haydn-jones
commited on
Commit
•
09a13d5
1
Parent(s):
c56c1ae
Upload generate_ds.ipynb
Browse files- utils/generate_ds.ipynb +327 -0
utils/generate_ds.ipynb
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from datasets import load_dataset"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 2,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"data_files = {\n",
|
19 |
+
" \"train\": \"./train.txt\",\n",
|
20 |
+
" \"val\": \"./val.txt\",\n",
|
21 |
+
" \"test\": \"./test.txt\",\n",
|
22 |
+
"}\n",
|
23 |
+
"ds = load_dataset(\"text\", data_files=data_files)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 3,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"ds['train'] = ds['train'].rename_column('text', 'SMILE')\n",
|
33 |
+
"ds['val'] = ds['val'].rename_column('text', 'SMILE')\n",
|
34 |
+
"ds['test'] = ds['test'].rename_column('text', 'SMILE')"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 4,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"import selfies as sf\n",
|
44 |
+
"\n",
|
45 |
+
"def try_convert(row):\n",
|
46 |
+
" selfie = None\n",
|
47 |
+
" try:\n",
|
48 |
+
" selfie = sf.encoder(row['SMILE'])\n",
|
49 |
+
" except:\n",
|
50 |
+
" pass\n",
|
51 |
+
"\n",
|
52 |
+
" return {'SELFIE': selfie}\n",
|
53 |
+
"\n",
|
54 |
+
"# Alongside the SMILES, we also need to convert them to SELFIES\n",
|
55 |
+
"# ds['train'] = ds['train'].add_column('SELFIE', ds['train'].map(try_convert, num_proc=8))"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 5,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"ds['train'] = ds['train'].map(try_convert, num_proc=8)\n",
|
65 |
+
"ds['val'] = ds['val'].map(try_convert, num_proc=8)\n",
|
66 |
+
"ds['test'] = ds['test'].map(try_convert, num_proc=8)"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 6,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"# Drop the rows where the conversion failed\n",
|
76 |
+
"ds['train'] = ds['train'].filter(lambda row: row['SELFIE'] is not None)\n",
|
77 |
+
"ds['val'] = ds['val'].filter(lambda row: row['SELFIE'] is not None)\n",
|
78 |
+
"ds['test'] = ds['test'].filter(lambda row: row['SELFIE'] is not None)"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 21,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"from tokenizers import Tokenizer\n",
|
88 |
+
"\n",
|
89 |
+
"tokenizer = Tokenizer.from_pretrained(\"haydn-jones/GuacamolSELFIETokenizer\")"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 22,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [
|
97 |
+
{
|
98 |
+
"data": {
|
99 |
+
"application/vnd.jupyter.widget-view+json": {
|
100 |
+
"model_id": "0ebfc58c2d8a46419df052346f288eff",
|
101 |
+
"version_major": 2,
|
102 |
+
"version_minor": 0
|
103 |
+
},
|
104 |
+
"text/plain": [
|
105 |
+
"Filter (num_proc=8): 0%| | 0/1273077 [00:00<?, ? examples/s]"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
"metadata": {},
|
109 |
+
"output_type": "display_data"
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"data": {
|
113 |
+
"application/vnd.jupyter.widget-view+json": {
|
114 |
+
"model_id": "af4f73ef62ad40a7992a6f99887eaa1a",
|
115 |
+
"version_major": 2,
|
116 |
+
"version_minor": 0
|
117 |
+
},
|
118 |
+
"text/plain": [
|
119 |
+
"Filter (num_proc=8): 0%| | 0/79567 [00:00<?, ? examples/s]"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
"metadata": {},
|
123 |
+
"output_type": "display_data"
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"data": {
|
127 |
+
"application/vnd.jupyter.widget-view+json": {
|
128 |
+
"model_id": "b49b45c72f3d445abf74c3694979a34b",
|
129 |
+
"version_major": 2,
|
130 |
+
"version_minor": 0
|
131 |
+
},
|
132 |
+
"text/plain": [
|
133 |
+
"Filter (num_proc=8): 0%| | 0/238698 [00:00<?, ? examples/s]"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
"metadata": {},
|
137 |
+
"output_type": "display_data"
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"source": [
|
141 |
+
"unk_id = tokenizer.token_to_id('<UNK>')\n",
|
142 |
+
"\n",
|
143 |
+
"# Drop any rows where the tokenization has an <UNK> token\n",
|
144 |
+
"ds['train'] = ds['train'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
145 |
+
"ds['val'] = ds['val'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
146 |
+
"ds['test'] = ds['test'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 24,
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [
|
154 |
+
{
|
155 |
+
"data": {
|
156 |
+
"application/vnd.jupyter.widget-view+json": {
|
157 |
+
"model_id": "168a1aa5665f47529aea44c5f2bbbf9f",
|
158 |
+
"version_major": 2,
|
159 |
+
"version_minor": 0
|
160 |
+
},
|
161 |
+
"text/plain": [
|
162 |
+
"Saving the dataset (0/1 shards): 0%| | 0/1273077 [00:00<?, ? examples/s]"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
"metadata": {},
|
166 |
+
"output_type": "display_data"
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"data": {
|
170 |
+
"application/vnd.jupyter.widget-view+json": {
|
171 |
+
"model_id": "bb77c4370aee45ec9a3cb614d1b21b93",
|
172 |
+
"version_major": 2,
|
173 |
+
"version_minor": 0
|
174 |
+
},
|
175 |
+
"text/plain": [
|
176 |
+
"Saving the dataset (0/1 shards): 0%| | 0/79564 [00:00<?, ? examples/s]"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
"metadata": {},
|
180 |
+
"output_type": "display_data"
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"data": {
|
184 |
+
"application/vnd.jupyter.widget-view+json": {
|
185 |
+
"model_id": "d966547c0f8847e5aff55fbb117a33d9",
|
186 |
+
"version_major": 2,
|
187 |
+
"version_minor": 0
|
188 |
+
},
|
189 |
+
"text/plain": [
|
190 |
+
"Saving the dataset (0/1 shards): 0%| | 0/238694 [00:00<?, ? examples/s]"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
"metadata": {},
|
194 |
+
"output_type": "display_data"
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"source": [
|
198 |
+
"ds.save_to_disk('./guacamol')"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 26,
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"data": {
|
208 |
+
"application/vnd.jupyter.widget-view+json": {
|
209 |
+
"model_id": "e52e2a9926b94dec81514575a0600a39",
|
210 |
+
"version_major": 2,
|
211 |
+
"version_minor": 0
|
212 |
+
},
|
213 |
+
"text/plain": [
|
214 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
"metadata": {},
|
218 |
+
"output_type": "display_data"
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"data": {
|
222 |
+
"application/vnd.jupyter.widget-view+json": {
|
223 |
+
"model_id": "c65e4593a4d4434eb5017997844ff50d",
|
224 |
+
"version_major": 2,
|
225 |
+
"version_minor": 0
|
226 |
+
},
|
227 |
+
"text/plain": [
|
228 |
+
"Creating parquet from Arrow format: 0%| | 0/1274 [00:00<?, ?ba/s]"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
"metadata": {},
|
232 |
+
"output_type": "display_data"
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"data": {
|
236 |
+
"application/vnd.jupyter.widget-view+json": {
|
237 |
+
"model_id": "336e610ebd324b34a793c7f373f24769",
|
238 |
+
"version_major": 2,
|
239 |
+
"version_minor": 0
|
240 |
+
},
|
241 |
+
"text/plain": [
|
242 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
"metadata": {},
|
246 |
+
"output_type": "display_data"
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"data": {
|
250 |
+
"application/vnd.jupyter.widget-view+json": {
|
251 |
+
"model_id": "0b5bc569aa7c4a9c880899f6728a9d88",
|
252 |
+
"version_major": 2,
|
253 |
+
"version_minor": 0
|
254 |
+
},
|
255 |
+
"text/plain": [
|
256 |
+
"Creating parquet from Arrow format: 0%| | 0/80 [00:00<?, ?ba/s]"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
"metadata": {},
|
260 |
+
"output_type": "display_data"
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"data": {
|
264 |
+
"application/vnd.jupyter.widget-view+json": {
|
265 |
+
"model_id": "2028affe9f43476caf7e785417329a65",
|
266 |
+
"version_major": 2,
|
267 |
+
"version_minor": 0
|
268 |
+
},
|
269 |
+
"text/plain": [
|
270 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
"metadata": {},
|
274 |
+
"output_type": "display_data"
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"data": {
|
278 |
+
"application/vnd.jupyter.widget-view+json": {
|
279 |
+
"model_id": "f3eedbe390574443b69528830d8039af",
|
280 |
+
"version_major": 2,
|
281 |
+
"version_minor": 0
|
282 |
+
},
|
283 |
+
"text/plain": [
|
284 |
+
"Creating parquet from Arrow format: 0%| | 0/239 [00:00<?, ?ba/s]"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
"metadata": {},
|
288 |
+
"output_type": "display_data"
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"source": [
|
292 |
+
"repo_id = \"haydn-jones/Guacamol\"\n",
|
293 |
+
"\n",
|
294 |
+
"# Push the dataset to the repo\n",
|
295 |
+
"ds.push_to_hub(repo_id, token=\"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\")"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": []
|
304 |
+
}
|
305 |
+
],
|
306 |
+
"metadata": {
|
307 |
+
"kernelspec": {
|
308 |
+
"display_name": "ddpm",
|
309 |
+
"language": "python",
|
310 |
+
"name": "python3"
|
311 |
+
},
|
312 |
+
"language_info": {
|
313 |
+
"codemirror_mode": {
|
314 |
+
"name": "ipython",
|
315 |
+
"version": 3
|
316 |
+
},
|
317 |
+
"file_extension": ".py",
|
318 |
+
"mimetype": "text/x-python",
|
319 |
+
"name": "python",
|
320 |
+
"nbconvert_exporter": "python",
|
321 |
+
"pygments_lexer": "ipython3",
|
322 |
+
"version": "3.11.6"
|
323 |
+
}
|
324 |
+
},
|
325 |
+
"nbformat": 4,
|
326 |
+
"nbformat_minor": 2
|
327 |
+
}
|