luxai commited on
Commit
ee0b7a0
·
verified ·
1 Parent(s): fcb8379

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. yolksac_human.py +58 -130
yolksac_human.py CHANGED
@@ -1,161 +1,89 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """The RNA Expression Baseclass."""
18
-
19
-
20
- import json
21
- import os
22
  import anndata as ad
23
  import pyarrow as pa
24
  import pandas as pd
25
- import numpy as np
26
-
27
  import datasets
28
- CITATION = """
29
- Test
30
- """
31
 
32
- DESCRIPTION = """
33
- Test
 
 
 
34
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- class RNAExpConfig(datasets.BuilderConfig):
37
- """BuilderConfig for RNAExpConfig."""
38
-
39
- def __init__(self, features, data_url, citation, url, raw_counts="X", **kwargs):
40
- """BuilderConfig for RNAExpConfig.
41
- Args:
42
- features: `list[string]`, list of the features that will appear in the
43
- feature dict. Should not include "label".
44
- data_url: `string`, url to download the zip file from.
45
- citation: `string`, citation for the data set.
46
- url: `string`, url for information about the data set.
47
-
48
- **kwargs: keyword arguments forwarded to super.
49
- """
50
- # Version history:
51
- # 0.0.1: Initial version.
52
- super(RNAExpConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs)
53
- self.features = features
54
- self.data_url = data_url
55
- self.citation = citation
56
- self.url = url
57
- self.raw_counts = raw_counts # Could be raw.X
58
- self.batch = 1000
59
- self.species = None
60
-
61
-
62
-
63
-
64
- # class RNAExp(datasets.GeneratorBasedBuilder):
65
  class RNAExp(datasets.ArrowBasedBuilder):
66
  """RNA Expression Baseclass."""
67
 
68
  def _info(self):
69
- self.config = RNAExpConfig(
70
- name="human_yolk_sac",
71
- description = DESCRIPTION,
72
- features=["raw_counts",'LVL1', 'LVL2', 'LVL3'],
73
- raw_counts = "X",
74
- data_url="./data/17_04_24_YolkSacRaw_F158_WE_annots.h5ad",
75
- citation=CITATION,
76
- url="https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673")
77
 
78
- features = {"raw_counts": datasets.features.Sequence(feature=datasets.Value("int32"))}
79
 
80
- # features = {"raw_counts": datasets.features.Sequence(feature={"gene":datasets.Value("string"),"count":datasets.Value("int32")})}
81
- # features = {"raw_counts": datasets.Value("int32") for gene in adata.var.index.str.lower().tolist()}
82
- for feature in self.config.features:
83
- if features.get(feature,None) is None:
84
  features[feature] = datasets.Value("string")
85
 
86
- # features["gene_names"] = datasets.Sequence(datasets.Value("string"))
87
-
88
  return datasets.DatasetInfo(
89
- description= self.config.description,
90
- features=None, #datasets.Features(features),
91
- homepage=self.config.url,
92
- citation=self.config.citation,
93
  )
94
 
95
  def _split_generators(self, dl_manager):
96
- self.anndata_file = dl_manager.download_and_extract(self.config.data_url)
 
 
97
 
98
-
99
  return [
100
  datasets.SplitGenerator(
101
- name=datasets.Split.TRAIN,
102
- gen_kwargs={"split": "train","expression_file": self.anndata_file,"batch_size":self.config.batch},#,"gene_names_file": self.gene_names_file},
 
 
 
 
103
  )
104
  ]
105
 
106
- def _generate_examples(self, expression_file, split):
107
-
108
- # genes = pd.read_csv(gene_names_file)
109
- adata = ad.read_h5ad(expression_file)
110
- self.genes_list = adata.var.index.str.lower().tolist()
111
-
112
-
113
- if self.config.raw_counts =="X":
114
- X = adata.X
115
- else:
116
- X = adata.var[raw_counts]
117
- num_cells = X.shape[0]
118
- for _id,cell in enumerate(X):
119
- example = {"raw_counts": cell.toarray().flatten()}
120
-
121
- for feature in self.config.features:
122
- if example.get(feature,None) is None:
123
- example[feature] = adata.obs[feature][_id]
124
-
125
- yield _id,example
126
-
127
- def _generate_tables(self, expression_file,batch_size,split):
128
  idx = 0
129
- adata = ad.read_h5ad(expression_file,backed='r')
130
- genes = adata.var_names.str.lower().to_list()
131
-
132
- features = {"raw_counts": datasets.features.Sequence(datasets.features.Value("int32"),id = ",".join(adata.var.index.str.lower().tolist()))}
133
- for feature in self.config.features:
134
- if features.get(feature,None) is None:
135
- features[feature] = datasets.Value("string")
136
-
137
- self.info.features = datasets.Features(features)
138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
- # self.info.features['gene_names'] = datasets.features.ClassLabel(names = genes)
141
-
142
- # self.info.description = adata.var.index.str.lower().tolist() #"+".join(adata.var.index.str.lower().tolist())
143
- for batch in range(0,adata.shape[0],batch_size):
144
- chunk = adata.X[batch:batch+batch_size].todense().astype('int32')
145
- df = pd.DataFrame(chunk,columns=adata.var.index.str.lower())
146
- df["raw_counts"] = [x for x in df.to_numpy()]
147
- df = df[["raw_counts"]]
148
- ## We create a dummy column with all the names of the genes as list. We don't use this as value since this would unnecessarily increase the size of the dataset
149
- ## Another option would be to replace the description with the list of genes
150
- # df[",".join(adata.var.index.str.lower().tolist())] = True
151
- # df['gene_names'] = True
152
-
153
- for feature in self.config.features:
154
- if feature != "raw_counts":
155
- df[feature] = adata.obs[feature][batch:batch+batch_size].tolist()
156
-
157
- # df['gene_names'] = [adata.var.index.str.lower().tolist()]*batch_size
158
- # print(df)
159
  pa_table = pa.Table.from_pandas(df)
160
  yield idx, pa_table
161
  idx += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import anndata as ad
2
  import pyarrow as pa
3
  import pandas as pd
 
 
4
  import datasets
 
 
 
5
 
6
+ # parameters per dataset
7
+ CITATION = """
8
+ Simone Webb, Muzlifah Haniffa & Emily Stephenson (2022).
9
+ Human fetal yolk sac scRNA-seq data (sample ID: F158 for Haniffa Lab; 16099 for HDBR).
10
+ BioStudies, E-MTAB-11673. Retrieved from https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673
11
  """
12
+ URL = "https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673"
13
+ DESCRIPTION = """Investigating the blood, immune and stromal cells present in a human fetal embryo in a
14
+ world first single cell transcriptomic atlas. The embryo was dissected into 12 coronal sections, yolk
15
+ sac, and yolk sac stalk. Live single cells sorted, with cell suspension then undergoing 10x chromium
16
+ 5 prime scRNA-seq. This accession contains the yolk sac and yolk sac stalk data from this embryo.
17
+ A matched accession contains the coronal section data. Lane "WS_wEMB12142156" (from yolk sac) was excluded
18
+ from downstream analysis due to low fraction reads in cells post-CellRanger QC. Termination procedure for
19
+ this embryo was medical. The F158_[features...barcodes...matrix].[tsv...mtx].gz files attached to this
20
+ accession represent raw count data from all the 10x lanes in this accession combined, and as output from
21
+ CellRanger filtered matrices (CellRanger version 6.0.1 using human reference genome GRCh38-2020-A).
22
+ One set of count matrices relates to the yolk sac data, and one set of count matrices relates to the yolk sac stalk data."""
23
+ RAW_COUNTS = "X"
24
+ DATA_URL = "./data/17_04_24_YolkSacRaw_F158_WE_annots.h5ad"
25
+ FEATURES_TO_INCLUDE = ['LVL1', 'LVL2', 'LVL3']
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  class RNAExp(datasets.ArrowBasedBuilder):
28
  """RNA Expression Baseclass."""
29
 
30
  def _info(self):
 
 
 
 
 
 
 
 
31
 
32
+ self.batch = 1000
33
 
34
+ # create a dictionary of features where raw_counts are ints and the rest are strings
35
+ features = {"raw_counts": datasets.features.Sequence(datasets.features.Value("int32")),"rows": datasets.features.Sequence(datasets.features.Value("int32")),"size":datasets.Value("int32")}
36
+ for feature in FEATURES_TO_INCLUDE:
37
+ if not features.get(feature):
38
  features[feature] = datasets.Value("string")
39
 
 
 
40
  return datasets.DatasetInfo(
41
+ description = DESCRIPTION,
42
+ features = datasets.Features(features),
43
+ homepage = URL,
44
+ citation = CITATION
45
  )
46
 
47
  def _split_generators(self, dl_manager):
48
+ self.anndata_file = dl_manager.download_and_extract(DATA_URL)
49
+ adata = ad.read_h5ad(self.anndata_file, backed = "r")
50
+ demarcation = int(len(adata)*80/100)
51
 
 
52
  return [
53
  datasets.SplitGenerator(
54
+ name = datasets.Split.TRAIN,
55
+ gen_kwargs = {"split": "train", "adata": adata[:demarcation], "batch_size":self.batch},
56
+ ),
57
+ datasets.SplitGenerator(
58
+ name = datasets.Split.TEST,
59
+ gen_kwargs = {"split": "test", "adata": adata[demarcation:], "batch_size":self.batch},
60
  )
61
  ]
62
 
63
+ def _generate_tables(self, adata, batch_size, split):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  idx = 0
 
 
 
 
 
 
 
 
 
65
 
66
+ # save the gene names as the id for the raw_counts feature
67
+ self.info.features["raw_counts"].id = f"{','.join(adata.var.index.tolist())}"
68
+
69
+ # iterate over the data in batches
70
+ for batch in range(0, adata.shape[0], batch_size):
71
+
72
+ # raw counts
73
+ if RAW_COUNTS == "X":
74
+ chunk = adata.X[batch:batch+batch_size].tolil().astype('int32')
75
+ elif RAW_COUNTS == "raw.X":
76
+ chunk = adata.raw.X[batch:batch+batch_size].tolil().astype('int32')
77
+ else:
78
+ raise("Not valid raw_counts")
79
+ df = pd.DataFrame([chunk.data,chunk.rows]).T
80
+ df.columns = ['raw_counts','rows']
81
+ df['size'] = chunk.shape[1]
82
+
83
+ # other features are all mapped to a list of strings
84
+ for feature in FEATURES_TO_INCLUDE:
85
+ df[feature] = list(map(str, adata.obs[feature][batch:batch+batch_size].tolist()))
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  pa_table = pa.Table.from_pandas(df)
88
  yield idx, pa_table
89
  idx += 1