haydn-jones
commited on
Commit
·
548dcee
1
Parent(s):
050702c
Upload generate_ds.ipynb
Browse files- utils/generate_ds.ipynb +156 -0
utils/generate_ds.ipynb
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from datasets import load_dataset"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"data_files = {\n",
|
19 |
+
" \"train\": \"./train.txt\",\n",
|
20 |
+
" \"val\": \"./val.txt\",\n",
|
21 |
+
" \"test\": \"./test.txt\",\n",
|
22 |
+
"}\n",
|
23 |
+
"ds = load_dataset(\"text\", data_files=data_files)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"ds['train'] = ds['train'].rename_column('text', 'SMILE')\n",
|
33 |
+
"ds['val'] = ds['val'].rename_column('text', 'SMILE')\n",
|
34 |
+
"ds['test'] = ds['test'].rename_column('text', 'SMILE')"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"import selfies as sf\n",
|
44 |
+
"\n",
|
45 |
+
"def try_convert(row):\n",
|
46 |
+
" selfie = None\n",
|
47 |
+
" try:\n",
|
48 |
+
" selfie = sf.encoder(row['SMILE'])\n",
|
49 |
+
" except:\n",
|
50 |
+
" pass\n",
|
51 |
+
"\n",
|
52 |
+
" return {'SELFIE': selfie}\n",
|
53 |
+
"\n",
|
54 |
+
"# Alongside the SMILES, we also need to convert them to SELFIES\n",
|
55 |
+
"# ds['train'] = ds['train'].add_column('SELFIE', ds['train'].map(try_convert, num_proc=8))"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"ds['train'] = ds['train'].map(try_convert, num_proc=8)\n",
|
65 |
+
"ds['val'] = ds['val'].map(try_convert, num_proc=8)\n",
|
66 |
+
"ds['test'] = ds['test'].map(try_convert, num_proc=8)"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": null,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"# Drop the rows where the conversion failed\n",
|
76 |
+
"ds['train'] = ds['train'].filter(lambda row: row['SELFIE'] is not None)\n",
|
77 |
+
"ds['val'] = ds['val'].filter(lambda row: row['SELFIE'] is not None)\n",
|
78 |
+
"ds['test'] = ds['test'].filter(lambda row: row['SELFIE'] is not None)"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"from tokenizers import Tokenizer\n",
|
88 |
+
"\n",
|
89 |
+
"tokenizer = Tokenizer.from_pretrained(\"haydn-jones/GuacamolSELFIETokenizer\")"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"unk_id = tokenizer.token_to_id('<UNK>')\n",
|
99 |
+
"\n",
|
100 |
+
"# Drop any rows where the tokenization has an <UNK> token\n",
|
101 |
+
"ds['train'] = ds['train'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
102 |
+
"ds['val'] = ds['val'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
103 |
+
"ds['test'] = ds['test'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"ds.save_to_disk('./guacamol')"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"repo_id = \"haydn-jones/Guacamol\"\n",
|
122 |
+
"\n",
|
123 |
+
"# Push the dataset to the repo\n",
|
124 |
+
"ds.push_to_hub(repo_id)"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": null,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [],
|
132 |
+
"source": []
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"metadata": {
|
136 |
+
"kernelspec": {
|
137 |
+
"display_name": "ddpm",
|
138 |
+
"language": "python",
|
139 |
+
"name": "python3"
|
140 |
+
},
|
141 |
+
"language_info": {
|
142 |
+
"codemirror_mode": {
|
143 |
+
"name": "ipython",
|
144 |
+
"version": 3
|
145 |
+
},
|
146 |
+
"file_extension": ".py",
|
147 |
+
"mimetype": "text/x-python",
|
148 |
+
"name": "python",
|
149 |
+
"nbconvert_exporter": "python",
|
150 |
+
"pygments_lexer": "ipython3",
|
151 |
+
"version": "3.11.6"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
"nbformat": 4,
|
155 |
+
"nbformat_minor": 2
|
156 |
+
}
|