affinity for glucose under physiological conditions [http://www.ncbi.nlm.nih.gov/pubmed/20980548?dopt=AbstractPlus]. Selective blockers of SGLT2, and thus blocking 50% of renal glucose reabsorption, are in development for the treatment of diabetes (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/20508640?dopt=AbstractPlus]).Recognition and transport of substrate by SGLTs requires that the sugar is a pyranose. De\u2010oxyglucose derivatives have reduced affinity for SGLT1, but the replacement of the sugar equatorial hydroxyl group by fluorine at some positions, excepting C2 and C3, is tolerated proteins, (which are members of the SLC44 family) with weak Na+ dependence have been described [http://www.ncbi.nlm.nih.gov/pubmed/15715662?dopt=AbstractPlus].The high affinity, hemicholinium\u20103\u2010sensitive, choline transporter (CHT) is expressed mainly in cholinergic neurones on nerve cell terminals and synaptic vesicles . In autonomic neurones, expression of CHT requires an activity\u2010dependent retrograde signal from postsynaptic neurones [i and KD values for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4494 listed in the table are for human CHT expressed in Xenopus laevis oocytes [http://www.ncbi.nlm.nih.gov/pubmed/11068039?dopt=AbstractPlus], or COS\u20107 cells [http://www.ncbi.nlm.nih.gov/pubmed/11027560?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5502 is a substrate for CHT that causes covalent modification and irreversible inactivation of the transporter. Several exogenous substances (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4760) that are substrates for CHT act as precursors to cholinergic false transmitters.K\u2010 within thyrocytes. Transport of I\u2010 by NIS from the blood across the basolateral membrane followed by apical efflux into the colloidal lumen, mediated at least in part by pendrin (SLC22A4), and most likely not SMCT1 (SLC5A8) as once thought, provides the I\u2010 required for the synthesis of the thyroid hormones triiodothyronine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634) and thyroxine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635) [http://www.ncbi.nlm.nih.gov/pubmed/19196800?dopt=AbstractPlus]. NIS is also expressed in the salivary glands, gastric mucosa, intestinal enterocytes and lactating breast. NIS mediates I\u2010 absorption in the intestine and I\u2010 secretion into the milk. SMVT is expressed on the apical membrane of intestinal enterocytes and colonocytes and is the main system responsible for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 (vitamin H) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4668 (vitamin B5) uptake in humans [http://www.ncbi.nlm.nih.gov/pubmed/19056639?dopt=AbstractPlus]. SMVT located in kidney proximal tubule epithelial cells mediates the reabsorption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4668. SMCT1 (SLC5A8), which transports a wide range of monocarboxylates, is expressed in the apical membrane of epithelia of the small intestine, colon, kidney, brain neurones and the retinal pigment epithelium [http://www.ncbi.nlm.nih.gov/pubmed/18446519?dopt=AbstractPlus]. SMCT2 (SLC5A12) also localises to the apical membrane of kidney, intestine, and colon, but in the brain and retina is restricted to astrocytes and M\u00fcller cells, respectively [http://www.ncbi.nlm.nih.gov/pubmed/18446519?dopt=AbstractPlus]. SMCT1 is a high\u2010affinity transporter whereas SMCT2 is a lowaffinity transporter. The physiological substrates for SMCT1 and SMCT2 are lactate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2934), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062, and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588 in non\u2010colonic tissues such as the kidney. SMCT1 is also likely to be the principal transporter for the absorption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588 (vitamin B3) in the intestine and kidney [http://www.ncbi.nlm.nih.gov/pubmed/15651982?dopt=AbstractPlus]. In the small intestine and colon, the physiological substrates for these transporters are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588 and the shortchain fatty acids http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062, and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059 that are produced by bacterial fermentation of dietary fiber [http://www.ncbi.nlm.nih.gov/pubmed/14966140?dopt=AbstractPlus]. In the kidney, SMCT2 is responsible for the bulk absorption of lactate because of its low\u2010affinity/high\u2010capacity nature. Absence of both transporters in the kidney leads to massive excretion of lactate in urine and consequently drastic decrease in the circulating levels of lactate in blood [http://www.ncbi.nlm.nih.gov/pubmed/16873376?dopt=AbstractPlus]. SMCT1 also functions as a tumour suppressor in the colon as well as in various other non\u2010colonic tissues [http://www.ncbi.nlm.nih.gov/pubmed/18992769?dopt=AbstractPlus]. The tumour\u2010suppressive function of SMCT1 is based on its ability to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, an inhibitor of histone deacetylases, into cells in non\u2010colonic tissues [http://www.ncbi.nlm.nih.gov/pubmed/17178845?dopt=AbstractPlus]; in the colon, the ability of SMCT1 to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062, also inhibitors of histone deacetylases, underlies the tumour\u2010suppressive function of this transporter . The ability of SMCT1 to promote histone acetylase inhibition through accumulation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062 in immune cells is also responsible for suppression of dendritic cell development in the colon [http://www.ncbi.nlm.nih.gov/pubmed/20601425?dopt=AbstractPlus].The sodium\u2010iodide symporter (NIS) is an iodide transporter found principally in the thyroid gland where it mediates the accumulation of I\u2010, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4524, thiocyanate and NO3\u2010 are competitive substrate inhibitors of NIS [http://www.ncbi.nlm.nih.gov/pubmed/18077370?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4822 appears to act as a competitive substrate inhibitor of SMVT [http://www.ncbi.nlm.nih.gov/pubmed/10329687?dopt=AbstractPlus] and the anticonvulsant drugs http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5338 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5339 competitively block the transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 by brush border vesicles prepared from human intestine [http://www.ncbi.nlm.nih.gov/pubmed/2911998?dopt=AbstractPlus].I+\u2010coupled SMIT1 and SMIT2 tabulated below and the third is proton\u2010coupled HMIT (SLC2A13). SMIT1 and SMIT2 have a widespread and overlapping tissue location but in polarized cells, such as the Madin\u2010 Darby canine kidney cell line, they segregate to the basolateral and apical membranes, respectively [http://www.ncbi.nlm.nih.gov/pubmed/15181167?dopt=AbstractPlus]. In the nephron, SMIT1 mediates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 uptake as a \u2018compatible osmolyte\u2019 when inner medullary tubules are exposed to increases in extracellular osmolality, whilst SMIT2 mediates the reabsorption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 from the filtrate. In some species apically located SMIT2 is responsible for the uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 from the intestinal lumen [http://www.ncbi.nlm.nih.gov/pubmed/17932225?dopt=AbstractPlus].Three different mammalian myo\u2010inositol cotransporters are currently known; two are the Nahttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4645, but SMIT1 does not. In addition, whereas SMIT1 transports both http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4724 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4720 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4722 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4721, SMIT2 transports only the D\u2010isomers of these sugars . Thus the substrate specificities of SMIT1 (for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4721) and SMIT2 (for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4645) allow discrimination between the two SMITs. Human SMIT2 appears not to transport glucose [http://www.ncbi.nlm.nih.gov/pubmed/19032932?dopt=AbstractPlus].The data tabulated are those for dog SMIT1 and rabbit SMIT2. SMIT2 transports et al. (2017) Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol13: 11\u201026 https://www.ncbi.nlm.nih.gov/pubmed/27941935?dopt=AbstractPlusDeFronzo RA +\u2010D\u2010glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol. Ther. 170: 148\u2010165 https://www.ncbi.nlm.nih.gov/pubmed/27773781?dopt=AbstractPlusKoepsell H. (2017) The Naet al. (2016) Intestinal SGLT1 inmetabolic health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 310: G887\u201098 https://www.ncbi.nlm.nih.gov/pubmed/27012770?dopt=AbstractPlusLehmann A Mol. Aspects Med. 34: 183\u201096 https://www.ncbi.nlm.nih.gov/pubmed/23506865?dopt=AbstractPlusWright EM. (2013) Glucose transport families SLC5 and SLC50. et al. (2011) Biology of human sodium glucose transporters. Physiol. Rev. 91: 733\u201094 https://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlusWright EM http://www.ncbi.nlm.nih.gov/pubmed/16540203?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21752877?dopt=AbstractPlus] are primarily plasma membrane located and may be divided into four subfamilies that transport monoamines, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 and neutral amino acids, plus the related bacterial NSS transporters [http://www.ncbi.nlm.nih.gov/pubmed/19022853?dopt=AbstractPlus]. The members of this superfamily share a structural motif of 10 TM segments that has been observed in crystal structures of the NSS bacterial homolog LeuTAa, a Na+\u2010dependent amino acid transporter from Aquiflex aeolicus [http://www.ncbi.nlm.nih.gov/pubmed/16041361?dopt=AbstractPlus] and in several other transporter families structurally related to LeuT [http://www.ncbi.nlm.nih.gov/pubmed/19996368?dopt=AbstractPlus].Members of the solute carrier family 6 (SLC6) of sodium\u2010 and (sometimes chloride\u2010) dependent neurotransmitter transporters .http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 are sufficient to sustain tonic inhibition mediated by high affinity GABAA receptors in certain neuronal populations [http://www.ncbi.nlm.nih.gov/pubmed/15111008?dopt=AbstractPlus]. GAT1 is the predominant GABA transporter in the brain and occurs primarily upon the terminals of presynaptic neurones and to a much lesser extent upon distal astocytic processes that are in proximity to axons terminals. GAT3 resides predominantly on distal astrocytic terminals that are close to the GABAergic synapse. By contrast, BGT1 occupies an extrasynaptic location possibly along with GAT2 which has limited expression in the brain [http://www.ncbi.nlm.nih.gov/pubmed/20026354?dopt=AbstractPlus]. TauT is a high affinity taurine transporter involved in osmotic balance that occurs in the brain and non\u2010neuronal tissues, such as the kidney, brush border membrane of the intestine and blood brain barrier . CT1, which transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496, has a ubiquitous expression pattern, often co\u2010localizing with creatine kinase [http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus].The activity of GABA\u2010transporters located predominantly upon neurones (GAT\u20101), glia (GAT\u20103) or both serves to terminate phasic GABA\u2010ergic transmission, maintain low ambient extracellular concentrations of GABA, and recycle GABA for reuse by neurones. Nonetheless, ambient concentrations of 50 values for the human orthologue [http://www.ncbi.nlm.nih.gov/pubmed/19275529?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4677 is only weakly selective for GAT 2 and GAT3, with IC50 values in the range 22 to >30 \u03bcM at GAT1 and BGT1, whereas http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4610 has at least an order of magnitude selectivity for BGT1 for reviews]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5489 is a recently described compound that displays 20\u2010fold selectivity for GAT3 over GAT1 [http://www.ncbi.nlm.nih.gov/pubmed/16766089?dopt=AbstractPlus]. In addition to the inhibitors listed, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5490 is a moderately potent, though non\u2010selective, inhibitor of all cloned GABA transporters . Diaryloxime and diarylvinyl ether derivatives of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4564 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4691 that potently inhibit the uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5410 into rat synaptosomes have been described [http://www.ncbi.nlm.nih.gov/pubmed/10479278?dopt=AbstractPlus]. Several derivatives of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5418 (e.g.http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5419 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5420) demonstrate selectivity as blockers of astroglial, versus neuronal, uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 for reviews]. GAT3 is inhibited by physiologically relevant concentrations of Zn2+ [http://www.ncbi.nlm.nih.gov/pubmed/15829583?dopt=AbstractPlus]. Taut transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067, but with low affinity, but CT1 does not, although it can be engineered to do so by mutagenesis guided by LeuT as a structural template [http://www.ncbi.nlm.nih.gov/pubmed/17400549?dopt=AbstractPlus]. Although inhibitors of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496 transport by CT1 are known (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/9882430?dopt=AbstractPlus]) they insufficiently characterized to be included in the table.The IC50 values for GAT1\u20104 reported in the table reflect the range reported in the literature from studies of both human and mouse transporters. There is a tendency towards lower IChttp://www.ncbi.nlm.nih.gov/pubmed/16417482?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15950877?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16722246?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12354619?dopt=AbstractPlus] for reviews). GlyT1 transporter isoforms expressed in glia surrounding glutamatergic synapses regulate synaptic http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 concentrations influencing NMDA receptor\u2010mediated neurotransmission , but also are important, in early neonatal life, for regulating glycine concentrations at inhibitory glycinergic synapses [http://www.ncbi.nlm.nih.gov/pubmed/14622582?dopt=AbstractPlus]. Homozygous mice engineered to totally lack GlyT1 exhibit severe respiratory and motor deficiencies due to hyperactive glycinergic signalling and die within the first postnatal day . Disruption of GlyT1 restricted to forebrain neurones is associated with enhancement of EPSCs mediated by NMDA receptors and behaviours that are suggestive of a promnesic action [http://www.ncbi.nlm.nih.gov/pubmed/16554468?dopt=AbstractPlus]. GlyT2 transporters localised on the axons and boutons of glycinergic neurones appear crucial for efficient transmitter loading of synaptic vesicles but may not be essential for the termination of inhibitory neurotransmission . Mice in which GlyT2 has been deleted develop a fatal hyperekplexia phenotype during the second postnatal week [http://www.ncbi.nlm.nih.gov/pubmed/14622583?dopt=AbstractPlus] and mutations in the human gene encoding GlyT2 (SLC6A5) have been identified in patients with hyperekplexia (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/18707791?dopt=AbstractPlus]). ATB0+ (SLC6A14) is a transporter for numerous dipolar and cationic amino acids and thus has a much broader substrate specificity than the glycine transporters alongside which it is grouped on the basis of structural similarity [http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus]. ATB0+ is expressed in various peripheral tissues [http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus]. By contrast PROT (SLC6A7), which is expressed only in brain in association with a subset of excitatory nerve terminals, shows specificity for the transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314.Two gene products, GlyT1 and GlyT2, are known that give rise to transporters that are predominantly located on glia and neurones, respectively. Five variants of GlyT1 differing in their N\u2010 and C\u2010termini are generated by alternative promoter usage and splicing, and three splice variants of GlyT2 have also been identified [http://www.ncbi.nlm.nih.gov/pubmed/17383967?dopt=AbstractPlus]. Inhibition of GLYT1 by the sarcosine derivatives http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4620, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4601 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4600 is non\u2010competitive . IC50 values for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4600 reported in the literature vary, most likely due to differences in assay conditions . The tricyclic antidepressant http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=201 weakly inhibits GlyT2 (IC50 92 \u03bcM) with approximately 10\u2010fold selectivity over GlyT1 [http://www.ncbi.nlm.nih.gov/pubmed/10694221?dopt=AbstractPlus]. The endogenous lipids http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 exert opposing effects upon GlyT1a, inhibiting (IC50 2 \u03bcM) and potentiating (EC50 13 \u03bcM) transport currents, respectively [http://www.ncbi.nlm.nih.gov/pubmed/12558979?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5493, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5494 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5495 have been described as endogenous non\u2010competitive inhibitors of GlyT2a, but not GlyT1b . Protons [http://www.ncbi.nlm.nih.gov/pubmed/10860934?dopt=AbstractPlus] and Zn2+ [http://www.ncbi.nlm.nih.gov/pubmed/15031290?dopt=AbstractPlus] act as non\u2010competitive inhibitors of GlyT1b, with IC50 values of 100 nM and 10 \u03bcM respectively, but neither ion affects GlyT2 (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/15324920?dopt=AbstractPlus]). Glycine transport by GLYT1 is inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5212, whereas GLYT2 transport is stimulated (both in the presence of Na+) [http://www.ncbi.nlm.nih.gov/pubmed/21574997?dopt=AbstractPlus].0AT1 (SLC6A19), SLC6A18, SLC6A20). Others may function as transporters for neurotransmitters or their precursors [http://www.ncbi.nlm.nih.gov/pubmed/18400692?dopt=AbstractPlus]. B0AT1 has been proposed as a drug target to treat phenylketonuria [http://www.ncbi.nlm.nih.gov/pubmed/30046012?dopt=AbstractPlus].Certain members of neutral amino acid transport family are expressed upon the apical surface of epithelial cells and are important for the absorption of amino acids from the duodenum, jejunum and ileum and their reabsorption within the proximal tubule of the nephron Kinase\u2010dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol. Rev. 68: 888\u2010953 [https://www.ncbi.nlm.nih.gov/pubmed/27591044?dopt=AbstractPlus]Bermingham DP et al. (2012) The solute carrier 6 family of transporters. Br. J. Pharmacol. 167: 256\u201078 [https://www.ncbi.nlm.nih.gov/pubmed/22519513?dopt=AbstractPlus]Br\u00f6er S et al. (2015) Creatine biosynthesis and transport in health and disease. Biochimie119: 146\u201065 [https://www.ncbi.nlm.nih.gov/pubmed/26542286?dopt=AbstractPlus]Joncquel\u2010Chevalier Curt M et al. (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur. J. Neurosci. 45: 20\u201033 [https://www.ncbi.nlm.nih.gov/pubmed/27520881?dopt=AbstractPlus]Lohr KM 2+\u2010ATPase (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138#159_overview) and sarcoplasmic/endoplasmic reticulum Ca2+\u2010ATPase (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138), as well as the sodium/potassium/calcium exchangers , NCX allow recovery of intracellular calcium back to basal levels after cellular stimulation. When intracellular sodium ion levels rise, for example, following depolarisation, these transporters can operate in the reverse direction to allow calcium influx and sodium efflux, as an electrogenic mechanism. Structural modelling suggests the presence of 9 TM segments, with a large intracellular loop between the fifth and sixth TM segments.The sodium/calcium exchangers (NCX) use the extracellular sodium concentration to facilitate the extrusion of calcium out of the cell. Alongside the plasma membrane Cahttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4597 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4593 act as non\u2010selective NCX inhibitors, while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4617, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4232, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4666, and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6481 [http://www.ncbi.nlm.nih.gov/pubmed/23647096?dopt=AbstractPlus] act to inhibit NCX function with varying degrees of selectivity. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8438 is a selective NCX3 inhibitor [http://www.ncbi.nlm.nih.gov/pubmed/25942323?dopt=AbstractPlus] and and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9484 inhibits NCX3 preferentially over other isoforms .Although subtype\u2010selective inhibitors of NCX function are not widely available, et al. (2016) Structure\u2010Functional Basis of Ion Transport in Sodium\u2010Calcium Exchanger (NCX) Proteins. Int J Mol Sci17: [https://www.ncbi.nlm.nih.gov/pubmed/27879668?dopt=AbstractPlus]Giladi M Mol. Aspects Med. 34: 220\u201035 [https://www.ncbi.nlm.nih.gov/pubmed/23506867?dopt=AbstractPlus]Khananshvili D. (2013) The SLC8 gene family of sodium\u2010calcium exchangers (NCX) \u2010 structure, function, and regulation in health and disease. Biochem. Biophys. Res. Commun. 460: 50\u20102 [https://www.ncbi.nlm.nih.gov/pubmed/25998733?dopt=AbstractPlus]Sekler I. (2015) Standing of giants shoulders the story of the mitochondrial Na(+)Ca(2+) exchanger. + (in) : 1 H+ (out). Several isoforms, NHE6, NHE7, NHE8 and NHE9 appear to locate on intracellularmembranes . Li+ and NH4+, but not K+, ions may also be transported by some isoforms. Modelling of the topology of these transporters indicates 12 TM regions with an extended intracellular C\u2010terminus containing multiple regulatory sites. NHE1 is considered to be a ubiquitously\u2010expressed \u2018housekeeping\u2019 transporter. NHE3 is highly expressed in the intestine and kidneys and regulate sodium movements in those tissues. NHE10 is present in sperm [http://www.ncbi.nlm.nih.gov/pubmed/14634667?dopt=AbstractPlus] and osteoclasts [http://www.ncbi.nlm.nih.gov/pubmed/18269914?dopt=AbstractPlus]; gene disruption results in infertile male mice [http://www.ncbi.nlm.nih.gov/pubmed/14634667?dopt=AbstractPlus].Sodium/hydrogen exchangers or sodium/proton antiports are a family of transporters that maintain cellular pH by utilising the sodium gradient across the plasma membrane to extrude protons produced by metabolism, in a stoichiometry of 1 Nahttp://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=181.Information on members of this family may be found in the + binding site. The more selective amiloride analogues http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4595 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4186 exhibit a rank order of affinity of inhibition of NHE1 > NHE2 > NHE3 .Analogues of the non\u2010selective cation transport inhibitor amiloride appear to inhibit NHE function through competitive inhibition of the extracellular Naet al. (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol. Aspects Med. 34: 236\u201051 [https://www.ncbi.nlm.nih.gov/pubmed/23506868?dopt=AbstractPlus]Donowitz M et al. (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu. Rev. Physiol. 73: 261\u201081 [https://www.ncbi.nlm.nih.gov/pubmed/21054167?dopt=AbstractPlus]Kato A et al. (2011) Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry50: 443\u201050 [https://www.ncbi.nlm.nih.gov/pubmed/21171650?dopt=AbstractPlus]Ohgaki R et al. (2015) Na+\u2010H+ exchanger\u20101 (NHE1) regulation in kidney proximal tubule. Cell. Mol. Life Sci. 72: 2061\u201074 [https://www.ncbi.nlm.nih.gov/pubmed/25680790?dopt=AbstractPlus]Parker MD et al. (2014) Intracellular pH regulation by acid\u2010base transporters in mammalian neurons. Front Physiol5: 43 [https://www.ncbi.nlm.nih.gov/pubmed/24592239?dopt=AbstractPlus]Ruffin VA http://www.ncbi.nlm.nih.gov/pubmed/19498215?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20103563?dopt=AbstractPlus]. SLC10A6 (SOAT) functions as a sodium\u2010dependent transporter of sulphated solutes including sulfphated steroids and bile acids . Transport function has not yet been demonstrated for the 4 remaining members of the SLC10 family, SLC10A3 (P3), SLC10A4 (P4), SLC10A5 (P5), and SLC10A7 (P7), and the identity of their endogenous substrates remain unknown . Members of the SLC10 family are predicted to have seven transmembrane domains with an extracellular N\u2010terminus and cytoplasmic C\u2010terminus .The SLC10 family transport bile acids, sulphated solutes, and other xenobiotics in a sodium\u2010dependent manner. The founding members, SLC10A1 (NTCP) and SLC10A2 (ASBT) function, along with members of the ABC transporter family and the organic solute transporter obligate heterodimer OSTa:OST\u00df (SLC51), to maintain the enterohepatic circulation of bile acids [http://www.ncbi.nlm.nih.gov/pubmed/18355966?dopt=AbstractPlus] or SLC10A7 [http://www.ncbi.nlm.nih.gov/pubmed/17628207?dopt=AbstractPlus] failed to exhibit significant transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4547, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4290, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4528 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551. SLC10A4 has recently been suggested to associate with neuronal vesicles [http://www.ncbi.nlm.nih.gov/pubmed/21742018?dopt=AbstractPlus].Heterologously expressed SLC10A4 [et al. (2014) Sodium\u2010dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 466: 77\u201089 [https://www.ncbi.nlm.nih.gov/pubmed/24196564?dopt=AbstractPlus]Anwer MS et al. (2013) The solute carrier family 10 (SLC10): beyond bile acid transport. Mol. Aspects Med. 34: 252\u201069 [https://www.ncbi.nlm.nih.gov/pubmed/23506869?dopt=AbstractPlus]Claro da Silva T Dig Dis 35: 261\u2010266 [https://www.ncbi.nlm.nih.gov/pubmed/28249269?dopt=AbstractPlus]Dawson PA. (2017) Roles of Ileal ASBT and OSTa\u2010OST\u00df in Regulating Bile Acid Signaling. et al. (2013) Transport and biological activities of bile acids. Int. J. Biochem. Cell Biol. 45: 1389\u201098 [https://www.ncbi.nlm.nih.gov/pubmed/23603607?dopt=AbstractPlus]Zwicker BL The family of proton\u2010coupled metal ion transporters are responsible for movements of divalent cations, particularly ferrous and manganese ions, across the cell membrane (SLC11A2/DMT1) and across endosomal (SLC11A2/DMT1) or lysosomal/phagosomal membranes (SLC11A1/NRAMP1), dependent on proton transport. Both proteins appear to have 12 TM regions and cytoplasmic N\u2010 and C\u2010 termini. NRAMP1 is involved in antimicrobial action in macrophages, although its precise mechanism is undefined. Facilitated diffusion of divalent cations into phagosomes may increase intravesicular free radicals to damage the pathogen. Alternatively, export of divalent cations from the phagosome may deprive the pathogen of essential enzyme cofactors. SLC11A2/DMT1 is more widely expressed and appears to assist in divalent cation assimilation from the diet, as well as in phagocytotic cells.http://omim.org/entry/607948). Loss\u2010of\u2010function mutations in DMT1 are associated with microcytic anemia (http://omim.org/entry/206100).Loss\u2010of\u2010function mutations in NRAMP1 are associated with increased susceptibility to microbial infection Iron entry in neurons and astrocytes: a link with synaptic activity. Front Mol Neurosci8: 18 [https://www.ncbi.nlm.nih.gov/pubmed/26089776?dopt=AbstractPlus]Codazzi F et al. (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspects Med. 34: 270\u201087 [https://www.ncbi.nlm.nih.gov/pubmed/23506870?dopt=AbstractPlus]Montalbetti N J. Biol. Chem. 290: 18984\u201090 [https://www.ncbi.nlm.nih.gov/pubmed/26055722?dopt=AbstractPlus]Wessling\u2010Resnick M. (2015) Nramp1 and Other Transporters Involved in Metal Withholding during Infection. et al. (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol. Ther. 133: 177\u201088 [https://www.ncbi.nlm.nih.gov/pubmed/22115751?dopt=AbstractPlus]Zheng W The SLC12 family of chloride transporters contribute to ion fluxes across a variety of tissues, particularly in the kidney and choroid plexus of the brain. Within this family, further subfamilies are identifiable: NKCC1, NKCC2 and NCC constitute a group of therapeutically\u2010relevant transporters, targets for loop and thiazide diuretics. These 12 TM proteins exhibit cytoplasmic termini and an extended extracellular loop at TM7/8 and are kidneyspecific (NKCC2 and NCC) or show a more widespread distribution (NKCC1). A second family, the K\u2010Cl co\u2010transporters are also 12 TM domain proteins with cytoplasmic termini, but with an extended extracellular loop at TM 5/6. CCC6 exhibits structural similarities with the K\u2010Cl co\u2010transporters, while CCC9 is divergent, with 11 TM domains and a cytoplasmic N\u2010terminus and extracellular C\u2010terminus.http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4589 is able to differentiate KCC isoforms from NKCC and NCC transporters, but also inhibits CFTR [http://www.ncbi.nlm.nih.gov/pubmed/11527541?dopt=AbstractPlus].et al. (2013) The SLC12 family of electroneutral cation\u2010coupled chloride cotransporters. Mol. Aspects Med. 34: 288\u201098 [https://www.ncbi.nlm.nih.gov/pubmed/23506871?dopt=AbstractPlus]Arroyo JP et al. (2017) Regulation of renal Na\u2010(K)\u2010Cl cotransporters by vasopressin. Pflugers Arch. 469: 889\u2010897 [https://www.ncbi.nlm.nih.gov/pubmed/28577072?dopt=AbstractPlus]Bachmann S et al. (2016) Physiological role of SLC12 family members in the kidney. Am. J. Physiol. Renal Physiol. 311: F131\u201044 [https://www.ncbi.nlm.nih.gov/pubmed/27097893?dopt=AbstractPlus]Baz\u00faa\u2010Valenti S et al. (2016) Everything we always wanted to know about furosemide but were afraid to ask. Am. J. Physiol. Renal Physiol. 310: F958\u201071 [https://www.ncbi.nlm.nih.gov/pubmed/26911852?dopt=AbstractPlus]Huang X et al. (2015) K\u2010Cl cotransporters, cell volume homeostasis, and neurological disease. Trends Mol Med21: 513\u201023 [https://www.ncbi.nlm.nih.gov/pubmed/26142773?dopt=AbstractPlus]Kahle KT et al. (2017) Chloride co\u2010transporters as possible therapeutic targets for stroke. J. Neurochem. 140: 195\u2010209 [https://www.ncbi.nlm.nih.gov/pubmed/27861901?dopt=AbstractPlus]Mart\u00edn\u2010Arag\u00f3n Baudel MA Within the SLC13 family, two groups of transporters may be differentiated on the basis of the substrates transported: NaS1 and NaS2 convey sulphate, while NaC1\u20103 transport carboxylates. NaS1 and NaS2 transporters are made up of 13 TM domains, with an intracellular N terminus and are electrogenic with physiological roles in the intestine, kidney and placenta. NaC1, NaC2 and NaC3 are made up of 11 TM domains with an intracellular N terminus and are electrogenic, with physiological roles in the kidney and liver.et al. (2013) SLC13 family of Na+\u2010coupled di\u2010 and tri\u2010carboxylate/sulfate transporters. Mol. Aspects Med. 34: 299\u2010312 [https://www.ncbi.nlm.nih.gov/pubmed/23506872?dopt=AbstractPlus]Bergeron MJ +\u2010sulfate cotransporter SLC13A1. Pflugers Arch. 466: 131\u20107 [https://www.ncbi.nlm.nih.gov/pubmed/24193406?dopt=AbstractPlus]Markovich D. (2014) NaPflugers Arch. 466: 119\u201030 [https://www.ncbi.nlm.nih.gov/pubmed/24114175?dopt=AbstractPlus]Pajor AM. (2014) Sodium\u2010coupled dicarboxylate and citrate transporters from the SLC13 family. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4539 movement down its concentration gradient. Multiple splice variants of these transporters have been identified; for UT\u2010A transporters, in particular, there is evidence for cell\u2010specific expression of these variants with functional impact [http://www.ncbi.nlm.nih.gov/pubmed/21449978?dopt=AbstractPlus]. Topographical modelling suggests that the majority of the variants of SLC14 transporters have 10 TM domains, with a glycosylated extracellular loop at TM5/6, and intracellular C\u2010 and N\u2010termini. The UT\u2010A1 splice variant, exceptionally, has 20 TMdomains, equivalent to a combination of theUT\u2010A2 and UT\u2010A3 splice variants.As a product of protein catabolism, urea is moved around the body and through the kidneys for excretion. Although there is experimental evidence for concentrative urea transporters, these have not been defined at the molecular level. The SLC14 family are facilitative transporters, allowing et al. (2015) Urea transporter proteins as targets for small\u2010molecule diuretics. Nat Rev Nephrol11: 113\u201023 [https://www.ncbi.nlm.nih.gov/pubmed/25488859?dopt=AbstractPlus]Esteva\u2010Font C et al. (2015) Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources. J. Exp. Biol. 218: 1936\u20101945 [https://www.ncbi.nlm.nih.gov/pubmed/26085670?dopt=AbstractPlus]LeMoine CM Am. J. Physiol. Regul. Integr. Comp. Physiol. 304: R488\u2010503 [https://www.ncbi.nlm.nih.gov/pubmed/23364530?dopt=AbstractPlus]Pannabecker TL. (2013) Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. et al. (2013) The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol. Aspects Med. 34: 313\u201022 [https://www.ncbi.nlm.nih.gov/pubmed/23506873?dopt=AbstractPlus]Shayakul C Br. J. Pharmacol. 164: 1780\u201092 [https://www.ncbi.nlm.nih.gov/pubmed/21449978?dopt=AbstractPlus]Stewart G. (2011) The emerging physiological roles of the SLC14A family of urea transporters. +\u2010coupled oligopeptide cotransporter family, is a group of membrane transporters known for their key role in the cellular uptake of di\u2010 and tripeptides (di/tripeptides). Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from overall dietary protein digestion, SLC15A2 (PEPT2) mainly allows renal tubular reuptake of di/tripeptides from ultrafiltration and brain\u2010to\u2010blood efflux of di/tripeptides in the choroid plexus, SLC15A3 (PHT2) and SLC15A4 (PHT1) interact with both di/tripeptides and histidine, e.g. in certain immune cells, and SLC15A5 has unknown physiological function. In addition, the SLC15 family of peptide transporters variably interacts with a very large number of peptidomimetics and peptide\u2010like drugs. It is conceivable, based on the currently acknowledged structural and functional differences, to divide the SLC15 family of peptide transporters into two subfamilies.The Solute Carrier 15 (SLC15) family of peptide transporters, alias Hhttp://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4831, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4824, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4784, L\u2010Dopa prodrugs, gemcitabine prodrugs, floxuridine prodrugs, Maillard reaction products, JBP485, zanamivir, oseltamivir prodrugs, doxorubicin prodrugs, polymyxins, and didanosine prodrugs. Frequently used pharmaceutical excipients such as Tween\u00ae20, Tween\u00ae80, Solutol \u00aeHS 15 and Cremophor EL\u00aestrongly inhibit cellular uptake of Gly\u2010Sar by SLC15A1 and/or SLC15A2 [http://www.ncbi.nlm.nih.gov/pubmed/27903454?dopt=AbstractPlus]. There is evidence to suggest the existence of a fifth member of this transporter family, https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:33455 , but to date there is no established biological function or reported pharmacology for this protein [http://www.ncbi.nlm.nih.gov/pubmed/21044875?dopt=AbstractPlus].The members of the SLC15 family of peptide transporters are particularly promiscuous in the transport of di/tripeptides, and D\u2010amino acid containing peptides are also transported. While SLC15A3 and SLC15A4 transport histidine, none of them transport tetrapeptides. In addition, many molecules, among which beta\u2010lactam antibiotics, angiotensinconverting enzyme inhibitors and sartans, variably interact with the SLC15 family transporters. Known substrates include et al. (2010) Hijacking solute carriers for proton\u2010coupled drug transport. Physiology (Bethesda)25: 364\u201077 [https://www.ncbi.nlm.nih.gov/pubmed/21186281?dopt=AbstractPlus]Anderson CM Curr Opin Pharmacol13: 881\u20107 [https://www.ncbi.nlm.nih.gov/pubmed/24007794?dopt=AbstractPlus]Brandsch M. (2013) Drug transport via the intestinal peptide transporter PepT1. Expert Opin Drug Metab Toxicol5: 887\u2010905 [https://www.ncbi.nlm.nih.gov/pubmed/19519280?dopt=AbstractPlus]Brandsch M. (2009) Transport of drugs by proton\u2010coupled peptide transporters: pearls and pitfalls. et al. (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 582: 3811\u20106 [https://www.ncbi.nlm.nih.gov/pubmed/18948099?dopt=AbstractPlus]Fredriksson R Biochim. Biophys. Acta1850: 488\u2010499 [https://www.ncbi.nlm.nih.gov/pubmed/24859687?dopt=AbstractPlus]Newstead S. (2015) Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Curr. Opin. Struct. Biol. 45: 17\u201024 [https://www.ncbi.nlm.nih.gov/pubmed/27865112?dopt=AbstractPlus]Newstead S. (2017) Recent advances in understanding proton coupled peptide transport via the POT family. Biochem. Soc. Trans. 39: 1353\u20108 [https://www.ncbi.nlm.nih.gov/pubmed/21936814?dopt=AbstractPlus]Newstead S. (2011) Towards a structural understanding of drug and peptide transport within the proton\u2010dependent oligopeptide transporter (POT) family. et al. (2013) Proton\u2010coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol. Aspects Med. 34: 323\u201036 [https://www.ncbi.nlm.nih.gov/pubmed/23506874?dopt=AbstractPlus]Smith DE et al. (2007) H+\u2010coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp. Physiol. 92: 603\u201019 [https://www.ncbi.nlm.nih.gov/pubmed/17468205?dopt=AbstractPlus]Thwaites DT e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 and ketone bodies, as well as aromatic amino acids. Topology modelling suggests 12 TM domains, with intracellular termini and an extended loop at TM 6/7.Members of the SLC16 family may be divided into subfamilies on the basis of substrate selectivities, particularly lactate (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809.The proton\u2010coupledmonocarboxylate transporters allowtransport of the products of cellularmetabolism, principally lactate Thyroid hormone transporters\u2010functions and clinical implications. Nat Rev Endocrinol11: 406\u2010417 https://www.ncbi.nlm.nih.gov/pubmed/25942657?dopt=AbstractPlusBernal J Mol. Aspects Med. 34: 337\u201049 https://www.ncbi.nlm.nih.gov/pubmed/23506875?dopt=AbstractPlusHalestrap AP. (2013) The SLC16 gene family \u2010 structure, role and regulation in health and disease. et al. (2016) Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clin. Pharmacol. Ther. 100: 454\u2010463 https://www.ncbi.nlm.nih.gov/pubmed/27351344?dopt=AbstractPlusJones RS http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=221) and Type III (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=195) transporters. Within the SLC17 family, however, further subgroups of organic anion transporters may be defined, allowing the accumulation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4644 in the endoplasmic reticulum and glutamate (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369) or nucleotides in synaptic and secretory vesicles. Topology modelling suggests 12 TM domains.The SLC17 family are sometimes referred to as Type I sodium\u2010phosphate co\u2010transporters, alongside Type II , an autosomal recessive neurodegenerative disorder associated with sialic acid storage disease [http://www.ncbi.nlm.nih.gov/pubmed/10581036?dopt=AbstractPlus].Loss\u2010of\u2010function mutations in sialin are associated with Salla disease (http://www.ncbi.nlm.nih.gov/pubmed/10938000?dopt=AbstractPlus].Vesicular glutamate transporters (VGLUTs) allow accumulation of glutamate into synaptic vesicles, as well as secretory vesicles in endocrine tissues. The roles of VGLUTs in kidney and liver are unclear. These transporters appear to utilize the proton gradient and also express a chloride conductance [http://www.ncbi.nlm.nih.gov/pubmed/20920794?dopt=AbstractPlus].Endogenous ketoacids produced during fasting have been proposed to regulate VGLUT function through blocking chloride ion\u2010mediated allosteric enhancement of transporter function .The vesicular nucleotide transporter is the most recent member of the SLC17 family to have an assigned function. Uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4177 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4579.VGLUTs and VNUT can be inhibited by et al. (2017) Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic Signal. 13: 387\u2010404 https://www.ncbi.nlm.nih.gov/pubmed/28616712?dopt=AbstractPlusMoriyama Y et al. (2016) Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu. Rev. Pharmacol. Toxicol. 56: 385\u2010402 https://www.ncbi.nlm.nih.gov/pubmed/26514205?dopt=AbstractPlusOmote H Mol. Aspects Med. 34: 350\u20109 https://www.ncbi.nlm.nih.gov/pubmed/23506876?dopt=AbstractPlusReimer RJ. (2013) SLC17: a functionally diverse family of organic anion transporters. Pflugers Arch. 468: 513\u20108 https://www.ncbi.nlm.nih.gov/pubmed/26577586?dopt=AbstractPlusTakamori S. (2016) Vesicular glutamate transporters as anion channels? http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=137#V\u2010typeATPase that acidifies secretory vesicles (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/12827358?dopt=AbstractPlus]). The vesicular acetylcholine transporter localizes to cholinergic neurons, but non\u2010neuronal expression has also been claimed [http://www.ncbi.nlm.nih.gov/pubmed/21482687?dopt=AbstractPlus]. Vesicular monoamine transporter 1 is mainly expressed in peripheral neuroendocrine cells, but most likely not in the CNS, whereas VMAT2 [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] distributes between both central and peripheral sympathetic monoaminergic neurones [http://www.ncbi.nlm.nih.gov/pubmed/21272013?dopt=AbstractPlus]. The vescular polyamine transporter (VPAT) is highly expressed in the lungs and placenta, with moderate expression in brain and testis, and with low expression in heart and skeletal muscle [http://www.ncbi.nlm.nih.gov/pubmed/25355561?dopt=AbstractPlus]. VPAT mediates vesicular accumulation of polyamines in mast cells [http://www.ncbi.nlm.nih.gov/pubmed/28082679?dopt=AbstractPlus].The vesicular amine transporters (VATs) are putative 12 TM domain proteins that function to transport singly positively charged amine neurotransmitters and hormones from the cytoplasm and concentrate them within secretory vesicles. They function as amine/proton antiporters driven by secondary active transport utilizing the proton gradient established by a multi\u2010subunit pKi values for endogenous and synthetic substrate inhibitors of human VMAT1 and VMAT2 are for inhibition of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3248 uptake in transfected and permeabilised CV\u20101 cells as detailed by [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus]. In addition to the monoamines listed in the table, the trace amines http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2150 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2144 are probable substrates for VMAT2 [http://www.ncbi.nlm.nih.gov/pubmed/21272013?dopt=AbstractPlus]. Probes listed in the table are those currently employed; additional agents have been synthesized (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/19632829?dopt=AbstractPlus]).et al. (2015) Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol. Rev. 67: 1005\u201024 https://www.ncbi.nlm.nih.gov/pubmed/26408528?dopt=AbstractPlusGerman CL et al. (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur. J. Neurosci. 45: 20\u201033 https://www.ncbi.nlm.nih.gov/pubmed/27520881?dopt=AbstractPlusLohr KM et al. (2016) Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu. Rev. Pharmacol. Toxicol. 56: 385\u2010402 https://www.ncbi.nlm.nih.gov/pubmed/26514205?dopt=AbstractPlusOmote H et al. (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol. Sci. 36: 41\u201050 https://www.ncbi.nlm.nih.gov/pubmed/25542076?dopt=AbstractPlusSitte HH Med Res Rev31: 483\u2010519 https://www.ncbi.nlm.nih.gov/pubmed/20135628?dopt=AbstractPlusWimalasena K. (2011) Vesicular monoamine transporters: structure\u2010function, pharmacology, and medicinal chemistry. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4563 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4629 are transported across the cell membrane, particularly in the intestine, kidneys and placenta, using pH differences as driving forces. Topological modelling suggests the transporters have 12 TM domains.The B vitamins http://www.ncbi.nlm.nih.gov/pubmed/10391223?dopt=AbstractPlus].Loss\u2010of\u2010function mutations in ThTr1 underlie thiamine\u2010responsive megaloblastic anemia syndrome .Mutations in the SLC22A5 gene lead to primary carnitine deficiency .URAT1, a member of the OAT (organic anion transporter) family, is an anion\u2010exchanging uptake transporter localized to the apical (brush border) membrane of renal proximal tubular cells. It is an anion exchanger that specifically reabsorbs uric acid from the proximal tubule in exchange for monovalent anions such as lactate, nicotinoate, acetoacetate, and hydroxybutyrate . The atypical SLCs share sequence similarities and phylogenetic ancestry with other SLCs, and they have historically been classified in to subfamilies ) based on phylogenetic, sequence and structural analyses [http://www.ncbi.nlm.nih.gov/pubmed/28878041?dopt=AbstractPlus].This family of transporters has previously been classified as part of the atypical major facilitator superfamily (MSF) protein superfamily and brivaracetam [http://www.ncbi.nlm.nih.gov/pubmed/26663401?dopt=AbstractPlus].There are three human synaptic vesicle glycoprotein 2 family members, SV2A, SV2B and SV2C. They have transmembrane transporter activity and can be classified in to the SLC superfamily of solute carriers in subfamily SLC22, as SCL22B1, B2 and B3 respectively. SV2A (SCL22B1) has been identified as the brain binding\u2010site for the antiepileptic drugs levetiracetam . Loss\u2010of\u2010function mutations in these genes are associated with hyperornithinemia\u2010hyperammonemia\u2010homocitrullinuria.Both ornithine transporters are inhibited by the polyamine http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 production.Mitochondrial phosphate transporters allow the import of inorganic phosphate for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 for mitochondrial http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713. Further members of the mitochondrial nucleotide transporter subfamily convey diverse substrates including CoA, although not all members have had substrates identified.Mitochondrial nucleotide transporters, defined by structural similarlities, include the adenine nucleotide translocator family , which under conditions of aerobic metabolism, allow coupling between mitochondrial oxidative phosphorylation and cytosolic energy consumption by exchanging cytosolic Mitochondrial uncoupling proteins allow dissipation of the mitochondrial proton gradient associated with thermogenesis and regulation of radical formation.Many of the transporters identified below have yet to be assigned functions and are currently regarded as orphans.http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=209.Information on members of this family may be found in the Biochim. Biophys. Acta1858: 655\u2010664 https://www.ncbi.nlm.nih.gov/pubmed/28088333?dopt=AbstractPlusBaffy G. (2017) Mitochondrial uncoupling in cancer cells: Liabilities and opportunities. et al. (2017) UCP1: A transporter for H+ and fatty acid anions. Biochimie134: 28\u201034 https://www.ncbi.nlm.nih.gov/pubmed/27984203?dopt=AbstractPlusBertholet AM et al. (2013) The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol. Aspects Med. 34: 485\u201093 https://www.ncbi.nlm.nih.gov/pubmed/23506884?dopt=AbstractPlusCl\u00e9men\u00e7on B Mol. Aspects Med. 34: 465\u201084 https://www.ncbi.nlm.nih.gov/pubmed/23266187?dopt=AbstractPlusPalmieri F. (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. et al. (2015) The mitochondrial phosphate carrier: Role in oxidative metabolism, calcium handling and mitochondrial disease. Biochem. Biophys. Res. Commun. 464: 369\u201075 https://www.ncbi.nlm.nih.gov/pubmed/26091567?dopt=AbstractPlusSeifert EL Trends Cell Biol. 27: 633\u2010644 https://www.ncbi.nlm.nih.gov/pubmed/28522206?dopt=AbstractPlusTaylor EB. (2017) Functional Properties of the Mitochondrial Carrier System. Along with the SLC4 family, the SLC26 family acts to allow movement of monovalent and divalent anions across cell membranes. The predicted topology is of 10\u201014 TM domains with intracellular C\u2010 and N\u2010termini, probably existing as dimers. Within the family, subgroups may be identified on the basis of functional differences, which appear to function as anion exchangers and anion channels (SLC26A7 and SLC26A9).et al. (2013) The SLC26 gene family of anion transporters and channels. Mol. Aspects Med. 34: 494\u2010515 https://www.ncbi.nlm.nih.gov/pubmed/23506885?dopt=AbstractPlusAlper SL et al. (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu. Rev. Physiol. 73: 261\u201081 https://www.ncbi.nlm.nih.gov/pubmed/21054167?dopt=AbstractPlusKato A et al. (2011) Pendrin function in airway epithelia. Cell. Physiol. Biochem. 28: 571\u20108 https://www.ncbi.nlm.nih.gov/pubmed/22116372?dopt=AbstractPlusNofziger C Kidney Int. 84: 657\u201066 https://www.ncbi.nlm.nih.gov/pubmed/23636174?dopt=AbstractPlusSoleimani M. (2013) SLC26 Cl\u2010/HCO3\u2010 exchangers in the kidney: roles in health and disease. http://www.ncbi.nlm.nih.gov/pubmed/11470793?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7954810?dopt=AbstractPlus], transmembrane segments, and are predicted on the basis of structural similarities to form dimers. SLC27 members have several structural domains: integral membrane associated domain, peripheral membrane associated domain, FATP signature, intracellular AMP binding motif, dimerization domain, lipocalin motif, and an ER localization domain (identified in FATP4 only) . These transporters are unusual in that they appear to express intrinsic very longchain acyl\u2010CoA synthetase enzyme activity. Within the cell, these transporters may associate with plasma and peroxisomal membranes. FATP1\u20104 and \u20106 transport long\u2010 and very long\u2010chain fatty acids, while FATP5 transports long\u2010chain fatty acids as well as bile acids .Fatty acid transporter proteins (FATPs) are a family (SLC27) of six transporters (FATP1\u20106). They have at least one, and possibly six and FATP4 , as well as bile acid inhibitors of FATP5 [http://www.ncbi.nlm.nih.gov/pubmed/20448275?dopt=AbstractPlus], have been described; analysis of the mechanism of action of some of these inhibitors suggests that transport may be selectively inhibited without altering enzymatic activity of the FATP.Although the stoichiometry of fatty acid transport is unclear, it has been proposed to be facilitated by the coupling of fatty acid transport to conjugation with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5496 accumulation has been used as a non\u2010selective index of fatty acid transporter activity.FATP2 has two variants: Variant 1 encodes the full\u2010length protein, while Variant 2 encodes a shorter isoform missing an internal protein segment. FATP6 also has two variants: Variant 2 encodes the same protein as Variant 1 but has an additional segment in the 5\u2032 UTR.et al. (2013) SLC27 fatty acid transport proteins. Mol. Aspects Med. 34: 516\u201328 https://www.ncbi.nlm.nih.gov/pubmed/23506886?dopt=AbstractPlusAnderson CM et al. (2015) Fatty acid transport proteins in disease: New insights from invertebrate models. Prog. Lipid Res. 60: 30\u201340 https://www.ncbi.nlm.nih.gov/pubmed/26416577?dopt=AbstractPlusDourlen P et al. (2010) Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot. Essent. Fatty Acids82: 149\u201354 https://www.ncbi.nlm.nih.gov/pubmed/20206486?dopt=AbstractPlusSchwenk RW Nucleoside transporters are divided into two families, the sodium\u2010dependent, concentrative solute carrier family 28 (SLC28) and the equilibrative, solute carrier family 29 (SLC29). The endogenous substrates are typically nucleosides, although some family members can also transport nucleobases and organic cations.SLC28 family membersappear to have 13 TM segments with cytoplasmic N\u2010termini and extracellular C\u2010termini, and function as concentrative nucleoside transporters.et al. (2014) Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. Elife3: e03604 https://www.ncbi.nlm.nih.gov/pubmed/25082345?dopt=AbstractPlusJohnson ZL et al. (2008) SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica38: 972\u201394 https://www.ncbi.nlm.nih.gov/pubmed/18668436?dopt=AbstractPlusPastor\u2010Anglada M et al. (2015) Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol6: 13 https://www.ncbi.nlm.nih.gov/pubmed/25713533?dopt=AbstractPlusPastor\u2010Anglada M et al. (2018) Who Is Who in Adenosine Transport. Front Pharmacol9: 627 https://www.ncbi.nlm.nih.gov/pubmed/29962948?dopt=AbstractPlusPastor\u2010Anglada M et al. (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol. Aspects Med. 34: 529\u201347 https://www.ncbi.nlm.nih.gov/pubmed/23506887?dopt=AbstractPlusYoung JD http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus]. ENT1\u20103 are described as broad\u2010spectrum equilibrative nucleoside transporters, while ENT4 is primarily a polyspecific organic cation transporter at neutral pH [http://www.ncbi.nlm.nih.gov/pubmed/21816955?dopt=AbstractPlus].SLC29 family members appear to be composed of 11 TM segments with cytoplasmic N\u2010termini and extracellular C\u2010termini. ENT1, ENT2 and ENT4 are cell\u2010surface transporters, while ENT3 is intracellular, possibly lysosomal , with subunits having six TM domains, and both termini being cytoplasmic. Dityrosine covalent linking has been suggested as a mechanism for dimerisation, particularly for ZnT3 [http://www.ncbi.nlm.nih.gov/pubmed/19521526?dopt=AbstractPlus]. The mechanism for zinc transport is unknown.Along with the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=217.Information on members of this family may be found in the ZnT8/SLC30A8 is described as a type 1 diabetes susceptibility gene.Zinc fluxes may be monitored through the use of radioisotopic Zn\u201065 or the fluorescent dye FluoZin 3.et al. (2014) Contribution of calcium\u2010conducting channels to the transport of zinc ions. Pflugers Arch. 466: 381\u20137 https://www.ncbi.nlm.nih.gov/pubmed/23719866?dopt=AbstractPlusBouron A et al. (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 611: 43\u201350 https://www.ncbi.nlm.nih.gov/pubmed/27394923?dopt=AbstractPlusHojyo S et al. (2013) The SLC30 family of zinc transporters \u2010 a review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med. 34: 548\u201060 https://www.ncbi.nlm.nih.gov/pubmed/23506888?dopt=AbstractPlusHuang L et al. (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71: 3281\u201395 https://www.ncbi.nlm.nih.gov/pubmed/24710731?dopt=AbstractPlusKambe T et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95: 749\u2013784 https://www.ncbi.nlm.nih.gov/pubmed/26084690?dopt=AbstractPlusKambe T http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138#Cu2+\u2010ATPase are involved in the regulation of cellular copper levels. The CTR1 transporter is a cell\u2010surface transporter to allow monovalent copper accumulation into cells, while CTR2 appears to be a vacuolar/vesicular transporter [http://www.ncbi.nlm.nih.gov/pubmed/15494390?dopt=AbstractPlus]. Functional copper transporters appear to be trimeric with each subunit having three TM regions and an extracellular N\u2010terminus. CTR1 is considered to be a higher affinity copper transporter compared to CTR2. The stoichiometry of copper accumulation is unclear, but appears to be energy\u2010independent [http://www.ncbi.nlm.nih.gov/pubmed/11734551?dopt=AbstractPlus].SLC31 family members, alongside the http://www.ncbi.nlm.nih.gov/pubmed/11734551?dopt=AbstractPlus].Copper accumulation through CTR1 is sensitive to silver ions, but not divalent cations , and is a member of the structurally\u2010defined amino acid\u2010polyamineorganocation/ APC clan composed of SLC32, SLC36 and SLC38 transporter families (see [http://www.ncbi.nlm.nih.gov/pubmed/23506890?dopt=AbstractPlus]). VIAAT was originally suggested to be composed of 10 TM segments with cytoplasmic N\u2010 and C\u2010termini [http://www.ncbi.nlm.nih.gov/pubmed/9349821?dopt=AbstractPlus]. However, an alternative 9TM structure with the N terminus facing the cytoplasm and the C terminus residing in the synaptic vesicle lumen has subsequently been reported [http://www.ncbi.nlm.nih.gov/pubmed/19052203?dopt=AbstractPlus]. VI\u2010AAT acts as an antiporter for inhibitory amino acids and protons. The accumulation ofGABA and glycine within vesicles is driven by both the chemical (\u0394pH) and electrical (\u0394\u03c8) components of the proton electrochemical gradient (\u0394\u03bcH+) established by a vacuolar H+\u2010ATPase [http://www.ncbi.nlm.nih.gov/pubmed/9349821?dopt=AbstractPlus]. However, one study, [http://www.ncbi.nlm.nih.gov/pubmed/19843525?dopt=AbstractPlus], presented evidence that VIAAT is instead a Cl\u2010/GABA co\u2010transporter. VIAAT co\u2010exists with http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145#show_object_1007 (SLC17A7), or http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145#show_object_1008 (SLC17A6), in the synaptic vesicles of selected nerve terminals . VIAAT knock out mice die between embryonic day 18.5 and birth [http://www.ncbi.nlm.nih.gov/pubmed/16701208?dopt=AbstractPlus]. In cultures of spinal cord neurones established from earlier embryos, the corelease of of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 from synaptic vesicles is drastically reduced, providing direct evidence for the role of VIAAT in the sequestration of both transmitters .The vesicular inhibitory amino acid transporter, VIAAT , which is the sole representative of the SLC32 family, transports et al. (2014) Vesicular neurotransmitter transporters: mechanistic aspects. Curr Top Membr73: 149\u201074 https://www.ncbi.nlm.nih.gov/pubmed/24745982?dopt=AbstractPlusAnne C et al. (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol. Aspects Med. 34: 571\u201085 https://www.ncbi.nlm.nih.gov/pubmed/23506890?dopt=AbstractPlusSchi\u00f6th HB http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038. SLC33A1/AT1 is a putative 11 TM transporter present on the endoplasmic reticulum, expressed in all tissues, but particularly abundant in the pancreas [http://www.ncbi.nlm.nih.gov/pubmed/9096318?dopt=AbstractPlus], which imports cytosolic http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 into these intracellular organelles.Acetylation of proteins is a post\u2010translational modification mediated by specific acetyltransferases, using the donor http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 transport through AT1 was inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044, but not http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1782[http://www.ncbi.nlm.nih.gov/pubmed/20826464?dopt=AbstractPlus]. A loss\u2010of\u2010function mutation in ACATN1/SLC33A1 has been associated with spastic paraplegia , although this observation could not be replicated in a subsequent study [http://www.ncbi.nlm.nih.gov/pubmed/20461110?dopt=AbstractPlus].In heterologous expression studies, et al. (2004) The acetyl\u2010CoA transporter family SLC33. Pflugers Arch. 447: 760\u20102 https://www.ncbi.nlm.nih.gov/pubmed/12739170?dopt=AbstractPlusHirabayashi Y et al. (2013) The acetyl\u2010CoA transporter family SLC33. Mol. Aspects Med. 34: 586\u20109 https://www.ncbi.nlm.nih.gov/pubmed/23506891?dopt=AbstractPlusHirabayashi Y http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145) and Type III (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=195) transporters. Topological modelling suggests eight TM domains with C\u2010 and N\u2010 termini in the cytoplasm, and a re\u2010entrant loop at TM7/8. SLC34 family members are expressed on the apical surfaces of epithelia in the intestine and kidneys to regulate body phosphate levels, principally NaPi\u2010IIa and NaPi\u2010IIb, respectively. NaPi\u2010IIa and NaPi\u2010IIb are electrogenic, while NaPiIIc is electroneutral [http://www.ncbi.nlm.nih.gov/pubmed/18989094?dopt=AbstractPlus].The SLC34 family are sometimes referred to as Type II sodium\u2010phosphate co\u2010transporters, alongside Type I Phosphate transporters and their function. Annu. Rev. Physiol. 75: 535\u201050 https://www.ncbi.nlm.nih.gov/pubmed/23398154?dopt=AbstractPlusBiber J et al. (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34: 386\u201095 https://www.ncbi.nlm.nih.gov/pubmed/23506879?dopt=AbstractPlusForster IC et al. (2014) Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol77: 39\u201054 https://www.ncbi.nlm.nih.gov/pubmed/23506202?dopt=AbstractPlusShobeiri N et al. (2014) The SLC34 family of sodium\u2010dependent phosphate transporters. Pflugers Arch. 466: 139\u201053 https://www.ncbi.nlm.nih.gov/pubmed/24352629?dopt=AbstractPlusWagner CA Glycoprotein formation in the Golgi and endoplasmic reticulum relies on the accumulation of nucleotide\u2010conjugated sugars via the SLC35 family of transporters. These transporters have a predicted topology of 10 TM domains, with cytoplasmic termini, and function as exchangers, swopping nucleoside monophosphates for the corresponding nucleoside diphosphate conjugated sugar. Five subfamilies of transporters have been identified on the basis of sequence similarity, namely SLC35A1, SLC35A2, SLC35A3, SLC35A4 and SLC35A5; SLC35B1, SLC35B2, SLC35B3 and SLC35B4; SLC35C1 and SLC35C2; SLC35D1, SL35D1, SLC35D2 and SLC35D3, and the subfamily of orphan SLC35 transporters, SLC35E1\u20104 and SLC35F1\u20105.et al. (2004) Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch. 447: 768\u201075 https://www.ncbi.nlm.nih.gov/pubmed/12759756?dopt=AbstractPlusIshida N et al. (2016) Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J. Mol. Biol. 428: 3150\u20103165 https://www.ncbi.nlm.nih.gov/pubmed/27261257?dopt=AbstractPlusOrellana A Mol. Aspects Med. 34: 590\u2010600 https://www.ncbi.nlm.nih.gov/pubmed/23506892?dopt=AbstractPlusSong Z. (2013) Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. http://www.ncbi.nlm.nih.gov/pubmed/12761825?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11390972?dopt=AbstractPlus]. PAT2 is expressed at the apical membrane of the renal proximal tubule [http://www.ncbi.nlm.nih.gov/pubmed/19033659?dopt=AbstractPlus] and at the plasma\u2010membrane in brown/beige adipocytes [http://www.ncbi.nlm.nih.gov/pubmed/25080478?dopt=AbstractPlus]. PAT1 and PAT4 are involved in regulation of the mTORC1 pathway [http://www.ncbi.nlm.nih.gov/pubmed/29971004?dopt=AbstractPlus]. More comprehensive lists of substrates can be found within the reviews under Further Reading and in the references.Members of the SLC36 family of proton\u2010coupled amino acid transporters are involved in membrane transport of amino acids and derivatives. The four transporters show variable tissue expression patterns and are expressed in various cell types at the plasma\u2010membrane and in intracellular organelles. PAT1 is expressed at the luminal surface of the small intestine and absorbs amino acids and derivatives [3]. In lysosomes, PAT1 functions as an effluxmechanism for amino acids produced during intralysosomal proteolysis .The SLC38 family of transporters appears to be responsible for the functionally\u2010defined system A and system N mechanisms of amino acid transport and are mostly expressed in the CNS. Two distinct subfamilies are identifiable within the SLC38 transporters. SNAT1, SNAT2 and SNAT4 appear to resemble system A transporters in accumulating neutral amino acids under the influence of the sodium gradient. SNAT3 and SNAT5 appear to resemble system N transporters in utilizing proton co\u2010transport to accumulate amino acids. The predicted membrane topology is of 11 TM domains with an extracellular C\u2010terminus and intracellular N\u2010terminus .Along with the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4177 has been reported to inhibit cation accumulation through ZIP14 [http://www.ncbi.nlm.nih.gov/pubmed/18270315?dopt=AbstractPlus].Zinc fluxes may be monitored through the use of radioisotopic Zn\u201065 or the fluorescent dye FluoZin 3. The bicarbonate transport inhibitor et al. (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 611: 43\u201350 https://www.ncbi.nlm.nih.gov/pubmed/27394923?dopt=AbstractPlusHojyo S et al. (2013) The SLC39 family of zinc transporters. Mol. Aspects Med. 34: 612\u20139 https://www.ncbi.nlm.nih.gov/pubmed/23506894?dopt=AbstractPlusJeong J et al. (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71: 3281\u201395 https://www.ncbi.nlm.nih.gov/pubmed/24710731?dopt=AbstractPlusKambe T et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95: 749\u2013784 https://www.ncbi.nlm.nih.gov/pubmed/26084690?dopt=AbstractPlusKambe T et al. (2014) Zinc: an underappreciated modulatory factor of brain function. Biochem. Pharmacol. 91: 426\u201335 https://www.ncbi.nlm.nih.gov/pubmed/25130547?dopt=AbstractPlusMarger L http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=183 of proton\u2010coupled metal transporters, ferroportin allows the accumulation of iron from the diet. Whilst SLC11A2 functions on the apical membrane, ferroportin acts on the basolateral side of the enterocyte, as well as regulating macrophage and placental iron levels. The predicted topology is of 12 TM domains, with intracellular termini [http://www.ncbi.nlm.nih.gov/pubmed/19150361?dopt=AbstractPlus], with the functional transporter potentially a dimeric arrangement . Ferroportin is essential for iron homeostasis [http://www.ncbi.nlm.nih.gov/pubmed/16054062?dopt=AbstractPlus]. Ferroportin is expressed on the surface of cells that store and transport iron, such as duodenal enterocytes, hepatocytes, adipocytes and reticuloendothelial macrophages. Levels of ferroportin are regulated by its association with (binding to) hepcidin, a 25 amino acid hormone responsive to circulating iron levels . Hepcidin binding targets ferroportin for internalisation and degradation, lowering the levels of iron export to the blood. Novel therapeutic agents which stabilise ferroportin or protect it from hepcidin\u2010induced degradation are being developed as antianemia agents. Anti\u2010ferroportin monoclonal antibodies are such an agent.Alongside the https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:15598, http://www.uniprot.org/uniprot/P81172), cleaved into http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5378 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5379 , is a small protein that increases upon inflammation, binds to ferroportin to regulate its cellular distribution and degradation. Gene disruption in mice results in embryonic lethality [http://www.ncbi.nlm.nih.gov/pubmed/16054062?dopt=AbstractPlus], while loss\u2010of\u2010function mutations in man are associated with haemochromatosis [http://www.ncbi.nlm.nih.gov/pubmed/15956209?dopt=AbstractPlus].Hepcidin The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch. 447: 801\u20136 https://www.ncbi.nlm.nih.gov/pubmed/12836025?dopt=AbstractPlusMcKie AT et al. (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspects Med. 34: 270\u201387 https://www.ncbi.nlm.nih.gov/pubmed/23506870?dopt=AbstractPlusMontalbetti N 2+ efflux [http://www.ncbi.nlm.nih.gov/pubmed/22031603?dopt=AbstractPlus], possibly as a result of co\u2010expression of particular protein partners (see [http://www.ncbi.nlm.nih.gov/pubmed/23506895?dopt=AbstractPlus]). Topological modelling suggests 10 TM domains with cytoplasmic C\u2010 and N\u2010 termini.By analogy with bacterial orthologues, this family is probably magnesium transporters. The prokaryote orthologue, MgtE, is responsible for uptake of divalent cations, while the heterologous expression studies of mammalian proteins suggest Mget al. (2013) The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta1828: 2778\u201092 https://www.ncbi.nlm.nih.gov/pubmed/23954807?dopt=AbstractPlusPayandeh J et al. (2013) The SLC41 family of MgtE\u2010like magnesium transporters. Mol. Aspects Med. 34: 620\u20108 https://www.ncbi.nlm.nih.gov/pubmed/23506895?dopt=AbstractPlusSahni J et al. (2014) SLC41 transporters\u2013molecular identification and functional role. Curr Top Membr73: 383\u2010410 https://www.ncbi.nlm.nih.gov/pubmed/24745990?dopt=AbstractPlusSchweigel\u2010R\u00f6ntgen M https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:10008 (http://www.uniprot.org/uniprot/P18577) and https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:10009 (http://www.uniprot.org/uniprot/Q02161), expressed on the surface of erythrocytes. On erythrocytes, RhAG associates with these antigens and functions as an ammonium transporter. RhBG and RhBG are non\u2010erythroid related sequences associated with epithelia. Topological modelling suggests the presence of 12TM with cytoplasmic N\u2010 and C\u2010 termini. The majority of information on these transporters derives from orthologues in yeast, plants and bacteria. More recent evidence points to family members being permeable to carbon dioxide, leading to the term gas channels.Rhesus is commonly defined as a \u2019factor\u2019 that determines, in part, blood type, and whether neonates suffer from haemolytic disease of the newborn. These glycoprotein antigens derive from two genes, et al. (2013) Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid\u2010base transport. Mol. Aspects Med. 34: 629\u201037 https://www.ncbi.nlm.nih.gov/pubmed/23506896?dopt=AbstractPlusNakhoul NL et al. (2011) Role of NH3 and NH4+ transporters in renal acid\u2010base transport. Am. J. Physiol. Renal Physiol. 300: F11\u201023 https://www.ncbi.nlm.nih.gov/pubmed/21048022?dopt=AbstractPlusWeiner ID et al. (2014) Ammonia transport in the kidney by Rhesus glycoproteins. Am. J. Physiol. Renal Physiol. 306: F1107\u201020 https://www.ncbi.nlm.nih.gov/pubmed/24647713?dopt=AbstractPlusWeiner ID http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=141#SLC7 family. LAT3 and LAT4 contain 12 put.ative TM domains with both N and C termini located intracellularly. They transport neutral amino acids in a manner independent of Na+ and Cl\u2010 and with two kinetic components . LAT3/SLC43A1 is expressed in human tissues at high levels in the pancreas, liver, skeletal muscle and fetal liver [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus] whereas LAT4/SLC43A2 is primarily expressed in the placenta, kidney and peripheral blood leukocytes [http://www.ncbi.nlm.nih.gov/pubmed/15659399?dopt=AbstractPlus]. SLC43A3 is expressed in vascular endothelial cells [http://www.ncbi.nlm.nih.gov/pubmed/18483404?dopt=AbstractPlus] but remains to be characterised.LAT3 (SLC43A1) and LAT4 (SLC43A2) are transporters with system L amino acid transporter activity, along with the structurally and functionally distinct transporters LAT1 and LAT2 that are members of the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5335 inhibits its function [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus] and at LAT4 inhibits the low\u2010, but not high\u2010affinity component of transport [http://www.ncbi.nlm.nih.gov/pubmed/15659399?dopt=AbstractPlus].Covalent modification of LAT3 by et al. (2013) The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol. Aspects Med. 34: 638\u201045 https://www.ncbi.nlm.nih.gov/pubmed/23268354?dopt=AbstractPlusBodoy S http://www.ncbi.nlm.nih.gov/pubmed/15715662?dopt=AbstractPlus]. CTL family members are putative 10TM domain proteins with extracellular termini that mediate Na+\u2010independent transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 with an affinity that is intermediate to that of the high affinity choline transporter CHT1 (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=143#show_object_914) and the low affinity organiccation transporters [OCT1 (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=146#show_object_1019) andOCT2 (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=146#show_object_1020)] [http://www.ncbi.nlm.nih.gov/pubmed/16636297?dopt=AbstractPlus]. CLT1 is expressed almost ubiquitously in human tissues [http://www.ncbi.nlm.nih.gov/pubmed/11698453?dopt=AbstractPlus] and mediates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 transport across the plasma and mitochondrial membranes [http://www.ncbi.nlm.nih.gov/pubmed/19357133?dopt=AbstractPlus]. Transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 by CTL2, which in rodents is expressed as two isoforms in lung, colon, inner ear and spleen and to a lesser extent in brain, tongue, liver, and kidney, has only recently been demonstrated . CTL3\u20105 remain to be characterized functionally.Members of the choline transporter\u2010like family are encoded by five genes (CTL1\u2010CTL5) with further diversity occurring through alternative splicing of CTL1, 4 and 5 [http://www.ncbi.nlm.nih.gov/pubmed/16000150?dopt=AbstractPlus]; rat renal tubule epithelial cells [http://www.ncbi.nlm.nih.gov/pubmed/19236841?dopt=AbstractPlus]; human colon carcinoma cells [http://www.ncbi.nlm.nih.gov/pubmed/19135976?dopt=AbstractPlus]; human keratinocytes [http://www.ncbi.nlm.nih.gov/pubmed/19122366?dopt=AbstractPlus] and human neuroblastoma cells [http://www.ncbi.nlm.nih.gov/pubmed/21185344?dopt=AbstractPlus]. Choline uptake by CLT1 is inhibited by numerous organic cations . In the guinea\u2010pig, CTL2 is a target for antibody\u2010induced hearing loss [http://www.ncbi.nlm.nih.gov/pubmed/14973250?dopt=AbstractPlus] and in man, a polymorphism in CTL2 constitutes the human neutrophil alloantigen\u20103a .Data tabulated are features observed for CLT1 endogenous to: rat astrocytes [Biopharm Drug Dispos35: 431\u201049 https://www.ncbi.nlm.nih.gov/pubmed/24532461?dopt=AbstractPlusInazu M. (2014) Choline transporter\u2010like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. et al. (2013) The choline transporter\u2010like family SLC44: properties and roles in human diseases. Mol. Aspects Med. 34: 646\u201054 https://www.ncbi.nlm.nih.gov/pubmed/23506897?dopt=AbstractPlusTraiffort E http://www.ncbi.nlm.nih.gov/pubmed/12417639?dopt=AbstractPlus]. The protein is predicted to have 12TM domains, with intracellular termini. The SLC45A2 gene is thought to encode a transporter protein that mediates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5415 synthesis. Mutations in SLC45A2 are a cause of oculocutaneous albinism type 4 (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/11574907?dopt=AbstractPlus]), and polymorphisms in this gene are associated with variations in skin and hair color (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/15714523?dopt=AbstractPlus]).Members of the SLC45 family remain to be fully characterised. SLC45A1 was initially identified in the rat brain, particularly predominant in the hindbrain, as a proton\u2010associated sugar transport, induced by hypercapnia [et al. (2014) Proton\u2010associated sucrose transport of mammalian solute carrier family 45: an analysis in Saccharomyces cerevisiae. Biochem. J. 464: 193\u2010201 https://www.ncbi.nlm.nih.gov/pubmed/25164149?dopt=AbstractPlusBart\u00f6lke R et al. (2013) The SLC45 gene family of putative sugar transporters. Mol. Aspects Med. 34: 655\u201060 https://www.ncbi.nlm.nih.gov/pubmed/23506898?dopt=AbstractPlusVitavska O http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4563 transporter [http://www.ncbi.nlm.nih.gov/pubmed/17129779?dopt=AbstractPlus], with lower affinity for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4349. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4563 accumulation is independent of Na+ or K+ ion concentrations, but driven by extracellular protons with an as yet undefined stoichiometry.Based on the proptypicalmember of this family, PCFT, this family includes proton\u2010driven transporters with 11 TMsegments. SLC46A1 has been described to act as an intestinal proton\u2010coupled high\u2010affinity et al. (2014) Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. Curr Top Membr73: 175\u2010204 https://www.ncbi.nlm.nih.gov/pubmed/24745983?dopt=AbstractPlusHou Z et al. (2014) The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos. 42: 632\u201049 https://www.ncbi.nlm.nih.gov/pubmed/24396145?dopt=AbstractPlusMatherly LH et al. (2015) Structural determinants of human proton\u2010coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6. Biochem. J. 469: 33\u201044 https://www.ncbi.nlm.nih.gov/pubmed/25877470?dopt=AbstractPlusWilson MR et al. (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Annu. Rev. Nutr. 31: 177\u2010201 https://www.ncbi.nlm.nih.gov/pubmed/21568705?dopt=AbstractPlusZhao R et al. (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1\u20103 and SLC46A1) and folate receptors. Mol. Aspects Med. 34: 373\u201085 https://www.ncbi.nlm.nih.gov/pubmed/23506878?dopt=AbstractPlusZhao R http://www.ncbi.nlm.nih.gov/pubmed/19515813?dopt=AbstractPlus] and are suggested to be responsible for excretion of many drugs in the liver and kidneys.These proton:organic cation exchangers are predicted to have 13 TM segments [http://www.ncbi.nlm.nih.gov/pubmed/20047987?dopt=AbstractPlus]. MATE2 and MATE2\u2010B are inactive splice variants of MATE2\u2010K [http://www.ncbi.nlm.nih.gov/pubmed/16807400?dopt=AbstractPlus].DAPI has been used to allow quantification of MATE1 and MATE2\u2010mediated transport activity . In addition, evidence suggests this 4TM\u2010containing protein associates with the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=137#V\u2010type ATPase in lysosomes [http://www.ncbi.nlm.nih.gov/pubmed/19875448?dopt=AbstractPlus]. Recent studies confirm its lysosomal location and demonstrate that it has an important physiological function in macrophages ingesting senescent red blood cells (erythrophagocytosis), recycling heme (released from the red cell hemoglobin) from the phagolysosome into the cytosol, where the heme is subsequently catabolized to recycle the iron [http://www.ncbi.nlm.nih.gov/pubmed/23395172?dopt=AbstractPlus].HRG1 has been identified as a cell surface and lysosomal heme transporter [et al. (2013) Heme and FLVCR\u2010related transporter families SLC48 and SLC49. Mol. Aspects Med. 34: 669\u201082 https://www.ncbi.nlm.nih.gov/pubmed/23506900?dopt=AbstractPlusKhan AA http://www.ncbi.nlm.nih.gov/pubmed/10400745?dopt=AbstractPlus], and later identified as a cell surface accumulation which exports heme from the cytosol [http://www.ncbi.nlm.nih.gov/pubmed/15369674?dopt=AbstractPlus]. A recent study indicates that an isoform of FLVCR1 is located in the mitochondria, the site of the final steps of heme synthesis, and appears to transport heme into the cytosol [http://www.ncbi.nlm.nih.gov/pubmed/23187127?dopt=AbstractPlus]. FLVCR\u2010mediated heme transport is essential for erythropoiesis. Flvcr1 gene mutations have been identified as the cause of PCARP (http://www.omim.org/entry/609033?search=609033&highlight=609033 (PCARP) [http://www.ncbi.nlm.nih.gov/pubmed/21070897?dopt=AbstractPlus].There are three paralogs of FLVCR1 in the human genome.FLVCR1 was initially identified as a cell\u2010surface attachment site for feline leukemia virus subgroup C [http://www.ncbi.nlm.nih.gov/pubmed/11943475?dopt=AbstractPlus], has been reported to function as a heme importer [http://www.ncbi.nlm.nih.gov/pubmed/20823265?dopt=AbstractPlus]. In addition, a congenital syndrome of proliferative vasculopathy and hydranencephaly, also known as Fowler's syndrome, is associated with a loss\u2010of\u2010function mutation in FLVCR2 [http://www.ncbi.nlm.nih.gov/pubmed/20206334?dopt=AbstractPlus].FLVCR2, most similar to FLVCR1 [http://www.ncbi.nlm.nih.gov/pubmed/11912179?dopt=AbstractPlus].The functions of the other two members of the SLC49 family, MFSD7 and DIRC2, are unknown, although DIRC2 has been implicated in hereditary renal carcinomas [http://omim.org/entry/105650 [http://www.ncbi.nlm.nih.gov/pubmed/18815190?dopt=AbstractPlus].Non\u2010functional splice alternatives of FLVCR1 have been implicated as a cause of a congenital red cell aplasia, et al. (2013) Heme and FLVCR\u2010related transporter families SLC48 and SLC49. Mol. Aspects Med. 34: 669\u201082 https://www.ncbi.nlm.nih.gov/pubmed/23506900?dopt=AbstractPlusKhan AA et al. (2011) Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim. Biophys. Acta1813: 668\u201082 https://www.ncbi.nlm.nih.gov/pubmed/21238504?dopt=AbstractPlusKhan AA http://www.ncbi.nlm.nih.gov/pubmed/8630032?dopt=AbstractPlus], later termed Rag1\u2010activating protein 1, with a sequence homology predictive of a 4TM topology. The plant orthologues, termed SWEETs, appear to be 7 TM proteins, with extracellular N\u2010termini, and the capacity for bidirectional flux of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/21107422?dopt=AbstractPlus]. Expression of mouse SWEET in the mammary gland was suggestive of a role in Golgi lactose synthesis [http://www.ncbi.nlm.nih.gov/pubmed/21107422?dopt=AbstractPlus].A mouse stromal cell cDNA library was used to clone C2.3 . OST\u03b1/OST\u03b2 is also expressed in steroidogenic cells of the brain and adrenal gland, where it may contribute to steroid movement [http://www.ncbi.nlm.nih.gov/pubmed/20649839?dopt=AbstractPlus]. Bile acid transport is suggested to be facilitative and independent of sodium, potassium, chloride ions or protons . OST\u03b1/OST\u03b2 heterodimers have been shown to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4546, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5577, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6504 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5577 . OST\u03b1/OST\u03b2\u2010mediated transport of bile salts is inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9184 [http://www.ncbi.nlm.nih.gov/pubmed/29675448?dopt=AbstractPlus]. OST\u03b1 is suggested to be a seven TM protein, while OST\u03b2 is a single TM \u2018ancillary\u2019 protein, both of which are thought to have intracellular C\u2010termini [http://www.ncbi.nlm.nih.gov/pubmed/17650074?dopt=AbstractPlus]. Both proteins function in solute transport and bimolecular fluorescence complementation studies suggest the possibility of OST\u03b1 homooligomers, as well as OST\u03b1/OST\u03b2 hetero\u2010oligomers . An inherited mutation in OST\u03b2 is associated with congenital diarrhea in children [http://www.ncbi.nlm.nih.gov/pubmed/28898457?dopt=AbstractPlus].The SLC51 organic solute transporter family of transporters is a pair of heterodimeric proteins which regulate bile salt movements in the small intestine, bile duct, and liver, as part of the enterohepatic circulation Yonezawa A SLC54 family transporters appear to function as mechanisms for accumulating pyruvate into mitochondria to link glycolysis with oxidative phosphorylation.The family of SLC55 mitochondrial transporters appear to regulate ion fluxes and to maintain tubular networks.These are a family of incompletely\u2010characterised mitochondrial transporters.The SLC63 family of transporters has roles inside the cell (SLC63A1/SPNS1) or on the cell surface (SLC63A2/SPNS2) in sphingolipid transport.https://www.uniprot.org/uniprot/P61916), allows the accumulation into the cytosol of cholesterol acquired from low density lipoproteins.The SLC65 family of intracellular cholesterol transporters are 13TM membrane proteins. NPC1/SLC65A1 is an intracellular cholesterol transporter, which together with NPC2 (Uniprot ID The SLCO superfamily is comprised of the organic anion transporting polypeptides (OATPs). The 11 human OATPs are divided into 6 families and ten subfamilies based on amino acid identity. These proteins are located on the plasma membrane of cells throughout the body. They have 12 TM domains and intracellular termini, with multiple putative glycosylation sites. OATPs mediate the sodium\u2010independent uptake of a wide range of amphiphilic substrates, including many drugs and toxins. Due to the multispecificity of these proteins, this guide lists classes of substrates and inhibitors for each family member. More comprehensive lists of substrates, inhibitors, and their relative affinities may be found in the review articles listed below.et al. (2013) The SLCO (former SLC21) superfamily of transporters. Mol. Aspects Med. 34: 396\u2010412 https://www.ncbi.nlm.nih.gov/pubmed/23506880?dopt=AbstractPlusHagenbuch B et al. (2013) Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94: 52\u201063 https://www.ncbi.nlm.nih.gov/pubmed/23588305?dopt=AbstractPlusHillgren KM et al. (2010) Membrane transporters in drug development. Nat Rev Drug Discov9: 215\u201036 https://www.ncbi.nlm.nih.gov/pubmed/20190787?dopt=AbstractPlusInternational Transporter Consortium et al. (2017) Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 . Br J Clin Pharmacol83: 1176\u20101184 https://www.ncbi.nlm.nih.gov/pubmed/27936281?dopt=AbstractPlusLee HH et al. (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol. 165: 1260\u201087 https://www.ncbi.nlm.nih.gov/pubmed/22013971?dopt=AbstractPlusRoth M et al. (2018) Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin. Pharmacol. Ther. 104: 890\u2010899 https://www.ncbi.nlm.nih.gov/pubmed/30091177?dopt=AbstractPlusZamek\u2010Gliszczynski MJ et al. (2016) SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochem. J. 473: 1113\u201024 https://www.ncbi.nlm.nih.gov/pubmed/27118869?dopt=AbstractPlusBhutia YD et al. (2016) SLC Transporters: Structure, Function, and Drug Discovery. Medchemcomm7: 1069\u20101081 https://www.ncbi.nlm.nih.gov/pubmed/27672436?dopt=AbstractPlusColas C et al. (2015) A Call for Systematic Research on Solute Carriers. Cell162: 478\u201087 https://www.ncbi.nlm.nih.gov/pubmed/26232220?dopt=AbstractPlusC\u00e9sar\u2010Razquin A et al. (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov14: 543\u201060 https://www.ncbi.nlm.nih.gov/pubmed/26111766?dopt=AbstractPlusLin L a|cz KA. (2017) Solute Carriers in the Blood\u2010Brain Barier: Safety in Abundance. Neurochem. Res. 42: 795\u2010809 https://www.ncbi.nlm.nih.gov/pubmed/27503090?dopt=AbstractPlusNaet al. (2016) Impact of Membrane Drug Transporters on Resistance to Small\u2010Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol. Sci. 37: 904\u2010932 https://www.ncbi.nlm.nih.gov/pubmed/27659854?dopt=AbstractPlusNeul C Nat Rev Drug Discov14: 29\u201044 https://www.ncbi.nlm.nih.gov/pubmed/25475361?dopt=AbstractPlusNigam SK. (2015) What do drug transporters really do? et al. (2016) Glycosylation of solute carriers: mechanisms and functional consequences. Pflugers Arch. 468: 159\u201076 https://www.ncbi.nlm.nih.gov/pubmed/26383868?dopt=AbstractPlusPedersen NB et al. (2017) Classification Systems of Secondary Active Transporters. Trends Pharmacol. Sci. 38: 305\u2010315 https://www.ncbi.nlm.nih.gov/pubmed/27939446?dopt=AbstractPlusPerland E et al. (2017) Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem. Pharmacol. 135: 1\u201011 https://www.ncbi.nlm.nih.gov/pubmed/28214518?dopt=AbstractPlusRives ML"} {"text": "Without reviewers dedicating their expertise and time to supporting the timely peer review of these studies, we would not be successful in creating a venue that publishes the highest-quality scientific literature. Solid peer review creates trust that the work published in mSystems is reliable. However, it is also fun to remember that like pedestrians, cyclists, and motorists, who can all switch places at some point and yet fail to act with sufficient empathy toward the other two, reviewers, authors, and editors of society journals often need to remember that the service that they provide will reflect on the service that they receive. So thank you to all the reviewers for doing unto others as you would have done unto thyself! Thank you also for supporting open access publishing, and we look forward to exploring the power of open peer review in 2020.Frank M. AarestrupSophie Saphia AbbyMark D. AdamsJoshua N. AdkinsAnton AebischerAmeeta K. AgarwalMasato AkibaAlexander AksenovLuis D. AlcarazNezar Al-HebshiCaitilyn AllenJacob AllenEmma Allen-VercoeJo\u00e3o M. G. C. F. AlmeidaHasan Ali Al-TalhiStefano AmalfitanoKatherine R. AmatoNamasivayam AmbalavananAmnon AmirAlongkorn AmnuaykanjanasinKarthik AnantharamanTessa AndermanBrooke AndersonChristopher Joseph AndersonRika AndersonAndr\u00e9s Andrade-Dom\u00ednguezHaike AntelmannJosefa Ant\u00f3nRafael AraosAna Paula ArezHector ArguelloAnna Ar\u00edsE. Virginia ArmbrustKristine ArnvigMario Arrieta-OrtizBernard P. ArulanandamAlexander AskenovMarina Elisabeth AspholmLouis AtesFrank O. AylwardRamy K. AzizGiovanni BacciBrett J. BakerKatherine BarbeauSonia L. BardyMohammed BarigouTyler BarnumLars BarquistDariusz BartosikJose M. BautistaBarbara BayerMichael BaymWendy BedaleVivian BellofattoRonen Ben-AmiSarah Ben MaamarRichard J. BennettKathryn BernardHans C. BernsteinClaire BertelliStefan BertilssonCora BetsingerRodrigo Carvalho BicalhoSteven BillerEmanuele G. BiondiWilbert BitterLinda BlackallJeffrey BlanchardJill R. BlankenshipLouis-Marie BobayRich BodenNicholas Andrew BokulichJennifer M. BombergerElizaveta A. Bonch-OsmolovskayaJoe Bondy-DenomyRafaella C. Bonugli-SantosEmanuele BosiGerm\u00e1n BouSebastien BoutinRobert BowersJohn Dallas BoyceNanette R. BoyleJoel BozueGerrit BrandisKristoffer BrandvoldAsker Daniel BrejnrodPatrizia BrigidiIlana Lauren BritoRobert A. BrittonNichole A. BroderickDennis BrownPamela J. B. BrownSilvio D. BruggerJennifer BrumDonald A. BryantSamuel BrysonDongbo BuAlison BuchanSilvia BulgheresiLorinda BullingtonJoy BuongiornoMariana X. ByndlossL\u00e9a CabrolMichelle C. CalleganAntonio CamargoValerie Jean CarabettaKyle CardMaureen A. CareyErin CarlsonAlex CarrStephanie A. CarrV\u00edctor J. CarrionEric CascalesGrayson L. ChadwickBaofeng ChaiJosephine R. ChandlerYanjie ChaoTrevor CharlesAleksandra ChecinskaCasey ChenLiang ChenTingtao ChenWei ChenXingqun ChengYin-Ru ChiangSiok-Fong ChinBarbara ChirulloLudmila ChistoserdovaByung-Kwan ChoHana Cipcic PaljetakJan ClaesenC\u00e9cile ClavaudDavid W. ClearyLuis Pedro CoelhoMaureen ColemanJames CollinsFergus CollinsAndre M. ComeauLydia M. ContrerasBrian K. CoombesKevin M. CoombsVaughn S. CooperTeresa M. CoqueJacques CorbeilMelissa A. CreggerJohn CryanChristina A. CuomoTom CurtisWashington da SilvaJos\u00e9 Freire da Silva NetoEmily DavenportAlan R. DavidsonThomas DawsonSvetlana N. DedyshClaire de La SerreManuel Delgado-BaquerizoLaurence DelhaesElaine Cristina De MartinisAlexandre de MenezesMarjan De MeyHaiteng DengMahesh DesaiMatsapume DetcharoenSuzanne DevkotaWillem M. de VosBert DevriendtFloyd E. DewhirstGeorge C. DicenzoChristian DienerC\u00e9sar D\u00edez-Villase\u00f1orPatricia A. Digiuseppe ChampionJoseph P. DillardCecilia Di RubertoDaniel DistelDirk P. DittmerYohei DoiTao G. DongAnn DonoghueRodolpho Martin do PradoTobias D\u00f6rrGavin M. DouglasSimon L. DoveTheo W. DreherAdam DriksAlexandre DrouinEdward G. DudleyJohn DunbarSylvia DuncanClaire DuvalletMohammed DwidarJoseph EdwardsTimothy Ejike EgboPatrick EichenbergerMark A. EitemanNazira El-HageFadi Elias El-RamiBert ElyPhilipp EngelWhitney Eileen EnglandCarmen EspejoA. V. Espinel-IngroffMehrbod EstakiAlessandra S. EustaquioEdouard EvangelistiJoseph O. FalkinhamKaroline FaustConor FeehilyGabriel da Rocha FernandesCelio Fernando Figueiredo AngoliniScott G. FillerSteven E. FinkelMarco FondiAdriana ForeroLeonard J. FosterFarnaz FouladiMichael FranceKurt FredrickMarcelo FreireSteven FreseMichael W. FriedrichBettina C. FriesJulia FukuyamaOhad Gal-MorAlexander GamischMichael G. GanzleFrancisco Garc\u00eda-Del PortilloNeha GargRoger GarrettH. R. GaskinsJosep M. GasolKristi GdanetzMikhail S. GelfandRaad GharaibehScott Michael GiffordDouglas Paul GladueLaura GlendinningGregory B. GloorErica M. GossBenjamin GoudeyRevathi GovindDavid C. GraingerLeigh GreathouseTodd M. GrecoKacy GreenhalghAnn GregoryHans J. GriesserRobert GriffinsMaureen GroerMathieu GroussinHarald R. Gruber-VodickaCalin GuetBrian HaasElaine M. HaaseMike HadfieldLive H. HagenMatthias HahnJarrad Hampton-MarcellKim M. HandleyCara H. HaneyWilliam R. HarcombeDennis J. Hartigan-O\u2019ConnorMohamed-Amine HassaniStijn HawinkelRichard HayesAnna Heintz-BuschartBernard HenrissatChris HenryMarkus J. Herrg\u00e5rdDeborah M. HintonKendal HirschiThomas HitchMengfei HoLucas R. HoffmanDeborah A. HoganGeorgina Louise HoldNicola HoldenHsin-Ho HuangJean J. HuangShi HuangYi-Xin HuoRobert HutkinsMuhammad ImranIkbal Agah InceMarie-Agn\u00e8s JacquesPratik JagtapLaura R. JarboeMichael JewettLin JiangShuo JiaoJay-Hyun JoRheinallt M. JonesSusan JosephSean P. JungbluthFatah KashanchiPurna Chandra KashyapJustin R. KasparKevin T. KavanaghDaniel B. KearnsScott P. KeelyScott T. KelleyEduard J. KerkhovenMegan R. KiedrowskiMinsuk KimPan-Jun KimSeon-Won KimBenjamin KingKuniki KinoNichole R. KlattVanja Klepac-CerajMartin G. KlotzClaudia KniefDan KnightsMatthew D. KociUma KoduruArash KomeiliHeidi KongKonstantinos T. KonstantinidisOmry KorenPanagiotis KougiasElizabeth B. KujawinskiPrashant KumarRoshan KumarRanjith KumavathBenoit KunathThomas KuyperLeo LahtiChad R. LaingCalvin Ho-Fung LauAdi LavySarah LebeerSarah L. LebeisKyongbum LeeGabriela G. S. LeiteVanessa LeoneElisabeth LetellierMark Alexander LeverRoger C. LevesqueDavid Levy-BoothRuth E. LeyHuiying LiXian-Zhi LiXin-Di LiaoXiaoxia LinMary LiptonJohn J. LipumaJinhua LiuJinxin LiuYubing LiuKenneth J. LoceyFrank E. L\u00f6fflerTalita Louren\u00e7oJames LoweTiffany Marie Lowe-PowerSebastian LueckerTillmann LuedersDiana LuisePeter Adrian LundAntoni LuqueCourtney LuterbachMichael LyuWenjun MaFrank Michael MaixnerThulani P. MakhalanyaneAntoine MalabiradeAntonino Malacrin\u00f3Anthony MalanoskiRex R. MalmstromAshutosh K. MangalamaSam MannaFei MaoMaria L. MarcoChristopher W. MarshallPhilippe MarteauWillm Martens-HabbenaJose-Luis Martinez-GonzalezFumito MaruyamaNorman MauderMeghan MayAndrew J. McbainCameron McBrideMark J. McBrideJessica R. McCannRyan McClureDiane McDougaldAndrew McDowellElizabeth A. McGrawK. Kai McKinstrySandra L. McLellanKatherine McMahonMarnix H. MedemaCarlos MedinaPeter MeinickeAlessio MengoniIlhem MessaoudiJulie MeyerKate MichelYusuke MinatoAaron P. MitchellMasatoshi MiyakoshiJennifer M. MobberleyAndrew MoellerJonathan MonkJames J. MoranJacob Moran GiladRobert M. MorrisDouglas MorrisonRafal MostowyVladimir L. MotinPatricia MoweryMaitreyee MukherjeeEmilie E. L. MullerDelia MunteanMarc MussmannJay NadeuNikhil NairYuji NaitoTeru NakatsujiFernando Navarro-GarciaDipti D. NayakJulia NeilsonTiffanie NelsonJeniel E. NettMarkus NettAnthony P. NeumannGraeme William NicolHenrik NilssonAleksandra Nita-LazarJustin R. NodwellTeresa NogueiraJ. Staffan NormarkSpencer V. NyholmPaul Alexander O\u2019BrienMary O\u2019Connell-MotherwayPierre OffreAndrew OgramNiall O\u2019LearyMatthew R. OlmRandall J. OlsenMichelle Ann O\u2019MalleyDana OpulenteAnne-Marie OverstreetEgon Anderson OzerRobert J. PalmerGianni PanagiotouDane ParkerRaghuveer ParthasarathyAlessandro PasseraRob PatroSushmita PatwardhanTalima PearsonPhilip E. PellettBeatriz PenalverHong-Juan PengRita C. PessottiMarie-Agnes PetitDaniel PetrasJennifer Pett-RidgeJody PhelanVanessa PhelanHarold PimentelAzul Pinochet-BarrosConstanze PinskeLuc\u00eda PitaThomas G. PlattPatrick Pl\u00e9siatPrzemyslaw PlocinskiGeorg PohnertArgyris PolitisAlicia Ponte-SucreHannah Beth PooleyPhillip B. PopeSteven L. PorterSambhawa PriyaNan QinWensheng QinZhe-Xue QuanRobert Andrew QuinnKorneel RabaeyMirjana Rajili\u0107-Stojanovi\u0107Thandavarayan RamamurthyKelly RamirezGiordano RampioniMatthew Mark RamseyLutgarde RaskinPhilip N. RatherThomas RatteiGregor ReidOlaya Rendueles GarciaFederico ReyPeter RichardMiles RichardsonLionel Rigottier-GoisMichael Scott RobesonJennifer RoccaJeremy RockKyle H. RohdeCaroline RoperDavid A. RosenAshley A. RossSimon RouxMaxim Rubin BlumLuis A. RubioKelly V. RugglesThomas A. RussoMaurizio RuzziSabrina SaboZakee L. SabreeJon SandersHaley SandersonTodd SandrinAlyson SantoroGuillaume SarrabayrouseBrandon SatinskyJimmy SawLizbeth SayavedraJoy ScariaMark A. SchembriKurt SchesserJoshua P. SchimelAmy K. SchmidAnthony P. SchmittLars SchreiberMatthew O. SchrenkH. Steven SeifertAdnane SellamAditi SenguptaRushina ShahRobert M. Q. ShanksLori R. ShapiroAshok Kumar SharmaXinlei ShengLiat ShenhavFrancesca L. ShortMark W. SilbyJustin D. SilvermanAndrew SimpsonMitchell SingerSteven SingerRohita SinhaTimofey SkvortsovBeate M. SlabyBarth F. SmetsDaniel P. SmithDavid G. E. SmithKim SneppenLindsay SoldenDeguang SongJiangning SongEva C. SonnenscheinUtkarsh SoodJorg SoppaAnja SpangStephen SpiroJoseph E. SprakerJason E. StajichLaura SteindlerGeorge C. StewartFrancesco StratiReed StuddendieckXiaoquan SuDavid SueHikaru SuenagaZheng SunMehul SutharYasuhiro SuzukiWesley D. SwingleyJason B. SylvanIlias TagkopoulosGuylaine TalbotYinjie J. TangGerald William TannockShengce TaoW. Andy TaoJaclyn N. TaroniBradford P. TaylorBen TempertonBenno Herman Ter KuileLuke R. ThompsonYun TianLaura TiptonMehdi ToghiMaya TopfTamas TorokGloria Torres-CortesCarolina TropiniBenjamin John TullySilvia TurroniCarles UbedaBeatrix M. UeberheideSabah Ul-HasanAlex van BelkumPetra Van DammeCarin K. VanderpoolTom Van de WieleWillem van SchaikDouwe van SinderenLuciana Vasquez-PintoTommi VatanenYoshiki Vazquez-BaezaSiddarth VenkateshMarie-Joelle VirolleChris VoigtRobin Voigt-ZuwalaJoseph Thomas WadeIrene Wagner-DoblerAlan W. WalkerMatthew WallensteinGuanghua WangJerry WangJoyce WangWei WangXuya WangYaqiang WangZeneng WangZhang WangDoyle WardWei WeiMargaret WeinrothMartin WelkerNicole WheelerSean P. J. WhelanChristopher WhidbeyMarvin WhiteleyAnisha WijeyesekeraRoland Conrad WilhelmRoli WilhelmAmy D. WillisTomasz WilmanskiJennifer R. WilsonJesse WilsonJeffrey H. WitheyBenjamin WoolstonErik S. WrightRosanna C. T. WrightFuqing WuHao WuMichael WuMin WuYu-Wei WuTodd N. WylieKelly WyresGuoxiang XieJiatao XieChunlan XuPeng XuXuewei XuZhenjiang Zech XuChing-Hong YangFiliz Yarimcam SaglamAlyson L. YeeV. Laxmi R. YeruvaYibing YinYasuo YoshidaJun YuXiaoqian YuZhongtang YuMengting YuanYuanchao ZhanChangyi ZhangFaming ZhangJiachao ZhangKai ZhangLimin ZhangQuan-Guo ZhangWeipeng ZhangZhengguang ZhangZiding ZhangFangqing ZhaoRui ZhaoShijie ZhaoXin-Qing ZhaoDongsheng ZhouWenhao ZhouLiangquan ZhuYan ZhuJun ZouIn 2019, we have seen"} {"text": "Correction to: Trialshttp://dx.doi.org/10.1186/s13063-019-3304-9Originally published name:Galymgan EleuovCorrected name:Galymzhan YeleuovThe original article has been corrected.Following publication of the original article , the aut"} {"text": "Healthcare-associated infections and antibiotic resistance\u00a0Clostridium difficile infection in Ireland, 2017Epi-Insight 2019;20(1)January 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/1scooyoz373n0ykqgxo0gg?a=1&p=54394726&t=17517774\u00a0Food- and waterborne diseases\u00a0Routine reports of gastrointestinal infections in humans, England and Wales: January and February, 2019Health Protection Report; 13(9)15 March 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/786477/hpr0919_GIs.pdf\u00a0Hepatitides\u00a0Laboratory reports of hepatitis A and C in England and Wales: July to September 2018Health Protection Report; 13(3)25 January 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773602/hpr0319_hepAC.pdf\u00a0Vaccine-preventable diseases\u00a0Diphtheria in England: 2018Health Protection Report; 13(10)22 March 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/788746/hpr1019_dphthr.pdf\u00a0Tetanus in England: 2018Health Protection Report; 13(10)22 March 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/788744/hpr1019_ttns.pdf\u00a0Pertussis - vaccinating mum is good for baby \u2013 update on antenatal pertussis vaccinationEpi-Insight 2019;20(3)March 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/zvpnkwflilyn0ykqgxo0gg?a=1&p=54630557&t=17517774\u00a0The need to achieve high vaccine coverage to sustain rubella elimination in IrelandEpi-Insight 2019;20(3)March 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/dgoyhvql9ntn0ykqgxo0gg?a=1&p=54630561&t=17517774\u00a0Laboratory-confirmed cases of measles, rubella and mumps, England: October to December 2018Health Protection Report; 13(8)28 February 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/782191/hpr0819_mmr.pdf\u00a0Laboratory confirmed cases of invasive meningococcal infection (England): October to December 2018Health Protection Report; 13(7)22 February 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/780984/hpr0719_imd.pdf\u00a0Haemophilus influenzae by age group and serotype (England): 2018Laboratory reports of Health Protection Report; 13(7)22 February 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/780976/hpr0719_hmphls-nflnz.pdf\u00a0Pertussis vaccination programme for pregnant women update: vaccine coverage in England, July to September 2018Health Protection Report; 13(7)22 February 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/780991/hpr0719_prntl-prtsss-vc.pdf\u00a0Trends in invasive meningococcal disease in Ireland, 1999-2019Epi-Insight 2019;20(2)February 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/tyzbecfnxf6n0ykqgxo0gg?email=true&a=1&p=54506595&t=17517774\u00a0Respiratory diseases\u00a0Outbreak of tuberculosis in a school in Dresden, 2017\u22122018Epidemiologisches Bulletin 11-12/201914 March 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/11_12_19.pdf?__blob=publicationFile\u00a0Legionella pneumophilaProbable case of reinfection with Epidemiologisches Bulletin 1/20193 January 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/01_19.pdf?__blob=publicationFile\u00a0Zoonoses and vector-borne diseases\u00a0Common animal associated infections quarterly report : fourth quarter 2018Health Protection Report; 13(9)15 March 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/786463/hpr0919_zoos.pdf\u00a0Case of chronic Q feverVlaams infectieziektebulletin 2019(1)March 2019, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/VIB%202019-1%20-%20DEF.pdf\u00a0Historical aspects of Q feverVlaams infectieziektebulletin 2019(1)March 2019, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/VIB%202019-1%20-%20DEF.pdf\u00a0Creutzfeldt-Jakob disease (CJD) biannual update (February 2019)Health Protection Report; 13(6)15 February 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/779110/hpr0619_cjd.pdf\u00a0TBE: risk areas in Germany (as of January 2019)Epidemiologisches Bulletin 7/201914 February 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/07_19.pdf?__blob=publicationFile\u00a0Leptospirosis 2017-2018EPI-NEWS 4/5, 20196 February 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-4-5---2019\u00a0Other\u00a0Pregnancy and infectious diseases in IrelandEpi-Insight 2019;20(3)March 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/d95m2dq9kepn0ykqgxo0gg?email=true&a=2&p=54630552&t=17517804\u00a0Group A streptococcal infections: first report of seasonal activity, 2018/19Health Protection Report; 13(8)28 February 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/782182/hpr0819_sf-gas.pdf"} {"text": "This article has been corrected: The correct author name is given below:Laura Mezquitahttps://doi.org/10.18632/oncotarget.26446Original article: Oncotarget. 2018; 9:37393-37406."} {"text": "This article has been corrected: In Figure https://doi.org/10.18632/oncotarget.9315Original article: Oncotarget. 2016; 7:51096-51106."} {"text": "Healthcare-associated infections and antibiotic resistance\u00a0Did we get his message right? A short history of hand hygiene on the occasion of the 200th anniversary of Ignaz Semmelweis\u2019 birthEpidemiologisches Bulletin 18/20183 May 2018, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2018/Ausgaben/18_18.pdf?__blob=publicationFile\u00a0Clostridium difficile outbreak investigationsEpidemiologisches Bulletin 14/20185 April 2018, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2018/Ausgaben/14_18.pdf?__blob=publicationFile\u00a0Food- and waterborne diseases\u00a0Campylobacter infectionsRKI guidance on Epidemiologisches Bulletin 23/20187 June 2018, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2018/Ausgaben/23_18.pdf?__blob=publicationFile\u00a0Shigellosis outbreak at a student accommodation siteInfectieziekten Bulletin 2018; 29(6)June 2018, the Netherlandshttps://magazines.rivm.nl/2018/06/infectieziekten-bulletin/uitbraak-van-shigellose-bij-een-studentenvereniging\u00a0Salmonella and Campylobacter infections 2016-17EPI-NEWS 15/201811 April 2018, Denmarkhttps://www.ssi.dk/English/News/EPI-NEWS/2018/No%2015%20-%202018.aspx\u00a0Giardiasis in a nurseryVlaams Infectieziektebulletin, 4/20172017, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/VIB%202017-4_DEF.pdf\u00a0Hepatitides\u00a0Special edition: National day against viral hepatitisBulletin \u00e9pid\u00e9miologique hebdomadaire, 11/201815 May 2018, Francehttp://invs.santepubliquefrance.fr/beh/2018/11/pdf/2018_11.pdf\u00a0Hepatitis A outbreak in a care homeInfectieziekten Bulletin 2018; 29(4)April 2018, the Netherlandshttps://magazines.rivm.nl/2018/04/infectieziekten-bulletin/hepatitis-uitbraak-op-een-zorgboerderij\u00a0Vaccine-preventable diseases\u00a0Laboratory confirmed cases of measles, mumps and rubella, England: January to March 2018Health Protection Report; 12(19)1 June 2018, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/711941/1918_AA_mmr.pdf\u00a0Vaccine coverage for the GP based catch-up meningococcal ACWY (MenACWY) immunisation programme in England to the end of March 2018Health Protection Report; 12(18)25 May 2018, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/711444/hpr1818_menACWY-vc.pdf\u00a0Preliminary vaccine coverage estimates for the meningococcal B (MenB) immunisation programme for England, update from January to March 2018Health Protection Report; 12(15)27 April 2018, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/703471/hpr1518_menbVC.pdf\u00a0Vaccination rates at school entry examination in Germany, 2016Epidemiologisches Bulletin 19/201819 April 2018, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2018/Ausgaben/16_18.pdf?__blob=publicationFile\u00a0Laboratory-confirmed whooping cough 2017EPI-NEWS 16/201818 April 2018, Denmarkhttps://www.ssi.dk/English/News/EPI-NEWS/2018/No%2016%20-%202018.aspx\u00a0Free measles vaccination for non-immune adults EPI-NEWS 13-14/20184 April 2018, Denmarkhttps://www.ssi.dk/English/News/EPI-NEWS/2018/No%2014%20-%202018.aspx\u00a0Measles in Ireland \u2013 weeks 1-12, 2018Epi-Insight 2018;19(4)April 2018, Irelandhttp://ndsc.newsweaver.ie/epiinsight/1qv34ih6ub810gkzp9yxn5?a=1&p=53187118&t=17517774\u00a0Respiratory diseases\u00a0The 2017/2018 influenza seasonEPI-NEWS 23-24/201813 June 2018, Denmarkhttps://www.ssi.dk/English/News/EPI-NEWS/2018/No%2023-24%20-%202018.aspx\u00a0Spotlight on Human Parvovirus B19Epi-Insight 2018;19(6)June 2018, Irelandhttp://ndsc.newsweaver.ie/epiinsight/tflodsptta910gkzp9yxn5?a=2&p=53465132&t=17517804\u00a0Fatal case in a child related to an influenza outbreak in a kindergartenEpidemiologisches Bulletin 22/201831 May 2018, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2018/Ausgaben/22_18.pdf?__blob=publicationFile\u00a0Sexually transmitted diseases\u00a0Syphilis 2017EPI-NEWS 22, 201830 May 2018, Denmarkhttps://www.ssi.dk/English/News/EPI-NEWS/2018/No%2022%20-%202018.aspx\u00a0Zoonoses and vector-borne diseases\u00a0Special edition: Lyme borreliosis and\u00a0other\u00a0tick-borne diseasesBulletin \u00e9pid\u00e9miologique hebdomadaire, 19-20/201819 June 2018, Francehttp://invs.santepubliquefrance.fr/beh/2018/19-20/pdf/2018_19-20.pdf\u00a0TBE: risk areas in Germany (April 2018)Epidemiologisches Bulletin 17/201826 April 2018, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2018/Ausgaben/17_18.pdf?__blob=publicationFile\u00a0Hantavirus infections in Germany: a review of the 2017 epidemic yearEpidemiologisches Bulletin 15/201812 April 2018, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2018/Ausgaben/15_18.pdf?__blob=publicationFile\u00a0Human case of leptospirosis transmitted from a dogInfectieziekten Bulletin 2018; 29(4)April 2018, the Netherlandshttps://magazines.rivm.nl/2018/04/infectieziekten-bulletin/humane-leptospirose-een-puppy\u00a0Leptospirosis among participants in an obstacle run, Nijlen 2015Vlaams Infectieziektebulletin, 4/20172017, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/VIB%202017-4_DEF.pdf\u00a0Historical aspects of leptospirosisVlaams Infectieziektebulletin, 4/20172017, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/VIB%202017-4_DEF.pdf"} {"text": "The correct name is: Maria Jose Fuster-RuizdeApodaca.The 11th and August 8th of 2017, showing the following messages: \u201cAre you PrEPared for the pill that prevents HIV? / Help us to improve the health of LGBT community by answering some questions / Are you PrEPared for World Pride?\u201dIn the Design of the questionnaire subsection of the Materials and methods, there is an error in the fourth sentence. The correct sentence is: The survey was advertised through gay-oriented dating apps and the social media of HIV Non-Governmental Organizations (NGO) between June 26In https://www.msssi.gob.es/ciudadanos/enfLesiones/enfTransmisibles/sida/docs/PlanEstrategico2013_2016.pdfReference 2 is spelled incorrectly. The correct reference is: Ministerio de Sanidad, Servicios Sociales e Igualdad. Plan Estrat\u00e9gico de Prevenci\u00f3n y Control de la infecci\u00f3n por el VIH y otras infecciones de transmisi\u00f3n sexual [Internet]. 2013. Available: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/EMIS-2010-european-men-who-have-sex-with-men-survey.pdfThe URL in reference 3 is incorrect. The correct URL is: https://cima.aemps.es/cima/pdfs/ft/04305001/FT_04305001.pdfThe URL in reference 13 is incorrect. The correct URL is: http://www.mscbs.gob.es/ciudadanos/enfLesiones/enfTransmisibles/sida/docs/PROFILAXIS_PREEXPOSICION_VIH.pdfThe URL in reference 17 is incorrect. The correct URL is: Ferrer L, Folch C, Fernandez-Davila P, Garcia A, Morales A, Belda J, et al. was incorrectly included as reference 26. As a result, all subsequent references are misnumbered. References 27\u201329 should be references 26\u201328."} {"text": "This article has been corrected: Due to errors in image processing, there was an accidental duplication of data in 2250-2262. https://doi.org/10.18632/oncotarget.2948Original article: Oncotarget. 2015; 6:2250\u20132262."} {"text": "R. Soc. open sci.5, 171529. (Published 27 June 2018). (doi:10.1098/rsos.171529)This correction refers to tables"} {"text": "Correction to: BMC Bioinformatics (2016) 17:185https://doi.org/10.1186/s12859-016-1013-xFollowing publication of the original article , the autThe links that needs to be updated can be find at the Conclusions section of Abstract and other under Project home page at the bottom.Old link (s):http://metagenomics.atc.tcs.com/compnet/ orhttp://121.241.184.233/compnet/Updated new link:https://web.rniapps.net/compnet/"} {"text": "This article has been corrected: The corrected author name is given below:Wataru Ichikawa18811-18820. https://doi.org/10.18632/oncotarget.24702Original article: Oncotarget. 2018; 9:"} {"text": "This article has been corrected: The correct Author name is given below:Eugenia Johnsonhttps://doi.org/10.18632/oncotarget.26047Original article: Oncotarget. 2018; 9:34259-34278."} {"text": "This article has been corrected: In the supplementary file on page 4, the corrected author name is given below:M. Tischkowitz1127-1133. https://doi.org/10.18632/oncotarget.385Original article: Oncotarget. 2011; 2:"} {"text": "This article has been corrected: The correct author names are given below:Yueqiang Jiang and Yanling Ma11989-11998. https://doi.org/10.18632/oncotarget.22857Original article: Oncotarget. 2018; 9:"} {"text": "Nucleic Acids Research, gky768, https://doi.org/10.1093/nar/gky768In Figures"} {"text": "This article has been corrected: The #2 affiliation information has been updated. The proper institution name is shown below:2Bioinformatics, Miltenyi Biotec GmbH, Bergisch Gladbach, 51429, Germany3183-3197. https://doi.org/10.18632/oncotarget.26900Original article: Oncotarget. 2019; 10:3183\u20133197."} {"text": "This article has been corrected: During production, the page numbers for this article were listed incorrectly. The page numbers have now been adjusted to show the proper pagination.552-562. https://doi.org/10.18632/oncotarget.190Original article: Oncotarget. 2010; 1:"} {"text": "Vectors of arboviruses in the state of S\u00e3o Paulo: 30 years of Aedes aegypti and Aedes albopictus\u201d Rev. Saude Publica [online]. 2019, vol.53:84, ISSN 1518-8787, http://dx.doi.org/10.11606/s1518-8787.2019053001264, the RSP corrects the author\u2019s last name.In \u201cWhere you read:Marcia Moreira HolcmamYou should read:Marcia Moreira Holcman Vetores de arboviroses no estado de S\u00e3o Paulo: 30 anos de Aedes aegypti e Aedes albopictus\u201d Rev. Saude Publica [online]. 2019, vol.53:84, ISSN 1518-8787, http://dx.doi.org/10.11606/s1518-8787.2019053001264, a RSP corrige o sobrenome do autor.No artigo. \u201cOnde se lia:Marcia Moreira HolcmamLeia-se:Marcia Moreira Holcman"} {"text": "This article has been corrected: The corrected author name is given below:Alessandro Sanduzzi19356-19367. https://doi.org/10.18632/oncotarget.25049Original article: Oncotarget. 2018; 9:"} {"text": "This article has been corrected: In the Materials and Methods section, the data access link is incorrect. In addition, reference 37 was also listed incorrectly. The proper information is given below:http://www.ncbi.nlm.nih.gov/sra/SRP102906).Materials and Methods: The data discussed in this publication have been deposited in the NCBI Sequence Read Archive (SRA) [37] and are accessible through : D19-D21.106948-106961. https://doi.org/10.18632/oncotarget.22157Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The correct author name is given below:Rosa Blancohttps://doi.org/10.18632/oncotarget.11425Original article: Oncotarget. 2017; 8:29679-29698."} {"text": "R. Soc. open sci.6, 190418. (Published 10 April 2019). (doi:10.1098/rsos.190418)This correction refers to an error in the abstract. Transcriptome measurements were accidentally changed to \u2018transcriptase measurements\u2019. The correct text appears below.Integrated studies via kinetic metabolic modelling, transcriptome measurements and metabolic profiling were performed on this strain."} {"text": "This article has been corrected: Due to errors in figure preparation, the data for 13023-13035. https://doi.org/10.18632/oncotarget.24310Original article: Oncotarget. 2018; 9:13029\u201313035."} {"text": "This article has been corrected: During production, the page numbers for this article were listed incorrectly. The page numbers have now been adjusted to show the proper pagination.563-577. https://doi.org/10.18632/oncotarget.191Original article: Oncotarget. 2010; 1:"} {"text": "Correction to: BMC Medhttps://doi.org/10.1186/s12916-019-1257-1Author, Chee H. Ng\u2019s middle initial was omitted;The Competing Interests declaration omitted some information regarding author, Chee H. Ng.The original article containeThese two errors have since been corrected."} {"text": "R. Soc. open sci.4, 170351. (Published 18 October 2017). (doi:10.1098/rsos.170351)SRP041222, PRJNA398316 and PRJNA398198.The third accession number in the data accessibility section of the published paper is incorrect. The correct accession numbers are"} {"text": "This article has been corrected: The corrected author name is given below:Barbieri Eveline20323-20338. https://doi.org/10.18632/oncotarget.24859Original article: Oncotarget. 2018; 9:"} {"text": "This article has been corrected: The correct author name is given below:Patricia S.P. Thong19902-19913. https://doi.org/10.18632/oncotarget.15720Original article: Oncotarget. 2017; 8:"} {"text": "TETFund (Tertiary Education Trust Fund): Institution based TETFund grant. [TETFUND/DESS/UNI/NSUKKA/2017/RP/VOL.I].The original article mistaken"} {"text": "This article has been corrected: During the assembly of the Figure https://doi.org/10.18632/oncotarget.24815Original article: Oncotarget. 2018; 9:17631-17644."} {"text": "Amblyomma mixtum ticks were misidentified as A. sculptum in Rickettsia africae and Novel Rickettsial Strain in Amblyomma spp. Ticks, Nicaragua, 2013 . The article has been corrected online (https://wwwnc.cdc.gov/eid/article/24/2/16-1901_article)."} {"text": "The Pan African Medical Journal. 2014;19:50. doi:10.11604/pamj.2014.19.50.4683.This corrigendum corrects article The author affiliation in the published article \u201cService"} {"text": "The co-first author\u2019s name is spelled incorrectly. The publisher apologizes for the error. The correct name is: Julia TCW. The correct citation is:https://doi.org/10.1371/journal.pone.0213374.Bowles KR, TCW J, Qian L, Jadow BM, Goate AM (2019) Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting. PLoS ONE 14(3): e0213374."} {"text": "This article has been corrected: The correct figure https://doi.org/10.18632/oncotarget.3218Original article: Oncotarget. 2015; 6:9820-9833."} {"text": "This article has been corrected: The corrected author name is given below:Lei Shi26711-26723. https://doi.org/10.18632/oncotarget.25475Original article: Oncotarget. 2018; 9:"} {"text": "R. Soc. open sci.5, 171430. (Published online 14 March 2018). (doi:10.1098/rsos.171430)In the published paper, the last author's name is presented incorrectly. The last author's name is Mahmood M. S. Abdullah."} {"text": "That would not have been possible had it not been for the scientists who have dedicated their time to supporting the fair and unbiased review of the science presented in mSystems. We are indebted to the many people who have contributed to article reviews over the last 3 years. What you all have sacrificed in time has been repaid in furthering the pursuit of knowledge in a format that is freely accessible to the whole world.Stephen T. AbedonJonathan Miles AdamsMark D. AdamsSarah AdesPamela R. F. AdkinsEvelien M. AdriaenssensVinayak AgarwalBrian M. M. AhmerAlexander AksenovMd Tauqeer AlamMads AlbertsenPietro AlifanoRobert AllakeRaul A. AlmeidaEric AltermannKatherine R. AmatoAnthony AmendAmnon AmirKarthik AnantharamanJamila Anba-MondoloniCheryl P. AndamHeidi M. AndersenRika AndersonRaul AndinoLargus T. AngenentKym S. AntonationAyako Aoki-YoshidaCristian ApetreiMichael A. ApicellaHector Arguello-RodriguezMasanori AritaJean ArmengaudMagnus \u00d8. ArntzenMario Arrieta-OrtizGraeme Trevor AttwoodJennifer AuchtungJulian Avila PachecoMartin Iain BahlAbhay BajajBrett J. BakerMatthew G. BakkerChandra Shekhar BakshiDavid A. BaltrusCarlos BarajasBridget BarkerStephen BarnesFrancisco Barona-GomezJeremy J. BarrJeffrey E. BarrickAmanda BarryDouglas H. BartlettAnke BeckerSylvia Becker-DrepsEric Daniel BecraftPeter Trip BeerninkMarcel A. BehrGordon Morse BennettIsabelle BenoitGabriele BergIvan BergHans C. BernsteinClaire BertelliStefan BertilssonErin BertrandWolfgang BeyerShantanu BhattKyle BibbyElisabeth M. BikSteven BillerFabrice Vincent BiotJohannes Bj\u00f6rkJohanna Bj\u00f6rkrothJill R. BlankenshipSteve BlazewiczRan BlekhmanRobert M. BlumenthalGregory BokinskyNicholas Andrew BokulichTobias BollenbachGregory BonitoRichard BonneauErika BonsagliaRafaella C. Bonugli-SantosAnna BothBrian BothnerDavid G. BourneJohn P. BowmanSean F. BradyAxel A. BrakhageJonathan BraunAsker Daniel BrejnrodOrianna BretschgerTess Elizabeth BrewerLazzaro BrianDavid S. BriskeyBrandon BrooksPaul BrooksC. Titus BrownDaniel R. BrownJeremy C. BrownlieJames E. BruceDonald A. BryantSamuel Joseph BrysonNicole R. BuanAlison BuchanMichael J. BuchmeierCarmen BuchrieserSara Ashley BumgardnerAdam R. BurnsBrendan Paul BurnsFrederic D. BushmanKyle C. CadyBen CallahanBenjamin J. CallahanStephen J. CallisterAndres Mauricio Caraballo RodriguezValerie Jean CarabettaPaul CariniErin CarlsonRoss P. CarlsonGilda CarvalhoMagali Chab\u00e9Woo-Suk ChangMichael S. ChausseeJun ChenTingtao ChenLei ChengLeonid ChindelevitchPeter ChiversSidharth ChopraJoseph Alexander Christie-OlezaGeremy C. ClairTom ClavelLuca CocolinDavid A. CoilAndre M. ComeauJohn CommonLaurie E. ComstockJonathan ConwayTyrrell ConwayVaughn S. CooperOtto X. CorderoElizabeth K. CostelloNatacha CoutoDon A. CowanMichael CoxKatharine CoyteJohn CryanCatalina Cuellar-GempelerJulia CuiChristina CuomoDennis G. CvitkovitchChristiane DahlColin DaleRemus DameJeffrey L. DanglF. DarfeuilleJulian E. DaviesJames DavisStacy L. DeblasioVal\u00e9rie De Cr\u00e9cy-LagardMichael DeemCarlotta De FilippoNicholas R. De LayCeline Delbes-PausEdward F. DelongYe DengMuriel DerrienPetra DerschMahesh DesaiAdam M. DeutschbauerKen DewarGregory J. DickChristian DienerDirk P. DittmerJeremy A. DodsworthClaudio DonatiYiran DongMohamed S. DoniaIan DonohueAngela E. DouglasGavin M. DouglasJaquelin P. DudleyTim J. DumonceauxJohn DunbarKatherine R. DuncanTaylor DunivinAshlee M. EarlBrian Joseph EddieLaura EmeBruce D. EricksonCassandra Lane EttingerAmandine EverardVanessa EzenwaAndrew James FabichLiam J. FanningKaroline FaustGabriel da Rocha FernandesLucia FernandezNoah FiererOmri M. FinkelNahuel FittipaldiErik K. FlemingtonHarry J. FlintLucile M. Floeter-WinterYuriy FofanovEdan FoleyMarco FondiJoseph Che ForbiAdriana ForeroKristoffer ForslundSamuel Charles ForsterKonrad Ulrich F\u00f6rstnerPaul ForsytheJamie S. FosterZachary FosterFiona FouhyMiguel FradaPedro FradePilar FrancinoEelco FranzSebastian FrauneStephen J. FreeKatie FreelPengcheng FuJed FuhrmanTamas GaalMihaela GadjevaFrancesca GaggiaMarco GalardiniJinshan GaoJos\u00e9 Luis Garc\u00edaJeffrey G. GardnerDaniel GarridoCaroline Attardo GencoC. R. Robert GeorgeLaurel J. GershwinAndrew GewirtzRaad GharaibehPaolo GhensiTravis GibsonLaura GlendinningGregory B. GloorJon D. GoguenShan GohSusan S. GoldenMaria Adelaida GomezDavid J. GonzalezAndrew GoodmanUri GophnaStephen V. GordonDavid C. GraingerJeffrey A. GralnickLeigh GreathouseStefan J. GreenJulian GriffinChristopher A. GulvikMichelle Gwinn-GiglioElaine M. HaaseMarkus HaberMurray HackettMartin W. HahnMehrdad HajibabaeiLindsay J. HallNafiz HamidRobert E. W. HancockKim M. HandleyMatthew J. HarkeJoe HarrisonBernhard HauboldKeith HazeltonIan HeadBrian P. HedlundMatthias HeinemannMichael HensonUte HentschelMalte HeroldAnat A. HerskovitsRobert L. HettichThomas HitchWilliam E. HolbenGeorgina Louise HoldJohannes HolertEmily B. HollisterMatthias HornJianzhong HuSarah K. HuShi HuangJudith M. H\u00fcbschenLaura A. HugEili HuhtamoBruce A. HungateDana E. HuntC. Neil HunterDaniel HusonEmbriette R. HydeTadayuki IwaseJacques IzardJonathan L. JacobsCrystal JaingMichael JanechIan B. JefferyPoul Erik JensenPatricio JeraldoDing Jun JinSeth G. JohnKay O. JohswichIan JointKathryn M. JonesKirsten JungNadeem O. KaakoushKrishna (Rani) KalariVipin Chandra KaliaMarina G. KalyuzhnayaTaro KamagakiDae Wook KangWei-Chun KaoWojciech KarlowskiPurna Chandra KashyapAnne-Kristin KasterElena KazamiaSean KearneyScott T. KelleyColleen KelloggScott KenneySaeed KhanKhashayarsha KhazaieMary L. KillianMinsuk KimPan-Jun KimBenjamin C. KirkupTodd KittenJonathan KlassenSilke KleeVanja Klepac-CerajDan KnightsKevin KohlKonstantinos T. KonstantinidisEugene V. KooninOmry KorenNicole Marie KoropatkinDavid KoslickiAleksandar KosticPetia KovatchevaJens H. KuhnPrashant KumarRoshan KumarDeepak KumaresanElizabeth M. KutterBrandon LaBumbardDouglas J. LaCountIsabelle Laforest-LapointeLeo LahtiMichael LammersAmy LaneJenna M. LangPascal LapierreAdi LavyVladimir LazarevicSarah LebeerYoann LeBretonFredrick J. LeeKyongbum LeePhilippe Claude LefebvreJose LemosVanessa LeoneSabine LeroyHuiying LiTami LiebermanGipsi Lima MendezKai-Shu LingPushpinder LittNan LiuRichard LongneckerCedric LoodStilianos LoucaPetra LouisClaude LoverdoKun LuMichael LynchBoris MacekBarbara J. MacGregorJohn MacSharryJuliette MadanStefania MagnusdottirFinlay MaguireFr\u00e9d\u00e9ric Mah\u00e9Vladimir MakarenkovThulani P. MakhalanyaneMeenakshi MalikElizabeth MallottOhad ManorCostas D. MaranasMaria L. MarcoAngela MarcobalJeffrey MarlowNatalie MarshallRebeca MartinAdam MartinyBernd MasepohlAndrea MasottiJessica R. McCannRyan McClureBeth McCormickJohn McCutcheonJason E. McDermottDaniel McDonaldAndrew McDowellMichael J. McInerneyLuke McKayJeffrey Scott McLeanKatherine McMahonAlan McNallyPatrick J. McNamaraJames F. MeadowMarnix H. MedemaMonica MedinaConor MeehanJay MelliesAlexey V. MelnikBodo MelnikAkram MendezAlessio MengoniShiri MeshnerIlhem MessaoudiJessica MetcalfThomas MetzKim MilferstedtAndrew D. MillardShujiro MinamiTim MiyashiroJennifer M. MobberleyAndrew MoellerDebasisa MohantyHosein MohimaniJonathan MonkChristophe MonnetLisa MooreNathaniel John MoormanCharles P. MoranMary Ann MoranMaria Aparecida Scatamburlo MoreiraXochitl C. MorganJenna Morgan-LangAndrey MorgunCindy E. MorrisJ. Jeffrey MorrisRobert M. MorrisElke M\u00fchlbergerMaitreyee MukherjeeMartha H. MulksAlvaro MunozVivek MutalikHiroaki NakaGerard J. NauLama NazzalJulia NeilsonWilliam C. NelsonCamilla Lothe NesboMarkus NettTerry Fei Fan NgNancy N. NicholsJens NielsenJeppe Lund NielsenOlivia D. NigroHiroshi NikaidoAleksandra Nita-LazarKrishna NiyogiCecilia NoeckerKenneth M. NollTorbj\u00f6rn Nor\u00e9nHoward OchmanMary O'Connell-MotherwayTadgh O'CroininMarco Rinaldo OggioniStephen G. OliverHuub J. M. Op Den CampAharon OrenHiroyuki OshiumiElizabeth A. OttesenAbdullah OzerOlga OzolineKeith PaarpornOleg PaliyBrent PalmerRobert J. Palmer, Jr.Chongle PanLaura ParfreyJohn ParkinsonKiran R. PatilVaishnavi PattabiramanAndrew D. PattersonJoseph N. PaulsonChristopher PeacockShyamal D. PeddadaBeatriz PenalverJohn PendersBingyin PengCharles Pepe-RanneyMatthew PerisinJakob PernthalerHannes PeterJason PetersStefan PfeifferVanessa PhelanJo PhilipsCaroline C. PhilpottPascal PineauAmeet J. PintoJames M. PipasGerman PlataAngela C. PoolePhillip B. PopeAlexa A. PragmanOm PrakashMichael B. PrenticeLance B. PriceMorgan N. PriceNathan PriceSladjana PrisicCatherine PutontiMeng QiJianming QiuYuanyuan QuZhe-Xue QuanRobert Andrew QuinnElisabeth A. RaleighSrinivasan RamachandranMatthew Mark RamseyChristopher RaoPhilip N. RatherFrederic RaymondGregor ReidPierre RenaultFrancis RepoilaScott RiceJason M. RidlonLionel Rigottier-GoisDaina L. RingusJudith RisseAdam RiversMichael Scott RobesonDmitry A. RodionovGeraint B. RogersDavid A. RosenIda RosenkrandsJohannes RouskSimon RouxTaniya Roy ChowdhuryBen RubinSteven RutherfordRatul SaikiaNina R. SalamaHassan SameeAlvaro SanchezJon Sanders\u00c1lvaro San MillanBeng San YeohPauline Deirdre ScanlanPatrick D. SchlossThomas Mitchell SchmidtLynn SchrimlThomas SchwederHerbert P. SchweizerHenning SeedorfAnna Maria SeekatzAlecia SepterReed S. ShabmanWilliam M. ShaferRushina ShahJason W. ShapiroOm Prakash SharmaLaura Jayne SherrardRafael Silva-RochaJustin D. SilvermanPallavi SinghYogendra SinghRohita SinhaLindsey M. SoldenAbraham L. SonensheinSe Jin SongJustin SonnenburgJ\u00f6rg SoppaDiana SousaVanessa SperandioDaan R. SpethJoseph Evan SprakerStefan SpringEric V. StabbPierre StallforthLisa Y. SteinRalf SteuerChris StewartO. Colin StineUlrich StinglDaniel StoebelXiaoquan SuGarret SuenMatthew SullivanFengzhu SunJun SunMing SunShinichi SunagawaMichael G. SuretteMichiko E. TagaIlias TagkopoulosGuylaine TalbotR\u00e9gine TalonHideyuki TamakiMing TanPatrick TangGerald William TannockSuvi TaponenMike TaylorRobert ThackerCasey TheriotNicholas R. ThomsonTamas TorokSusannah Green TringePankaj TrivediTommy Tsan-Yuk LamTamir TullerBenjamin John TullyJenny TungKieran TuohlyHanne L. P. TytgatMario UchimiyaHidetoshi UrakawaTadasu UrashimaSergio UzzauJuan Jos\u00e9 Valdez-Alarc\u00f3nJairam K. P. VanamalaLia van der HoekJustin van der HooftDaniel van der LelieDavid van DuinGeertje van KeulenTricia A. Van LaarGary VanzinPatricia Sampaio Tavares VerasKevin VerstrepenEmily VogtmannWilliam G. WadeIrene Wagner-DoblerMatthew K. WaldorLevi WaldronAlan W. WalkerMatthew WallensteinWilliam Anton WaltersChao-Min WangGuanghua WangPauline W. WangChristopher WardDoyle WardAlex D. WashburneKenneth WasmundMick WatsonGrzegorz WegrzynPamela WeisenhornHartmut WekerleGeorge F. WellsMichiel WelsJeffrey WernerLaura WeyrichWilliam B. WhitmanShannon WhitmerGiovanni WidmerSivaramesh WigneshwerarajAnnegret WildeMichael James WilkinsBenjamin P. WillingAmy WillisJennifer R. WilsonKathryn WingleeBenjamin E. WolfeBen J. WoodcroftJeffrey A. WoodsColin WorbyAaron T. WrightErik S. WrightGerard D. WrightKelly WrightonHao WuMichael WuJoao XavierZhenjiang Zech XuLuying XunJane Y. YangStephanie A. YarwoodAlyson YeePelin YilmazYanbin YinSang Sun YoonMengting YuanJoseph P. ZackularElena ZaikovaJin ZengKarsten ZenglerKai ZhangLixin ZhangMeiling ZhangWenjun ZhangHaitao ZhaoLiang ZhaoYingming ZhaoHuaijun ZhouJizhong ZhouLuchang ZhuErik R. ZinserGang ZouPeter ZuberWe are coming to the end of 2018, which has seen"} {"text": "This article has been corrected: The author names below were unintentionally reversed in the listing. The correct author names are as follows:Alshaimaa AbdelmoezVeronika Maria MetzlerDaniel DejacoHerbert RiechelmannJozef DudasIra-Ida Skvortsova3641-3652. https://doi.org/10.18632/oncotarget.23248Original article: Oncotarget. 2018; 9:3641\u20133652."} {"text": "This article has been corrected: The corrected author name is given below:Youping Deng13407-13422. https://doi.org/10.18632/oncotarget.24388Original article: Oncotarget. 2018; 9:"} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceptualization: OF MA GM DA. Data curation: OF MA DA AO. Formal analysis: OF MA GM. Investigation: OF MA GM. Methodology: OF MA. Software: OF MA. Supervision: MA GM. Writing\u2014original draft: OF MA GM DA AO. Writing\u2014review & editing: OF MA GM DA.There are errors in the Funding statement. The correct Funding statement is as follows: The authors received no specific funding for this work.S1 File(DOCX)Click here for additional data file."} {"text": "This article has been corrected: During the assembly of Figure 164-178. https://doi.org/10.18632/oncotarget.10516Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: Figures 7489-7501. https://doi.org/10.18632/oncotarget.9841Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The correct author name is given below:E. Kate Kemsleyhttps://doi.org/10.18632/oncotarget.26022Original article: Oncotarget. 2018; 9:33278-33289."} {"text": "This article has been corrected: The new affiliation no.14 is given below:Chiang-Wen Lee1414Department of Rehabilitation, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan28342-28358.https://doi.org/10.18632/oncotarget.16058Original article: Oncotarget. 2017; 8:28342\u201328358."} {"text": "Phil. Trans. R. Soc. A376, 20170449. (Published online 29 October 2018). (doi:10.1098/rsta.2017.0449)In figure 6, there is an error with one of the waveforms. The correct version of figure 6 is below."} {"text": "J Radiat Res 2019; 60:159\u2013160. https://doi.org/10.1093/jrr/rry082.Corrigendum to: Tsukasaki A, Taira Y, Orita M, et al. Seven years post-Fukushima: long-term measurement of exposure doses in Tomioka Town. The author name Akira Tsukazaki was incorrect. It should have been Akira Tsukasaki. This has been corrected online."} {"text": "This article has been corrected: The correct name of the 4th author is as follows:Lisbet Rosenkrantz H\u00f6lmich27062-27074. https://doi.org/10.18632/oncotarget.16003Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: Authors Anil K. Rustgi and Erica L. Carpenter contributed equally as corresponding authors. The footnote to the author list indicating both individuals as co-corresponding authors was unintentionally omitted. The proper footnote has now been added as shown below:** Co-corresponding authors3592-3604.https://doi.org/10.18632/oncotarget.26911Original article: Oncotarget. 2019; 10:3592\u20133604."} {"text": "R. Soc. open sci.5, 181457. (Published 1 November 2018). (doi:10.1098/rsos.181457)b) was missing. The corrected figure and caption appear below.This correction refers to an error in figure 6. The key to symbols for ("} {"text": "This article has been corrected: Due to errors in image assembly, the flow cytometry profiles depicting the isotype matched control (IMC) for CD49f on both scramble (scr) and miR-100 reported in 2315-2330 . https://doi.org/10.18632/oncotarget.2962Original article: Oncotarget. 2015; 6:2315\u20132330."} {"text": "The Pan African Medical Journal. 2015;20:437. doi:10.11604/pamj.2015.20.437.5660.Ce Corrigendum modifie l\u2019article original La version originale de cet article contientLes noms des auteurs: Gbekley Efui Holaly change pour Holaly Gbekley Efui. Karou Damintoti Simplice change pour Damintoti Simplice Karou. Gnoula Charlemagne change pour Charlemagne Gnoula. Agbodeka Kodjovi change pour Kodjovi Agbodeka. Anani Kokou change pour Kokou Anani. Tchacondo Tchadjobo change pour Tchadjobo Tchacondo. Agbonon Amegnona change pour Amegnona Agbonon. Batawila Komlan change pour Komlan Batawila. Simpore Jacques change pour Jacques Simpore."} {"text": "Xanthomonas genus includes many Gram-negative plant-associated bacteria. Here, we report a virulent Xanthomonas siphophage called Samson. A siphophage isolated from sewage, Samson contains a 43,314-bp genome with 58 predicted genes. Samson has high nucleotide identity with Pseudomonas phage PaMx42.The Xanthomonas genus includes many Gram-negative plant-associated bacteria. Here, we report a virulent Xanthomonas siphophage called Samson. A siphophage isolated from sewage, Samson contains a 43,314-bp genome with 58 predicted genes. Samson has high nucleotide identity with Pseudomonas phage PaMx42.The Xanthomonadaceae are a diverse family of plant-associated Gram-negative bacteria , as described by Ahern et al. (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After trimming with the FastX Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/), the phage genome was assembled into a single contig with SPAdes v3.5.0 (using default parameters) at a coverage of 182.7-fold wastewater samples collected in College Station, Texas. Samson was propagated by the soft-agar overlay method of Adams on a ricn et al. . Morpholn et al. . Genomicn et al. . An Illu2.7-fold \u201311. Puta.7-fold \u2013. Gene fuATCC PTA-101, as d7-fold \u2013\u2013. Potenti7-fold \u2013\u2013. Structu7-fold \u2013\u2013. The gen7-fold \u2013\u2013. All tooaxy-pub/ , 21.Pseudomonas phage PaMx42 (GenBank accession no. JQ067092), with which it shares 56 similar proteins.Samson is a 43,314-bp siphophage with a G+C content of 54.47%. The 94.94% coding density derives from 58 predicted protein-coding genes. PhageTerm predicts that Samson uses a headful-type packaging mechanism. The most closely related phage to Samson, with 95.9% nucleotide identity, is MN062187, BioProject no. PRJNA222858, SRA no. SRR8892199, and BioSample no. SAMN11411460.The genome sequence and associated data for phage Samson were deposited under GenBank accession no."} {"text": "This article has been corrected: While analyzing the same patient cohort for different markers, the authors realized a mistake in 69976-69990. https://doi.org/10.18632/oncotarget.12099Original article: Oncotarget. 2016; 7:69976\u201369990."} {"text": "Chelydra serpentina) and alligator (Macrochelys temminckii) snapping turtles. PLoS ONE 14(6): e0217626. https://doi.org/10.1371/journal.pone.0217626.The third author\u2019s name is spelled incorrectly. The correct name is: Lancia Darville. The correct citation is: Baker S, Kessler E, Darville L, Merchant M (2019) Different mechanisms of serum complement activation in the plasma of common ("} {"text": "Healthcare-associated infections and antibiotic resistance\u00a0Mycobacterium chimaera infection associated with the use of heater-cooler equipment is a novel and rare, but important differential diagnosisProlonged non-specific disease in cardiac valve-operated people: EPI-NEWS 40, 201925 October 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-40---2019\u00a0Frequency, characteristics and distribution of MRSA in Germany: situation for 2017\u20132018Epidemiologisches Bulletin 42/201917 October 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/42_19.pdf?__blob=publicationFile\u00a0Suspected and laboratory confirmed reported norovirus outbreaks in hospitals (England) and norovirus laboratory reports : weeks 36 to 39, 2019Health Protection Report; 13(36)11 October 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/838807/hpr3619_noro.pdf\u00a0Klebsiella pneumoniae with OXA-48 and NDM-1 carbapenemases and colistin resistance in Mecklenburg-VorpommernInformation about the occurrence of Epidemiologisches Bulletin 40/20192 October 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/40_19.pdf?__blob=publicationFile\u00a0Food- and waterborne diseases\u00a0Listeria monocytogenes outbreak resolvedProlonged local EPI-NEWS 45, 201920 November 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-45---2019\u00a0Routine reports of gastrointestinal infections in humans, England and Wales: September and October 2019Health Protection Report; 13(40)8 November 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/845643/hpr4019_GIs.pdf\u00a0Listeria monocytogenes sequence cluster type 2521 (Sigma1) in GermanyListeriosis outbreak with Epidemiologisches Bulletin 41/201910 October 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/41_19.pdf?__blob=publicationFile\u00a0Increase in typhoid notifications in travellers returning from PakistanEpi-Insight 2019;20(10)October 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/1npbbpsg5wm?a=1&p=55721182&t=17517774\u00a0Hepatitides\u00a0Acute hepatitis B: national enhanced surveillance report January to June 2019Health Protection Report; 13(38)25 October 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/841889/hpr3819_ct-hepB.pdf\u00a0Special edition: National day against viral hepatitis, 2019Bulletin \u00e9pid\u00e9miologique hebdomadaire, 24-25/201924 September2019, Francehttp://beh.santepubliquefrance.fr/beh/2019/24-25/index.html\u00a0Vaccine-preventable diseases\u00a0Pertussis vaccination programme for pregnant women update: vaccine coverage in England, April to September 2019Health Protection Report; 13(41)2 December 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/849023/hpr4119_AA_prntl-prtsss-vc.pdf\u00a0Invasive meningococcal disease in England: annual laboratory confirmed reports for epidemiological year 2018 to 2019Health Protection Report; 13(38)29 October 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/842368/hpr3819_IMD-ann.pdf\u00a0Meningococcal disease 2018EPI-NEWS 40, 201925 October 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-40---2019\u00a0Nationwide whooping cough epidemicEPI-NEWS 38, 20198 October 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-38---2019\u00a0Laboratory confirmed cases of pertussis (England): April to June 2019Health Protection Report; 13(34)30 September 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/835104/hpr3419_prtsss.pdf\u00a0Investigation of the Bavarian State Office for Health and Food Safety on tuberculosis among asylum seekers in BavariaEpidemiologisches Bulletin 39/201926 September 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/39_19.pdf?__blob=publicationFile\u00a0Respiratory diseases\u00a0Legionellosis in the spotlightEpi-Insight 2019;20(11)November 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/16vaazyleppimcmkeer4wk?a=1&p=55896984&t=17517774\u00a0Focused issue: InfluenzaBulletin \u00e9pid\u00e9miologique hebdomadaire, 28/201921 October 2019, Francehttp://beh.santepubliquefrance.fr/beh/2019/28/index.html\u00a0Sexually transmitted diseases\u00a0HIV studies and projects at the Robert Koch InstituteEpidemiologisches Bulletin 49/20195 December 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/49_19.pdf?__blob=publicationFile\u00a0Special edition: Epidemiological situation and screening for HIV and other STIsBulletin \u00e9pid\u00e9miologique hebdomadaire, 31-32/201926 November 2019, Francehttp://beh.santepubliquefrance.fr/beh/2019/31-32/index.html\u00a0HIV 2018EPI-NEWS 44, 201920 November 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-44---2019\u00a0Estimated number of new HIV infections and the total number people living with HIV in Germany, status at the end of 2018Epidemiologisches Bulletin 46/201914 November 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/46_19.pdf?__blob=publicationFile\u00a0Monitoring community HIV testing in IrelandEpi-Insight 2019;20(11)November 2019, Irelandhttp://ndsc.newsweaver.ie/epiinsight/12tu3c2wui1imcmkeer4wk?a=1&p=55896983&t=17517774\u00a0Chlamydia 2018EPI-NEWS 38, 20198 October 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-38---2019\u00a0Zoonoses and vector-borne diseases\u00a0New autochthonous case of West Nile virus infection has been confirmedEpidemiologisches Bulletin 44/201931 October 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/44_19.pdf?__blob=publicationFileFirst case of West Nile virus infection transmitted by mosquitoes in GermanyEpidemiologisches Bulletin 40/20192 October 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/40_19.pdf?__blob=publicationFile\u00a0Other\u00a0Travel-associated diseases 2018Epidemiologisches Bulletin 48/201928 November 2019, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/Ausgaben/48_19.pdf?__blob=publicationFile\u00a0Laboratory surveillance of pyogenic and non-pyogenic streptococcal bacteraemia in England, Wales and Northern Ireland: 2018Health Protection Report; 13(41)20 November 2019, United Kingdomhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/847147/hpr4119_pnp-strptccc.pdf\u00a0Occurrence of enterovirus D68EPI-NEWS 39, 201910 October 2019, Denmarkhttps://en.ssi.dk/news/epi-news/2019/no-39---2019"} {"text": "This article has been corrected: The correct 10 th reference is given below:https:doi.org/10.1002/cncr.31791.10. Eyre TA, et al. Cancer. 2019; 125:99-108. https://doi.org/10.18632/oncotarget.26460Oncotarget. 2018; 9:37280-37281."} {"text": "This article has been corrected: The correct author name is given below:Shaojin Zhanghttps://doi.org/10.18632/oncotarget.15841Original article: Oncotarget. 2017; 8:27892-27903."} {"text": "This article has been corrected: During the assembly of 69351-69361. https://doi.org/10.18632/oncotarget.14540Original article: Oncotarget. 2017; 8:69351\u201369361."} {"text": "J. R. Soc. Interface15, 20170871 (Published online 16 May 2018) (doi:10.1098/rsif.2017.0871)The funding statement and reference [10] should be revised as follows:"} {"text": "There are errors in the Author Contributions. The correct contributions are: Conceptualization: AMA MC. Formal analysis: MSM AMA JAH MC LB AGL. Funding acquisition: MC AMA. Investigation: MSM JAD AE MTB LJF AMA MC. Methodology: MSM AMA JAH MC. Project administration: MC AMA. Supervision: AMA MC. Writing \u2013 original draft: MSM AMA. Writing \u2013 review and editing: MSM AMA MC."} {"text": "R. Soc. open sci.5 171029. (Published Online 10 January 2018) (doi:10.1098/rsos.171029)https://doi.org/10.5061/dryad.t2ch6.2.The Dryad link given in the data accessibility statement of this article is incorrect. The correct link is as follows:"} {"text": "Correction to: Genome Biol (2005) 6:R102https://doi.org/10.1186/gb-2005-6-12-r102Following publication of the original article , the folThe actin control panel in Fig.\u00a03 of this paper is reproduced from Fig.\u00a07 of Tour\u00e9 et al., 2004 [This correction article also provides alternate correspondence email addresses: aminata.toure@inserm.fr; P.J.I.Ellis@kent.ac.uk"} {"text": "This article has been corrected: In 8635-8647. https://doi.org/10.18632/oncotarget.3249Original article: Oncotarget. 2015; 6:8635\u20138647."} {"text": "This article has been corrected: The corrected author name is given below:Sravya Gourishetti11803-11816. https://doi.org/10.18632/oncotarget.7730Original article: Oncotarget. 2016; 7:"} {"text": "This article has been corrected: The correct author information is given below:Amanda M. Saratsis37112-37124. https://doi.org/10.18632/oncotarget.26430Original article: Oncotarget. 2018; 9:"} {"text": "This article has been corrected: The image for #4-3 in Figure https://doi.org/10.18632/oncotarget.16598Original article: Oncotarget. 2017; 8:39087-39100."} {"text": "This article has been corrected: The correct Author name is given below:Vicky L. Fretwell27104-27116. https://doi.org/10.18632/oncotarget.25497Original article: Oncotarget. 2018; 9:"} {"text": "This article has been corrected: The last name of the 4th author was spelled incorrectly. The proper spelling is given below:1Heather Lillemoe584-594. https://doi.org/10.18632/oncotarget.26549Original article: Oncotarget. 2019; 10:584\u2013594."} {"text": "This article has been corrected: Due to a production error, the figures in this paper were mislabeled. The correct figure legends are given below:https://doi.org/10.18632/oncotarget.17634Original article: Oncotarget. 2017; 8:58709-58727."} {"text": "The Scientific World Journal has retracted the article titled \u201cTargeting Mitochondria as Therapeutic Strategy for Metabolic Disorders\u201d [sorders\u201d . The arthttps://www.liebertpub.com/doi/full/10.1089/ars.2009.2531 [\u201cMitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities,\u201d by William I. Sivitz and Mark A. Yorek published in Antioxidants & Redox Signaling, vol. 12, no. 4, 537\u2013577 pages, DOI: 10.1089/ars.2009.2531,"} {"text": "This article has been corrected: The correct author name is given below:Mariano Bizzarrihttps://doi.org/10.18632/oncotarget.25867Original article: Oncotarget. 2018; 9:31842-31860."} {"text": "Chlamydia trachomatis PgP3 antibody correlates with time since infection and number of previous infections. PLoS ONE 13(12): e0208652. https://doi.org/10.1371/journal.pone.0208652The second author\u2019s name is spelled incorrectly. The correct name is: Stephanie J. Migchelsen. The correct citation is: Blomquist PB, Migchelsen SJ, Wills G, McClure E, Ades AE, Kounali D, et al. (2018) Sera selected from national STI surveillance system shows"} {"text": "Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point\u2010in\u2010time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14750. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein\u2010coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid\u20102019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC\u2010IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands ( They regulate (either promoting or repressing) transcription of these target genes in response to a variety of endogenous ligands. Endogenous agonists are hydrophobic entities which, when bound to the receptor promote conformational changes in the receptor to allow recruitment (or dissociation) of protein partners, generating a large multiprotein complex.Two major subclasses of nuclear receptors with identified endogenous agonists can be identified: steroid and non\u2010steroid hormone receptors. Steroid hormone receptors function typically as dimeric entities and are thought to be resident outside the nucleus in the unliganded state in a complex with chaperone proteins, which are liberated upon agonist binding. Migration to the nucleus and interaction with other regulators of gene transcription, including RNA polymerase, acetyltransferases and deacetylases, allows gene transcription to be regulated. Non\u2010steroid hormone receptors typically exhibit a greater distribution in the nucleus in the unliganded state and interact with other nuclear receptors to form heterodimers, as well as with other regulators of gene transcription, leading to changes in gene transcription upon agonist binding.Selectivity of gene regulation is brought about through interaction of nuclear receptors with particular consensus sequences of DNA, which are arranged typically as repeats or inverted palindromes to allow accumulation of multiple transcription factors in the promoter regions of genes.NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors ) are nuclear hormone receptors of the NR1A family, with diverse roles regulating macronutrient metabolism, cognition and cardiovascular homeostasis. TRs are activated by thyroxine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635) and thyroid hormone (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634). Once activated by a ligand, the receptor acts as a transcription factor either as a monomer, homodimer or heterodimer with members of the retinoid X receptor family. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2633 has been described as an antagonist at TRs with modest selectivity for TR\u03b2 [http://www.ncbi.nlm.nih.gov/pubmed/12109914?dopt=AbstractPlus].Thyroid hormone receptors Thyroid Hormone Mimetics: the Past, Current Status and Future Challenges. Curr Atheroscler Rep18: 14 https://www.ncbi.nlm.nih.gov/pubmed/26886134?dopt=AbstractPlusElbers LP et al. (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol. Rev. 58: 705\u201011 https://www.ncbi.nlm.nih.gov/pubmed/17132849?dopt=AbstractPlusFlamant F et al. (2017) New insights into thyroid hormone action. Pharmacol. Ther. 173: 135\u2010145 https://www.ncbi.nlm.nih.gov/pubmed/28174093?dopt=AbstractPlusMendoza A NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132850?dopt=AbstractPlus]) are nuclear hormone receptors of the NR1B family activated by the vitamin A\u2010derived agonists http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2644 (ATRA) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2645, and the RAR\u2010selective synthetic agonists http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2646 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5429. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2641 is a family\u2010selective antagonist [http://www.ncbi.nlm.nih.gov/pubmed/19477412?dopt=AbstractPlus].Retinoic acid receptors The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim. Biophys. Acta1812: 1023\u201031 [https://www.ncbi.nlm.nih.gov/pubmed/20970498?dopt=AbstractPlus]Duong V et al. (2006) International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol. Rev. 58: 712\u201025 https://www.ncbi.nlm.nih.gov/pubmed/17132850?dopt=AbstractPlusGermain P et al. (2016) Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu. Rev. Immunol. 34: 369\u201094 https://www.ncbi.nlm.nih.gov/pubmed/27168242?dopt=AbstractPlusLarange A et al. (2017) The interrelationship between bile acid and vitamin A homeostasis. Biochim. Biophys. Acta1862: 496\u2010512 https://www.ncbi.nlm.nih.gov/pubmed/28111285?dopt=AbstractPlusSaeed A PPARs, nomenclature as agreed by theNC\u2010IUPHARSubcommittee on Nuclear Hormone Receptors [http://www.ncbi.nlm.nih.gov/pubmed/17132851?dopt=AbstractPlus]) are nuclear hormone receptors of the NR1C family, with diverse roles regulating lipid homeostasis, cellular differentiation, proliferation and the immune response. PPARs have many potential endogenous agonists , including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1877, prostacyclin (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1915), many fatty acids and their oxidation products, lysophosphatidic acid (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2906) [http://www.ncbi.nlm.nih.gov/pubmed/12502787?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5426, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3401, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5427, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5428 and leukotriene B4 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2487). http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2668 acts as a non\u2010selective agonist for the PPAR family [http://www.ncbi.nlm.nih.gov/pubmed/10691680?dopt=AbstractPlus]. These receptors also bind hypolipidaemic drugs (PPAR\u03b1) and anti\u2010diabetic thiazolidinediones (PPAR\u03b3), as well as many non\u2010steroidal anti\u2010inflammatory drugs, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5425 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1909. Once activated by a ligand, the receptor forms a heterodimer with members of the retinoid X receptor family and can act as a transcription factor. Although radioligand binding assays have been described for all three receptors, the radioligands are not commercially available. Commonly, receptor occupancy studies are conducted using fluorescent ligands and truncated forms of the receptor limited to the ligand binding domain.Peroxisome proliferator\u2010activated receptors . Agonists with mixed activity at PPAR\u03b1 and PPAR\u03b3 have also been described .As with the estrogen receptor antagonists, many agents show tissue\u2010selective efficacy The peroxisome proliferator\u2010activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. Br. J. Pharmacol. 172: 5512\u201022 [https://www.ncbi.nlm.nih.gov/pubmed/25438608?dopt=AbstractPlus]Cheang WS et al. (2017) PPARs in obesity\u2010induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol13: 36\u201049 [https://www.ncbi.nlm.nih.gov/pubmed/27636730?dopt=AbstractPlus]Gross B et al. (2016) The elusive endogenous adipogenic PPAR\u03b3 agonists: Lining up the suspects. Prog. Lipid Res. 61: 149\u201062 [https://www.ncbi.nlm.nih.gov/pubmed/26703188?dopt=AbstractPlus]Hallenborg P et al. (2006) International Union of Pharmacology. LXI. Peroxisome proliferator\u2010activated receptors. Pharmacol. Rev. 58: 726\u201041 [https://www.ncbi.nlm.nih.gov/pubmed/17132851?dopt=AbstractPlus]Michalik L Trends Pharmacol. Sci. 36: 688\u2010704 [https://www.ncbi.nlm.nih.gov/pubmed/26435213?dopt=AbstractPlus]Sauer S. (2015) Ligands for the Nuclear Peroxisome Proliferator\u2010Activated Receptor Gamma. nomenclature as agreed by theNC\u2010IUPHARSubcommittee on Nuclear Hormone Receptors [http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand, but are thought to be activated by heme.Rev\u2010erb receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 [https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]Benoit G et al. (2015) Nuclear receptors in acute and chronic cholestasis. Dig Dis33: 357\u201066 [https://www.ncbi.nlm.nih.gov/pubmed/26045270?dopt=AbstractPlus]Gonzalez\u2010Sanchez E et al. (2015) Emerging models for the molecular basis of mammalian circadian timing. Biochemistry54: 134\u201049 [https://www.ncbi.nlm.nih.gov/pubmed/25303119?dopt=AbstractPlus]Gustafson CL et al. (2017) Drug discovery targeting heme\u2010based sensors and their coupled activities. J. Inorg. Biochem. 167: 12\u201020 [https://www.ncbi.nlm.nih.gov/pubmed/27893989?dopt=AbstractPlus]Sousa EH nomenclature as agreed by theNC\u2010IUPHARSubcommittee on Nuclear Hormone Receptors [http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be assigned a definitive endogenous ligand, although ROR\u03b1 may be synthesized with a \u2018captured\u2019 agonist such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718 .Retinoic acid receptor\u2010related orphan receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 [https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]Benoit G et al. (2016) Recent progress on nuclear receptor ROR\u03b3 modulators. Bioorg. Med. Chem. Lett. 26: 4387\u20104393 [https://www.ncbi.nlm.nih.gov/pubmed/27542308?dopt=AbstractPlus]Cyr P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 [https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlus]Germain P et al. (2016) Oxysterols in Metabolic Syndrome: From Bystander Molecules to Bioactive Lipids. Trends Mol Med22: 594\u2010614 [https://www.ncbi.nlm.nih.gov/pubmed/27286741?dopt=AbstractPlus]Guillemot\u2010Legris O et al. (2016) Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res. 64: 152\u2010169 [https://www.ncbi.nlm.nih.gov/pubmed/27687912?dopt=AbstractPlus]Mutemberezi V nomenclature as agreed by theNC\u2010IUPHARSubcommittee on Nuclear Hormone Receptors [http://www.ncbi.nlm.nih.gov/pubmed/17132852?dopt=AbstractPlus]) are members of a steroid analogue\u2010activated nuclear receptor subfamily, which form heterodimers with members of the retinoid X receptor family. Endogenous ligands for LXRs include hydroxycholesterols (OHC), while FXRs appear to be activated by bile acids. In humans and primates, NR1H5P is a pseudogene. However, in other mammals, it encodes a functional nuclear hormone receptor that appears to be involved in cholesterol biosynthesis [http://www.ncbi.nlm.nih.gov/pubmed/12529392?dopt=AbstractPlus].Liver X and farnesoid X receptors LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol. Metab. 27: 404\u2010414 [https://www.ncbi.nlm.nih.gov/pubmed/27113081?dopt=AbstractPlus]Courtney R et al. (2018) Recent Advances in the Medicinal Chemistry of Liver X Receptors. J. Med. Chem. 61: 10935\u201010956 [https://www.ncbi.nlm.nih.gov/pubmed/30004226?dopt=AbstractPlus]El\u2010Gendy BEM et al. (2010) Bile acids and their nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease. Biochim. Biophys. Acta1801: 683\u201092 [https://www.ncbi.nlm.nih.gov/pubmed/20399894?dopt=AbstractPlus]Gadaleta RM et al. (2017) Bile acids and their receptors during liver regeneration: \u201cDangerous protectors\u201d. Mol. Aspects Med. 56: 25\u201033 [https://www.ncbi.nlm.nih.gov/pubmed/28302491?dopt=AbstractPlus]Merlen G et al. (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 58: 742\u201059 [https://www.ncbi.nlm.nih.gov/pubmed/17132852?dopt=AbstractPlus]Moore DD et al. (2016) Liver X receptors: from cholesterol regulation to neuroprotection\u2010a new barrier against neurodegeneration in amyotrophic lateral sclerosis? Cell. Mol. Life Sci. 73: 3801\u20108 [https://www.ncbi.nlm.nih.gov/pubmed/27510420?dopt=AbstractPlus]Mouzat K FEBS Lett. 591: 2978\u20102991 [https://www.ncbi.nlm.nih.gov/pubmed/28555747?dopt=AbstractPlus]Schulman IG. (2017) Liver X receptors link lipid metabolism and inflammation. NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132852?dopt=AbstractPlus]) are members of the NR1I family of nuclear receptors, which form heterodimers with members of the retinoid X receptor family. PXR and CAR are activated by a range of exogenous compounds, with no established endogenous physiological agonists, although high concentrations of bile acids and bile pigments activate PXR and CAR [http://www.ncbi.nlm.nih.gov/pubmed/17132852?dopt=AbstractPlus].Vitamin D (VDR), Pregnane X (PXR) and Constitutive Androstane (CAR) receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2015) Vitamin D receptor and RXR in the post\u2010genomic era. J. Cell. Physiol. 230: 758\u201066 https://www.ncbi.nlm.nih.gov/pubmed/25335912?dopt=AbstractPlusLong MD et al. (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 58: 742\u201059 https://www.ncbi.nlm.nih.gov/pubmed/17132852?dopt=AbstractPlusMoore DD NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]. While linoleic acid has been identified as the endogenous ligand for HNF4\u03b1 its function remains ambiguous [http://www.ncbi.nlm.nih.gov/pubmed/19440305?dopt=AbstractPlus]. HNF4\u03b3 has yet to be paired with an endogenous ligand.The nomenclature of hepatocyte nuclear factor\u20104 receptors is agreed by the et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2016) Lipid\u2010sensors, enigmatic\u2010orphan and orphan nuclear receptors as therapeutic targets in breast\u2010cancer. Oncotarget7: 42661\u201042682 https://www.ncbi.nlm.nih.gov/pubmed/26894976?dopt=AbstractPlusGarattini E et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P Acta Pharm Sin B6: 393\u2010408 https://www.ncbi.nlm.nih.gov/pubmed/27709008?dopt=AbstractPlusLu H. (2016) Crosstalk of HNF4\u03b1 with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids. et al. (2015) Role of hepatocyte nuclear factor 4\u03b1 (HNF4\u03b1) in cell proliferation and cancer. Gene Expr. 16: 101\u20108 https://www.ncbi.nlm.nih.gov/pubmed/25700366?dopt=AbstractPlusWalesky C NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132853?dopt=AbstractPlus]) are NR2B family members activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2645 and the RXR\u2010selective agonists http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2807 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2808, sometimes referred to as rexinoids. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2816 [http://www.ncbi.nlm.nih.gov/pubmed/17947383?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8079 [http://www.ncbi.nlm.nih.gov/pubmed/10748721?dopt=AbstractPlus] have been described as a pan\u2010RXR antagonists. These receptors form RXR\u2010RAR heterodimers and RXR\u2010RXR homodimers .Retinoid X receptors International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev. 58: 760\u201072 https://www.ncbi.nlm.nih.gov/pubmed/17132853?dopt=AbstractPlusGermain P et al. (2015) Vitamin D receptor and RXR in the post\u2010genomic era. J. Cell. Physiol. 230: 758\u201066 https://www.ncbi.nlm.nih.gov/pubmed/25335912?dopt=AbstractPlusLong MD et al. (2017) The multi\u2010faceted role of retinoid X receptor in bone remodeling. Cell. Mol. Life Sci. 74: 2135\u20102149 https://www.ncbi.nlm.nih.gov/pubmed/28105491?dopt=AbstractPlusMen\u00e9ndez\u2010Guti\u00e9rrez MP NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand, although testicular receptor 4 has been reported to respond to retinoids.Testicular receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P et al. (2014) Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol. Endocrinol. 28: 157\u201072 https://www.ncbi.nlm.nih.gov/pubmed/24295738?dopt=AbstractPlusSafe S et al. (2016) The emerging roles of orphan nuclear receptors in prostate cancer. Biochim. Biophys. Acta1866: 23\u201036 https://www.ncbi.nlm.nih.gov/pubmed/27264242?dopt=AbstractPlusWu D NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand.Tailless\u2010like receptors TLX: An elusive receptor. J. Steroid Biochem. Mol. Biol. 157: 41\u20107 https://www.ncbi.nlm.nih.gov/pubmed/26554934?dopt=AbstractPlusBenod C et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P et al. (2018) Regulation of behaviour by the nuclear receptor TLX. Genes Brain Behav. 17: e12357 https://www.ncbi.nlm.nih.gov/pubmed/27790850?dopt=AbstractPlusO\u2019Leary JD NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand.COUP\u2010TF\u2010like receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P et al. (2016) The emerging roles of orphan nuclear receptors in prostate cancer. Biochim. Biophys. Acta1866: 23\u201036 https://www.ncbi.nlm.nih.gov/pubmed/27264242?dopt=AbstractPlusWu D etal. (2016) Choose your destiny: Make a cell fate decision with COUP\u2010TFII. J. Steroid Biochem. Mol. Biol. 157: 7\u201012 https://www.ncbi.nlm.nih.gov/pubmed/26658017?dopt=AbstractPlusWu SP NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand.Estrogen\u2010related receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2016) Estrogen\u2010related receptor \u03b2 (ERR\u03b2) \u2010 renaissance receptor or receptor renaissance? Nucl Recept Signal14: e002 https://www.ncbi.nlm.nih.gov/pubmed/27507929?dopt=AbstractPlusDivekar SD et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P et al. (2016) There and back again: The journey of the estrogen\u2010related receptors in the cancer realm. J. Steroid Biochem. Mol. Biol. 157: 13\u20109 https://www.ncbi.nlm.nih.gov/pubmed/26151739?dopt=AbstractPlusTam IS et al. (2016) The emerging roles of orphan nuclear receptors in prostate cancer. Biochim. Biophys. Acta1866: 23\u201036 https://www.ncbi.nlm.nih.gov/pubmed/27264242?dopt=AbstractPlusWu D NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand.Nerve growth factor IB\u2010like receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G etal. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain PJ. Recept. Signal Transduct. Res. 35: 184\u20108 https://www.ncbi.nlm.nih.gov/pubmed/25089663?dopt=AbstractPlusRanhotra HS. (2015) The NR4A orphan nuclear receptors: mediators in metabolism and diseases. et al. (2017) The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin. Ther. Targets21: 291\u2010304 https://www.ncbi.nlm.nih.gov/pubmed/28055275?dopt=AbstractPlusRodr\u00edguez\u2010Calvo R et al. (2016) Nuclear receptor 4A (NR4A) family \u2010 orphans no more. J. Steroid Biochem. Mol. Biol. 157: 48\u201060 https://www.ncbi.nlm.nih.gov/pubmed/25917081?dopt=AbstractPlusSafe S NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand.Fushi tarazu F1\u2010like receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2016) Lipid\u2010sensors, enigmatic\u2010orphan and orphan nuclear receptors as therapeutic targets in breast\u2010cancer. Oncotarget7: 42661\u201042682 https://www.ncbi.nlm.nih.gov/pubmed/26894976?dopt=AbstractPlusGarattini E et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P et al. (2016) Structures and regulation of non\u2010X orphan nuclear receptors: A retinoid hypothesis. J. Steroid Biochem. Mol. Biol. 157: 27\u201040 https://www.ncbi.nlm.nih.gov/pubmed/26159912?dopt=AbstractPlusZhi X et al. (2015) Nuclear receptor variants in liver disease. Dig Dis33: 415\u20109 https://www.ncbi.nlm.nih.gov/pubmed/26045277?dopt=AbstractPlusZimmer V NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors [nomenclature as agreed by the http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand.Germ cell nuclear factor receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2016) Lipid\u2010sensors, enigmatic\u2010orphan and orphan nuclear receptors as therapeutic in breast\u2010cancer. Oncotarget7: 42661\u201042682 https://www.ncbi.nlm.nih.gov/pubmed/26894976?dopt=AbstractPlusGarattini E et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P et al. (2014) Minireview: role of orphan nuclear receptors in cancer and potential as drug Mol. Endocrinol. 28: 157\u201072 https://www.ncbi.nlm.nih.gov/pubmed/24295738?dopt=AbstractPlusSafe S et al. (2016) Structures and regulation of non\u2010X orphan nuclear receptors: A retinoid hypothesis. J. Steroid Biochem. Mol. Biol. 157: 27\u201040 https://www.ncbi.nlm.nih.gov/pubmed/26159912?dopt=AbstractPlusZhi X nomenclature as agreed by theNC\u2010IUPHARSubcommittee on Nuclear Hormone Receptors [http://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlus]) have yet to be officially paired with an endogenous ligand.Dax\u2010like receptors International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798\u2010836 https://www.ncbi.nlm.nih.gov/pubmed/17132856?dopt=AbstractPlusBenoit G et al. (2016) Lipid\u2010sensors, enigmatic\u2010orphan and orphan nuclear receptors as therapeutic targets in breast\u2010cancer. Oncotarget7: 42661\u201042682 https://www.ncbi.nlm.nih.gov/pubmed/26894976?dopt=AbstractPlusGarattini E et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685\u2010704 https://www.ncbi.nlm.nih.gov/pubmed/17132848?dopt=AbstractPlusGermain P et al. (2014) Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol. Endocrinol. 28: 157\u201072 https://www.ncbi.nlm.nih.gov/pubmed/24295738?dopt=AbstractPlusSafe S et al. (2016) The emerging roles of orphan nuclear receptors in prostate cancer. Biochim. Biophys. Acta1866: 23\u201036 https://www.ncbi.nlm.nih.gov/pubmed/27264242?dopt=AbstractPlusWu D NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors ) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3\u2010hydroxysteroids (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2818 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1013) and 3\u2010ketosteroids . These receptors exist as dimers coupled with chaperone molecules and immunophilin FKBP52:https://www.genenames.org/data/gene\u2010symbol\u2010report/#!/hgnc_id/HGNC:3720, http://www.uniprot.org/uniprot/Q02790), which are shed on binding the steroid hormone. Although rapid signalling phenomena are observed , the principal signalling cascade appears to involve binding of the activated receptors to nuclear hormone response elements of the genome, with a 15\u2010nucleotide consensus sequence AGAACAnnnTGTTCT as homo\u2010 or heterodimers. They also affect transcription by protein\u2010protein interactions with other transcription factors, such as activator protein 1 (AP\u20101) and nuclear factor \u03baB (NF\u2010\u03baB). Splice variants of each of these receptors can form functional or non\u2010functional monomers that can dimerize to form functional or non\u2010functional receptors. For example, alternative splicing of PR mRNA produces A and B monomers that combine to produce functional AA, AB and BB receptors with distinct characteristics [http://www.ncbi.nlm.nih.gov/pubmed/8264658?dopt=AbstractPlus].Steroid hormone receptors has been described. Human orthologues of 7TM \u2019membrane progestin receptors\u2019 , initially discovered in fish , appear to localize to intracellular membranes and respond to \u2019non\u2010genomic\u2019 progesterone analogues independently of G proteins [http://www.ncbi.nlm.nih.gov/pubmed/18603275?dopt=AbstractPlus].A 7TM receptor responsive to estrogen activity regulates diverse physiological processes http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2822 exhibits partial agonist activity at ER\u03b1 . Estrogen receptors may be blocked non\u2010selectively by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1016 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2820 and labelled by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1012 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5384. Many agents thought initially to be antagonists at estrogen receptors appear to have tissue\u2010specific efficacy , hence the descriptor SERM (selective estrogen receptor modulator) or SnuRM (selective nuclear receptor modulator). http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5430 has been suggested to be an ER\u03b1\u2010selective estrogen receptor modulator [http://www.ncbi.nlm.nih.gov/pubmed/17115070?dopt=AbstractPlus].et al. (2017) DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology158: 3212\u20103234 https://www.ncbi.nlm.nih.gov/pubmed/28977594?dopt=AbstractPlusCoons LA et al. (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 58: 773\u201081 https://www.ncbi.nlm.nih.gov/pubmed/17132854?dopt=AbstractPlusDahlman\u2010Wright K et al. (2015) Nuclear receptors in acute and chronic cholestasis. Dig Dis33: 357\u201066 https://www.ncbi.nlm.nih.gov/pubmed/26045270?dopt=AbstractPlusGonzalez\u2010Sanchez E et al. (2016) What\u2019s new in estrogen receptor action in the female reproductive tract. J. Mol. Endocrinol. 56: R55\u201071 https://www.ncbi.nlm.nih.gov/pubmed/26826253?dopt=AbstractPlusHewitt SC et al. (2017) Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg. Chem. 71: 257\u2010274 https://www.ncbi.nlm.nih.gov/pubmed/28274582?dopt=AbstractPlusJameera Begam A et al. (2017) Estrogen Receptor \u03b2 as a Pharmaceutical Target. Trends Pharmacol. Sci. 38: 92\u201099 https://www.ncbi.nlm.nih.gov/pubmed/27979317?dopt=AbstractPlusWarner M NC\u2010IUPHAR Subcommittee on Nuclear Hormone Receptors ) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3\u2010hydroxysteroids (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2818 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1013) and 3\u2010ketosteroids .Steroid hormone receptors and Type II (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3448) groups. These groups appear to promote binding of PR to DNA with different efficacies and evoke distinct conformational changes in the receptor, leading to a transcription\u2010neutral complex . Mutations in AR underlie testicular feminization and androgen insensitivity syndromes, spinal and bulbar muscular atrophy (Kennedy\u2019s disease).et al. (2017) 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Evolution of the mineralocorticoid receptor: sequence, structure and function. J. Endocrinol. 234: T1\u2010T16 https://www.ncbi.nlm.nih.gov/pubmed/28468932?dopt=AbstractPlusBaker ME et al. (2017) Deciphering the divergent roles of progestogens in breast cancer. Nat. Rev. Cancer17: 54\u201064 https://www.ncbi.nlm.nih.gov/pubmed/27885264?dopt=AbstractPlusCarroll JS et al. (2017) Nuclear Receptor Function through Genomics: Lessons from the Glucocorticoid Receptor. Trends Endocrinol. Metab. 28: 531\u2010540 https://www.ncbi.nlm.nih.gov/pubmed/28495406?dopt=AbstractPlusCohen DM et al. (2017) Brain mineralocorticoid receptor function in control of salt balance and stress\u2010adaptation. Physiol. Behav. 178: 13\u201020 https://www.ncbi.nlm.nih.gov/pubmed/28089704?dopt=AbstractPlusde Kloet ER et al. (2017) Progesterone\u2010Mediated Non\u2010Classical Signaling. Trends Endocrinol. Metab. 28: 656\u2010668 https://www.ncbi.nlm.nih.gov/pubmed/28651856?dopt=AbstractPlusGarg D et al. (2006) International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev. 58: 782\u201097 https://www.ncbi.nlm.nih.gov/pubmed/17132855?dopt=AbstractPlusLu NZ et al. (2017) Genomic and non\u2010genomic effects of androgens in the cardiovascular system: clinical implications. Clin. Sci. 131: 1405\u20101418 https://www.ncbi.nlm.nih.gov/pubmed/28645930?dopt=AbstractPlusLucas\u2010Herald AK et al. (2017) Androgen receptor splice variants and prostate cancer: From bench to bedside. Oncotarget8: 18550\u201018576 https://www.ncbi.nlm.nih.gov/pubmed/28077788?dopt=AbstractPlusWadosky KM et al. (2017) Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18: 159\u2010174 https://www.ncbi.nlm.nih.gov/pubmed/28053348?dopt=AbstractPlusWeikum ER"} {"text": "The Pan African Medical Journal. 2016;24:335. doi:10.11604/pamj.2016.24.335.9171.This erratum corrects article: The original version of this article had the"} {"text": "This article has been corrected: Due to errors in image placement, the representative image of comet assay in group HT29 shG9a for 2917-2927. https://doi.org/10.18632/oncotarget.2784Original article: Oncotarget. 2015; 6:2917\u20132927."} {"text": "This article has been corrected: The correct reference 5 is given below:5. Berg JK, et al. Circulation Heart Failure. 2017; 10.106165-106166. https://doi.org/10.18632/oncotarget.22579Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The correct author name is given below:Michela Piezzo31877-31887. https://doi.org/10.18632/oncotarget.25874Original article: Oncotarget. 2018; 9:"} {"text": "This article has been corrected: Due to an accidental duplication, the images for Grade I MMP-2 staining and Normal Cartilage Resistin staining in Figure https://doi.org/10.18632/oncotarget.2724Original article: Oncotarget. 2015; 6:258-270."} {"text": "Clostridioides was misspelled in Risk for Clostridioides difficile Infection among Older Adults with Cancer . The article has been corrected online (https://wwwnc.cdc.gov/eid/article/25/9/18-1142_article)."} {"text": "Correction of \u201cSteven, L. L., M.F. Jennifer, and P.U. Johua. 2019. Assessing the Potential for Interaction in Insecticidal Activity Between MON 87751 \u00d7 MON 87701 Produced by Conventional Breeding. Environ. Entomol.\u201d10.1093/ee/nvz082Doi: This article incorrectly displayed an author name online. The author\u2019s correct name is Joshua P. Uffman. This has been corrected online and in print. The authors regret this error."} {"text": "This article has been corrected: Due to errors in figure preparation, the Western ink point p-Akt protein was accidentally used in the wrong picture in 58915-58930. https://doi.org/10.18632/oncotarget.10410Original article: Oncotarget. 2016; 7:58915\u201358930."} {"text": "This article has been corrected: The correct spelling of author name is given below:Shaojin Zhang77942-77956. https://doi.org/10.18632/oncotarget.18549Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The correct author name is given below:Claudio Di Cristofano30624-30634. https://doi.org/10.18632/oncotarget.25755Original article: Oncotarget. 2018; 9:"} {"text": "This article has been corrected: The correct author name is given below:Jung Ki Johttps://doi.org/10.18632/oncotarget.18298Original article: Oncotarget. 2017; 8:96893-96902."} {"text": "This article has been corrected: The correct funding information is given below:FUNDINGThis work was in part supported by German Cancer Foundation (Grant no. 70112372), German Research Foundation (SCHU 2681/1-1), HERA Women's Cancer Foundation OSB1 Grant (C.S.) and the National Institutes of Health , TEDCO/Maryland Innovation Initiative and Neximmune, Inc. MD Biotech Center (J.P.S.).68503-68512. https://doi.org/10.18632/oncotarget.11785Original article: Oncotarget. 2016; 7:"} {"text": "This article has been corrected: During production, the ending page number for this article was listed incorrectly. The page count has now been adjusted to show the proper pagination.362-372. https://doi.org/10.18632/oncotarget.901Original article: Oncotarget. 2012; 4:"} {"text": "This article has been corrected: The updated acknowledgements are given below:ACKNOWLEDGMENTSWe thank Dr. Raffaella Sordella from Cold Spring Harbor Laboratory for kindly providing the valuable cell lines used in the current study. We thank Mrs. Juan Du for taking immunofluoresence images. The work in Zhao Lab was supported by AFOSR grant no. FA9550-16- 1-0052.95741-95754. https://doi.org/10.18632/oncotarget.21306Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: The correct author name is given below:Cheryl A. London22693-22702. https://doi.org/10.18632/oncotarget.25209Original article: Oncotarget. 2018; 9:"} {"text": "The Pan African Medical Journal. 2017;28:307. doi:10.11604/pamj.2017.28.307.14507.This corrigendum corrects article The original version of this article had the"} {"text": "Healthcare-associated infections and antibiotic resistanceMeticillin-resistant Staphylococcus aureus 2016EPI-NEWS 23, 20177 June 2017, Denmarkhttp://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2023%20-%202017.aspxKlebsiella spp. bacteraemia in England, Wales and Northern Ireland: 2016Laboratory surveillance of Health Protection Report; 11(18)22 May 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/615375/hpr1817_klbsll.pdfEscherichia coli bacteraemia in England, Wales and Northern Ireland: 2016 Health Protection Report; 11(18)Laboratory surveillance of 22 May 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/615340/hpr1817_ecoli.pdfEnterococcus spp. bacteraemia in England, Wales and Northern Ireland: 2016 Health Protection Report; 11(15)Laboratory surveillance of 21 April 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/610226/hpr1517_ntrcccs.pdfAcinetobacter spp. bacteraemia in England, Wales and Northern Ireland: 2016 Health Protection Report; 11(15)Laboratory surveillance of 21 April 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/610232/hpr1517_cntbctr.pdfMycobacterium chimaera in patients with a history of open heart surgeryEpi-Insight 2017;18(4)April 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/15w224cjc8b10gkzp9yxn5?a=1&p=51673459&t=17517774Food- and waterborne diseasesOutbreak of salmonellosis in North DublinEpi-Insight 2017;18(6)June 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/1bcwq2qyang1qsl0rhv973?a=2&p=51918507&t=17517804Listeria, Shigella and YersiniaGastro-intestinal and foodborne infections: viral pathogens, HPS Weekly Report 2017; 51(20)23 May 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1720.pdfReporting trends of shigellosis in the Netherlands, 1988-2015Infectieziekten Bulletin 2017; 28(4)24 April 2017, the Netherlandshttp://www.rivm.nl/dsresource?objectid=a2fa844f-ade0-4e00-8314-91d54dbfd79d&type=pdf&disposition=inlineHepatitidesLaboratory reports of hepatitis A and C : October to December 2016 Health Protection Report; 11(16)28 April 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/611729/hpr1617_hep_AC.pdfHepatitis A vaccination gaps in men who have sex with menEpidemiologisches Bulletin 13, 201730 March 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/13_17.pdf?__blob=publicationFileVaccine-preventable diseasesHaemophilus influenzae by age group and serotype, England and Wales: January to March 2017 (2016)Laboratory reports of Health Protection Report; 11(19)26 May 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/616220/hpr1917_hib.pdfLaboratory confirmed cases of measles, mumps and rubella, England: January to March 2017Health Protection Report; 11(19)26 May 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/616215/hpr1917_mmr.pdfPertussis vaccination programme for pregnant women update: vaccine coverage in England, January to March 2017Health Protection Report; 11(19)26 May 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/616198/hpr1917_prntl-prtsssVC.pdfMeasles outbreaks in Ireland and other countries - both children and adults at riskEpi-Insight 2017;18(5)May 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/1s68n404xe91qsl0rhv973?a=1&p=51784315&t=17517774Vaccine coverage estimate for the GP based catch-up meningococcal ACWY (MenACWY) immunisation programme for school leavers (becoming 18 before 31 August 2016) in England, cumulative data to the end of March 2017Health Protection Report; 11(16)28 April 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/612738/hpr1617_menACWY-vc2.pdfEpidemiology of measles in Germany 2017Epidemiologisches Bulletin 16, 201720 April 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/16_17.pdf?__blob=publicationFilePertussis 2016EPI-NEWS 14, 20175 April 2017, Denmarkhttp://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2014%20-%202017.aspxMeaslesEpi-Ice 10(2), 2017April 2017, Icelandhttp://www.landlaeknir.is/servlet/file/store93/item32291/EPI-ICE_April_2017.pdfVaccines and vaccination: truth and fallaciesNot Ist Super Sanit\u00e0 2017;30(3)March 2017, Italyhttp://www.iss.it/binary/publ/cont/ONLINE_MARZO_2017.pdfRespiratory diseasesInfluenza season 2016/2017EPI-NEWS 24, 201714 June 2017, Denmarkhttp://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2024%20-%202017.aspxGroup A streptococcal infections: Third update on seasonal activity, 2016/17Health Protection Report; 11(18)12 May 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/613906/hpr1717_SF-GAS.pdfUnraveling a tuberculosis clusterVlaams Infectieziektebulletin; 1/2017April 2017, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/tb-ontrafeling-C.dehollogne.pdfContact tracing after the death of a patient with XDR-tuberculosis on an airplane, Germany 2013Epidemiologisches Bulletin 13, 201730 March 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/13_17.pdf?__blob=publicationFileSexually transmitted diseasesSyphilis 2016EPI-NEWS 21/22, 201731 May 2017, Denmarkhttp://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2021-22%20-%202017.aspxGonorrhoea 2016EPI-NEWS 18, 20173 May 2017, Denmarkhttp://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2018%20-%202017.aspxSexually transmitted diseasesEpi-Ice 2017;10(2)April 2017, Icelandhttp://www.landlaeknir.is/servlet/file/store93/item32291/EPI-ICE_April_2017.pdfSexually transmitted infections and HIV in Ireland, 2016: provisional dataEpi-Insight 2017;18(4)April 2017, Irelandhttp://ndsc.newsweaver.ie/epiinsight/s9b8h9tdfmi10gkzp9yxn5?a=2&p=51673455&t=17517804Zoonoses and vector-borne diseases Surveillance of chikungunya, dengue and Zika virus infection in mainland France, 2016Bulletin \u00e9pid\u00e9miologique hebdomadaire, 1230 May 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/12/pdf/2017_12.pdfZoonotic infections with Mycobacterium tuberculosis in German livestockEpidemiologisches Bulletin 20, 201718 May 2017, Germanyhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/20_17.pdf?__blob=publicationFileCommon animal associated infections quarterly report \u2013 first quarter 2017 Health Protection Report; 11(17)12 May 2017, United Kingdomhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/614121/hpr1717_zoos2.pdfPsittacosis 2016EPI-NEWS 19, 201710 May 2017, Denmarkhttp://www.ssi.dk/Aktuelt/Nyhedsbreve/EPI-NYT/2017/Uge%2019%20-%202017.aspxTick-borne encephalitis, a new disease in the Netherlands?Infectieziekten Bulletin 2017; 28(4)24 April 2017, the Netherlandshttp://www.rivm.nl/dsresource?objectid=de36ea65-7b14-45ac-9e91-3629d14fc0f4&type=pdf&disposition=inlineSpecial edition: Leptospirosis in the French overseas regions and departmentsBulletin \u00e9pid\u00e9miologique hebdomadaire, 8-94 April 2017, Francehttp://invs.santepubliquefrance.fr/beh/2017/8-9/pdf/2017_8-9.pdfBovine tuberculosis in LimburgVlaams Infectieziektebulletin; 1/2017April 2017, Belgiumhttps://www.zorg-en-gezondheid.be/sites/default/files/atoms/files/VIB%202017-1%20-%20Rundertuberculose%20in%20Limburg.pdfOtherHPS report on laboratory-confirmed travel-related infections in Scotland during 2016HPS Weekly Report 2017; 51(18)9 May 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1718.pdfTRAVAX Outbreak Index 2016: Diseases of Public and Travel Health RiskHPS Weekly Report 2017; 51(17)2 May 2017, Scotlandhttp://www.hps.scot.nhs.uk/documents/ewr/pdf2017/1717.pdf"} {"text": "This article has been corrected: The correct author name is given below:Alfredo Minguelahttps://doi.org/10.18632/oncotarget.16657Original article: Oncotarget. 2017; 8:31959-31976."} {"text": "The uro<\u20090.001) . An expl<\u20090.001) . In the <\u20090.001) . Continu<\u20090.001) . New hig<\u20090.001) . This ca<\u20090.001) . To date"} {"text": "This article has been corrected: The correct author affiliation information is given below:1,2Hong Zhao93813-93824. https://doi.org/10.18632/oncotarget.21217Original article: Oncotarget. 2017; 8:"} {"text": "This article has been corrected: Due to errors during processing, 1231-1248. https://doi.org/10.18632/oncotarget.2840Original article: Oncotarget. 2015; 6:1231\u20131248."} {"text": "Psychologica Belgica. 57(1), pp.32\u201342. DOI: https://doi.org/10.5334/pb.348This article details a correction to the article: Verschueren, M., et al., . Identit The correctFigure The original Figure 2017"} {"text": "In the Funding section, the grant number from the funder Wellcome Trust/MRC is listed incorrectly. The correct grant number is: 089703/Z/09/Z, 099133/Z/12/Z."} {"text": "This article has been corrected: Due to errors during figure preparation, the images for 3800-3812. https://doi.org/10.18632/oncotarget.1998Original article: Oncotarget. 2014; 5:3800\u20133812."} {"text": "Correction to: BMC Med Educ (2019) 19:402https://doi.org/10.1186/s12909-019-1841-2Following publication of the original article , due to Page 1 Correspondence.Incorrect: * Correspondence: Zaid.Imam@beaumont.org; Mitchell.Cappell@beaumont.eduCorrect:*Correspondence: Mitchell.Cappell@beaumont.eduPage 2 Methods (paragraph 1).Incorrect: for endoscopy retrograde.Correct: for endoscopic retrograde.Page 3 Statistical analysis (paragraph 1).Incorrect: years of (instead.Correct: years (instead.Incorrect: year) interviews.Correct: year) of interviewees.Page 3 Results (Significantly varying parameters with time).Incorrect: SimplePara>Fig. 1a illustrates.Correct: Fig. 1a illustrates.Page 4 Table 1.Incorrect: Is missing a row in the middle of the table which should be in the table as a second header.Correct: The corrected Table Page 5 Bottom, right columnIncorrect: 2009 and 2011 vs.2016\u20132018.Correct: 2009\u20132011 vs. 2016\u20132018.Page 6 Table 3.Incorrect: It should have 3 columns and not 1 column.Correct: The corrected Table Page 6 Under Table 3 (paragraph 4)Incorrect: are.Correct: were.Incorrect: ten-year-study.Correct: ten-year-study-period.Page 7 Author\u2019s contributions.Incorrect: as mentor for Dr. ZI. Both authors read and approved the final manuscript.Correct: as mentor for Dr. ZI. Both authors are equal and primary authors. Both authors read and approved the final manuscript.Page 7 Competing interests.Incorrect: Gastroenterology.Correct: Gastrointestinal."} {"text": "Nat. Commun. 10.1038/s41467-018-06036-0; published online 6 Sep 2018.Correction to: https://www.ams.ethz.ch/research.html.\u2019 The correct version states \u2018http://www.ams.ethz.ch/research/published-data.html\u2019 in place of \u2018https://www.ams.ethz.ch/research.html\u2019. This has been corrected in both the PDF and HTML versions of the Article.The original version of this Article contained an error in the Data Availability section, which incorrectly read \u2018All data will be freely available via"} {"text": "Correction to: J Biomed Scihttps://doi.org/10.1186/s12929-018-0481-xWNT1 p.Gly324Cys should be c.970G>T instead of c.1168G>T.In the original publication of this article , there a"} {"text": "BJC would like to extend our sincere thanks to the referees for contributing their expertise and time.In this issue, we publish the names of those who reviewed the manuscripts for us in 2017. The Editor-in-Chief, Subject Editors and everyone involved in publishing Philippe A. CassierLauri A. AaltonenMohamed Abdel-RahmanEric O. AboagyeThomas AbramsAlessio AccardiMarc G. AchenAnya AdairPeter AdamsKasper AdelborgNabil AdraPrasad S. AdusumilliIlir AgalliuLars Agr\u00e9usM. Teresa Agull\u00f3-Ortu\u00f1oThomas AhernNihal AhmadAtique U. AhmedTim AitmanJaffer A. AjaniR. A. Al-NaggarTaleb H. Al-TelCostantine AlbanySimak AliEmma H. AllottMaria AlsinaPeter AltevogtRosario AmatoSrikanth R. AmbatiPeter F. AmbrosMaria R. AmbrosioBilly AmzalSudarshan AnandCarey K. AndersAnnie AndersonKristin E. AndersonFabrice Andr\u00e9Nicolas Andr\u00e9Gabriella AndreottiZhiwei AngRoberto AngioliAndrea AnichiniHendrik Jan AnkersmitChristina M. AnnunziataAlan AnthoneyMichael H. AntoniStefan AntonowiczAnnika AntonssonMikko AnttonenFawzi AoudjitThomas AparicioGiuseppe AprileRami I. AqeilanD. J. ArgyleHendrik-Tobias ArkenauGregory T. ArmstrongRudolf ArnoldSidsel ArnsprangGrazia ArpinoNuri ArslanBanu ArunJohan AsklingIgor AstsaturovKyrgidis AthanassiosM Hammad AtherChloe AtreyaFederico N. AucejoFran\u00e7ois AudenetLeonard AugenlichtMichael J. AusserlechnerAdnan AydinerS. C. AzouryReinhard B\u00fcttnerHideo BabaJean-Baptiste BachetRajendra BadweCatherine BagotDavid BajorShairaz BakshGustavo BaldassarreClaudia R. BallCynthia BamdadUdai BanerjiShamila A. BapatRathindranath BaralLudovic BaraultJ\u00f6rg W. BartschBenjamin G. BarwickMurali D. BashyamBoris BastianBristi BasuOliver BatheHarriet Batista FerrerG. David BattyMichael BaumDaniel BaumhoerAlain BeckHolger M. BeckerFilip BednarMiguel BedollaAlicia Beeghly-FadielAndrew BeggsTanios Bekaii-SaabAvri Ben-Ze\u2019evSara Benitez MajanoHayley BennettCharlotte BensonAstrid BergerLeif BergkvistLothar BergmannJohannes BerkhofRosa BernardiDonald A. BerryMelissa BersanelliJoseph R. BertinoFrancesco BertoniAndreas BeutlerJoerg BeyerKrishnan BhaskaranRamya BhatiaYan BiGiampaolo BianchiniRoberto BiffiAlan BilslandGabriela BindeaLynne BingleHelgi BirgissonD. Tim BishopTrever G. BivonaLine Bj\u00f8rgeEsther P. BlackSarah P. BlagdenKerry L. BlanchardJean-Yves BlayJeremy BlaydesMaria BlettnerRuth E. BoardCarla BoccaccioStefania BocciaAlan BoddyAmy BoddyPaolo BoffettaC. Richard BolandMelissa L. BondyMara BonelliAndrea BonettoEdith BonnelyeThaiz BorinJames A. BorowiecJosep Maria Borr\u00e0sF. T. BosmanMarie-Josee BoucherSimon BoufflerLiam BourkeAur\u00e9lie BourmaudAnne BowcockMark BowerLaura W. BowersDavid J. BowreyMark BoydMarc BrackeChiara BraconiJulie A. BradleyMarie C. BradleyPatrick T. BradshawGerard BradyMichael BraunJohn BridgewaterLouise A. BrintonVance BroachBruce BrocksteinAlexander S. BrodskyMireille J. M. BroedersMarieke BroekmanDomenyk BrownRobert BrownKristoffer BrudvikWolfgang BruecklSilvia BrunelliNele BrusselaersMalte BuchholzSimonetta BuglioniRonald M. BukowskiJ. J. BultemaMary Ann BurgHoward A. BurrisTimo BursterFrancesco BussuRonald BusuttilJohn ButlerRichard BuusNatalia BuzaPeter D. CaieMagdalena CalGeorge CalinEmiliano CalvoFernando CalvoPatricia Ju\u00e1rez CamachoDavid CameronAna Paula CampanelliEsther Jennifer CampbellRikki A. CanniotoFederico CanzianJeffrey Q. CaoChris R. CardwellMariko CareyAmancio CarneroSara CarpiPrudence CarrJudith E. CarrollRoss CarruthersBrett W. CarterRichard CarvajalLuis G. Carvajal-CarmonaDaniel E. Carvajal-HausdorfOriol CasanovasAngela CashellJavier S. CastresanaDavid CellaGiovanni CerisoliByung Joo ChaeHeather J. ChalfinDavid Lok Hang ChanDorothy ChanJefferson Y. ChanStephen L. ChanDhyan ChandraDavid ChangHelena R. ChangRobert ChapkinBenoit ChassaingEtienne ChatelutIan ChauCeshi ChenFei ChenKe ChenShiuan ChenSize ChenKwok-Leung CheungJohanna ChicheFiona ChionhGabriela ChioreanJohn M. ChirgwinDavid D. ChismTakeshi ChiyomaruW. J. ChngDoo Ho ChoiMinsig ChoiAlan ChristieDaniel C. ChungVincent ChungFortunato CiardielloLoredana CifaldiGeoffrey J. ClarkGary M. CliffordShamshad CockcroftV. CoddPaul CohenAndrew James ColdmanHelen ColemanA. Dimitrios ColevasPeter CollinsDaniele Filippo CondorelliC. ConradZuelma ContrerasMichael B. CookNatalie CookColin S. CooperJennifer Anne CooperAn CoosemanMhairi CoplandErin CordeiroTony CorfieldBeatrice CormierStefanie CorradiniPippa G. CorrieAur\u00e9lien Corroyer-DulmontLaura CortesiJ. L. CostaCedric CoulouarnVeerle M. H. CoupeSarah CouplandAmanda CouttsFiona CowieTracy CraneNicola CrestiCanien CreutzbergNicolae CrisanGreg O. CronDeirdre P. Cronin-FentonEmma CrosbieTom CrosbyNicholas C. P. CrossZoran CuligGiuseppe CuriglianoGeoff CuvelierJack CuzickBrian G. CzitoBego\u00f1a D\u00edazMaurizio D\u2019IncalciToos DaemenKiran DahiyaMaria DalamagaAngus G. DalgleishTina DalianisChendil DamodaranWilliam DamskyAdam DangoorRachel DanknerSarah DansonSarah DarbyBenu Brata DasFrancisco DasiAdil I. DaudSarah E. DaughertyElizabeth A. DaviesJohn R. DaviesMichael A. DaviesNeil DaviesSarah DavisChi-Ping DayPradip DeUgo De GiorgiDavid J. De GraffFR de GruijlJill de JongSteven de JongGilles W. De KeulenaerInge M. C. M de KokHarry J. de KoningMacarena De La FuenteMarc de PerrotOlivier De WeverRonald de WitFrank DekkerRobert DellavalleThanh H. DellingerMarco DemariaShadmehr DemehriAmanda F. DempseyDavid T. DenhardtSusan F. DentAlexander DeutschNandini DeyFr\u00e9d\u00e9ric Di FioreJames J. DignamQingQing DingLuc Yves DirixN Utku DoganEnric DomingoJenny L. DonovanFrede DonskovMehmet Tevfik DorakOlivier DormondJonathan E. DowellTimothy R. DriscollSteven G. DuBoisAnna DubrovskaStephen W. DuffyLaurie DunnFrancine DurocherHarold F. DvorakTadeusz DybaMartin DyerLars Dyrskj\u00f8t AndersenJulie EarlMartin M. EatockRenee EbischJulien EdelineAngela B. EdgarDylan R. EdwardsHellen EdwardsJoanne EdwardsAlexey EfanovKathleen M. EganLawrence H. EinhornTim EisenImane El-DikaBassel F. El-RayesK. Miriam Elfstr\u00f6mPeter ElwoodGerda EnglholmD. EnnishiMathew ErhardtStefan ErkelandChristophe ErneuxAlexandre E. EscargueilPablo V. EscribaFerry A. L. M. EskensAlan EvansD. Gareth EvansCarl Johan F\u00fcrstGuy B. FaguetNicole FahrenbacherBenjamin FairfaxStefano FaisJean FaivreSandrine FaivreCorinne Faivre-FinnGerald S. FalchookStephen J. FalkMohammad Fallahi-SichaniMarie FallonMatteo FassanLouise FearfieldRichard G. FeltbowerHui FengJ. Christopher FennoLaura FerraroRobert FiglinChristine FischerJames M. FlanaganIan N. FlemingOlivia FletcherGunnar FolprechtFrancesca FornariLorenzo FornaroLynne Fiona ForrestMartin ForsterRen\u00e9e Turzanski FortnerPaul Alexander FosterSteven Scott FosterDimitrios FotiadisWilliam D. FoulkesMarkus FrankHester FranksCallum FraserIrma FredrikssonMichael R. FreemanM. P. FreireRafael FridmanClaire FriedmanKarlheinz FriedrichFieke FroelingShen FuMarc-Aurel FuchsEzequiel M. Fuentes-PananaChunkit FungSuzanne A. W. FuquaMarike GabrielsonTimo GaiserUmberto GalderisiVijaya L. GalicGary E. GallickEve Gallop-EvansDeborah L. GalsonSofia R. GameiroTrivadi S. GanesanDaming GaoLing GaoAlex GaorgakilasXavier Garcia del MuroGeorge GarinisElizabeth Garrett-MayerRobert A. GatenbyAditya GaurJeanine GenkingerDavid E. GerberMarco GerlingerDavid A. GewirtzMilan S. GeybelsT. A. GheitaFrancois GhiringhelliMatteo Giaj LevraGianluigi GiannelliDon L. GibbonsGeoffrey GibneyZiv GilDuncan Charles GilbertScott GilbertRoopinder GillmorePelosi GiuseppeMartin E. GleavePaul GlenBengt GlimeliusAjay GoelThorsten GoetzeDavid E. GoldgarSimon W. GollinsAndrea GombosZhihong GongNancy B. GordonKylie GorringeMargot A. GosneyHeike I. GrabschJanet GrahamSteven GrantMel GreavesMark H. GreeneDiana GreenfieldAlastair GreystokeGiovanni GrignaniJohn D. GroarkeJean-Jacques GrobIrina GromovaPatti GroomeGuowei GuHenk-Jan GuchelaarHugo Guerrero-C\u00e1zaresRachel GuestWilliam J. GullickJayarama B. GunajeVenugopal GundaEmma GunsJianping GuoAshish GuptaSanjay GuptaShlok GuptaAna Guti\u00e9rrez-Fern\u00e1ndezGeertruida H. de BockAngela HagueJorg HaierGunnel HalldenOmid HamidWilliam T. HamiltonPascal HammelJ. W. HanJiali HanAndrew M. HanbyMamoru HaradaJames J. HardingAdrian L. HarrisEwen HarrisonAndrew Robert HartArndt HartmannMathieu HattHege Sagstuen HaugnesJari HaukkaMickael HauptmanMaria A. HawkinsYoku HayakawaShin-ichi HayashiPhilip HaycockJohn D. HayesNicholas HaywardWei HeChristopher M. HeaphyDavid F. HeigenerEveline A. M. HeijnsdijkLucie HeinzerlingDavid M. HelfmanMartina HellerSamantha HendrenJolyon HendryChristopher HewittMaria HewittMats HeymanDominique HeymannCinta HierroAllan HildesheimMark HillMohan HingoraniYasemin HirstHenrik HjalgrimMatthew HoareThomas HoehlerJonathan N. HofmannStefan HoldenriederAntoine HollebecqueJeff HollyNeil S. HorowitzDirk HoseDavid W. HoskinYariv HouvrasAlexandra C. HristovCheng-Lung HsuCai HuangQi-tao HuangRuby Y. J. HuangXin HuangRichard HubnerMeritxell HuchKevin S. HughesFlorence HuguetRayjean J. HungDavid G. HuntsmanKatherine E. HutchinsonJin Won HyunTorukiri I. IbiebeleMasafumi IkedaDavid H. IlsonMohammad IlyasStefan IndraccoloManami InoueHeikki IrjalaSofie IsebaertYuichi IshikawaGustavo IsmaelMotoki IwasakiGraham H. JacksonJamie JacobsAnders JakobsenShadia JalalNigel B. JamiesonWolfgang JanniTobias JanowitzHenry JensenLars Henrik JensenJae-Wook JeongCarmen JeronimoClaire F. JessupLong R. JiaoRenjie JinHeikki JoensuuChristoffer JohansenPeter W. M. JohnsonPhilip J. JohnsonChristopher JonesLee W. JonesRena JonesRobin L. JonesClaus JorgensenIan JudsonKlaus JungManfred JungBruno K\u00f6hlerHumam KadaraKaoru KahataErsan KalayBozena KaminskaPriyanka KanthTatsuya KantoPremashis KarNiki KarachaliouMargaret R. KaragasAmalia KarahaliosGiorgos KarakousisEva KaramitopoulouPer KarlssonR. Jeffrey KarnesFlorian KarrethIoannis KarydisPashtoon M KasiBernd KasperSusan KasperKarin KastEfstathios KastritisAlexander KatalinicJakob KatherMasaru KatohElad KatzAi-Wu KeBhumsuk KeamLinda E. KelemenCharles KellyScott P. KellyNancy E. KemenyPaul M. KentRobert Stephen KerrisonDineo KhabeleJ. KhalesChan Kyo KimDokyoon KimNam Kyu KimRichard KimYoung Tae KimLeo J. KinlenBen KinnersleyNicole K. KissYasuhide KitagawaAlexander KlegerPetra KloseJan KlozarJeffrey KnaufJennifer KnoxBen C. B. KoAung Ko WinLindsay C. KobayashiMeri KoivusaloHanna KokkoShuhei KomatsuNaru KondoAnthony KongXiangrong KongDong Hoe KooSittichai KoontongkaewScott KopetzMartin KoskasIlona KovalszkyChristoph KowalskiClemens KreplerMalathi KrishnamurthyRoland P. KuiperAddanki P. KumarDeepak KumarRajiv KumarSatish KumarShaji KumarKen-ichi KusakabeNatasha KyprianouMaria-Christina KyrtsonisDerek KyteHeinz L\u00e4ubliMyriam LabelleNicholas LakinAly-Khan A. LalaniTram Kim LamAngela LamarcaPaul LambertSamy LamouilleMaria Grazia LampugnaniStephanie R. LandOla LandgrenTerry H. LandowskiT. LangeJames M. LarkinAlessandra LaroccaSigne Benzon LarsenPeder LarsonL. LaruePierre Laurent-PuigSean E. LawlerClaudia Helga Dorothee Le Guin\u00c9milie Le RhunChristophe Le TourneauFranck LebrinChristy J. W. LedfordHyun-Shik LeeMei-Hsuan LeeVictor H. F. LeeStefan LegerNatasha LeighlAnthony LemarieHannah LennonPauline LeonardZohar LeviDouglas A. LevineBrian LewisJohn LewisCheng-Chieh LiFengzhi LiJinjun LiNan LiShau-Hsuan LiShulin LiTsai-Chung LiWenliang LiXia LiXin LiYong LiVasilios LiapisArthur LiberzonCornelia LiedtkeTriantafillos LiloglouAnnette LimDarren LimWan-Teck LimY. LinCorinne M. LinardicClaus Lindbjerg AndersenAnnika LindblomDaniel J. LindnerColin R. LindsayMartha LinetMichael LinnebacherLance LiottaKevin LitchfieldAi-Qun LiuFei-Fei LiuStanley K. LiuXiaoman LiuZheng-Gang LiuLorenzo LiviPaul LoadmanFiona LoftsAnna E. LokshinMartijn LolkemaNiklas LomanJuanita LopezLuis A. Lopez-FernandezChristopher J. LordSimon LordPaul LoriganMaeve A. LoweryChang Hsien LuZhen LuMarie LudvikovaAlessandro LugliA. LugoJun LuoPhilip LupoBrigid M. LynchConor LynchGeorgios LyratzopoulosJohan LythMarkus M\u00f6hlerHenrik M\u00f8llerYuk Ting MaMonique MaasM. Mac\u00edas-Gonz\u00e1lezValentine M. MacaulayWilliam J. MackillopIain R. J. MacphersonRobert M. MaderAyman MadiDevalingam MahalingamK. K. MahatoJane MaherStephen G. MaherSabine MaiMichael L. MaitlandM. MakishimaUmberto MalapelleFr\u00e9d\u00e9rick MaletteHassan Z. MalikJudith A. MalmgrenBernard MangerSridhar ManiJudith ManolaZhiyong MaoVictoria J. MarAnthony MaraveyasPaola MarcatoFederica MarchesiFrancesca MarconM. MareelKim A. MargolinCamille MaringeMaurie MarkmanSharon MarshErnest MarshallJohn W. M. MartensElena MartensAlberto MartinMiguel MartinPatricia Martin-RomanoAna Carolina Martinez TorrezChiara MartinoliSandra F. MartinsMichal MasarikLuca MascitelliNader N. MassarwehGregory A. MastersMarie MathersAndres MatosoKoji MatsuoPatrick MatthiasMelissa MatzTim S. MaughanAnne M. MayAstrid MayerLindsey D. MayoGuillermo MazzoliniJessica N. McAlpineCaroline E. McCoachJohn McGregorW. P. McGuireColin McKay\u00dana McMenaminDonald C. McMillanMairead Geraldine McNamaraJanice M. MehnertAlexander MelamedGerry MelinoAnders MellemgaardUsha MenonFranco MerlettiSue MerrickMalek MeskawiWilma E. MeskerChristina MessiouTim MeyerGabor MezeiKyriaki MichailidouJudith MichelsCaroline MichieJaap M. MiddeldorpPaolo MignattiAnne MilesKoshi MimoriOlivier MirAlexander MirnezamiShiraz I. MishraElizabeth D. MitchellAnirban K. MitraMonika MitraSumegha MitraIngvil MjaalandSimone MocellinKhalid S. MohammadDamian J. MoleDavid R. MoleOlivier MolinierAlfredo MolinoloSilvio MonfardiniGuy H. MontgomeryAnthony V. MoormanAndreas MoosmannGil MorKelley W. MoremenVictor MorenoCarys MorganMaria P. MorganMasaki MoriRichard MorigglHamid MorjaniMarkus MorkelAndrea MorrioneDavid MorrisEva Judith Ann MorrisVan MorrisCynthia C. MortonJennifer MortonLindsay M. MortonMaria MoschoviSusan J. MougAristidis MoustakasCarmen Mu\u00f1ozClaudius MuellerColin R. MuirheadBhramar MukherjeeSomnath MukherjeeDeborah MukherjiAsok MukhopadhyayDaniel Munoz EspinPamela N. MunsterPeter MurchieGwen MurphyBrion W. MurrayGraeme I. MurrayPaola MutiSylvie N\u00e9grierJean-Marc NabholtzN. NadimintyY. NakabeppuKeiichiro NakamuraTomoki NakamuraYusuke NakamuraJoo-Hyun NamVikneswaran NamasivayamaMargherita NanniniSteven A. NarodKent NastiukRachael NatrajanJean-Charles NaultEva NegriErik NelsonKenneth P. NephewKirsten NessRomana T. Netea-MaierCindy NeuzilletPatrick NevenKimmie NgSamuel NganShin Foong NgiowIain D. NichollNils H. NicolayDaotai NieAnders Lade NielsenHans NijmanAleksandra Nikoli\u0107Maja NiksicMef NilbertReiko NishiharaUlrich NitscheNjiro NohataKatsuhiko NoshoFiona NusseyKarin NylanderLennarth NystromJames P. B. O\u2019ConnorJake O\u2019DonnellPeter H. O\u2019DonnellPeter O\u2019DwyerTracy O\u2019MaraEric O\u2019NeillDerek O\u2019ReillyDaniel O. StramTakahiro OchiyaKarin OechsleJudith OffmanShuji OginoHannah OhAkinyemi OjesinaCem OnalJason OngSheina OrbellNobuhiko OridateGiulia OrlandoTomo OsakoLobna OuldamerPhilip OwensBeatriz P\u00e9rez-G\u00f3mezDavid PageMarina PajicClaudia PalenaGiuseppe PalmieriG. E. PamukHongchao PanShin-Liang PanKlaus PantelSalvatore PapaGianpaolo PapaccioDemetris PapamichaelAngelo Virgilio ParadisoEmilio ParisiniBoyoung ParkJin Young ParkPyong ParkSo Yeon ParkChristine L. ParrChristopher N. ParrisJason L. ParsonsHarvey I. PassAlpa PatelRakesh P. PatelDepananda PatiP. PatrignaniJim PaulSonya PavlovicGraham PawalecCharlotte PawlynSemra PaydasMiranda PayneJulien P\u00e9ronFedro A. PeccatoriDonna PeehlVicente PegFrank PeinemannMelike PekmezciPaivi PeltomakiTrevor PenningGeorge PentheroudakisAurora Perez-CornagoSandra Perez-TorrasClaire M. PerksAugusto PessinaChristopher J. PetersJessica L. PetrickAnreas PetterssonRussell D. PettyFrancesco PezzellaJames M. PhangPaul D. PharoahXuan-Anh PhiRoger M. PhillipsFilippo PietrantonioCamilla PilatiPaul F. PinskyLuigi PirtoliXavier PivotMary C. PlaydonRuben R. PlentzSharon PlonSeth PollackGiuseppe PortellaDavid PorterSophie Postel-VinayNicholas PoteChantevy PouPoulikos PoulikakosMohamad Amin PourhoseingholiCarla PradoRajendra PrasadAleix PratChristine PrattThomas PrebetTimothy J. PriceCharlotte ProbyMaria Pia ProttiElena ProvenzanoSylvain ProvotAmanda PsyrriMark P. PurdueRituraj PurohitMartine PutsHaili QianClaus R\u00f6delMA R\u00f8derAntonio M. Rabasco-\u00c1lvarezDerek C. RadiskyElizabeth RaetzDerek RaghavanLola RahibP. RajaramanSuresh S. RamalingamShankar RamanRamesh K. RamanathanRebeca RamisSheela RaoGeorge Zacharias RassidakisNancy RatnerYaddanapudi RavindranathOlga V. RazorenovaNeal E. ReadyFrancisco X. RealMatejka ReboljSangeetha ReddyH. Paul RedmondMalcolm Ronald Walter ReedHelen Louise ReevesTarik RegadJorge S. Reis-FilhoChristoph ReissfelderCristina RenziDavid F. RestucciaEdyta ReszkaRaoul C. ReulenChris ReutelingspergerRodolfo ReyChristine ReynaertAndrew R. ReynoldsW. J. RheeT. L. Ri\u017enerJeremy N. RichBrent RichardsPaul G. RichardsonPaul RidgwayAlistair E. RingAnupam RishiDebra RitzwollerKathryn RobbJacques RobertMartha Robles-FloresAndrew W. RoddamFrancis RodierRene RodriguezCristina Rodriguez-AntonaSabine RohrmannChristian RolfoIsabelle RomeiuDana M. RoqueRafael RosellGary RosnerPaul J. RossAntonio RossiCampbell S. D. RoxburghPatricia RoxburghCharles RubinGreg RubinMarek RuchalaKathryn J. RuddyNandini Rudra-GangulyTatyana RukshaSimon RuleAntonio RussoGordon J. S. RustinMark J. RutherfordSteve RyderJoseph SaccoAdrian G. SacherRosa M. SainzHiroshi SaitoKazutaka SaitoGeorge H. SakorafasGianluca SalaLucas A. SalasRamon SalazarDavid S. SalomonLeslie SamuelMilena SantDaniele SantiniSofia Nascimento SantosDiana SarfatiBruno SarmentoAndrea Sartore-BianchiSven SaussezEdward A. SausvilleElias J. SayourJoachim Sch\u00fczT. J. SchallHoward I. ScherMarielle Scherrer-CrosbieMichael E. ScheurerJoellen M. SchildkrautMarianne SchmidClemens SchmittG\u00fcnter SchneiderJohn SchofieldAnna SchuhJudith Ann SchwartzbaumHeidi SchwarzenbachAndreas ScorilasAaron ScottDavid ScottMichael J. SecklChristoph SeidelSanjeewa SeneviratneCarlo SenoreSalvatore SerravalleArun SethRiyaz ShahPriyanka SharmaRohini SharmaHeather M. ShawGemma ShayFeng ShenHongbing ShenTrevor G. ShepherdQian ShiWenyin ShiXianglin ShiKohei ShigetaXianglin ShihDaniel ShinHitoshi ShiozakiAlexander Noor ShoushtariEmma ShtivelmanKe ShuaiKris Ann ShultzLu SiFrank SicheriDavid SidranskyPeter M. SiegelInes SilvaAndrew SilverR. H. SilvermanMichael SimonRodney SinclairAmar B. SinghMarianne SinnDaniel SinnettCarole SiretFreddy SitasRaquel SitcheranKa Tat SiuTobis SjoblomDaina Skiriut\u0117Nicholas SkuliPatrick M. A. SleimanCristian SmerdouVincent T. H. B. M. SmitSamuel George SmithElizabeth C. SmythPetur SnaebjornssonAlex SnyderCarl H. SnydermanRobert W. SobolDavendra P. S. SohalHuan SongJie-Young SongMontse Soriano-Gabarr\u00f3Andrea SottorivaPavel SoucekHugo SousaNuno SousaPaul N. SpanDavid SpiegelDaniel E. SprattAmanda SpurdleAdrian StanleyGiorgio StantaMartin StanullaNaureen StarlingJustin StebbingNicola SteeleRob SteinAlexander SteinleArnulf StenzelAlbrecht StenzingerWilliam G. Stetler-StevensonJon StoboPeter StorzBj\u00f6rn StranderEuan StronachAmit SudHiromi SugiyamaFrank SullivanRyan SullivanFarhana SultanaShi-Yong SunYu SunArthur Sun MyintM. R. SussmanCalum D. SutherlandJaim SuttonJohn SweetenhamStefan Nicholas SymeonidesIldiko SzaboJacek TabarkiewiczTakanobu TagawaAlphonse G. TaghianDiana TaitStephen TaitJukka TakalaShigetsugu TakanoShinsuke TakenoGesche TallenRulla M. TamimiMing TanMasamitsu TanakaChad TangCullen TaniguchiNizar TannirIan F. TannockWoan-Yuh TarnGeorgi TchernevRajeshwar TekmalAchim TemmeLauren R. TerasMasanori TerashimaHoward TerebeloVinay TergaonkarAmanda TermuhlenKathryn L. TerryKrishnansu S. TewariH. H. TheinChristina TherkildsenAlain R. ThierryStephen ThompsonFiona ThomsonJohn ThomsonMangesh ThoratDe-an TianMadeleine M. A. Tilanus-LinthorstNahira TimilshinaJohn F. TimmsPaul TimpsonDebu TipathyJasmin A. TiroVivianne C. G. Tjan-HeijnenSara Michell TolaneyIan P. M. TomlinsonAdetunji T. ToriolaTibor TotYann TouchefeuLara TraegerLois B. TravisAnouk Kirsten TripGiancarlo TronconeClaudia Trudel-FitzgeraldNicolas TsavarisLap-Ah TseClare TurnbullJames TurvillTove F. TvedskovChristina Twyman-Saint VictorScott TyldesleyHiroji UemuraRainy UmbasTakashi UmemuraMeena UpadhyayaKatsuhiro UzawaCeline M. VachonRatna K. VadlamudiClaire M. VajdicEdith Valdez-MartinezGautam Kishore ValechaNicola ValeriJuan W. ValleBart van de SluisCornelis J. H. van de VeldeDesiree van den BongardJan Van den BosscheFlora E. van LeeuwenSandra Van SchaeybroeckIsabelle Van SeuningenBrian A. Van TineJonna van VulpenHanna van WaartUdo VanhoeferGuillaume VaresSanjeev VasudevanChittibabu VatteInes Vaz-LuisMary Anna VenneriFrancisco E. Vera-BadilloMarcel VerheijHelena M. VerkooijenJames VesteySilvestre VicentSergi Vidal-SicartMark VincentMarco VincetiIlio VitaleArndt VogelChristian von BuchwaldStephan von HaehlingErik von SethParesh VyasGraham W. WarrenNic WaddellJon WadsleyNolan A. WagesLars M. WagnerRichard WakefordMichael WakelamHeather A. WakeleeLucy WallHeather M. WallaceZachary WallaceKyle M. WalshTom WalshFiona M. WalterJianli WangPeizhong Peter WangQiming Jane WangWeiguang WangDouglas G. WardHarpreet WasanMasayuki WatanabeJustin WatersJohn Charles WatertonDavid WatkinsR. WilliamG. WatsonT. WattsPenelope M. WebbGeorg F. WeberAshani T. WeeraratnaAndrew WeiNeils WeinholdPiri WelcshUlrich WellnerPaul WelshCatharine M. L. WestKenneth WestoverPaul Wheatley-PriceBeck WhiteEmily WhiteJeff D. WhiteArmin WiegeringJoseph WiemelsHans WildiersAnna Clare WilkinsHolger WillenbergWalter WillettJohn A. WilliamsAnna-Lise WilliamsonStuart Charles WilliamsonWilliam R. WilsonD. M. WinnDes WinterKerri M. Winters-StonePenella J. WollC. C. WongStephen Q. WongCameron WrightWoodring WrightQijun WuXiaohua WuYihua WuW. WulaningsihWahyu WulaningsihLynda WyldWei XiaoShao-An XueLusine YaghjyanKrishna YallaTesshi YamadaMasayuki YamamotoMotohisa YamamotoNoboru YamamotoKatsuhiko YanagaChih-Hsin YangTimothy A. YapLinda S. YasuiLucy YatesJohn YaxleyTsz Lun YeungMin YiHoward YimZhang YingjianDesmond YipKazuhiro YoshidaCaroline YoungPaul W. YoungGeorge M. YousefKenneth H. YuYing YuanMathew YurgelunNadia ZaffaroniNousheen ZaidiF. ZalazarJohn ZalcbergKhalil ZamanRita ZamarchiXingxing ZangA. G. ZeimetYoh ZenJincheng ZengShan ZengDonna ZhangJinfeng ZhangLi ZhangShawn (Xiang) ZhangShutian ZhangXiaodong ZhangXiaowen ZhangXinhua ZhangYi ZhangZheng-Yun ZhangZhiqian ZhangZuo-Feng ZhangPeiming ZhengDawang ZhouGuanglei ZhuangAlessandra ZingoniZhao Zuowei"} {"text": "This article has been corrected: The correct Author name is given below:Soren Hayrabedyanhttps://doi.org/10.18632/oncotarget.16028Original article: Oncotarget. 2017; 8:32419-32432."} {"text": "While not members of the Board of Editors, invited editors serve an important role in the review process. Invited editors are experts in their fields of research who add an additional level of quality to the review process. An editor may assign a paper to an invited editor when he/she would like to have an additional expert opinion of the reviews or when the subject area falls outside the editor\u2019s primary area of expertise.On behalf of the editors of John M. ArchibaldMartin Fabian BachmannFabio BagnoliVanessa BaileyFernando BaqueroSonia L. BardyFrederic J. BarrasThomas BernhardtElisabeth M. BikSteven R. BlankeJesse D. BloomDaniel R. BondJoe Bondy-DenomyIvo Gomperts BonecaJohn Dallas BoycePatricia A. BradfordAxel A. BrakhageStephane BretagneWilliam J. BrittMichael A. BrockhurstPierre A. BuffetSwaine L. ChenJohn M. CoffinStephen ColemanVaughn S. CooperThelka CordesFevzi DaldalJames B. DaleBlossom DamaniaDenise DearingTanneke den BlaauwenEric Y. DenkersLars E. P. DietrichStephen P. DiggleDaniel DiMaioMaxwell DowNisha DuggalLothar EllingJorge C. Escalante-SemerenaAriberto FassatiEdward J. FeilAlain FillouxWoodward W. FischerSuzanne M. J. FleiszigClaire M. FraserClay FuquaJorge E. GalanRobert F. GarryMaria Laura GennaroMimi GhoshDeanna L. GibsonSteven R. GillBenjamin GlickVernita GordonSabina GorskaHeinrich Georg GottlingerJean GruenbergAngelika Gr\u00fcndlingHenk P. HaagsmanMaria HadjifrangiskouSusan HafensteinNeal D. HammerDavid HarrichRasika HarsheyThomas HawnGerald L. HazelbauerSophie HelaineAndrew J. HendersonHubert HilbiDeborah A. HoganKerwyn Casey HuangKelly T. HughesDavid A. HunstadUrs JenalDavid KadoshGanjam V. KalpanaFatah KashanchiDaniel B. KearnsBrian KelsallBruce S. KleinManuel KleinerTheresa M. KoehlerJulia Ruth K\u00f6hlerEugene V. KooninPeter KraiczyOscar P. KuipersKim LewisShan-Lu LiuJoseph LutkenhausFrank MaldarelliHarmit S. MalikDavid M. MargolisAdam MartinyLeonard MindichHarry L. T. MobleyKarl M\u00fcngerKenneth H. NealsonJames D. OliverBeth OrcuttEric OswaldMelanie OttBernhard O. PalssonLaila Partida-MartinezThomas PietschmannAlexander PlossPaul B. RaineyTimothy D. ReadDavid A. RelmanJyothi RengarajanKyu Young RheeAndrew RiceJason W. RoschGian Maria RossoliniMonica J. RothManish SagarJason W. SahlLinda J. Saif\u00c1lvaro San MillanSaumendra N. SarkarKarla J. F. SatchellJeffrey W. SchertzerBarbara ShacklettWilliam M. ShaferLilach SheinerDavid R. ShermanChiaho ShihRobert F. SilicianoViviana SimonEric P. SkaarDavid SkurnikMark S. SmeltzerDavid G. ThanassiAlfredo G. TorresAna TravenM. Stephen TrentRodney K. TwetenSusana T. ValenteHenny C. van der MeiWillem Van SchaikDavid WangScott C. WeaverRobert T. WheelerAlex WilsonHui WuJae-Hyuk YuEgija ZauraZhi-Ming ZhengJingen ZhuThe time and effort of the following experts in handling articles have been essential to ensuring the high quality of our publications, and their help is greatly appreciated."} {"text": "This article has been corrected: The correct email for correspondence author is given below:Correspondence to: Eduardo Nagore,email:eduardo.nagore@ucv.eshttps://doi.org/10.18632/oncotarget.22016Original article: Oncotarget. 2017; 8:98876-98886."} {"text": "P\u2009<\u2009.0001) [We read the study by Thomas-R\u00fcddel et al. with great interest . Authors<\u2009.0001) . As PCT <\u2009.0001) , the con<\u2009.0001) . Also, u<\u2009.0001) . Accordi<\u2009.0001) ."} {"text": "This article has been corrected: Due to errors in image preparation, the separate red/green images presented for vehicle control and valproate in 90262-90277 . https://doi.org/10.18632/oncotarget.21660Original article: Oncotarget. 2017; 8:90262\u201390277."} {"text": "Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol 2017;101:1147\u201354. doi: 10.1136/bjophthalmol-2016-309975.Kumaran N, Moore AT, Weleber RG, The authors wish to correct the legend of table 1. It reads: *Genes associated with EOSRD. \u2020Genes more frequently associated with LCA. However it should read: \u2020Genes associated with EOSRD. *Genes more frequently associated with LCA."} {"text": "This article has been corrected: Due to errors in image processing, an IHC staining slide of ER in 87194-87208. https://doi.org/10.18632/oncotarget.19909 Original article: Oncotarget. 2017; 8:87194\u201387208."} {"text": "This article has been corrected: The new Correspondence details are given below:1Bingjin LiCorrespondence to: Bingjin Li, email:libingjin@jlu.edu.cn78225-78233. https://doi.org/10.18632/oncotarget.20606Original article: Oncotarget. 2017; 8:78225\u201378233."} {"text": "Rev. Saude Publica [online]. 2019, vol.53:52, ISSN 1518-8787, http://dx.doi.org/10.11606/s1518-8787.2019053000909, the RSP corrects the author\u2019s last name.In Where you read:Daniela Saes SarotelliYou should read:Daniela Saes Sartorelli \u201cPadr\u00f5es alimentares de gestantes, excesso de peso materno e diabetes gestacional\u201d. Rev. Saude Publica [online]. 2019, vol.53:52, ISSN 1518-8787, http://dx.doi.org/10.11606/s1518-8787.2019053000909, a RSP corrige o sobrenome do autor.No artigo Onde se l\u00ea:Daniela Saes SarotelliLeia-se:Daniela Saes Sartorelli"} {"text": "Nature Communications8: Article number: 15857; DOI: 10.1038/ncomms15857 (2017); Published 07042017; Updated 11192018.This Article contains an error in reference 1. The correct reference is as follows:Nat. Cell Biol.18, 711\u2013717 (2016).S\u00e1nchez, I. & Dynlacht, B. D. Cilium assembly and disassembly."} {"text": "Correction to: Trials (2019) 20:49.https://doi.org/10.1186/s13063-018-3169-3Incorrect name tagging:Last Name: Pasqua.First Name: Oscar Della.Correct author name tagging:Last Name: Della Pasqua.First Name: Oscar.Following publication of the original article , we have"} {"text": "Trypanosoma cruzi-specific IFN-\u03b3-producing cells in chronic Chagas disease associate with a functional IL-7/IL-7R axis. PLoS Negl Trop Dis 12(12): e0006998. https://doi.org/10.1371/journal.pntd.0006998The second author's name is spelled incorrectly. The correct name is: Gonzalo Cesar. The correct citation is: Natale MA, Cesar G, Alvarez MG, Castro Eiro MD, Lococo B, Bertocchi G, et al. (2018)"}