fusion-image-to-latex-datasets / val /printed_mathematical_expressions_val.csv
hoang-quoc-trung's picture
Update dataset
dbbe3e9 verified
image_filename,latex
6f78981de3.png,"\bar { S } _ { 0 } \left[ A _ { \alpha \beta } ^ { \; \; \; ( \sigma ) } \right] = S _ { 0 } \left[ A _ { \alpha \beta } ^ { \; \; \; ( \sigma ) } \right] + g \int d ^ { n } x \, a _ { 0 } + O \left( g ^ { 2 } \right) ,"
b56d9e3df9d19eb.png,{ \vec { E } } ( x ) = { \hat { e } } \frac { \int _ { V } ^ { x } \rho d v } { \int _ { \partial V } d S } .
6accf4952ca454f.png,\partial _ { \mu } < \frac { 1 } { \sqrt { \pi } } ( \partial ^ { \mu } \theta ) > \equiv < \frac { 1 } { \sqrt { \pi } } ( \partial _ { \mu } \partial ^ { \mu } \theta ) > = \frac { e } { \pi } \epsilon ^ { \nu \mu } ( \partial _ { \mu } v _ { \nu } ) .
714b5ff4a80bc45.png,J = \int \mathrm { d } ^ { 2 } x \epsilon _ { i j } x ^ { i } T ^ { o j }
663f958bb7.png,"[ J _ { 3 } , N _ { 1 } ] = i N _ { 2 } , \qquad [ J _ { 3 } , N _ { 2 } ] = - i N _ { 1 } , \qquad [ N _ { 1 } , N _ { 2 } ] = 0 ."
f43b2d9df8.png,I _ { 6 } = \frac { 1 } { 2 \kappa ^ { 2 } } \int d ^ { 6 } x \sqrt { - G } e ^ { - \Phi } [ R _ { G } + G ^ { M N } \partial _ { M } \Phi \partial _ { N } \Phi
sume_data-00004-of-00009_52586.png,\displaystyle P _ { k } ^ { s }
1cb27dec16.png,"S _ { 2 , c } ^ { ( 0 ) } = { \frac { 1 } { 2 } } x ^ { i } \zeta _ { i } x ^ { i } + { \frac { 1 } { 2 } } y _ { \alpha } ^ { * } \varepsilon ^ { \alpha \beta } y _ { \beta } ^ { * } ,"
deca8028ea2cdc6.png,"R ( z , { \bar { z } } ) = \frac { a z ^ { 2 } ( z { \bar { z } } + 1 ) + b z ^ { 2 } ( z { \bar { z } } - 1 ) } { a ( z { \bar { z } } + 1 ) + b ( - z { \bar { z } } + 1 ) } ."
65077aaf1f.png,E ^ { a } = d X ^ { \underline { { { m } } } } ( \xi ) u _ { \underline { { { m } } } } ^ { a } ( \xi )
21d60c0dbc.png,"A _ { \mu } ^ { a } \, = \, \hat { A } _ { \mu } n ^ { a } \, + \, \frac { 3 } { 2 g } \, f _ { a b c } \, \frac { n ^ { b } \, \partial _ { \mu } n ^ { c } } { n \cdot n } \, + \, Y _ { \mu } ^ { a } \, ;"
process_49_6507.bmp,"\begin{array} { r } { A = U B , } \end{array}"
sume_data-00005-of-00009_151428.png,"u ( t _ { n } x , t _ { n } ) - u ( t _ { n } A x , t _ { n } ) = 0 , \qquad x \in \partial B _ { R } ( 0 ) ,"
sume_data-00007-of-00009_134287.png,"\hat { \Delta } _ { \mathrm { e x p } } ( w ) = \hat { \Delta } ( w ) + \sigma ( w ) \eta ,"
aca53d0f64e1e9a_basic.png,R _ { \alpha \beta } = \frac { 1 } { \epsilon ^ { 2 } M ^ { 4 } \phi ^ { 2 } } \left( \tau _ { \alpha \beta } - \frac { 1 } { 2 } \eta _ { \alpha \beta } \tau \right) .
96edfb4214be490_basic.png,C \backslash \tilde { W }
99351eb84ef26e5.png,"g ( \theta _ { 1 } , \theta _ { 2 } , \theta _ { 3 } ) = ( \frac { 2 \pi } { 3 } - 2 \theta _ { 1 } , \frac { 2 \pi } { 3 } + \theta _ { 2 } , \frac { 2 \pi } { 3 } + \theta _ { 3 } )"
74f82296f8e9b03.png,( D _ { 3 } ) _ { \alpha } = \theta _ { \alpha C } ( \vec { X } _ { B } \cdot \vec { P } _ { A } ) X _ { D } ^ { a } { d ^ { C D } } _ { F } f ^ { B A F } + \frac { 1 } { 2 } ( \gamma ^ { a b } \theta _ { A } ) _ { \alpha } X _ { d B } ( \vec { X } _ { C } \cdot \vec { P } _ { D } ) ( { c _ { E } } ^ { A B } f ^ { E C D } + { c _ { \lambda } } ^ { A B } f ^ { \lambda C D } ) .
26c50b6dccd1958_basic.png,"M _ { A } ^ { s } = M _ { A } = 1 . 0 3 2 ~ \mathrm { G e V } , M _ { V } ^ { s } = M _ { V } = 0 . 8 4 ~ \mathrm { G e V } \, ."
9f9aa46b93c3da8_basic.png,{ P } _ { L } = { \frac { { \Gamma } _ { 0 0 } } { \Gamma } } = { \frac { \mid H _ { 0 0 } \mid ^ { 2 } } { \mid H _ { + + } \mid ^ { 2 } + \mid H _ { -- } \mid ^ { 2 } + \mid H _ { 0 0 } \mid ^ { 2 } } } .
969d6e7d3321d29_basic.png,"{ \cal O } \left( L , \, \Delta m _ { 2 , \, 1 } ^ { 2 } \right) \, \ge \, { \cal O } \left( L , \, \Delta m _ { 3 ( 2 , \, 1 ) } ^ { 2 } \right) \quad ."
a708597eb86c875_basic.png,\widetilde { M _ { e } } = c _ { u } D _ { u } + c _ { d } \widetilde { M _ { d } } .
process_49_2798.bmp,"\begin{align*} \theta ^ I = \left ( \dot { p } \delta q + p \delta \dot { q } \right ) \otimes \mbox { \rm d } t \ , . \end{align*}"
process_49_609.bmp,"\begin{array} { r } { v = c \ , T _ { m - a } ( \overline { { X } } ) T _ { a } ( Y ) v } \end{array}"
a7118b2c21aaa79_basic.png,\mathbf { \Lambda } _ { \mathbf { H } } \mathbf { \Lambda } _ { \mathbf { H } } ^ { + } \mathbf { \Lambda } _ { \hat { D } } \mathbf { \Lambda } _ { \mathbf { H } } ^ { + * } \mathbf { \Lambda } _ { \mathbf { H } } ^ { * } = \mathbf { \Lambda } _ { \hat { D } }
58307214e1.png,"b ) \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Phi = ( 2 n + 1 - \alpha ) \pi ,"
f266c91e0ee651b_basic.png,"\left< \frac { Z \alpha } { 4 m ^ { 2 } r ^ { 3 } } \left( \frac { 1 } { E - H } \right) ^ { \prime } \frac { Z \alpha } { 4 m ^ { 2 } r ^ { 3 } } \right> _ { \mathrm { n P } } = \left( - \frac { 2 2 7 } { 8 6 4 0 } - \frac { 1 } { 9 6 n } + \frac { 1 } { 8 0 n ^ { 2 } } \right) \, \frac { ( Z \alpha ) ^ { 6 } \, m } { n ^ { 3 } } \, ."
281868654e57f67_basic.png,"i \hbar \partial _ { t } { c _ { l } ( t ) } = [ c _ { l } ( t ) , H _ { 0 } + \lambda V ]"
sume_data-00005-of-00009_161807.png,"\displaystyle \mathrm { T } ( x , y , s )"
sume_data-00002-of-00009_55406.png,"\displaystyle A _ { \beta } : = A ^ { * } ( \beta _ { - } f ) + A ( \beta _ { + } f ) ,"
54d00c4f0add2d0.png,"B _ { j , k } = \left\{ \begin{array} { l l } { { \frac { \displaystyle 2 ( r - j ) k } { \displaystyle r } \qquad } } & { { j \geq k } } \\ { { B _ { k , j } } } & { { j < k } } \end{array} \right. , \qquad \qquad b _ { j } = \frac { r - j } { r } ."
d0c5457f60121c6.png,"\int d ^ { 3 } x \int d ^ { 3 } y \left[ \sum _ { n } f _ { i } ^ { a } ( x _ { n } ) \frac { \chi _ { \epsilon } ( x , x _ { n } ) \chi _ { \epsilon } ( y , x _ { n } ) } { \epsilon ^ { 3 } } \right] \left[ \tau _ { i } \partial _ { a } \xi ( x ) + ( \omega _ { a } ( x _ { n } ) \xi ( x ) ) \right] ^ { A } \bar { \xi } _ { A } \; ."
sume_data-00008-of-00009_175486.png,"( J _ { 1 } < 0 , J _ { 2 } < 0 , J _ { 3 } < 0 ) , \quad ( J _ { 1 } < 0 , J _ { 2 } > 0 , J _ { 3 } > 0 ) ,"
227288bbe99e9fc_basic.png,\omega _ { y } ^ { \mathrm { 3 D } } - \omega _ { y } ^ { \mathrm { 2 D } }
752a0c9eb1d7e64.png,"I = \int _ { 0 } ^ { T } d t \int _ { - \infty } ^ { 0 } d x \, \dot { \phi } ^ { 2 } = \frac { 8 \pi } { \beta ^ { 2 } } ( \rho - \pi ( 1 - a _ { + } ) ) ,"
sume_data-00005-of-00009_46733.png,A ^ { ( 0 ) } = { \frac { 2 e ^ { 2 } } { \kappa } } \cot \theta - i v _ { 0 } \ .
sume_data-00007-of-00009_23508.png,\displaystyle \phi _ { I V } ( x )
42ec865941.png,"\xi = \left\{ \begin{array} { c c c } { { q _ { 2 } \, , } } & { { ~ ~ } } & { { \mathrm { ( I ) } } } \\ { { \sqrt { 2 q _ { 1 } ^ { 2 } + q _ { 2 } ^ { 2 } } \, , } } & { { } } & { { \mathrm { ( I V ) } } } \end{array} \right."
1bd1485c30.png,"\beta ( x ^ { + } , x ^ { - } ) \rightarrow \beta ( y ^ { + } , y ^ { - } ) - \ln ( { \frac { \partial y ^ { + } } { \partial x ^ { + } } } { \frac { \partial y ^ { - } } { \partial x ^ { - } } } )"
sume_data-00005-of-00009_99426.png,"\displaystyle ( L _ { 1 } , L _ { 2 } )"
sume_data-00007-of-00009_82863.png,"\displaystyle \textrm { ( f e r m i o n s , \omega _ { n } = ( 2 n + 1 ) \pi T ) } \, ."
5ec47fb431a042a.png,\frac { r } { \Lambda } b _ { G } \frac { \alpha _ { G } } { 8 \pi } G _ { \mu \nu } G ^ { \mu \nu }
e8445a818169f3e_basic.png,"\Lambda _ { c } ^ { \mu } ( p , p ^ { \prime } ) = - \frac { 2 i } { ( 2 \pi ) ^ { 4 } } \sum _ { K } \int _ { 0 } ^ { 1 } d x \int _ { 0 } ^ { x } d y \int d ^ { 4 } k \, \bar { \Gamma } _ { K } \frac { { \cal N } } { [ k ^ { 2 } - P ^ { 2 } ] ^ { 3 } } \bar { \Gamma } _ { K } ,"
249730246bd8a23_basic.png,"{ \cal L } = F ^ { 2 } + \partial ^ { 2 } F ^ { 4 } + \partial ^ { 4 } F ^ { 6 } + \partial ^ { 6 } F ^ { 8 } + \dots ,"
4f78de24da0ec1b_basic.png,\sqrt { 2 } \Phi = \sigma _ { 0 } ( \tau ) + \varphi _ { 1 } + i \varphi _ { 2 } .
541e66a104461a1_basic.png,"\rho ( f _ { j } ( z _ { m } ) , f ( z _ { m } ) ) > \frac { \varepsilon } { 4 }"
0b8ff7ae73463ff_basic.png,{ \cal R } = a ( 1 + r _ { 1 } a + r _ { 2 } a ^ { 2 } + \ldots ) .
cac7d497c1c6ab2.png,"S _ { l _ { 0 } } = \{ g \in G \ \, \ \ A d ^ { * } ( g ) l _ { 0 } = l _ { 0 } \} \ \ ."
488ac8dc2054142_basic.png,"\Gamma _ { ( n ) } ^ { \mu _ { 1 } \ldots \mu _ { n } } \Gamma _ { ( m ) } ^ { \nu _ { 1 } \ldots \nu _ { m } } \Gamma _ { ( n ) \, \mu _ { 1 } \ldots \mu _ { n } } ~ = ~ f ( n , m ) \Gamma _ { ( m ) } ^ { \nu _ { 1 } \ldots \nu _ { m } }"
sume_data-00008-of-00009_58625.png,\displaystyle - \frac { 2 2 5 } { 2 } \left( d _ { \sigma } \right) ^ { 6 } \sigma ^ { a } \sigma ^ { b } \sigma ^ { c } \sigma ^ { d } \sigma ^ { i } + 4 5 0 \left( d _ { \sigma } \right) ^ { 4 } \sigma ^ { a } \sigma ^ { b } \sigma ^ { c } d _ { \sigma } ^ { d } d _ { \sigma } ^ { i } + 2 2 5 \left( d _ { \sigma } \right) ^ { 4 } \sigma ^ { a } \sigma ^ { b } d _ { \sigma } ^ { c } d _ { \sigma } ^ { d } \sigma ^ { i }
process_49_2046.bmp,"\begin{array} { r } { \epsilon ^ { k } + \epsilon ^ { - k } \pm 2 = \left\{ \begin{array} { l l } { \left( \epsilon ^ { k / 2 } \pm \epsilon ^ { - k / 2 } \right) ^ { 2 } } & { \mathrm { ~ i ~ f ~ k ~ i ~ s ~ e ~ v ~ e ~ n ~ , ~ } } \\ { \epsilon \left( \epsilon ^ { \frac { k - 1 } { 2 } } \pm \epsilon ^ { \frac { - k - 1 } { 2 } } \right) ^ { 2 } } & { \mathrm { ~ i ~ f ~ k ~ i ~ s ~ o ~ d ~ d ~ . ~ } } \end{array} \right. } \end{array}"
26b6e0b46d9c7c2.png,\varphi _ { n } \partial _ { \tau } \varphi _ { - n } - \varphi _ { - n } \partial _ { \tau } \varphi _ { n } = 2 n i
process_49_5270.bmp,"\begin{array} { r } { X \left( t \right) = \exp \left( \alpha _ { 1 } \left( t \right) L _ { 1 } + \alpha _ { 2 } \left( t \right) L _ { 2 } + \alpha _ { 3 } \left( t \right) L _ { 3 } \right) , } \end{array}"
0ddf0a226e8ec51.png,\phi ^ { \prime } = \hat { J } _ { + t } ^ { n } \phi
sume_data-00005-of-00009_123251.png,\displaystyle \theta V _ { \mathcal { H } }
sume_data-00007-of-00009_110479.png,"F^{-1}_{\nu_{i}}(\alpha)=T_{\epsilon_{i}}\big{[}T_{0}\{F^{-1}_{\mu}(\alpha)\}\big{]},\qquad\alpha\in(0,1)."
e3b493e5539b217_basic.png,f ( x ) = \frac { 1 } { \pi \sqrt { 1 - x ^ { 2 } } }
5af49d683c.png,"d \bar { s } ^ { 2 } \sim \frac { a ^ { 2 } } { ( r - r _ { 1 } ) ^ { 2 } } \, d t ^ { 2 } - d r ^ { 2 } - r _ { 1 } ^ { 2 } \, d \Omega ^ { 2 } ."
a03b7ab7325e832.png,"\Omega ^ { ( 4 ) } = 2 4 \; V ( \pi / 3 , \; \pi / 3 , \; \psi / 2 ) = 6 \; S ( \pi / 6 , \; \pi / 3 , \; ( \pi - \psi ) / 2 ) ."
1df786fd01.png,b ( p ) a _ { S } { } ^ { \dag } ( m ) = - \theta ( m > p ) \frac { 1 } { \sqrt { m } } b ^ { \dag } ( m - p )
e6e0f36fc98f14e.png,"{ \cal F } _ { 0 1 2 3 y } = - { \frac { 3 } { 2 } } A ^ { 3 } N B ^ { - 1 } D ^ { - 2 } ( y ) D ^ { \prime } ( y ) \ ,"
68a5afb3c9ed4c8_basic.png,"j _ { \pm } = - g \left[ v _ { \sigma } , G _ { \sigma \pm } \right] + j _ { \pm } ^ { i n d } ."
3c15e7dad9abe2a.png,"Q _ { k z z } = \frac { 1 } { z - z _ { k } ^ { c } } - \frac { 1 } { z - z _ { 1 } ^ { c } } , ~ ~ ~ ~ Q _ { k \bar { z } \bar { z } } = 0 , ~ ~ ~ ~ ( k = 2 , \dots { \cal N } ) ."
process_49_7031.bmp,"\begin{array} { r } { \| ( u _ { \nu = 1 , - } ( t ) , u _ { \nu = 1 , - } ^ { \prime } ( t ) ) \| _ { \omega _ { d } } ^ { 2 } \leq \operatorname* { m a x } \left\{ 1 , \frac { 1 } { \mu _ { 1 } } \right\} \left( | u _ { 1 } | ^ { 2 } + M \left( | A ^ { 1 / 2 } u _ { 0 } | ^ { 2 } \right) \right) . } \end{array}"
029fa22bcf78569_basic.png,"\mathrm { S F R } \, ( M _ { \odot } \, \mathrm { y r } ^ { - 1 } ) = 4 . 5 \times 1 0 ^ { - 4 4 } L _ { \mathrm { T I R } } \, ( \mathrm { e r g s ~ s ^ { - 1 } } ) ."
process_49_4938.bmp,"\begin{array} { r } { 1 + R \left( \frac { z } { 1 - B ( z ) } \right) = \frac { 1 } { 1 - B ( z ) } , 1 - B \left( \frac { z } { 1 + R ( z ) } \right) = \frac { 1 } { 1 + R ( z ) } . } \end{array}"
sume_data-00001-of-00009_142960.png,\displaystyle t _ { 0 } \to \sqrt { - \epsilon } ( 1 \pm i | \lambda | ) / 2 .
sume_data-00005-of-00009_59641.png,"\displaystyle 6 \times \frac { \Gamma \left( 2 + a _ { K } \right) } { \Gamma \left( 4 + a _ { K } \right) } \times \, _ { 2 } F _ { 1 } \left( 3 , a _ { K } ; a _ { K } + 4 ; - 1 \right)"
0aba05fdb2e1f1a_basic.png,\widetilde { \mathcal { D } } ^ { \alpha _ { j } }
7601bcebb08426c.png,m _ { \chi } = \frac { ( n + 4 ) ( n + 3 ) } { 2 ^ { \frac { n } { 2 } } } \alpha _ { n } ( \frac { V _ { \mathrm { B L } } } { M _ { \mathrm { p l } } } ) ^ { \frac { n } { 2 } } V _ { \mathrm { B L } } .
22d9b49fa267212.png,"\chi _ { 1 , i } ^ { ( 2 , 2 k + 1 ) } ( q ) = \chi _ { 1 , 2 k + 1 - i } ^ { ( 2 , 2 k + 1 ) } ( q ) = \displaystyle \sum _ { n _ { 1 } \geq \cdots \geq n _ { k - 1 } \geq 0 } \frac { q ^ { n _ { 1 } ^ { 2 } + \cdots + n _ { k - 1 } ^ { 2 } + n _ { i } + \cdots + n _ { k - 1 } } } { ( q ) _ { n _ { 1 } - n _ { 2 } } \cdots ( q ) _ { n _ { k - 2 } - n _ { k - 1 } } ( q ) _ { n _ { k - 1 } } } ,"
process_49_6063.bmp,"\begin{array} { r } { \operatorname* { l i m } _ { i } \ , { \int _ { X } \ , \int _ { G } \ , \phi ( t x ) \ , d \mu ^ { n _ { i } } ( t ) \ , d \nu ( x ) } \ , = \ , 0 \ , . } \end{array}"
8c6c43f6ada2f41.png,V _ { l o n g } = - \int \frac { d s } { s ^ { 3 / 2 } } \frac { e ^ { - b ^ { 2 } s } } { 8 \sqrt { \pi } c _ { 1 } s c _ { 2 } s } ( c _ { 1 } ^ { 2 } - c _ { 2 } ^ { 2 } ) ^ { 2 } s ^ { 4 } ( \frac { \sqrt { \pi } } { L _ { 1 } s ^ { 1 / 2 } } ) = - \frac { ( c _ { 1 } ^ { 2 } - c _ { 2 } ^ { 2 } ) ^ { 2 } } { 8 c _ { 1 } L _ { 1 } c _ { 2 } b ^ { 2 } } .
5d1cd9afa9e6c3a_basic.png,H = \frac { g ^ { 2 } } { 2 a } E ^ { 2 } + \frac { 1 } { 2 a g ^ { 2 } } U U U ^ { + } U ^ { + } = H _ { E } + H _ { B } .
d83398b38837067.png,"\delta _ { ( \epsilon _ { v } , a _ { v } ) } h = ( a _ { v } + \{ \epsilon _ { v } , . \} ) h"
3e42a6dee1a1819_basic.png,\left( \begin{array} { c c } { { \cos \theta } } & { { - \sin \theta } } \\ { { \sin \theta } } & { { \cos \theta } } \end{array} \right)
a22a466a6572ade_basic.png,"\langle L _ { \alpha } \omega , \omega \rangle \leq 0"
5b66542964.png,"X _ { i k } \to ( i , k ) X _ { i k } , \quad Q _ { \pm k } \to ( 1 , k ) Q _ { \pm k }"
c904ab11438024e_basic.png,"M _ { Z } ^ { 2 } = \frac 1 2 ( g ^ { 2 } + g ^ { \prime 2 } ) [ v _ { 1 } ^ { 2 } + v _ { 2 } ^ { 2 } + 4 y ^ { 2 } ] ,"
sume_data-00005-of-00009_13158.png,"( { \cal W } _ { 2 1 } ( l , t , z ) { \cal P } _ { 1 } ( z ) + { \cal W } _ { 2 2 } ( l , t , z ) { \cal P } _ { 2 } ( z ) ) ^ { - 1 } ."
5c7ea5dac9.png,"{ \cal L } ( M _ { m + 1 \, j } ) = \lambda M _ { m + 1 \, j } \,"
sume_data-00004-of-00009_45800.png,\displaystyle e _ { 3 } :
5f1da3f5d2.png,"V ( \varphi _ { 0 } ) = - \sum _ { n } \frac { 1 } { n ! } \tilde { \Gamma } ^ { ( n ) } ( 0 , 0 , . . ) ( \varphi _ { 0 } ) ^ { n } ,"
d7d8e0117493ac1_basic.png,"( \widehat { \phi } , \widehat { \psi } ) = n ( \phi , \psi )"
d720b8b69e3cab8.png,"\begin{array} { r c l } { { S ^ { \mathrm { g r a v . } } } } & { { = } } & { { - { \textstyle \frac { T _ { K K 1 1 } } { 2 } } \int d ^ { 6 } \xi d \sigma \sqrt { | \gamma | } \ \left\{ \hat { \hat { k } } ^ { 4 / 7 } \left[ \gamma ^ { i j } D _ { i } \hat { X } ^ { \hat { \mu } } D _ { j } \hat { X } ^ { \hat { \nu } } \hat { \hat { g } } _ { \hat { \mu } \hat { \nu } } \right. \right. } } \\ { { } } & { { } } & { { } } \\ { { } } & { { } } & { { \left. \left. - 2 a ^ { i } D _ { i } \hat { X } ^ { \hat { \mu } } \hat { \hat { g } } _ { \hat { \mu } y } - ( \ell ^ { - 2 } - \ell ^ { 1 / 2 } a ^ { 2 } ) \hat { \hat { g } } _ { y y } \right] - 5 \right\} \, , } } \end{array}"
process_49_6190.bmp,\begin{array} { r } { \hat { v } [ k ] = \arg \operatorname* { m i n } _ { v [ k ] \in \mathcal { V } } | \zeta - v [ k ] | ^ { 2 } } \end{array}
sume_data-00001-of-00009_46164.png,"\displaystyle { } ^ { M } \! F _ { p , q } ^ { ( \alpha , \beta ) } ( \lambda _ { 1 } , \lambda _ { 2 } ; \lambda _ { 3 } ; z ; \rho ) = \frac { 1 } { 2 \pi i } \int _ { c - i \infty } ^ { c + i \infty } \frac { { } ^ { M } \Gamma _ { p , q } ^ { ( \alpha , \beta ) } ( s ; 0 ) B ( \lambda _ { 2 } \! + \! s , \lambda _ { 3 } \! + \! s \! - \! \lambda _ { 2 } ) } { B ( \lambda _ { 2 } , \lambda _ { 3 } \! - \! \lambda _ { 2 } ) } { } _ { 2 } F _ { 1 } ( \lambda _ { 1 } , \lambda _ { 2 } \! + \! s ; \lambda _ { 3 } \! + \! 2 s ; z ) \rho ^ { - s } d s ."
e0f8e19ecca47ea_basic.png,R ( z ) = \tilde { D } ( b ( z ) ) \left( \frac { 2 } { 3 } - z \right) ^ { 1 + \nu } .
314e1996fd.png,{ \frac { \partial \dot { \phi } _ { i } } { \partial \phi _ { j } } } ~ \sim ~ { \frac { \delta _ { i j } } { \rho - \rho _ { 1 } } } + { \cal { O } } ( 1 ) .
1a12a661e8dca32_basic.png,\bar { T } ^ { a b c \mu } { u _ { a } } ^ { d \nu } { u _ { d } } ^ { e \lambda } { f _ { - e } } ^ { f \rho \sigma } \gamma _ { 5 } \gamma _ { \rho } D _ { \nu \lambda \sigma } T _ { b c f \mu } + \mathrm { H . c . }
sume_data-00000-of-00009_60693.png,\displaystyle \frac { \partial g } { \partial r } =
8295a2d9f1db014.png,S _ { e u c l } = \int d ^ { d } x \sqrt { g } \left( R - { \frac { 1 } { 2 } } \partial _ { \mu } \phi \partial ^ { \mu } \phi + { \frac { 1 } { 2 } } e ^ { b \phi } \partial _ { \mu } \chi \partial ^ { \mu } \chi - V ( \phi ) \right) .
3e5aeb81c75f79a_basic.png,"\sigma _ { S } = \sqrt { \sum \nabla _ { \alpha } S \ E _ { \alpha \beta } \, \nabla _ { \beta } S } ."
sume_data-00008-of-00009_11856.png,\displaystyle \leq L | x - \bar { x } | ;
c7d7d5e6e175721_basic.png,{ \bar { \Phi } } _ { 1 } \approx { \frac { 1 } { m _ { D } ^ { 2 } } } { \frac { 1 } { 2 \pi } } \int _ { \mu _ { 2 } } { \frac { d k } { k } }
7259041e89c7b9e.png,"\hat { V } = { \cal O } ^ { - 1 } ( 1 - V _ { D } S ) ^ { - 1 } ( V _ { D } - S ) { \cal O } ,"
process_49_9193.bmp,"\begin{array} { r } { \left( { } ^ { c } D _ { 0 + } ^ { 0 , \alpha ^ { \prime } , \beta , \beta ^ { \prime } , \gamma } f \right) ( x ) = \left( { } ^ { c } D _ { 0 + } ^ { \gamma , \alpha ^ { \prime } - \gamma , \beta ^ { \prime } - \gamma } f \right) ( x ) , \ \ \ \ \left( { } ^ { c } D _ { - } ^ { 0 , \alpha ^ { \prime } , \beta , \beta ^ { \prime } , \gamma } f \right) ( x ) = \left( { } ^ { c } D _ { - } ^ { \gamma , \alpha ^ { \prime } - \gamma , \beta ^ { \prime } - \gamma } f \right) ( x ) . } \end{array}"
45bb40083c1029b_basic.png,f ^ { \prime } ( L - U ) \; = \; B _ { 1 } r _ { 1 } e ^ { r _ { 1 } ( L - U ) } + J _ { 1 } r _ { 2 } e ^ { r _ { 2 } ( L - U ) } \; < \; 0 .
1d6a70f561a2275_basic.png,"W = \lambda _ { 1 } S \mathrm { T r } \, \tilde { \Phi } \Phi + \lambda _ { 2 } \mathrm { T r } \, \tilde { \Phi } \Phi ^ { 2 } \; ."
450385b92b.png,X _ { R } ^ { \mu } ( \tau - \pi ) = X _ { L } ^ { \mu } ( \tau + \pi ) \mathrm { ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ( m o d u l o ~ c o n s t a n t ) }
d5fe6b3868c4253_basic.png,"( \bar { \rho } , \bar { v } , \bar { p } )"
sume_data-00001-of-00009_48657.png,"\operatorname* { l i m } _ { \xi \to \eta \mp } \kappa ( \eta , \xi ) = \pm g ( \eta , \eta )"
4a0f33a99012abe_basic.png,\tilde { \xi } \equiv b \xi
process_49_6907.bmp,"\begin{array} { r } { \operatorname* { l i m } _ { M \rightarrow \infty } \tilde { \mathcal { W } } ^ { N , M } = \tilde { \mathcal { W } } ^ { N } , \ \ \ \ \ \ \ \operatorname* { l i m } _ { N \rightarrow \infty } \tilde { \mathcal { W } } ^ { N } = \tilde { \mathcal { W } } , } \end{array}"
f615cf24448363b.png,u ( s ^ { \prime } ) - 2 \frac { s ^ { \prime } } { s } \int _ { 0 } ^ { s } d s ^ { \prime \prime } e A _ { - } \left( x ^ { + } - u ( s ^ { \prime \prime } ) \right) + 2 \int _ { 0 } ^ { s ^ { \prime } } d s ^ { \prime \prime } e A _ { - } \left( x ^ { + } - u ( s ^ { \prime \prime } ) \right) = 0 \; .
process_49_6641.bmp,"\begin{array} { r } { u _ { r } = h ( r , u , \bar { u } ) , u _ { t } = g ( r , u , \bar { u } ) } \end{array}"
e1e9126612e7e90_basic.png,"- 4 i \dot { \alpha } _ { i } ( k , t ) + \left( \omega ^ { 2 } - \omega _ { c } ^ { 2 } + { \cal I } ( t ) \right) \alpha _ { i } ( k , t ) - \left( { \frac { A _ { 0 } ^ { 4 } } { 2 4 } } - { \cal C } ( t ) \right) \alpha _ { i } ^ { * } ( k , t ) = 0"
354e565cd675841_basic.png,\gamma _ { \mathrm { m B D } } \approx 1
process_49_9394.bmp,"\begin{array} { r } { \| T \| _ { C ^ { m } , \Omega , g } = \operatorname* { m a x } _ { 0 \le l \le m } \operatorname* { m a x } _ { x \in \Omega } | \nabla ^ { l } T ( x ) | \ ; ; } \end{array}"
sume_data-00004-of-00009_148556.png,"\displaystyle { \tt D i p o l e 1 } \ ( 1 ) \mathrm { - } 2 , \ ( 2 ) \mathrm { - } 2 ,"
sume_data-00005-of-00009_10161.png,\displaystyle r _ { \cal D } ( \varepsilon _ { 2 } ( \xi ^ { 5 } ) - \varepsilon _ { 2 } ( \xi ^ { - 5 } ) )
3740448f96a3fbb_basic.png,\tau _ { m i x i n g } ( \varepsilon ) \leq \lceil 2 n ^ { 2 } ( 1 + \lambda ) ( \log n + 1 ) \rceil \lceil \log \varepsilon ^ { - 1 } \rceil .
109f6ecc3bd602b_basic.png,"U _ { \odot } , V _ { \odot } , \sigma _ { 0 }"
sume_data-00002-of-00009_80480.png,"\mathcal{L}_{\theta}=-\frac{1}{Nh}\sum_{i=1}^{N}\bigg{[}\Big{(}\sum_{t=t_{0}}^{t_{0}+h-1}\gamma^{t-t_{0}}\mathcal{R}(\mathbf{s}^{i}_{t},\mathbf{a}^{i}_{t})\Big{)}+\gamma^{h}V_{\phi}(\mathbf{s}^{i}_{t_{0}+h})\bigg{]},"
fb13b9dc164abb6_basic.png,\sigma _ { e \gamma } ^ { L / R } \left( s _ { e \gamma } \right) = \sigma _ { P } ^ { L / R } \left( s _ { e \gamma } \right) \cdot \mathrm { B r } \left( \tilde { e } _ { L / R } ^ { - } \longrightarrow e ^ { - } \tilde { \chi } _ { 1 } ^ { 0 } \right) .
process_49_602.bmp,"\begin{array} { r } { \gamma _ { g } e _ { i } : = \sum _ { j = 1 } ^ { n } g _ { j i } e _ { j } \quad ( i = 1 , \ldots , n , \ , g \in U ( n ) ) . } \end{array}"
sume_data-00005-of-00009_45209.png,\sum _ { i = 0 } ^ { j } \frac { ( p - 1 - i ) d _ { Q ^ { \prime } } } { p } ( p - 1 ) .
ff0554f5bde085e.png,"W = \left( \zeta + a _ { 0 } \frac { x _ { 1 } ^ { 8 - 2 n } } { \zeta } \right) + x ^ { 2 } + y ^ { 2 } + z ^ { 6 } + c _ { 3 } z ^ { 4 } + c _ { 2 } z ^ { 2 } + c _ { 1 } + \cdots ,"
7395ad5a2e09606_basic.png,p ( 1 ) = \frac { \omega _ { 1 } + \omega _ { ( L _ { d } - 1 ) } } { \pi } = \frac { 2 \omega _ { 1 } } { \pi }
268a7825d86a5a9_basic.png,Z w Z \subseteq ( X \cup T ) ^ { * }
9eb54dce907570f.png,"\hat { F } _ { y \bar { y } } = 0 , ~ ~ ~ ~ \partial _ { y } \Phi = 0 ,"
18f4c9dd996d426_basic.png,"\bar { v } = 1 - \frac { 2 2 } { 1 3 5 } \frac { \alpha ^ { 2 } } { m ^ { 4 } } B ^ { 2 } = 1 - \frac { 4 4 } { 1 3 5 } \frac { \alpha ^ { 2 } } { m ^ { 4 } } \, u \, ."
process_49_8361.bmp,"\begin{array} { r } { s = \frac { p } { \tau _ { p } } \left( 1 - \frac { p _ { 0 } } { q _ { - } } \right) + p _ { 0 } , \beta _ { 2 } = s ( q _ { + } / p _ { 0 } ) ^ { \prime } - \beta _ { 1 } ( 1 - \tau _ { p _ { 0 } } ) . } \end{array}"
process_49_9126.bmp,"\begin{array} { r } { \partial _ { j } = ( 1 + \beta t _ { j } ) ~ \frac { 1 - s _ { j } } { t _ { j } - t _ { j + 1 } } \ ; , } \end{array}"
09433d8b8c11f8c.png,R _ { ( 0 ) } ^ { \mathrm { b o u n d a r y } } ( r ) = A _ { \mathrm { i n } } e ^ { i \frac { \omega \ell ^ { 2 } } { r } } + A _ { \mathrm { o u t } } e ^ { - i \frac { \omega \ell ^ { 2 } } { r } } .
sume_data-00002-of-00009_166815.png,"\displaystyle \delta ( \| m \partial _ { 2 } ^ { 2 } \eta \| _ { 0 } ^ { 2 } + \| u \| _ { 2 } ^ { 2 } ) ,"
75be71f239.png,\Psi _ { ( 0 ) } ( q ) = \Bigl ( \frac { m \Omega } { \pi \hbar } \Bigr ) ^ { 1 / 4 } e ^ { - \frac { m \Omega } { 2 \hbar } q ^ { 2 } } .
99534d55dc0c4f7.png,"\theta = \left( \begin{array} { c c c } { { \theta _ { i j } } } & { { 0 } } & { { 0 } } \\ { { 0 } } & { { 0 } } & { { \theta } } \\ { { 0 } } & { { - \theta } } & { { 0 } } \end{array} \right) \ , i , j = 1 , \dots , 8 \ ."
process_49_4273.bmp,\begin{array} { r } { \Delta _ { m ; g _ { i } } ^ { n _ { i } + 1 } f ( x ) = 0 } \end{array}
152ab8800301a0d.png,"p ^ { \underline { { m } } } p _ { \underline { { m } } } = 0 ,"
2c2ecaaaf9.png,"[ p _ { \mu } , [ \overline { { { p } } } _ { \alpha } , \overline { { { p } } } _ { \beta } ] ] = 0 \, , \quad \partial _ { \mu } F ^ { \gamma } { } _ { \alpha \beta } = 0 \, ,"
17e1b4fc3c2a1db_basic.png,\hat { { \pmb e } } _ { i } = { \pmb e } _ { i } \times { P O S } _ { i }
35e0ba3c93ae405_basic.png,{ \cal M } = i C s \int d ^ { 2 } b e ^ { i \Delta _ { T } . b } ( { \frac { g ^ { 2 } K _ { 0 } ( \lambda b ) } { 2 \pi } } ) ^ { 2 }
process_49_1406.bmp,"\begin{array} { r } { h _ { V } ( v , v ^ { \prime } ) = h _ { f ^ { \ast } Q } \left( \phi ( v ) , \phi ( v ^ { \prime } ) \right) = ( T \circ e v ^ { \ast } ( v ) , T \circ e v ^ { \ast } ( v ^ { \prime } ) ) _ { W } , } \end{array}"
0b33d3c2a4e2b24_basic.png,"( p ^ { 2 } - \Delta _ { d } ) D _ { d } ( p , y _ { i } ) = \delta ^ { ( d ) } ( y _ { i } ) \ ."
d3a125532b07aaf_basic.png,\Delta \alpha _ { h a d } ^ { ( 5 ) } ( m _ { Z } ^ { 2 } )
process_49_1339.bmp,\begin{array} { r } { \pi ^ { * } \varphi \cdot F = \sum m _ { i } F _ { p _ { i } } . } \end{array}
627d714e0d.png,"\zeta ( s , x ^ { 2 } ) = \sum _ { n } ( \lambda _ { n } ^ { 2 } + x ^ { 2 } ) ^ { - s } { . }"
process_49_9746.bmp,\begin{array} { r } { \sum _ { i = 1 } ^ { r } \log h ( \alpha _ { i } ) \geq \frac { 1 } { 2 } \log \frac { 1 + \sqrt 5 } { 2 } } \end{array}
4a039307ee.png,"u _ { k } ^ { ( s _ { 1 } , s _ { 2 } , s _ { 3 } , s _ { 4 } ) } = - \frac { 1 } { 1 2 } s _ { k } \sum _ { i < j } a _ { i j } s _ { i } s _ { j } + \frac { 1 } { 4 } \sum _ { i = 1 } ^ { 5 } a _ { k i } s _ { i } - \frac { 1 } { 2 } c _ { k } ."
process_49_1136.bmp,\begin{array} { r l } \end{array}
process_49_7698.bmp,\begin{array} { r } { E ^ { \ddagger } = ( V \times V ) \setminus ( E \cup P ) . } \end{array}
83194b7750baa22_basic.png,c _ { T + j } = c _ { j } + c _ { j + B } + \ldots + c _ { j + a B }
6c7fb4812bd472d.png,A _ { t } ^ { ( H ) } \simeq - \frac { \lambda ^ { 2 } } { 3 2 \pi m } \left\{ 2 - \frac { \vec { q } ^ { 2 } } { 6 m ^ { 2 } } - \frac { \Lambda ^ { 2 } } { m ^ { 2 } } + \frac { 3 \Lambda ^ { 4 } } { 4 m ^ { 4 } } \right\} .
56c2da344e.png,"W _ { E } ( \beta ) = - \frac 1 2 \operatorname * { l i m } _ { \nu \rightarrow 0 } { \frac { d } { d \nu } } \zeta ( \nu | \beta ) ~ ~ ~ ,"
sume_data-00001-of-00009_145318.png,E \left\{ \sum _ { i j } f ( X _ { i j } ) I ( X _ { i j } > 0 ) \right\} = n \Delta ^ { * } E _ { 0 } \{ h ( X ) f ( X ) \} .
14dd530afb8a575_basic.png,r _ { S ^ { i } } ^ { + } = \{ U . V \} _ { k _ { b s } }
d9126b8fe488299_basic.png,"K ^ { ( 0 ) } ( a ) = \int _ { 0 } ^ { \infty } d x \, { \frac { 1 } { x ^ { 2 } + 1 } } e ^ { - i a x } = { \frac { \pi } { 2 } } e ^ { - a } - { \frac { i } { 2 } } \left[ e ^ { - a } E i ( a ) - e ^ { a } E i ( - a ) \right]"
9c5fa9f61887274_basic.png,"\Theta _ { n } ^ { \alpha , \beta } ( x ) = \sum _ { j = 0 } ^ { n } c _ { j } ^ { ( n ) } { ( \alpha , \beta ) } x ^ { j } ."
72aa0bcd15d3b56.png,"{ \cal M } = { \cal S K } ( N _ { V } ) \otimes { \cal Q } ( N _ { H } ) ,"
dc18724640.png,Q ^ { \mu \nu } = 2 b C ^ { \mu \nu } - 2 a B ^ { \mu \nu }
5b65add4b8.png,Q = \left( \begin{array} { c c c } { { 0 } } & { { - 2 N } } & { { - 2 N } } \\ { { - 2 N } } & { { 2 N } } & { { 3 N } } \\ { { - 2 N } } & { { 3 N } } & { { 4 N } } \end{array} \right)
sume_data-00006-of-00009_126358.png,"U(t,r,\omega)=\big{(}u(t,r),\omega\big{)}"
process_49_3937.bmp,"\begin{array} { r } { \begin{array} { r c l } { \mathbb { E } ^ { \tilde { \mathbb { P } } } \left[ \Pi \left( t _ { i } , T _ { j } \right) \left| \mathcal { F } _ { 0 } \right. ; \tilde { A _ { i } } \left( T _ { j } \right) \right] } & { = } & { \mathbb { E } ^ { \mathbb { P } } \left[ \tilde { A } \left( t _ { i } , T _ { j } \right) \left| \mathcal { F } _ { 0 } \right. \right] } \end{array} } \end{array}"
d39fddd8a889cd3_basic.png,"T ( z ) = \ [ H _ { ( 8 , { } ^ { 1 } S _ { 0 } ) } ( M , \mu ) T _ { ( 8 , { } ^ { 1 } S _ { 0 } ) } ^ { \mathrm { e f f } } ( z , \mu ) + H _ { ( 8 , { } ^ { 3 } P _ { 0 } ) } ( M , \mu ) T _ { ( 8 , { } ^ { 3 } P _ { 0 } ) } ^ { \mathrm { e f f } } ( z , \mu ) \ ] \, ,"
sume_data-00002-of-00009_70313.png,"\displaystyle a _ { 1 1 } = \frac { 1 } { s } ( A _ { 4 } + t a _ { 1 q } ) ,"
6d0bc1164e4004b_basic.png,"c _ { p - 1 } = 0 , \ c _ { p ^ { 2 } - 1 } = 1"
09f7e846edc0a86_basic.png,"T _ { o } ^ { 2 } = { \frac { 1 } { 4 D } } ( m _ { H } ^ { 2 } - 8 B v _ { o } ^ { 2 } ) \ , \ \ B = { \frac { 3 } { 6 4 \pi ^ { 2 } } } ( 2 m _ { W } ^ { 4 } + m _ { Z } ^ { 4 } - 4 m _ { t } ^ { 4 } ) \ ,"
97f4b56121897ed_basic.png,\Delta T _ { c } ^ { T o t a l } = - 1 . 1 1 6 8
process_49_3094.bmp,"\begin{array} { r } { \left\{ P _ { D } , P _ { D } ^ { s } \right\} \uparrow \epsilon ^ { \frac { 1 } { 1 + \sigma _ { \theta } ^ { 2 } \sum _ { i = 1 } ^ { N } \frac { 1 } { \sigma _ { v , i } ^ { 2 } } } } \ ; . } \end{array}"
sume_data-00003-of-00009_20310.png,\displaystyle h _ { i j } h _ { k l }
sume_data-00006-of-00009_164128.png,\displaystyle \sim \int _ { Q } \frac { \dot { r } ( Y ) } { Y ^ { ( n - 1 ) / 2 } ( 1 + r ) ^ { n } } .
9a9d0815e3b7f58.png,"\times \prod _ { c \neq d } ^ { N } e ^ { 2 \pi \frac { g } { \pi + g N } \sum _ { k = 1 } ^ { n _ { c } } \sum _ { h = 1 } ^ { n _ { d } } \ [ C ^ { 0 , S } ( x _ { k } ^ { ( c ) } , x _ { h } ^ { ( d ) } ) + C ^ { 0 , S } ( y _ { k } ^ { ( c ) } , y _ { h } ^ { ( d ) } ) - C ^ { 0 , S } ( x _ { k } ^ { ( c ) } , y _ { h } ^ { ( d ) } ) - C ^ { 0 , S } ( y _ { k } ^ { ( c ) } , x _ { h } ^ { ( d ) } ) \ ] } \; ."
b8e4c14d830ed8c_basic.png,M _ { \mathrm { s t a r } } = 1 0 ^ { 1 0 - 1 1 } M _ { \odot }
b1d88dbdfe04a1b_basic.png,"\ | \varepsilon _ { g } ( \alpha , \Delta x , x ) \ | \le \frac { 1 } { f ( x ) ^ { 2 } } \ | \varepsilon _ { f } ( \alpha , \Delta x , x , r ) \ | + \frac { 2 \alpha L ^ { 2 } \| \Delta x \| ^ { 2 } } { \operatorname * { m i n } \{ | f ( x ) - r L | ^ { 3 } , | f ( x ) + r L | ^ { 3 } \} } ,"
process_49_7721.bmp,"\begin{array} { r } { J _ { C } = \left\{ j _ { 1 } ^ { * } , j _ { 2 } ^ { * } , j _ { 3 } ^ { * } \right\} = \arg \ , \operatorname* { m a x } _ { J \in \mathcal { J } } \ , \left( \rho _ { m i n } ^ { \left( J \right) } \right) , } \end{array}"
46cdabf5d5.png,\acute { o } ^ { A } \bar { o } ^ { A ^ { \prime } } + o ^ { A } \acute { \bar { o } } { } ^ { A ^ { \prime } } = o ^ { A } \dot { \bar { \iota } } { } ^ { A ^ { \prime } } + \dot { o } ^ { A } \bar { \iota } { } ^ { A ^ { \prime } } + \iota ^ { A } \dot { \bar { o } } { } ^ { A ^ { \prime } } + \dot { \iota } ^ { A } \bar { o } { } ^ { A ^ { \prime } } .
7380f5348d875dc_basic.png,"\Gamma ^ { - } ( { \mathbf x } ^ { \prime } , { \mathbf x } )"
a6797fb6dca8c98.png,"\delta \langle \alpha , N | \beta , M \rangle _ { \eta } = i \langle \alpha , N | \delta \hat { A } ^ { N M } \left[ \eta \right] | \beta , M \rangle _ { \eta } , \; \; \; N > M ."
5ae6fe35c470c08.png,"\delta { G } _ { A B } ( x ^ { \mu } , w ) \rightarrow \delta \tilde { G } _ { A B } = \delta G _ { A B } - \nabla _ { A } \epsilon _ { B } - \nabla _ { B } \epsilon _ { A } ,"
sume_data-00000-of-00009_173929.png,"\displaystyle + \int _ { 0 } ^ { T } \int _ { \Omega _ { t } } a D \varphi D u \, d z d t ."
13ae467561.png,\epsilon _ { a b c } \phi _ { b } ^ { m } \partial _ { c } ^ { m } \Gamma _ { i } = 0
580035b9a3.png,"B { \cal F } ^ { \prime } = 0 = { ^ t B } { \cal F } ^ { \prime } = ( q ^ { N - \bar { N } } - 1 ) { \cal F } ^ { \prime } \, ;"
sume_data-00007-of-00009_171725.png,"\displaystyle\approx\frac{1}{2\alpha}\sum_{k,l}(2l+1)f(l(l+1))P_{k}\big{(}1-\frac{l^{2}}{2\alpha^{2}}\big{)}\frac{1}{c_{k}^{2}}\frac{2k+1}{4\pi}P_{k}(\cos\vartheta)\ ."
8475ed6c3a453ec.png,g = \frac { 4 \epsilon c ^ { 2 } } { \pi } x ^ { 2 K v / \sqrt { v ^ { 2 } + K g v } }
0741108bd460a3f_basic.png,"m = - \frac { r ^ { 3 } } { 2 \ell ^ { 2 } } \, ."
sume_data-00003-of-00009_28003.png,\displaystyle < 1 . 3 + 0 . 0 6 \left( G _ { \textrm { B P } } - G _ { \textrm { R P } } \right) ^ { 2 }
4daf58955c.png,\Delta ( { \bf x } - { \bf x } ^ { \prime } ; t ) = \int d k e ^ { - i { \bf k } ( { \bf x } - { \bf x } ^ { \prime } ) } e ^ { - i \omega _ { \bf k } t }
74a109cb50.png,"\ddot { \phi } + 3 H \dot { \phi } = - { V ^ { \prime } ( \phi ) } \ ,"
b5091d1b92c266e_basic.png,"i \in \{ \mathrm { H H , H V , V V } \}"
3d8cc0d9830de0a_basic.png,"\{ ( z _ { 1 } , z _ { 2 } ) : z _ { 2 } = 1 + g _ { \varepsilon } ( \pi / 2 ) \}"
febd5f1f5b612c8_basic.png,{ \bf p } ^ { \prime } = \frac { m \rho } { \sqrt { 1 - \rho ^ { 2 } } } { \bf n } +
sume_data-00008-of-00009_25232.png,"\displaystyle + \frac { 1 } { 2 } \sum _ { k , \ell } \frac { \partial ^ { 2 } f } { \partial x ^ { k } \partial x ^ { \ell } } ( \mathbf { x } _ { i } ) \left( \sum _ { j } \mathbf { H } _ { ( \alpha \beta ) , \, j } ^ { ( i ) } \epsilon _ { j , k } ^ { ( i ) } \epsilon _ { j , \ell } ^ { ( i ) } \right)"
00c2c03fe497f78.png,"( X _ { a } ^ { ( v ) } ) _ { \ \nu } ^ { \mu } n _ { i } ^ { \nu } = ( \sigma _ { a } ) _ { i k } n _ { k } ^ { \mu } ,"
process_49_1861.bmp,"\begin{array} { r } { \operatorname* { l i m } _ { n \to \infty } \mathcal G _ { n } ( x ) = G ( x ) \quad , } \end{array}"
sume_data-00008-of-00009_173601.png,"\left| \bigcup _ { i \in [ T ] , j \in [ t ] } S _ { i j } \right| \leq N ^ { \frac { \delta s } { 2 } }"
a21254f1b950ae9_basic.png,"\frac { d \sigma } { d t } \sim \frac { 1 } { Q ^ { 6 } } [ G ( x , Q ^ { 2 } / 4 ) ] ^ { 2 } ."
8519aec4c45ba87_basic.png,\gamma _ { R } \approx - \frac { n ^ { 3 } } { 1 2 ( m + n ^ { 3 } ) } \alpha ^ { 4 }
9a70d85eec86114_basic.png,"\vert M \vert = a e \bar { e } - b f \bar { e } - c e \bar { f } + d f \bar { f } \, ."
sume_data-00008-of-00009_40035.png,\displaystyle \gamma _ { p } ( k ) - 2 t \cos ( k ) .
sume_data-00005-of-00009_145356.png,\displaystyle = \sum _ { k _ { 1 } > k _ { 2 } } \sum _ { l _ { 1 } = l _ { 2 } }
a657271bb0b290d_basic.png,\bar { \rho } = 0 . 3 _ { - 0 . 1 } ^ { + 0 . 3 }
49914a878018780_basic.png,"O _ { 1 } = d ( \hat { p } _ { 1 } ( \cdot , \cdot ) , p _ { 1 } ( \cdot , \cdot ) ) ,"
0fa35143509f0ca.png,\frac { d ^ { 2 } x ^ { \mu } } { d s ^ { 2 } } + \left( \Phi _ { \sigma } \frac { d x ^ { \sigma } } { d s } \right) \Lambda _ { \nu } ^ { \mu } \frac { d x ^ { \nu } } { d s } = 0 .
eb2fd49ce2e0fc6.png,"{ \mathcal G } _ { \mathrm { s c } } ( r ) = - { \mathcal G } ^ { * } ( r ) + { \mathcal G } ( r ) S ( k ) \, ,"
process_49_4217.bmp,"\begin{array} { r } { T _ { a } ^ { * } S _ { g } ^ { * } = X ^ { \phi ( p ( g ) ) } ( a ) \cdot S _ { g } ^ { * } T _ { a } ^ { * } , \forall g \in \mathcal { G } ( \mathcal { L } ) , a \in K _ { 2 } , } \end{array}"
process_49_2893.bmp,\begin{array} { r l } { \tilde { f } ( \tilde { z } ) } & { { } = \sum _ { b \in A } \tilde { f } ( \tilde { z } ) \phi _ { b } ( x ) } \end{array}
sume_data-00001-of-00009_87444.png,"\displaystyle \eta _ { b b } = \mathrm { t r } \left\{ \mathbf { R } _ { a r } \odot \mathbf { R } _ { b r } \right\} + \hat { \sigma } _ { z _ { b } } ^ { 2 } ,"
c646d978d356c7e.png,"h : V _ { n } \mapsto V _ { n } \ , \ n = 0 , 1 , 2 , \ldots"
process_49_4339.bmp,\begin{array} { r } { e _ { i j } ( \lambda ) e _ { j k } ( \mu ) = e _ { j k } ( \mu ) e _ { i k } ( \lambda + \mu ) e _ { i j } ( \lambda ) . } \end{array}
a1b2fb9bcfc26e2_basic.png,"\lambda \in [ 2 . 1 , 2 . 2 ]"
7cc5c99bceb63bb_basic.png,"T ^ { \alpha \beta } = i \int d ^ { 4 } x \, e ^ { - i q \cdot x } \langle p ( p ^ { \prime } ) | \, T J _ { e m } ^ { \alpha } ( x ) J _ { e m } ^ { \beta } ( 0 ) \, | p ( p ) \rangle ,"
ad7746207166e9c_basic.png,"{ \sqrt { 4 \pi } } \Psi _ { \bar { b } b } ( 0 ) = 2 . 5 1 3 \; \mathrm { G e V } ^ { 3 / 2 } , \; \; \; { \sqrt { 4 \pi } } \Psi _ { \bar { c } c } ( 0 ) = 0 . 8 9 5 \; \mathrm { G e V } ^ { 3 / 2 } ,"
3bb015355b.png,\Psi [ A _ { i } ^ { a } ] \rightarrow \Psi [ ( A ^ { U } ) _ { i } ^ { a } ]
process_49_5982.bmp,\begin{array} { r l } \end{array}
a041e8a9839b1d9_basic.png,T _ { Z } \approx \frac { g _ { A } ^ { 2 } } { 4 M F ^ { 2 } } ( v q ) ( v k ) ~ .
c072232247df09b_basic.png,"X = ( x ( \tau _ { 0 } ) , \dots , x ( \tau _ { n - 1 } ) )"
56f4a8d14d.png,{ \cal A } _ { b } = \frac { 1 } { 4 \pi b ^ { 2 } } \int d ^ { 2 } x \left[ \frac 1 { 2 } ( \partial _ { \mu } \tilde { \varphi } ) ^ { 2 } + ( m k ( G ) ) ^ { 2 } \sum _ { i = 0 } ^ { r } e ^ { e _ { i } \cdot \tilde { \varphi } } \right] + O ( 1 ) .
process_49_3910.bmp,"\begin{array} { r } { P _ { p } \left( v _ { p } , \pi _ { p } \right) = \sum _ { j \in J } e ^ { - \hat { r } T _ { j } } \left( \sum _ { i \in I _ { j } } P _ { p } ^ { t _ { i } , T _ { j } } \left( v _ { p } , \pi _ { p } \right) \right) } \end{array}"
072e4368a081bb6.png,"\int _ { D _ { 3 } } H _ { ( 3 ) } ^ { N S } = c _ { N S } r ^ { 3 } \ \ \ \ \ \ \, i n t _ { D _ { 3 } } \tilde { F } _ { ( 3 ) } = c _ { R } r ^ { 3 }"
89e7d150a3458d6.png,q \partial _ { \alpha } \partial ^ { \alpha } \biggl ( \Psi + \Xi \biggr ) + d ~ q \biggl [ \Psi ^ { \prime \prime } + { \cal H } \biggl ( \Xi ^ { \prime } - \Psi ^ { \prime } \biggr ) \biggr ] + d ~ q ^ { \prime } ( \Psi ^ { \prime } + { \cal H } \Xi ) + X ^ { \prime } \varphi ^ { \prime } = 0 .
71fede0c02.png,E _ { i } \ge \frac { m N _ { i } ( v _ { i } ^ { C M } ) ^ { 2 } } { 2 } .
b6c22e409dcc2b6_basic.png,"\Phi ( P , q ) = 2 \pi \delta ( q ^ { 0 } ) \sum _ { m , S _ { z } } \psi _ { n l m } ( \vec { q } ) \left< l m S S _ { z } \left| J J _ { z } \right. \right> P _ { S S _ { z } } ( P , q ) \ ,"
process_49_5746.bmp,"\begin{array} { r } { t _ { \overline { { u } } ^ { i } } = \mathrm { d i a g } ( I _ { d - i + 1 } , p _ { F } , I _ { i - 1 } ) \quad \quad \mathrm { ~ f ~ o ~ r ~ } 1 \le i \le d , } \end{array}"
7d6c75c02d89ef4_basic.png,"< p ^ { \prime } | \vec { \jmath } ( 0 ) | p > = i Q e \bar { u } ( p ^ { \prime } ) \vec { \gamma } u ( p ) ,"
a67c4e8828555d2_basic.png,{ m _ { \ell } } \approx \left( \begin{array} { c c c } { { \tilde { \epsilon } ^ { 2 | a + b | } } } & { { \tilde { \epsilon } ^ { | a | } } } & { { \tilde { \epsilon } ^ { | a + b | } } } \\ { { \tilde { \epsilon } ^ { | a | } } } & { { \tilde { \epsilon } ^ { 2 | b | } } } & { { \tilde { \epsilon } ^ { | b | } } } \\ { { \tilde { \epsilon } ^ { | a + b | } } } & { { \tilde { \epsilon } ^ { | b | } } } & { { 1 } } \end{array} \right) { m _ { \tau } }
c9403a0d4f.png,"\sum _ { k = 0 } ^ { N } \frac { k ! ( N - k ) ! } { ( N + 1 ) ! } \, | a _ { k } | ^ { 2 } \, = \, 1 - \frac { N } { R ^ { 2 } } \ \ ."
6735eb6146.png,"\frac { \partial \phi } { \partial { \cal R } } = \frac { \sqrt { 3 ( 1 + \omega ) } } { { \cal R } } , ~ ~ ~ \rho \sim \frac { 1 } { { \cal R } ^ { 3 ( 1 + \omega ) } } ."
2a2963d0c8aac33.png,"y _ { 1 } = - \frac { 1 } { 2 g } B _ { i j } B ^ { i j } , \; \; y _ { 2 } = \frac { 1 } { 4 g ^ { 2 } } B _ { i j } B ^ { j k } B _ { k m } B ^ { m i } ."
53d80fe9ece49bc_basic.png,\left. \operatorname { e v } _ { T _ { 1 } } \right| : \Lambda \stackrel { \sim } { \rightarrow } M
process_49_1884.bmp,"\begin{array} { r l } { \psi ( \alpha ) ( 1 - \psi ( \alpha ) ) } & { { } = | \alpha | ^ { 2 } \varkappa ( \alpha ) ^ { 2 } , } \\ { \varkappa ( \alpha ) } & { { } = \sqrt { 1 - \psi ( \alpha ) } . } \end{array}"
sume_data-00004-of-00009_103837.png,"F [ k ] = \frac { k ( k - 1 ) } { k + 1 } \sqrt { \frac { k - 1 } { k - 2 } } ,"
66f3d11f7d.png,"n _ { a } ^ { ( E _ { 7 } \, D _ { 1 0 } ) } \ n _ { b } ^ { ( E _ { 7 } \, D _ { 1 0 } ) }"
1e4e3a9fe642f0d_basic.png,b ^ { \prime } = \ ( \sum _ { B \in \mathcal { B } } \sum _ { M \in G } y _ { M } ^ { ( B ) } \ ) _ { G \in \Gamma }
7b124098f3.png,A = - \partial X X ^ { - 1 } = - \partial \theta T ^ { 3 } .
9d2e54d35f9a40a.png,n _ { 1 } \ge n _ { 2 } \ge \cdots \ge n _ { N } .
18629219b4.png,"\langle \Gamma _ { 1 } , \Gamma _ { 2 } \rangle \, \sin ( \alpha _ { 1 } - \alpha _ { 2 } ) > 0 \, ,"
process_49_8508.bmp,"\begin{array} { r l } { W _ { _ \mathrm { H } } ( F ) : = \widehat { W } _ { _ \mathrm { H } } ( U ) } & { { } : = { \mu } \ , \| \mathrm { d e v } _ { n } \log U \| ^ { 2 } + \frac { \kappa } { 2 } \ , [ \mathrm { t r } ( \log U ) ] ^ { 2 } . } \end{array}"
7b16fb4c456f2f5.png,"F _ { \mu \nu } ^ { a } \rightarrow ( c \lambda _ { 1 } + d ) F _ { \mu \nu } ^ { a } + c \lambda _ { 2 } ( M L ) _ { a b } \tilde { F } _ { \mu \nu } ^ { b } ~ ,"
e49e3e9e03f09cf.png,T ^ { M N } ( X ) = { \frac { 1 } { \pi \gamma ^ { \ast } \sqrt { _ { | G | } } } } \int ~ d \tau d \sigma \dot { x } ^ { M } \dot { x } ^ { N } \delta ^ { D } ( X - x ) .
4142b49b1d.png,\langle \phi _ { 2 } | \phi _ { 1 } \rangle _ { J } ^ { \dagger } = \langle \phi _ { 1 } | \phi _ { 2 } \rangle _ { J } = \langle \phi _ { 1 } | T ^ { \dagger } e ^ { - i J \phi } | \phi _ { 2 } \rangle
accb7672edb5881.png,"\delta T _ { N } ^ { M } = \left( \begin{array} { c c c } { { 0 } } & { { 0 } } & { { 0 } } \\ { { 0 } } & { { - \delta \rho } } & { { - ( \rho + p ) e ^ { \alpha _ { 0 } } v _ { , i } } } \\ { { 0 } } & { { ( \rho + p ) e ^ { - \alpha _ { 0 } } v _ { , i } } } & { { \delta p \: \delta _ { i j } } } \end{array} \right) \: \delta ( y )"
805711765263b68_basic.png,"M _ { d , s } ^ { H } > \left\{ \ { 1 5 3 \ \mathrm { G e V } \ \ \ \mathrm { C D F } } \atop { 1 4 3 \ \mathrm { G e V } \ \ \ \mathrm { D 0 } } \right\}"
25b0c7ba0e.png,"{ { \nabla } ^ { 2 } } { \ln { \rho } } = \left\{ \begin{array} { l l } { { { \frac { 4 m ^ { 2 } } { \kappa } } \rho { ( 1 - { \frac { \rho } { \kappa } } ) } , } } & { { \mathrm { r e l a t i v i s t i c ~ c a s e } } } \\ { { - { \frac { 2 } { \kappa } } \rho , } } & { { \mathrm { n o n - r e l a t i v i s t i c ~ c a s e . } } } \end{array} \right."
5b482b3a9a2245f_basic.png,\sigma _ { \mathrm { s t a r } } = 1 9 0
7276aaa487.png,"- \frac { 1 } { 2 } \left( \theta ^ { - 1 } \delta \theta \theta ^ { - 1 } \right) _ { i j } \, x ^ { j }"
68a85dcc4f.png,P \rightarrow P + \frac { 1 } { ( 4 \pi ) ^ { 3 / 2 } } \Gamma ( - 3 / 2 ) \int _ { B ^ { 3 } } ( \frac { \lambda } { 2 } \hat { \phi } ^ { 2 } ) ^ { 3 / 2 } d v .
20c85c7128e949e_basic.png,"Y _ { P } | r e s t , \lambda \rangle _ { z } = \eta _ { P } R _ { y } ( \pi ) | r e s t , \lambda \rangle _ { z } = \eta _ { P } | r e s t , \lambda ^ { \prime } \rangle _ { z } d _ { \lambda ^ { \prime } \lambda } ^ { j } ( \pi ) \ ,"
58d21f700a.png,"G ^ { Z \overline { { { Z } } } } = G ^ { p + 1 \, p + 1 } + G ^ { p + 2 \, p + 2 } - 2 i G ^ { p + 1 \, p + 2 } = \frac { 2 } { \varepsilon \left( 1 + \left( b _ { ( p + 2 ) / 2 } \right) ^ { 2 } \right) } ~ ."
dfef4248ec1d999.png,"( L _ { 0 } - 1 ) | \psi > = 0 , \; \; \; \; \; \; L _ { l } | \psi > = 0 ; \; \; \; l > 0"
e1551170d2ec020_basic.png,X = \mathcal { H } = V \times H
13d7460403.png,C _ { \theta } ( \tau ) : = \operatorname * { l i m } _ { \tau \rightarrow \infty } \Big [ \; \langle { \cal A } ( \tau ) { \cal B } ( 0 ) \rangle _ { 0 } ^ { \theta } \; - \; \langle { \cal A } ( 0 ) \rangle _ { 0 } ^ { \theta } \; \langle { \cal B } ( 0 ) \rangle _ { 0 } ^ { \theta } \; \Big ] \; .
sume_data-00000-of-00009_20806.png,"[ \hat { x } , \hat { K } ( \hat { k } ) ] = i \left( 1 + 3 \varepsilon \hat { K } ^ { 2 } / 8 \right) \; ,"
6599c45819b9390_basic.png,\begin{array} { l l } { { M _ { l } = \lambda ^ { \prime } \ \left( \Delta + \varepsilon _ { l } \ P _ { l } \right) \quad ; \quad } } & { { M _ { D } = \lambda \ \left( \Delta + \varepsilon _ { D } \ P _ { D } \right) } } \\ { { } } & { { } } \\ { { M _ { R } = \mu \ \left( \Delta + a \ { 1 \! \! \! \mathrm { I } } + \varepsilon _ { R } \ P _ { R } \right) } } & { { } } \end{array}
sume_data-00007-of-00009_132650.png,\displaystyle g _ { K ^ { \ast } p \Sigma } = - 3 . 5 1
09ae1c4df4aff17.png,"f = \int d x \, d y \left[ T _ { z z } - T _ { z z } ( \mathrm { v o l } ) \right] = - { \frac { \pi ^ { 2 } } { 2 4 0 a ^ { 4 } } } \hbar c ,"
sume_data-00000-of-00009_162412.png,"V _ { \mathrm { e f f } } = - G _ { N } \frac { M } { r } ( 1 + \alpha e ^ { - m r } ) \, ."
9cd42b917f37a7f.png,"\delta \Pi _ { e } = \frac { \alpha l } { x ^ { 5 / 2 } } \, H _ { e } \! \left( \frac { 1 } { x } \right) , \quad \delta \Pi _ { \perp } = \frac { \alpha l } { x ^ { 5 / 2 } } \, H _ { \perp } \! \left( \frac { 1 } { x } \right) , \quad \delta \Pi _ { o } = \frac { \alpha } { x } \, H _ { o } \! \left( \frac { 1 } { x } \right) ,"
sume_data-00002-of-00009_68751.png,\displaystyle = : I _ { 1 } + I _ { 2 } + I _ { 3 } + I _ { 4 } + I _ { 5 } .
sume_data-00000-of-00009_156886.png,"\displaystyle - 4 . 9 7 \pm 0 . 2 3 ,"
761933bba08d476.png,"\begin{array} { l } { { h _ { 3 } ^ { \mu } = h _ { 2 } ^ { \nu } \partial _ { \nu } h _ { 1 } ^ { \mu } - h _ { 1 } ^ { \nu } \partial _ { \nu } h _ { 2 } ^ { \mu } + 2 i \bar { \lambda } _ { 1 a } \gamma ^ { \mu } \lambda _ { 2 } ^ { a } \, , } } \\ { { { } } } \\ { { \lambda _ { 3 } ^ { a } = { \cal L } _ { 2 } \lambda _ { 1 } ^ { a } - { \cal L } _ { 1 } \lambda _ { 2 } ^ { a } \, , } } \end{array}"
7369fb76e0.png,\lambda = \lambda _ { \mathrm { b a r e } } - \frac { Z } { 4 8 } F _ { 4 } ^ { 2 } = \lambda _ { \mathrm { b a r e } } + \frac { Z c ^ { 2 } } { 2 } \ .
351e34d1e92e596.png,"\Omega ^ { L } \ | _ { ( \chi , \phi ^ { ( \alpha ) } ) } = 0 \quad ,"
17f012d3b9.png,"\epsilon ^ { a _ { + } } ( x ) T ^ { a _ { + } } , \qquad \qquad \Xi ( x , 0 ) = \left( \begin{array} { c } { { \xi ( x ) } } \\ { { 0 } } \end{array} \right) ,"
2aa065b37193459_basic.png,"V _ { \mathrm { e f f } } ^ { \prime } = \frac { g ^ { 2 } T ^ { 2 } } { 6 } \mathrm { t r } \, \{ A _ { 0 } ^ { 2 } + \frac { g ^ { 2 } } { ( 2 \pi T ) ^ { 2 } } A _ { 0 } ^ { 4 } \}"
4604f77ec1.png,"\Omega _ { i l } \, = \, \Pi _ { l i } ^ { \psi } \, + \, \frac { i } { 4 \lambda ^ { 2 } } g _ { i m } ^ { - 1 } \psi _ { m k } g _ { k l } ^ { - 1 }"
5a091e7de89ab7e.png,"f _ { { \bf { q } } } ( { \bf { x } } , t ) = ( e ^ { - i \mathrm { ~ } { \bf { q . x } } } e ^ { i \mathrm { ~ } \omega _ { { \bf { q } } } t } - 1 ) ( A _ { { \bf { q } } } + B _ { { \bf { q } } } ) ^ { 2 } - ( e ^ { - i \mathrm { ~ } { \bf { q . x } } } e ^ { i \mathrm { ~ } \epsilon _ { { \bf { q } } } t } - 1 )"
332f3d9498d1a4c_basic.png,N ( \bigvee _ { w \in F ^ { n } } w ^ { - 1 } ( \mathcal { U } ) )
ebf94e4aae5e42f_basic.png,"\begin{array} { l } { { U _ { l } M ^ { l } U _ { l } ^ { - 1 } = \mathrm { d i a g } [ m _ { e } , m _ { \mu } , m _ { \tau } ] , } } \\ { { U _ { \nu } M ^ { \nu } U _ { \nu } ^ { - 1 } = \mathrm { d i a g } [ m _ { 1 } , m _ { 2 } , m _ { 3 } ] . } } \end{array}"
sume_data-00007-of-00009_86835.png,"{ \frac { \delta M } { M } } ( k , t _ { f } ( k ) ) \sim \lambda ^ { 1 / 2 } 1 0 ^ { 2 } \, ."
274945acd026b82.png,"W = - \frac 2 3 L \, \left( \zeta ( - 4 , 2 ) - \zeta ( - 2 , 2 ) \right) = 0 ."
6606a47a5f2ba4f_basic.png,\sqrt { \delta / \lambda } = 9 \sqrt { \delta } < 1 . 0 0 2 6 < 1 0 / 9
process_49_7333.bmp,\begin{array} { r l } { \nabla _ { f X } \omega ( Y ) } & { { } = ( - 1 ) ^ { ( k - 1 ) ( l - 1 ) } L _ { f X } i _ { Y } \omega - \omega ( \nabla _ { f X } Y ) } \end{array}
48cdd55014.png,"R ( \gamma _ { L } , \delta _ { L } ) \; R ( \gamma _ { L ^ { \prime } } , \delta _ { L ^ { \prime } } ) \; = \; R ( \gamma _ { L \, L ^ { \prime } } , \delta _ { L \, L ^ { \prime } } ) ."
process_49_1342.bmp,"\begin{array} { r } { \sum _ { i } r a _ { i } \otimes b _ { i } = \sum _ { i } a _ { i } \otimes b _ { i } r , } \end{array}"
a856f9b1320db9e.png,"u ^ { \beta ( \alpha ) } ( \vec { p } \, ) = ( - 1 ) ^ { \alpha } \gamma ^ { 2 } \gamma ^ { 5 } u ^ { \alpha * } ( \vec { p } \, ) \, , \qquad \mathrm { a n d } \qquad e _ { \mu } ^ { - \ell } ( \vec { q } ) = e _ { \mu } ^ { \ell * } ( \vec { q } \, ) \, ,"
6c6cc14011.png,d s ^ { 2 } = \xi ^ { 2 } \left( { \frac { d t } { 4 M } } \right) ^ { 2 } + d \xi ^ { 2 } + r ^ { 2 } d \Omega ^ { 2 } .
48da3a270814c47_basic.png,R _ { \mu } = \eta \left( P _ { \mu \mu } + \frac { 1 } { R } P _ { e \mu } \right) .
f39eae8d337aa45.png,"< \tilde { \phi } _ { \omega } , \phi _ { \omega } > = ( \tilde { \phi } _ { \omega } , \phi _ { \omega } ) + i \int _ { \Sigma } \sqrt { h } d ^ { D - 1 } x \tilde { \phi } _ { \omega } ^ { * } \left[ 2 a ^ { i } ( \partial _ { i } + i \omega a _ { i } ) + \nabla ^ { i } a _ { i } \right] \phi _ { \omega } ."
process_49_2036.bmp,\begin{array} { r l } { y + z \sqrt { 2 } } & { { } = s \epsilon ( a + b \sqrt { 2 } ) ^ { 2 } } \end{array}
50bc57bddf42d65.png,"\zeta _ { \mathrm { R } } ( s ) = \frac { 1 } { \Gamma ( z ) } \int _ { 0 } ^ { \infty } \frac { x ^ { s - 1 } } { e ^ { x } - 1 } d x \, { . }"
98c6d6ee6edf1c0_basic.png,"G _ { 1 } ( q , T ) = { \frac { 1 } { 6 f _ { \pi } ^ { 2 } } } \int _ { 0 } ^ { \infty } { \frac { d x } { \pi ^ { 2 } } } { \frac { 1 } { e ^ { x / T } - 1 } } { \frac { x ^ { 3 } } { x ^ { 2 } - q ^ { 2 } / 4 } } ."
process_49_411.bmp,"\begin{array} { r } { u ( x , 0 ) = x _ { + } ^ { 1 / 2 } , u _ { y } ( x , 0 ) = \left\{ \begin{array} { l l } { \frac 1 2 | x | ^ { - 1 / 2 } } & { x < 0 , } \\ { 0 } & { x > 0 . } \end{array} \right. } \end{array}"
process_49_10052.bmp,"\begin{array} { r } { ( K ^ { \prime \prime } , b ^ { \prime \prime } ) = \L ( K ^ { \prime } , b ^ { \prime } ) - \l ( K , b ) , } \end{array}"
1cbd79970e9ad99_basic.png,"S ( \mathbf { q } , \mathbf { a } )"
fddfc7fce5ed5b1_basic.png,"T _ { c _ { 1 } } = \sqrt { \frac { 4 \mu _ { 1 } ^ { 2 } } { \alpha _ { 1 } } } , \qquad T _ { c _ { 2 } } = \sqrt { \frac { 4 \mu _ { 2 } ^ { 2 } } { \alpha _ { 2 } } }"
process_49_2193.bmp,"\begin{array} { r } { \operatorname* { m a x } _ { j \in \{ 1 , \dots , K \} } \frac { R _ { j } ( 1 - \delta _ { \{ - j \} } ) } { p _ { j } ( 1 - \delta _ { \{ 1 , \dots , K \} } ) } + \operatorname* { m a x } _ { \pi } \sum _ { i = 1 } ^ { K } \frac { R _ { \pi _ { i } } } { 1 - \delta _ { \{ \pi _ { 1 } , \dots , \pi _ { i } \} } } \leq 1 , } \end{array}"
c95336225e9b767_basic.png,"\gamma _ { i } = \frac { 1 } { C } \left( \tau _ { 1 } b _ { i } ^ { \dagger } - \left( \sqrt { \tau _ { 1 } ^ { 2 } + \varepsilon ^ { 2 } } + \varepsilon \right) a _ { i + 1 } ^ { \dagger } \right) ,"
3e0ac9c190fd8e1_basic.png,0 . 0 3 4 \; M _ { \odot } \; \mathrm { p c ^ { - 2 } }
sume_data-00002-of-00009_153785.png,\displaystyle \frac { \partial z } { \partial a _ { \star } ^ { \mathrm { i n } } }
process_49_6389.bmp,"\begin{array} { r } { \Theta ( \overline { b } ) = \theta ( \overline { { b } } ) , d f ( \Theta ( t ) ) \dot { \Theta } ( t ) = \dot { \gamma } ( t ) \quad \dot { \Theta } ( t ) \perp \ker d f ( \Theta ( t ) ) \quad } \end{array}"
c8d4dd1a7105d10_basic.png,"{ \frac { Q ^ { 2 } e ^ { 2 } } { 2 m ^ { 2 } } } \epsilon _ { 1 \mu } \epsilon _ { 2 \nu } r _ { \lambda } \bar { v } ( p ) \Gamma _ { - } ^ { \mu \lambda \nu } u ( p ) \; = \; - i Q ^ { 2 } e ^ { 2 } \; \mathrm { \boldmath ~ \ e p s i l o n ~ } _ { 1 } \times \mathrm { \boldmath ~ \ e p s i l o n ~ } _ { 2 } \cdot \hat { \bf r } \, \eta ^ { \dagger } \xi \; ."
c2e1566ef940878_basic.png,"{ \cal L } ^ { ( 0 ) } \ ` ` = "" \ \frac { 1 } { m ^ { 2 } } f _ { a b } f _ { c d } ^ { * } ( \overline { { { \ell } } } _ { d } \gamma ^ { \mu } \ell _ { b } ) ( \overline { { { \ell } } } _ { c } \gamma _ { \mu } \ell _ { a } ) \ ."
3dc0a0b7c49b8c6.png,d s ^ { 2 } = - 2 d y ^ { + } d y ^ { - } + ( y ^ { + } ) ^ { 2 } d y ^ { 2 } + d z ^ { 2 } + d x _ { \perp } ^ { 2 } .
75ce6c09c87c563_basic.png,\langle H _ { u } ^ { 0 } \rangle \neq v _ { u }
86ff16d9846059b.png,"B _ { I } ( f , g ) = B _ { J } ( f , g ) , \qquad I \subset J"
a67087ec5805610_basic.png,"\underline { { { c } } } ^ { 1 } = ( j , l _ { 1 } ( j ) , \underline { { { d } } } ^ { 1 } , l _ { 1 } ( \underline { { { d } } } ^ { 1 } ) )"
process_49_100.bmp,\begin{array} { r } { \eta ^ { \star } = 8 \sqrt { 3 } \sigma _ { v } ^ { 2 } / A ^ { 2 } + 2 \sqrt { 3 } - 4 \sqrt { 1 2 \sigma _ { v } ^ { 4 } / A ^ { 4 } + 6 \sigma _ { v } ^ { 2 } / A ^ { 2 } } . } \end{array}
2a5725ed5c.png,"= { \displaystyle \sum _ { i , j } } \eta \left( { \phi } _ { i } , { \phi } _ { j } , \xi _ { 1 } , \ldots , { \xi } _ { q - 2 } \right) \left( { \phi } _ { 1 } , \ldots , \widehat { { \phi } _ { i } } , \ldots , \widehat { { \phi } _ { j } } , \ldots , { \phi } _ { p + 2 } \right) = 0"
process_49_7009.bmp,"\begin{array} { r } { w ^ { \prime \prime } ( t ) + 2 \delta \lambda ^ { 2 \sigma } w ^ { \prime } ( t ) + \lambda ^ { 2 } c ( t ) w ( t ) = f ( t ) , } \end{array}"
0b2c9f5009fa137_basic.png,\Pi _ { \overline { { { \cal V } } } \overline { { { V } } } } ^ { S } ( p ^ { 2 } ) \equiv \frac { p _ { \mu } p _ { \nu } } { p ^ { 2 } } \Pi _ { \overline { { { \cal V } } } \overline { { { V } } } } ^ { \mu \nu } ( p ) \ .
process_49_5041.bmp,"\begin{array} { r } { \dim H _ { 1 } ( E , I ^ { b ^ { * } } ) = 0 . } \end{array}"
sume_data-00000-of-00009_117660.png,"\displaystyle c \stackrel { { \scriptstyle \sigma _ { j k } } } { { \mapsto } } a b ^ { j } c ^ { k } ,"
4e52b64aec.png,"H _ { T } = H + \sum _ { a } \lambda _ { a } \phi _ { a } ^ { ( 0 ) } + \sum _ { \rho } \xi _ { \rho } \psi _ { \rho } ^ { ( 0 ) } \, ."
f2cba2be9992bb3_basic.png,"h _ { 1 } , g _ { 1 } , h _ { 2 } , g _ { 2 } \in \mathcal { H }"
4925eda15461b4a.png,"R \equiv \sum _ { a , b , c , d } R ^ { a b c d } e _ { a b } \otimes e _ { c d }"
process_49_4024.bmp,\begin{array} { r } { \eta _ { A ^ { * } } ( z \wedge z ^ { \prime } ) = \left\{ \begin{array} { l l } { n _ { 1 } ( z ) - n _ { 2 } ( z ^ { \prime } ) } & { } \\ { * } & { } \end{array} \right. } \end{array}
sume_data-00004-of-00009_11806.png,D ( X ) = \{ s \} | \operatorname* { i n f } \left\{ s : H ^ { s } ( X ) = 0 \right\} = \operatorname* { s u p } \left\{ H ^ { s } ( X ) = \infty \right\} .
e4da6632740e0e2_basic.png,\Delta t = \frac { 1 } { 8 0 } T _ { \mathrm { I o } }
process_49_1794.bmp,"\begin{array} { r } { - \Delta u + t ^ { 2 } f ( t x ) u - t ^ { 2 } \lambda u = 0 \ , \mathrm { ~ i ~ n ~ } \ , ( H _ { 0 } ^ { 1 } ( \Omega ) ) ^ { * } . } \end{array}"
process_49_5579.bmp,"\begin{align*} \begin{array} { l } \mathop { \max } \limits _ { \pmb \rho } \sum \nolimits _ { i = 1 } ^ N { u _ i ^ { A F } \left ( { \pmb \rho } \right ) } \\ ~ ~ ~ { \rm { s . t . } } \ ; \ ; \rho \in { \mathcal A } \\ \end{array} , \end{align*}"
process_49_633.bmp,\begin{array} { r } { \omega ( s _ { J } ) = 1 . } \end{array}
85fed09cacb9a83_basic.png,"g _ { 1 , h } ^ { \mathrm { d i r } } ( x , Q ^ { 2 } ) = 3 \, e _ { h } ^ { 4 } \, \frac { \alpha } { 2 \pi } \, \theta ( \beta ^ { 2 } ) \left[ ( 2 x - 1 ) \ln \frac { 1 + \beta } { 1 - \beta } + \beta ( 3 - 4 x ) \right]"
5ff371f4e907a51_basic.png,"\left( \frac { \rho } { \rho _ { \mathrm { p e a k } } } \right) \, \alpha _ { s } ( \Lambda \, \frac { \rho } { \rho _ { \mathrm { p e a k } } } ) = \left( \frac { \rho _ { \mathrm { p e a k } } } { \rho } \right) \, \alpha _ { s } ( \Lambda \, \frac { \rho _ { \mathrm { p e a k } } } { \rho } ) ,"
process_49_9423.bmp,"\begin{array} { r l } { \mathrm { F } _ { 4 } = } & { { } \{ A \in \mathrm { E } _ { 6 ( - 2 6 ) } ; \ A ( X \circ Y ) = ( A X ) \circ ( A Y ) , \ , \forall X , Y \in \mathfrak { J } \} } \\ { \equiv } & { { } \{ A \in \mathrm { E } _ { 6 ( - 2 6 ) } ; \ A ( I _ { 3 } ) = I _ { 3 } \} . } \end{array}"
ed356ac68f80c56_basic.png,"P ( k ; \lambda _ { 1 } , \lambda _ { 2 } , \lambda _ { 3 } ) \propto \Delta ^ { 2 } ( \{ \lambda \} ) \int _ { \mathcal { U } _ { 3 } } d U \exp \left( - \Sigma ^ { - 2 } U \Lambda ^ { 2 } U ^ { \dag } \right) ."
71d2374738.png,\hat { \Delta } _ { 0 } ^ { - 1 } ( p ) _ { i j } = ( p ^ { 2 } \delta _ { i j } - p _ { i } p _ { j } ) + m \epsilon _ { i j a } p _ { a } + p _ { i } p _ { j } / \xi
e7c9beac2e422f7_basic.png,"| \Phi ( \nu _ { s } , \nu _ { i } ) | ^ { 2 }"
394051f74f.png,"f ( z ) \; = \; O \left( z ^ { 2 } \right) \, , \qquad z \to 0 \, ."
58da667ee0944bf.png,"\stackrel { \lbrack j ] } { a } _ { 1 } = \alpha _ { j } \left( \left[ \partial _ { \left[ \alpha \right. } V _ { \left. \beta \right] ( \lambda ) } \right] , \left[ \partial _ { \left[ \alpha \right. } A _ { \left. \beta \right] } ^ { \; \; ( \lambda ) } \right] , \left[ \chi ^ { * } \right] \right) e ^ { j } \left( \eta _ { ( \lambda ) } , C ^ { ( \lambda ) } \right) ,"
process_49_4992.bmp,\begin{array} { r } { \int _ { c } ^ { c + \epsilon } \frac { 1 } { | \nabla \varphi | } d \varphi = \operatorname* { l i m } _ { a \to c ^ { + } } \int _ { a } ^ { c + \epsilon } \frac { 1 } { | \nabla \varphi | } d \varphi = \epsilon . } \end{array}
50180426d096658_basic.png,\xi = \frac { 0 . 5 7 3 } { B } \{ \frac { \exp [ - B / ( 1 + B ) ] } { \sqrt { 1 + B } } \frac { e r f [ 1 / \sqrt { ( 1 + B ) } ] } { e r f ( 1 ) } \}
3709e5aeac11b00_basic.png,"\sum _ { j = 1 } ^ { N } K _ { i j } \tilde { \psi } _ { l } ( q _ { j } ) = E \tilde { \psi } _ { l } ( q _ { i } ) ,"
sume_data-00003-of-00009_16610.png,"\int _ { M } s _ { g } ^ { 2 } d \mu _ { g } = 3 2 \pi ^ { 2 } ( c _ { 1 } ^ { + } ) ^ { 2 } ,"
4b8c611c9e.png,- a ^ { 2 } \frac { d g ^ { 2 } \left( \frac { 1 } { a ^ { 2 } } \right) } { d a ^ { 2 } } = g ^ { 2 } \beta _ { \mathrm { Q C D } } \left( g ^ { 2 } \right) .
sume_data-00000-of-00009_97019.png,"\displaystyle ( 1 _ { 2 } , 1 _ { 2 } , 2 _ { 2 } )"
7395c9a3496b527.png,{ \bf H } \left( C _ { i } ( t ) \right) | \phi ^ { ( s ) } ( t ) \rangle = { \cal \hat { E } } _ { s } ( t ) | \phi _ { \lambda } ^ { ( s ) } ( t ) \rangle
49efc685a3.png,"D ^ { \prime \prime } = D ^ { \prime } D + \xi ^ { \prime } \cdot \overline { { { \zeta } } } , \hspace { 0 . 3 i n } \overline { { { \zeta } } } ^ { \prime \prime } = \lambda ^ { \prime } \overline { { { \zeta } } } + \overline { { { \zeta } } } ^ { \prime } D ,"
6093edf20b.png,d s ^ { 2 } = H ^ { - \frac 1 2 } \left( - d t + d x _ { 1 } + d x _ { 2 } + d x _ { 3 } \right) + H ^ { \frac 1 2 } \sum _ { j = 1 } ^ { 6 } d y _ { j } ^ { 2 }
8216e79c8e90607_basic.png,8 J _ { \mathrm { C P } } = \sin \delta \cos \theta _ { 1 3 } \sin 2 \theta _ { 1 2 } \sin 2 \theta _ { 1 3 } \sin 2 \theta _ { 2 3 } ~ .
sume_data-00008-of-00009_20440.png,"Z _ { \mathrm { A } } = Z _ { 2 } ~ { } , \; \; \; \gamma _ { \mathrm { A } } = 0 { } \, ."
process_49_10005.bmp,"\begin{array} { r l } { Q _ { k } ( T _ { k } , z ) } & { { } = F _ { k } ( T _ { k } , z ( 0 ) , z ( T _ { k } ) , z ( T _ { k } ) ) } \end{array}"
process_49_5235.bmp,\begin{array} { r } { \partial _ { t } \tilde { f } _ { m } = ( \Delta + \abs { A } ^ { 2 } ) \tilde { f } _ { m } . } \end{array}
df64386fc0ca2a2_basic.png,"\tau _ { P } , \delta _ { P } = O ( 1 / \varepsilon )"
af8f7848745cbf5_basic.png,{ \Gamma ^ { p } } { = } \int _ { 0 } ^ { 1 } g ^ { p } ( x ) d x { = } { \frac { 1 } { 1 2 } } \Biggl | { \frac { g _ { A } } { g _ { V } } } \Biggl | { \Biggl ( 1 } { + { \frac { 5 } { 3 } } } { { \frac { 3 F - D } { F + D } } \Biggl ) }
74be68cb2fee6ba_basic.png,S _ { \gamma ^ { 3 } } = - \int \ensuremath { \mathrm { d } } ^ { 3 } x m \overline { { { \psi } } } \gamma ^ { 3 } \psi = - \int \ensuremath { \mathrm { d } } ^ { 3 } x m \left( \psi _ { + } ^ { \dagger } \sigma ^ { 3 } \psi _ { + } - \psi _ { - } ^ { \dagger } \sigma ^ { 3 } \psi _ { - } \right) \; .
c031252c84ea5b5.png,"[ G ( z ) , J _ { 0 } ^ { a } ] = [ T ( z ) , J _ { 0 } ^ { a } ] = 0 ~ ."
process_49_6353.bmp,"\begin{array} { r } { d = \sum _ { d ^ { \prime } \leq d } x _ { d ^ { \prime } } , } \end{array}"
53011f5739d7615_basic.png,\pi : P _ { \omega } ( \mathcal { G } ) \to \mathcal { G }
2fc4b86d223c364.png,"\left( A _ { \mu A x } , B _ { A x } \right) \left( \begin{array} { c c } { { G _ { \mu A x , \nu B y } } } & { { \tilde { G } _ { \mu A x , B y } } } \\ { { G _ { A x , \nu B y } } } & { { G _ { A x , B y } } } \end{array} \right) \left( \begin{array} { c } { { A _ { \nu B y } } } \\ { { B _ { B y } } } \end{array} \right)"
3162b3f6c292169.png,D _ { \mu \nu } ( x - x ^ { \prime } ) = ( - \varepsilon _ { \mu \nu \lambda } \partial _ { x } ^ { \lambda } + { \frac { \alpha \partial _ { \mu } \partial _ { \nu } } { \Box } } ) \int { \frac { d ^ { 3 } k } { ( 2 \pi ) ^ { 3 } } } { \frac { e ^ { i k ( x - y ) } } { k ^ { 2 } + i \epsilon } }
e1e2812801e9ff6_basic.png,"\sigma ( Q ^ { 2 } ) _ { \mathrm { h a d } } = \sigma ( Q ^ { 2 } ) _ { \mathrm { p o i n t } } ( Q ^ { 2 } ) ^ { - n _ { q } + n _ { h } } f \, ,"
766895f8e5.png,A = \frac { 1 } { g } ( 1 + \omega ) [ - \widehat \tau _ { \varphi } d \theta + \widehat \tau _ { \theta } \sin \theta d \varphi ] .
f8b1fad67560e00.png,| R _ { \ell } | ^ { 2 } = m \; { \frac { 2 ^ { 2 \ell } } { ( \Gamma ( 2 \ell + 1 ) ) ^ { 2 } } } \; e ^ { - k / 2 T } k ^ { 2 \ell - 1 } r ^ { 2 \ell } | \Gamma ( \ell + 1 + i k / ( 2 \pi T ) ) | ^ { 2 }
791a111be23bac1.png,H ^ { \prime } = H _ { T } - 2 \int d x \phi ^ { 2 } n ^ { 2 } T _ { 2 } + \int d x \phi ^ { 2 } \phi ^ { 2 } ( n ^ { 2 } ) ^ { 2 } + \sum _ { p = 1 } ^ { \infty } H ^ { ( p ) }
process_49_635.bmp,\begin{array} { r } { \infty > \dim \mathrm { L i n } \langle \{ s _ { J } ^ { * } \Omega : J \} \rangle = \dim \mathrm { L i n } \langle \{ s _ { J } ^ { * } \Omega \in B : J \} \rangle = \# \{ s _ { J } ^ { * } \Omega \in B : J \} . } \end{array}
sume_data-00000-of-00009_89074.png,"\displaystyle I _ { z v } ( \sqrt { s _ { k } } , \omega _ { 2 } , q )"
process_49_6881.bmp,\begin{array} { r } { \operatorname* { l i m } _ { \epsilon \rightarrow 0 } V ^ { * } ( \epsilon ) = \operatorname* { l i m } _ { \epsilon \rightarrow 0 } G ^ { * } ( \epsilon ) = \tilde { G } ^ { * } . } \end{array}
9be72ca4b602aed_basic.png,\frac { 6 + 6 + 4 } { 2 4 } = \frac { 2 } { 3 }
f4f7399c1ae1f06_basic.png,"p _ { k } ( t + 1 ) = \operatorname * { m a x } \left\{ p _ { k } ( t ) \left( 1 - \frac { \sum _ { i } \gamma _ { i } V _ { k i } ( t ) } { D _ { k } } \right) , 0 \right\} \quad ,"
b263634cb6d5550_basic.png,"\sqrt { \langle | S \left( E , \nu \right) | ^ { 2 } \rangle }"
f0825e0323.png,{ \cal A } = { \frac { 8 \pi J } { a } } \left[ r _ { + } - M + { \frac { \left( M ^ { 2 } + \Sigma ^ { 2 } - P ^ { 2 } - Q ^ { 2 } \right) \left( M + \Sigma / \sqrt { 3 } \right) } { \left( M + \Sigma / \sqrt { 3 } \right) ^ { 2 } - Q ^ { 2 } } } \right] .
2ea261f24f3c3bf_basic.png,"G _ { u } ^ { \dagger } = ( 1 / \sqrt { 2 } ) \lambda ^ { \alpha _ { u } } A _ { u } ^ { \alpha _ { u } \dagger } = \Psi _ { u } ^ { b \dagger } \Psi _ { u a } ^ { \dagger } - \frac 1 3 E \delta ( a , b ) \Psi _ { u } ^ { b \dagger } \Psi _ { u a } ^ { \dagger } \equiv G _ { u } ^ { \prime \dagger } - \frac 1 3 E \cdot 1 _ { u } \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad"
process_49_66.bmp,"\begin{array} { r } { \begin{array} { r l } { | S ( \cdot , t ) | \leqslant } & { { } C _ { S } \biggl [ ( | F ^ { j - 1 } | ^ { p - 2 } + | F ^ { j } | ^ { p - 2 } ) | \delta F ^ { j } | ^ { 2 } + | { \delta \Theta } ^ { j } | ^ { 2 } } \end{array} } \end{array}"
process_49_7833.bmp,\begin{array} { r l } { \log ( k ! ) } & { { } = ( k + 1 ) \log ( k + 1 ) - ( k + 1 ) - \frac { 1 } { 2 } \log \left( \frac { k } { 2 \pi } \right) + O ( k ^ { - 1 } ) ; } \\ { 2 \log ( C _ { k } ) } & { { } = k \log ( 2 ) + ( k + 1 ) \log ( k + 1 ) - ( k + 1 ) - \frac { 1 } { 2 } \log \left( \frac { k } { 2 \pi } \right) + O ( k ^ { - 1 } ) . } \end{array}
d8c022b6727844a_basic.png,"\mathbf { v } _ { R } = ( 0 , - 1 , 0 )"
399ae93ba3.png,"d s ^ { 2 } = 2 \tilde { g } _ { + - } d x ^ { + } d x ^ { - } + \tilde { g } _ { -- } ( d x ^ { - } ) ^ { 2 } \, ."
process_49_5236.bmp,\begin{array} { r } { \hat { M } _ { t } ^ { m } = \lambda _ { m } ( M _ { \lambda _ { m } ^ { - 2 } t } - p _ { m } ) } \end{array}
0424d47431cdb53_basic.png,"F _ { E B } ^ { \tau } ( \vec { { \ell _ { 1 } } } , \vec { { \ell _ { 2 } } } ) = \frac { f _ { E B } ^ { \tau } ( { \vec { \ell _ { 1 } } } , { \vec { \ell _ { 2 } } } ) } { ( C _ { \ell _ { 1 } } ^ { E B } + N _ { \ell _ { 1 } } ^ { E B } ) ( 2 C _ { \ell _ { 2 } } ^ { E B } + N _ { \ell _ { 2 } } ^ { E B } ) } ,"
sume_data-00005-of-00009_10720.png,"\forall U , V \in L , \, \, \, \, ( U + V ) ^ { 2 } - U ^ { 2 } - V ^ { 2 } = U V + V U \in L ."
75e68adcaa03dd0_basic.png,"\left[ \varphi ( x , u ) , \pi ( y , u ) \right] \delta ( x ^ { 0 } - y ^ { 0 } ) = i { \delta } _ { \Gamma } ^ { 4 } ( x - y )"
3a23640b55c145a.png,{ \cal A } _ { \mu } \left( x \right) = A _ { \mu } \left( x \right) + \partial _ { \mu } \left( { - \int _ { - \infty } ^ { 0 } { A _ { \sigma } \left( z \right) \frac { { \partial z ^ { \sigma } } } { { \partial \xi } } d \xi } } \right) .
cb4263912203c53_basic.png,"d \mu \left( i , j \right)"
3454b2581f.png,"| b a s e > = | p ^ { + } , p ^ { - } , p _ { 2 } ; \tilde { p } ^ { + } , \tilde { p } ^ { - } , \tilde { p } _ { 2 } >"
71e1ff5cadc69f7_basic.png,< 1 . 4 \times 1 0 ^ { 1 3 . 0 }
sume_data-00000-of-00009_23910.png,\displaystyle = \frac { X ( D _ { R } + d _ { q } ) } { K s } \sqrt { p } .
4196e3508115c65_basic.png,"H _ { W } = \frac { p _ { j } ^ { 2 } } { 2 m } + \frac { m } { 2 } R _ { 0 , k 0 } ^ { j } x ^ { k } + V ."
a0e72bbc5a6fa9a_basic.png,"V _ { \lambda , \Lambda } ( p , p ^ { \prime } ) = - \frac { \alpha _ { \Lambda } } { 2 \pi } \; e ^ { - \frac { ( p ^ { 2 } - p ^ { 2 } ) ^ { 2 } } { \lambda ^ { 4 } } } \; ;"
422b1b02853d8d6_basic.png,p ^ { \prime \prime } = 0 . 0 1 0 \times 4 = 0 . 0 4
sume_data-00002-of-00009_8999.png,"\displaystyle = - X \, ,"
234974c697ba48d_basic.png,L _ { k j } ^ { \mathrm { o s c } }
sume_data-00004-of-00009_91679.png,"\displaystyle \sqrt { \frac { \mu ^ { 2 } - m ^ { 2 } } { 3 \mu ^ { 2 } - m ^ { 2 } } } \, p + { \cal O } ( p ^ { 2 } ) \; ."
ed0720f2c1d6b12.png,| \xi > = \sum _ { n = 0 } ^ { p } | n > \frac { \xi ^ { n } } { \sqrt { \{ n \} ! } }
sume_data-00005-of-00009_9099.png,"P = - c ^ { 2 } d m / d \tau ,"
d2b559bd0f6d488_basic.png,( 1 + K ^ { - 1 } | v | ) ^ { - ( N - n + 2 ) } \leq ( 1 + 2 \lambda ^ { 1 / 2 } K ^ { - 1 } ) ^ { - ( N - n + 2 ) } \leq \lambda ^ { - \delta ( N - n + 2 ) } .
3193a7a8fe7f84b_basic.png,"m _ { \nu } \ \approx \ - \, \pi m ^ { 2 } R \ \ [ \cos ^ { 2 } \phi _ { h } \, \cot ( \pi R \, \varepsilon ) \ + \ \frac { 1 } { 2 } \sin ( 2 \phi _ { h } ) \, \ ] \, ."
4fceed1bc68792b.png,"V _ { C } ( Z _ { 1 } , Z _ { 2 } ; r ) = Z _ { 1 } Z _ { 2 } \alpha _ { C } { \frac { \hbar c } { r } } ; \ \ \ \ V _ { N } ( N _ { 1 } , N _ { 2 } ; r ) = N _ { 1 } N _ { 2 } \alpha _ { N } { \frac { \hbar c } { r } }"
39f6955fdc87d87_basic.png,"\mathcal { S } _ { 0 , 0 } ^ { 1 } \varphi = ( \partial _ { n _ { 1 } } w _ { 1 } + Z _ { 0 } w _ { 1 } ) | _ { \Gamma _ { 0 } } ."
5532f5b24d.png,"I _ { d S } | E _ { 0 } , s , E _ { \Lambda } > = [ E _ { 0 } ^ { 2 } + E _ { \Lambda } ^ { 2 } ( \frac { 9 } { 4 } - s ^ { 2 } - s ) ] | E _ { 0 } , s , E _ { \Lambda } > ."
f9f26dc308b4b67_basic.png,"r _ { 1 } : f _ { 1 } + f _ { 2 } \xrightarrow { p _ { 2 } } p _ { 1 } ,"
sume_data-00006-of-00009_43738.png,\displaystyle | X ^ { \epsilon } ( s ) - \mathcal { X } ( s ) |
process_49_6116.bmp,\begin{array} { r } { \left\{ \begin{array} { l l } { \ ; . } \end{array} \right. } \end{array}
61d5721b83450bf_basic.png,G ( B ) = G ^ { \mathop { \mathrm { s k } } }
sume_data-00000-of-00009_158038.png,"\displaystyle { \frac { l _ { 1 \! 1 } ^ { \, 3 } } { R _ { 1 \! 1 } } } \, ,"
process_49_321.bmp,"\begin{array} { r } { F ( J , h ) = \operatorname* { l i m } _ { n \to \infty } F ( G _ { n } , J , h ) } \end{array}"
bc46b0b7e08e704_basic.png,"\cos \Theta = \cos \xi \cos \psi + \sin \xi \cos \phi \sin \psi ,"
c7e505ea714f05c.png,"\{ \Omega _ { i } ^ { a } ( x ) , \Omega _ { j } ^ { b } ( y ) \} = { \bf \large C } ^ { a b } = \left( \begin{array} { l l l l } { { 0 } } & { { { \delta _ { a b } \partial _ { 3 } } } } & { { 0 } } & { { 0 } } \\ { { { \delta _ { a b } \partial _ { 3 } } } } & { { 0 } } & { { { \delta _ { a b } \frac { \partial _ { 1 } \partial _ { 3 } } { \nabla ^ { 2 } } } } } & { { { \delta _ { a b } \frac { \partial _ { 2 } \partial _ { 3 } } { \nabla ^ { 2 } } } } } \\ { { 0 } } & { { - { \delta _ { a b } \frac { \partial _ { 1 } \partial _ { 3 } } { \nabla ^ { 2 } } } } } & { { 0 } } & { { \epsilon _ { a b } \partial _ { 3 } } } \\ { { 0 } } & { { - { \delta _ { a b } \frac { \partial _ { 2 } \partial _ { 3 } } { \nabla ^ { 2 } } } } } & { { - \epsilon _ { a b } \partial _ { 3 } } } & { { 0 } } \end{array} \right) \times \delta ( x - y )"
sume_data-00000-of-00009_111719.png,"U ( w ) = w \circ T ,"
70dbc46436a18db_basic.png,"a _ { t + 1 } ^ { 1 } , \dots , a _ { t + 1 } ^ { K }"
579b6c372805614_basic.png,J _ { 1 } \not \in P \setminus P ^ { \prime }
a5d22e2925.png,"{ \cal S } _ { E } = \frac { \pi } { 4 } \tau \nu \sum _ { n = 0 } n ^ { 2 } X _ { n 0 } ^ { 2 } + \frac { \pi } { 2 } \tau \sum _ { n = 0 } \sum _ { k = 1 } \left( \rho \left( \frac { 2 \pi k } { \tau } \right) ^ { 2 } + n ^ { 2 } \nu \right) | X _ { n k } | ^ { 2 } ,"
sume_data-00003-of-00009_50472.png,Y _ { 1 } = h ^ { - 1 } Y _ { 2 } h
34a5908616.png,"P = \sqrt { \frac 1 { 1 2 } \left( \frac 3 2 - c _ { \mathrm { e f f } } ( r ) \right) } \, ,"
91f431058c79e17_basic.png,"V ( t ) = \Phi ( t , V ( t ) ) : = V ( t - 1 ) + c ( t ) - A ( t , V _ { t } ) ^ { \top } V ( t ) ^ { - } + A ( t - 1 , V _ { t - 1 } ) ^ { \top } V ( t - 1 ) ^ { - } ."
sume_data-00004-of-00009_45041.png,\displaystyle \delta _ { Q _ { R } } S _ { \mathrm { 5 D } } ^ { \mathrm { { m } } }
6cdac2da19.png,"[ P , R ] _ { \scriptscriptstyle S N } \; \; \hat { \longrightarrow } \; \; - \{ \{ Q , \widehat { P } \} , \widehat { R } \}"
8c0d34c2b71b817_basic.png,S ( x ) = - p . x - \int _ { 0 } ^ { k . x } \frac { 1 } { c ( k . p ) } \left[ p . A ( \xi ) - \frac { 1 } { 2 c } A ^ { 2 } ( \xi ) \right] d \xi
473026bfda59fe8_basic.png,"C ^ { \prime } \uparrow _ { S } ^ { \Omega } = ( 2 , 0 , 3 )"
52245e4ca8e1be9_basic.png,"\left( \partial _ { t } I \right) ^ { 2 } - f ( r ) ^ { 2 } \left( \partial _ { r } I \right) ^ { 2 } - m ^ { 2 } f ( r ) = 0 ,"
82c739b01f812ac_basic.png,"\dot { u } _ { - 5 0 0 } \equiv \operatorname * { l i m } _ { t \to \infty } \dot { u } ( - 5 0 0 , t )"
process_49_8422.bmp,"\begin{array} { r } { e ^ { \widetilde { \alpha } ( z , \bar { z } ) } = \frac { e ^ { \alpha ( z , \bar { z } ) } } { | r ( z , \bar { z } ) | ^ { 2 } } , \ \ \ e ^ { \widetilde { \alpha } } = \frac { 1 } { 2 } \langle \widetilde { r } _ { z } , \widetilde { r } _ { \bar { z } } \rangle , \ \ e ^ { \alpha } = \frac { 1 } { 2 } \langle r _ { z } , r _ { \bar { z } } \rangle . } \end{array}"
304fc12bc601239_basic.png,"- { \frac { \mathrm { d } } { \mathrm { d } Q ^ { 2 } } } \, \Pi ( Q ^ { 2 } ) = { \frac { 1 } { \pi } } \int \mathrm { d } s \, { \frac { 1 } { ( s + Q ^ { 2 } ) ^ { 2 } } } \, \mathrm { I m } \Pi ( s ) \, ,"
421d889c73.png,"T = \left( \begin{array} { c c } { { A } } & { { B } } \\ { { C } } & { { D } } \end{array} \right) \ ,"
1de31f4195.png,\Lambda _ { a } ^ { i } = \lambda _ { - a } ^ { i 4 } - \sqrt 2 \theta ^ { + } G _ { a } ^ { i } - i \theta ^ { + } { \bar { \theta } } ^ { + } ( D _ { 0 } + D _ { 1 } ) \lambda _ { - a } ^ { i 4 } - \sqrt 2 { \bar { \theta } } ^ { + } E _ { a } ^ { i }
process_49_420.bmp,"\begin{array} { r } { \frac { \partial \mathcal { L } } { \partial p _ { n , k } } = - \frac { c _ { k } + \delta _ { k } } { 1 + p _ { n , k } } + \theta \beta _ { n , k } = 0 } \end{array}"
process_49_3481.bmp,"\begin{array} { r } { p _ { i } ^ { * } = \frac { \sigma _ { i } } { \sqrt { h _ { i } } } \left[ \operatorname* { m i n } \left\{ { \frac { 2 ^ { 2 B _ { m a x } } } { \sigma _ { i } \sqrt { h _ { i } } } } , \frac { 1 } { \lambda } \right\} - \frac { 1 } { \sigma _ { i } \sqrt { h _ { i } } } \right] ^ { + } . } \end{array}"
6869cdd20e.png,\int \partial _ { i } \partial _ { l } \phi ^ { 5 } \partial _ { j } \partial _ { k } \phi ^ { 5 } + G ^ { p q } \int d ^ { 4 } x \partial _ { p } \phi \partial _ { i } \partial _ { k } \phi ^ { 5 } \int d ^ { 4 } y \partial _ { q } \phi ^ { 5 } \partial _ { j } \partial _ { l } \phi ^ { 5 }
5d09201b4ab669e_basic.png,"\frac { d E } { d t } \simeq 4 G _ { \mathrm { N } } \, ( n { - } 1 ) ^ { 2 } \int _ { 0 } ^ { p } ( p - k ) ^ { 2 } k d k = \frac { G _ { \mathrm { N } } \, p ^ { 4 } ( n { - } 1 ) ^ { 2 } } { 3 } \, ."
process_49_4784.bmp,"\begin{array} { r } { \{ ( \Gamma , y ) \mid x = \Gamma ( y ) \} \subseteq \{ ( \Gamma , y ) \mid \Gamma \in V _ { n } ^ { y } \} } \end{array}"
process_49_2067.bmp,"\begin{array} { r } { \nabla _ { X } ^ { n c } \left( \begin{array} { l } { \alpha } \\ { Y } \\ { \beta } \end{array} \right) = \left( \begin{array} { l } { X ( \alpha ) + K ^ { g } ( X , Y ) } \\ { \nabla _ { X } ^ { g } Y + \alpha X - \beta K ^ { g } ( X ) ^ { \sharp } } \\ { X ( \beta ) - g ( X , Y ) } \end{array} \right) , } \end{array}"
81a5acff0ccd08b_basic.png,r _ { e } = R \sin \theta _ { 0 }
process_49_3304.bmp,"\begin{array} { r } { \mathcal { L } ( x , a ) = \frac { 1 } { 9 0 a ^ { 2 } + 2 } \ln \left( x ^ { 2 } + x + \frac { 3 a + 1 } { 3 } \right) + \frac { 4 5 a ^ { 2 } } { 9 0 a ^ { 2 } + 2 } \ln \left( x ^ { 2 } + x + \frac { 1 5 a - 1 } { 4 5 a } \right) . } \end{array}"
1628801247.png,"\left\langle \phi ( \xi ) \right\rangle _ { m , n } = - Q \log \left| \xi - \bar { \xi } \right| ^ { 2 } + \left. \partial U _ { m , n } ( \alpha ) / \partial \alpha \right| _ { \alpha = 0 }"
0d1314f0bdf491b_basic.png,"\cosh \psi = \frac { 2 P \cdot ( \ell _ { 1 } + \ell _ { 2 } ) } { \Delta [ - Q ^ { 2 } , P ^ { 2 } , P _ { X } ^ { 2 } ] }"
sume_data-00000-of-00009_167502.png,\phi ( v _ { 0 } ) + \sum _ { i = 1 } ^ { k } | G / \Gamma _ { i } | \phi _ { \infty } ( v _ { i } ) = c .
a7a3903846b9bf0_basic.png,"i S _ { F } ( x ) = \int { \frac { \mathrm { d } ^ { 4 } p } { ( 2 \pi ) ^ { 4 } } } e ^ { - i p \cdot x } { \frac { i } { ( 1 + i \epsilon ) p _ { 0 } \gamma ^ { 0 } - \vec { p } \cdot \vec { \gamma } + \mu \gamma ^ { 0 } - m } } ,"
5676b7ce8bc6fa1_basic.png,"\langle P ( k ) | \bar { q } \gamma _ { \mu } c | D ( p ) \rangle = f _ { + } ( q ^ { 2 } ) ( p + k ) _ { \mu } + f _ { - } ( q ^ { 2 } ) ( p - k ) _ { \mu } \, ,"
2ecc155456.png,{ \delta } ( q _ { - } ) \frac { - m ^ { 2 } } { q ^ { 2 } - m ^ { 2 } + i { \varepsilon } } = { \delta } ( q _ { - } ) \left( 1 + \frac { n ^ { 2 } q _ { + } ^ { \; \; 2 } } { q ^ { 2 } - m ^ { 2 } + i { \varepsilon } } \right) .
sume_data-00005-of-00009_150245.png,"\displaystyle [ \Lambda ^ { \mu } ( y ) , \ \Lambda ^ { \nu } ( y ) ] \sqrt { - g } ( y )"
7868ae7cac1f15a_basic.png,"\varphi \left( k _ { + } ; Q \right) ^ { Q C D } = \int C \left( k _ { + } - k _ { + } ^ { \prime } ; Q , \mu \right) \, \varphi \left( k _ { + } ^ { \prime } ; \mu \right) \, d k _ { + } ^ { \prime } ,"
5aa8a022a253377_basic.png,n ^ { \prime \prime } \ge 1
8f7e0dae1429011_basic.png,u : X _ { U } ( { \mathbf C } ) \setminus \Xi \to X _ { U } ( { \mathbf C } )
process_49_8130.bmp,"\begin{array} { r } { L ( g _ { i j } , g _ { i j , k } , g _ { i j , k l } , \Gamma _ { i j k } , \Gamma _ { i j k , l } ) = Q u a d _ { ( g _ { i j } ) } ( g _ { i j , k } , g _ { i j , k l } , \Gamma _ { i j k } , \Gamma _ { i j k , l } ) } \end{array}"
process_49_9112.bmp,"\begin{array} { r } { Y _ { \lambda } \circledast Y _ { \mu } = \delta _ { \lambda \mu } Y _ { \mu } ~ , Y _ { \lambda } = e ( y _ { \lambda } , y _ { \lambda } ) ^ { - 1 } | y _ { \lambda } \rangle \ ; , } \end{array}"
2c0573871f02940_basic.png,S ( g _ { 1 } ) \subseteq S ( \hat { g } )
781c077951.png,- { \frac { \Delta x } { i } } z \left( \sum _ { m } \beta _ { m } z ^ { m } \right) { \frac { d } { d z } } \left( D _ { N } ( p ) \right) = 1 \ .
2c9cb049400de58_basic.png,"V _ { a b } ^ { i j } = \lambda \delta _ { a b } \frac { { \mathbf { k } } ^ { i } { \mathbf { k } } ^ { j } + \delta ^ { i j } | { \mathbf { k } } | ^ { 2 } } { | { \mathbf { k } } | ^ { 4 } } ,"
process_49_1008.bmp,"\begin{array} { r l } { a _ { j - 1 , j } : = } & { { } A _ { j - 1 } ^ { - 1 } B _ { j - 1 , j } A _ { j } , } \\ { b _ { j - 1 , j } : = } & { { } 1 - A _ { j - 1 } ^ { - 1 } B _ { j - 1 , j } A _ { j } = 1 - a _ { j - 1 , j } . } \end{array}"
bfe51afcfe77bb0_basic.png,\lambda ^ { * } ( \phi ) = 1 / 4
cced05b29bc1c76_basic.png,\ddot { y } = - \lambda y ^ { - ( 3 w + 1 ) / 2 } .
process_49_9015.bmp,"\begin{array} { r } { \nu _ { \Sigma _ { j } } ( x ) = \nu _ { E } ( x ) \ , , } \end{array}"
sume_data-00006-of-00009_133458.png,\Psi ^ { m a x }
d9ce77d1e5c9249.png,"\langle n | H ^ { ( 0 ) } | n \rangle = E [ \phi _ { 0 } , g ( \vec { k } ) ]"
process_49_3864.bmp,"\begin{array} { r } { a _ { i } ( t ) = a _ { i } ( 0 ) + \int _ { 0 } ^ { t } \mathcal { F } _ { i } ( a ) d \tau + \sum _ { \left\vert \ell \right\vert = 2 , 4 , . . } \frac { C _ { \ell } } { \ell ! } \int _ { 0 } ^ { t } D ^ { \ell } \mathcal { F } _ { i } ( a ) d \tau + \tilde { R } ( t ) , } \end{array}"
8bbfc5d8a0.png,\nu ^ { 2 } = \left( \frac { 2 m b } { \hbar ^ { 2 } } + \frac { 1 } { 4 } \right)
054f8a4e51f3561_basic.png,"f ( r , t ) = \left\{ \left\{ \begin{array} { l l } { { 1 , } } & { { i f 0 \leq r \leq R \mathrm { a n d } | t | \leq T _ { 0 } } } \\ { { 0 , } } & { { i f r \geq R _ { D } \mathrm { o r } | t | \geq T _ { D } } } \end{array} \right. \right."
5d38ac87a57ff1b_basic.png,x _ { 2 } \! \mathbin { \underline { { { * } } } } ^ { [ 1 ] } \! x _ { 2 }
process_49_3048.bmp,"\begin{array} { r } { \operatorname* { l i m s u p } _ { K \to \infty } \frac { \left| \sum _ { k = 1 } ^ { K } \tilde { X } _ { m , k } \right| } { \sqrt { 2 \tilde { s } _ { K } ^ { 2 } \log ( \log ( \tilde { s } _ { K } ^ { 2 } ) ) } } = 1 \quad \textnormal { a . s . } } \end{array}"
00045a0b0f89bf5_basic.png,"\| \ensuremath { \boldsymbol P } ( u _ { i } - \ensuremath { \boldsymbol G } u _ { i } - \alpha ) \| _ { \widetilde A } \leq \sqrt { B } \| u _ { i } - \ensuremath { \boldsymbol G } u _ { i } - \alpha \| _ { \widetilde M } ,"
sume_data-00007-of-00009_170929.png,"\displaystyle a _ { n , m } ^ { \mathrm { { d e t } } , t }"
96f6d6df7d2fa51_basic.png,"e _ { \alpha \beta } = \frac { 1 } { 2 } ( u _ { \alpha , \beta } + u _ { \beta , \alpha } ) ,"
5e5d7fecdd500bb_basic.png,"D _ { 2 } ^ { Z } \equiv ( { \frac { q ^ { 2 } } { 4 } } ) [ D _ { 2 5 } - D _ { 2 4 } - D _ { 1 1 } ) ] = { \frac { [ I _ { 5 } ( q ^ { 2 } , t , M _ { Z } ) + I _ { 5 } ( q ^ { 2 } , u , M _ { Z } ) ] } { 2 q ^ { 2 } } }"
2a10743063.png,"A _ { z } = \frac { - 2 b \bar { z } } { 1 + | z | ^ { 2 } } ,"
e73d808e93.png,"c _ { 4 } ^ { ( L ) } \approx - 1 . 7 4 2 + 0 . 8 0 \; L ^ { - 1 } + { \cal O } ( L ^ { - 2 } ) \, ."
134ea7e1ca.png,\Delta ( e ^ { \lambda _ { k } \varphi } ) + \Delta ( e ^ { i p _ { k } \cdot x } ) = 1
b15b41d011eda38.png,\stackrel { } { C ^ { a } \equiv \partial ^ { k } E _ { k } ^ { a } + g f ^ { a b c } A _ { k } ^ { b } E ^ { c k } = 0 }
sume_data-00004-of-00009_87056.png,\displaystyle = \hat { f } _ { Y } \left( \hat { q } _ { \tau } \right) - \hat { f } _ { Y } \left( Q _ { \tau } [ Y ] \right) + \hat { f } _ { Y } \left( Q _ { \tau } [ Y ] \right) - f _ { Y } \left( Q _ { \tau } [ Y ] \right)
c890099b6751128_basic.png,"n ( t , r _ { z } ) = n _ { 0 } \frac { Z _ { 0 } } { Z } \frac { 1 } { \cosh \zeta } \mathcal { G }"
371dbb0e33.png,\psi _ { \vec { \mu } } ^ { a } ( \theta + 2 \pi ) = e x p ( i \vec { a } . \vec { \mu } ) \psi _ { \vec { \mu } } ^ { a } ( \theta ) \hspace { . 6 i n } \zeta _ { \vec { \mu } } ^ { a } ( \theta + 2 \pi ) = e x p ( i \vec { a } . \vec { \mu } ) \zeta _ { \vec { \mu } } ^ { a } ( \theta )
7230549d5e5869d_basic.png,"\langle 0 | \langle ( 1 1 0 ) | ~ V ~ | 0 \rangle | ( 2 1 0 ) \rangle = \sqrt { \frac { 1 } { 2 } } V _ { 0 1 , 0 2 } ( \delta _ { 1 1 , 0 0 } ) \cdot 2 = \sqrt { 2 } V _ { 0 1 , 0 2 }"
process_49_2692.bmp,\begin{array} { r } { S N R = E I R P + G _ { T } - \mathcal { K } - \mathcal { B } } \end{array}
0bcfe1c83b9b53b_basic.png,"s _ { h } v _ { h } \gamma _ { h } \geq s _ { q } v _ { q } \gamma _ { q } \quad ,"
36cf4db04ecfa6d_basic.png,"\frac { x _ { s } } { x _ { d } } = \frac { | V _ { t s } | ^ { 2 } } { | V _ { t d } | ^ { 2 } } = \frac { 1 } { s _ { 1 2 } ^ { 2 } - 2 q s _ { 1 2 } c o s \delta _ { 1 3 } + q ^ { 2 } } = \frac { 1 } { { \lambda ^ { 2 } } \bigl [ ( 1 - \rho ) ^ { 2 } \, + \, { \eta ^ { 2 } } \bigr ] }"
sume_data-00008-of-00009_165513.png,\displaystyle \| \tau _ { - x _ { n } } V \nabla ( e ^ { - i t \Delta } \psi ) \| _ { L ^ { \eta } }
sume_data-00002-of-00009_20464.png,\displaystyle \tau \sum _ { k = 1 } ^ { N } \int _ { \Omega } | Q _ { i } ^ { \eta } ( u ^ { k } ) | d x
42b3788200.png,{ \frac { d ^ { 2 } y } { d \tilde { \lambda } ^ { 2 } } } + { \frac { 1 } { 2 } } { \frac { { \cal W } ^ { \prime } } { \cal W } } \left[ 1 - \left( { \frac { d y } { d \tilde { \lambda } } } \right) ^ { 2 } \right] = 0 .
sume_data-00004-of-00009_2385.png,\displaystyle \left( ( \alpha - \alpha _ { G } ) \rho + 1 \right) \frac { q - p } { q p } > 1
sume_data-00000-of-00009_46986.png,"\displaystyle \tilde { n } _ { i , j } ="
1e02f154b98cdfc_basic.png,"u _ { i } ( 0 , \frac { y } { m } + x _ { 0 } ) = \frac { u _ { i } ^ { 0 } } { m } \phi ( y ) \frac { e ^ { - y - y _ { 1 } } } { \Lambda _ { i } ( \frac { y } { m } + x _ { 0 } ) \sqrt { f _ { i } ( \frac { y } { m } + x _ { 0 } ) } } , \mathrm { ~ } \forall i \in [ 1 , n ] ."
28da05708a46fde.png,\delta \varphi = \epsilon ^ { + } \partial _ { + } \varphi \; \; \; ; \; \; \; \partial _ { + } \epsilon ^ { + } = 0
5dfcec46899e894_basic.png,m _ { 1 } = 9 \ \mathrm { M } _ { \odot }
process_49_1751.bmp,"\begin{array} { r } { f _ { 1 } ( x ) = \operatorname* { m i n } \ \{ \hat { f } _ { 1 } ( x ) , 1 - \delta \ \} . } \end{array}"
ee6bf7ab20e6b60_basic.png,"\bar { \tau } = ( \tau _ { 1 } , \dots \tau _ { k } )"
61862a494d9e112_basic.png,\left[ i \bar { \gamma } ^ { \mu } D _ { \mu } - ( m _ { \psi } + h \phi ( t ) ) \right] \psi ( x ) = 0 ~ .
1d5a586b5e2eee7.png,{ \cal L } _ { e f f } = { \cal L } _ { \phi } + { \cal L } _ { \psi } + { \cal L } _ { I }
44035d0bdfef004_basic.png,\hat { n } _ { i } = b _ { i } ^ { \dagger } b _ { i }
4c8a486e2a.png,"( \dot { x } _ { \mu } - v J _ { \mu } ) ^ { 2 } + e ^ { 2 } m ^ { 2 } = 0 , \quad \dot { x } J - v J ^ { 2 } - s m e = 0 ."
process_49_9475.bmp,"\begin{array} { r } { \| u \| _ { L ^ { 2 } ( M ) } : = \sqrt { ( u , u ) _ { L ^ { 2 } ( M ) } } \ , . } \end{array}"
5f6b70552de2cbd.png,W = \lambda ( F ( \phi _ { i } ) - \Lambda ^ { p } ) .
749fe90c341c27a_basic.png,\eta _ { k } = \frac { k _ { x } + i k _ { y } } { \sqrt { k ^ { 2 } - k _ { z } ^ { 2 } } } = - \eta _ { - k }
75df15cf4c.png,\int _ { K _ { - } } ^ { K _ { + } } d K \log K \left[ 8 \pi i K - 3 k _ { 0 } - \frac { k ^ { 2 } k _ { 0 } } { 1 6 \pi ^ { 2 } K ^ { 2 } } \right] .
1987c9008fe75ac.png,"\delta V ( z ) = \theta \, \frac { R _ { 0 } } { R ( z ) } \; ( \delta k ) _ { 0 } \, \ell _ { P } = \theta \, ( 1 + z ) \; ( \delta k ) _ { 0 } \, \ell _ { P } ,"
sume_data-00008-of-00009_1094.png,"T _ { \mathrm { I I } \, t } ^ { t } - T _ { \mathrm { I I } \, Z } ^ { Z } = \frac { p k M _ { \ast } ^ { p } } { 4 \pi } \delta ( Z ) ."
sume_data-00000-of-00009_117709.png,\displaystyle = \frac { \operatorname* { m i n } _ { a } \mu ( B _ { n } ( a ) ) } { \operatorname* { m a x } _ { b } \mu ( B _ { n - 1 } ( b ) ) } = \frac { \mu ( B _ { n } ( a _ { * } ) ) } { \mu ( B _ { n - 1 } ( b ^ { * } ) ) }
4fab934783461c1_basic.png,"\mathrm { d e t } \left( { \cal T } \right) ^ { 2 N _ { f } } e ^ { - N _ { c } \Delta S _ { p a i r } } \equiv e ^ { - \Delta S _ { e f f } } > 1 \, ,"
sume_data-00006-of-00009_132950.png,\star$h$*
2b2de5013199534_basic.png,v _ { i } ^ { \prime } = w _ { i } \circ \frac { u } { u _ { i } }
process_49_301.bmp,"\begin{array} { r } { \| \beta ( G / \phi ) \| _ { 1 } = \sum _ { i , j } | \beta _ { i j } ( G / \phi ) | \leq 1 , } \end{array}"
a260aa1e489f4ac_basic.png,"w ( A , s ) = \left( 1 - { \frac { s } { s _ { 0 } } } \right) \left( 1 + A { \frac { s } { s _ { 0 } } } \right) \ ."
process_49_4136.bmp,\begin{array} { r } { Q : = \{ g \in G : \ \theta _ { a n } ( g ) = g \} . } \end{array}
sume_data-00001-of-00009_11611.png,"\displaystyle { \cal S } _ { 5 } ^ { ( 6 ) } ( 1 , 2 , 3 , 4 , 5 , 6 )"
process_49_2180.bmp,"\begin{array} { r } { X _ { i } = f _ { i } ( W , \Theta _ { A } , S ^ { i - 1 } ) , i = 1 , 2 , \ldots , n , } \end{array}"
process_49_1097.bmp,"\begin{array} { r } { W _ { \varphi _ { \lambda } ^ { ( t ^ { * } ) } } u _ { 0 } ( x - \lambda t \xi + \delta _ { 1 } ( \lambda ) , \lambda \xi + \delta _ { 2 } ( \lambda ) ) = W _ { \varphi _ { \lambda } ^ { ( t ^ { * } ) } } u _ { 0 } ( x - \lambda t \xi , \lambda \xi ) + ( ) . } \end{array}"
6b4b9a0b75.png,"{ \cal A } _ { t r i a n g l e , 1 } ^ { ( 1 ) } + { \cal A } _ { t r i - g l u o n } ^ { ( 1 ) } = 0"
process_49_5435.bmp,"\begin{array} { r } { E [ \zeta _ { y } ] = P ( \zeta _ { y } = 1 ) = 1 - P ( \zeta _ { y } = 0 ) = 1 - \prod _ { x \in B _ { i } } \bigl ( 1 - f ( x , y ) \bigr ) ^ { \eta _ { x } } \ , . } \end{array}"
c0d8ea6b74efcd3.png,\psi = \int d x [ \bar { C } _ { 1 } \chi ^ { 1 } + \bar { C } _ { 2 } \chi ^ { 2 } + \bar { P } _ { 1 } N ^ { 1 } + \bar { P } _ { 2 } N ^ { 2 } ] .
1702519656d159d_basic.png,n _ { 1 } = 1 - K _ { d } / N = 1 - z ( 1 - p ) / 2
process_49_7867.bmp,\begin{array} { r } { \left( \begin{array} { c c } { \mu _ { 1 } } & { 0 } \\ { 0 } & { \mu _ { 2 } } \end{array} \right) \left( \begin{array} { c c } { 0 } & { d _ { 1 } } \\ { d _ { 2 } } & { 0 } \end{array} \right) \left( \begin{array} { c c } { \bar { \mu _ { 1 } } ^ { - 1 } } & { 0 } \\ { 0 } & { \bar { \mu _ { 2 } } ^ { - 1 } } \end{array} \right) = \left( \begin{array} { c c } { 0 } & { 1 } \\ { 1 } & { 0 } \end{array} \right) . } \end{array}
2533cd763583a54_basic.png,0 \longrightarrow A \otimes A \xrightarrow { x _ { 1 } \otimes 1 - 1 \otimes x _ { 1 } } A \otimes A
330abf63dcfcaf3_basic.png,V = \vert \frac { \partial W } { \partial A _ { i } } \vert ^ { 2 } + \frac 1 2 D ^ { a } D ^ { a } + \frac 1 2 D ^ { \prime } D ^ { \prime }
sume_data-00005-of-00009_60767.png,"\Omega _ { 1 } = 0 , \qquad \Omega _ { 4 } = 0 ."
25da807b5dbf12f_basic.png,K = \frac { P ( \mathsf { m _ { r } } = 0 | \overline { { { \mathcal { F M } } } } _ { 1 5 } ) P ( \mathsf { m _ { r } } > 0 ) } { P ( \mathsf { m _ { r } } > 0 | \overline { { { \mathcal { F M } } } } _ { 1 5 } ) P ( \mathsf { m _ { r } } = 0 ) } = \frac { 0 . 5 0 4 } { 0 . 4 9 6 } = 1 . 0 6 .
33d650524c1f794_basic.png,"E _ { S , N S } ( x , \xi , \Delta ^ { 2 } , Q ^ { 2 } ) = { \frac { 1 } { 2 } } \int { \frac { d \lambda } { 2 \pi } } e ^ { i \lambda x } \langle P ^ { \prime } | \bar { \psi } ( - { \frac { \lambda } { 2 } } n ) \not \! n \psi ( { \frac { \lambda } { 2 } } n ) | P \rangle \ ,"
51e221fdd5.png,"\hat { A } _ { \mu } ( z , - \kappa ) = U ^ { - 1 } ( z ) \left( \partial _ { \mu } + \hat { A } _ { \mu } ( z , 1 - \kappa ) + B _ { \mu } \right) U ( z ) ,"
2491b8b1ba052fa.png,"\Gamma _ { \alpha \beta } ^ { a } ( \eta _ { 1 } , \eta _ { 2 } , \eta ) = - G _ { \alpha \beta } ^ { a } ( \eta _ { 1 } , \eta _ { 2 } , \eta ) _ { t r u n c . } ,"
sume_data-00007-of-00009_160867.png,{ \cal E } \left( | \widehat { \cal M } _ { t o t } ( \omega ) | ^ { 2 } \right) =
sume_data-00003-of-00009_150848.png,0 = R ( u _ { 0 } v _ { 1 } ) = u _ { 0 } ^ { k } v _ { 1 } ^ { k } + \sum _ { i < k } \; ( a _ { i } u ^ { i } ) v _ { 1 } ^ { i }
1d0e4f9de6bc61a.png,\frac { 1 } { p ^ { 2 } } \langle j ( p ) j ( - p ) \rangle \frac { 1 } { p ^ { 2 } }
a049ac471b175eb.png,\sum _ { n = - \infty } ^ { + \infty } ( a _ { n } - b _ { n } ( 1 + ) ) e ^ { i n \varphi } = 2 \pi \delta ( \varphi )
07b555628bb7e46_basic.png,\nabla _ { w _ { k : } } \mathcal { L }
process_49_4676.bmp,"\begin{array} { r } { \frac { n } { x ^ { 2 } } = \frac { b } { q } + \frac { \epsilon _ { 2 } } { q q ^ { \prime } } , 0 < q \le 4 H \le q ^ { \prime } , | \epsilon _ { 2 } | < 1 . } \end{array}"
fff24f425d96cc3.png,\mathcal { H } _ { \omega } = \mathcal { A } \ / \mathcal { J } _ { \omega }
sume_data-00000-of-00009_132748.png,"\displaystyle \leq \tilde { C } \varepsilon ,"
19b2bf2fa216bde_basic.png,\delta ^ { + } \ ( { \frac { 1 } { \xi } } \ ) = \operatorname * { l i m } _ { \beta \to 0 ^ { + } } \delta \ ( { \frac { 1 } { \xi } } - \beta \ )
e95395b24387bcd_basic.png,\mathrm { l . v } ( \sigma _ { l ^ { \prime } } )
process_49_5039.bmp,"\begin{array} { r } { H _ { 2 } ( E , I ^ { b ^ { * } } ) = j _ { 2 } ( H _ { 2 } ( E , I ^ { \delta } ) ) = \{ 0 \} . } \end{array}"
14aa1b156576fcc.png,L _ { \omega } = 8 \pi \sum _ { \omega ^ { \prime } \omega ^ { \prime \prime } \omega ^ { \prime \prime \prime } } \sqrt { | \omega ^ { \prime } \omega ^ { \prime \prime } | } C _ { \omega ^ { \prime } \omega ^ { \prime \prime } } ^ { \omega ^ { \prime \prime \prime } } \: C _ { \omega \omega ^ { \prime \prime \prime } } ^ { 0 } \: \tilde { \alpha } _ { \omega ^ { \prime } } \: \tilde { \alpha } _ { \omega ^ { \prime \prime } }
1879f0211f45f07.png,"i \theta \partial _ { t } \tilde { T } + [ z , P ] \tilde { T } = 0"
process_49_1954.bmp,"\begin{array} { r l } { R _ { h } ^ { - } [ u _ { h } ] ( x , \theta ) } & { { } = \operatorname* { s u p } _ { j = 1 , \ldots , n } \frac { u _ { h } ( x ) - u _ { h } ( x - e _ { j } ) } { | e _ { j } | \cos ( \theta - \theta _ { j } ^ { \prime } ) } } \\ { R _ { h } ^ { + } [ u _ { h } ] ( x , \theta ) } & { { } = \operatorname* { i n f } _ { j = 1 , \ldots , n } \frac { u _ { h } ( x + e _ { j } ) - u _ { h } ( x ) } { | e _ { j } | \cos ( \theta - \theta _ { j } ^ { \prime } ) } . } \end{array}"
sume_data-00003-of-00009_126719.png,\nu _ { e } = - \frac { d R } { R } / \frac { d e } { e }
6410175e4e8169a_basic.png,e ( G _ { 2 } ) = \lfloor \frac { n ^ { 2 } } { 2 } \rfloor
aa64d777c54a183.png,\Pi _ { 3 3 } ( 0 ) = \frac { 1 } { 3 } \frac { i g ^ { 2 } } { L ^ { 2 } } \ .
77bcf25b16.png,\nu _ { T O T A L } ( p ) = \nu _ { 1 } ( p ) + \nu _ { 2 } ( p ) + \nu _ { 3 } ( p ) = \frac { p } { 1 2 } ( p ^ { 2 } + 2 p + 2 )
process_49_9623.bmp,\begin{array} { r } { F _ { 2 } ( x ) = \frac { \mu _ { 1 } + \frac { ( x - \mu _ { 0 } ) ( x ^ { 2 } + 1 - 2 \mu _ { 0 } x ) } { ( x ^ { 2 } - 1 ) ^ { 3 } } } { x ^ { 2 } - 1 } } \end{array}
11ce6d4ecdcf3fa_basic.png,"\zeta = \ln { \tan { \theta / 2 } } ,"
sume_data-00001-of-00009_51452.png,"\alpha ^ { ( r ) } = \frac { 5 } { 3 } \alpha ^ { ( r - 1 ) } ,"
7cb38979e72756d.png,L = - { \frac { r ^ { 2 } } { 2 G ( \phi ) } } F _ { 0 r } ^ { a } F _ { a } ^ { 0 r } - { \frac { r ^ { 2 } } { 2 } } \partial _ { r } \phi \partial ^ { r } \phi + r ^ { 2 } W ( \phi ) + F _ { 0 r } ^ { a } \rho _ { a } \qquad .
d8e0343e8b7621a_basic.png,"\frac { d ^ { 3 } I } { d ^ { 3 } q } = E \frac { d ^ { 3 } N ^ { \gamma ^ { * } } } { d ^ { 3 } q } = \frac { 1 } { \sigma _ { 0 } } E \left( \frac { d ^ { 3 } \sigma ^ { \gamma ^ { * } } } { d ^ { 3 } q } \right) _ { M } ,"
sume_data-00003-of-00009_157298.png,\displaystyle \frac { 1 } { 1 - k ^ { 2 } A _ { L } } \; \; .
1b6f17260e.png,"Z _ { E N J L } ^ { \prime } = \int D \Phi \exp \left[ - { \cal S } _ { e f f } ( \Phi ) \right] \, ,"
4eeee2711a.png,"\phi \mapsto \phi _ { g } , \quad ( { q ^ { g } } ^ { T } ) _ { \Lambda } = ( q ^ { T } ) _ { \Sigma } ( g ^ { - 1 } ) _ { \Lambda } ^ { \Sigma } ,"
process_49_9177.bmp,"\begin{array} { r } { \left( D _ { - } ^ { \alpha , \alpha ^ { \prime } , \beta , \beta ^ { \prime } , \gamma } f \right) ( x ) = \left( - \frac { d } { d x } \right) ^ { [ \operatorname { R e } ( \gamma ) ] + 1 } \left( I _ { - } ^ { - \alpha ^ { \prime } , - \alpha , - \beta ^ { \prime } , - \beta + [ \operatorname { R e } ( \gamma ) ] + 1 , - \gamma + [ \operatorname { R e } ( \gamma ) ] + 1 } f \right) ( x ) . } \end{array}"
process_49_3823.bmp,\begin{array} { r } { \widetilde { P } _ { \alpha } ^ { ( \gamma ) } [ \phi ] = \widetilde { Q } _ { \alpha \beta } [ \phi ] \left( K _ { 0 } \right) ^ { \beta } \cdot \widetilde { w } _ { \gamma } . } \end{array}
process_49_4280.bmp,"\begin{array} { r } { p _ { i } ( x ) = \sum _ { | \alpha | \leq k _ { i } } c _ { i , \alpha } a ( x ) ^ { \alpha } } \end{array}"
83a1f34ed7f335b.png,"[ J _ { A } ( x ) , J _ { B } ( y ) ] _ { E . T . } = \delta ( x ^ { 1 } - y ^ { 1 } ) J _ { [ A \stackrel { 0 } { , } B ] } ( y ) + S _ { A B } \partial _ { 1 } ^ { x } \delta ( x ^ { 1 } - y ^ { 1 } ) ."
6d38182ae573ceb_basic.png,\frac { \bar { { \cal M } } } { { \cal M } } = e ^ { - i 2 \gamma }
bcd46dafe1e69b3.png,I _ { 3 / 2 } = - \frac { \pi ^ { 2 } } { 9 } .
sume_data-00005-of-00009_84386.png,"\displaystyle V _ { - } ^ { X } ( x , y )"
564d141e0f.png,\frac { 2 j } { \alpha _ { + } } ( j - m ) \partial \phi \partial \gamma \gamma ^ { ( j - m - 1 ) } e ^ { 2 j \phi / \alpha _ { + } }
sume_data-00007-of-00009_3457.png,\displaystyle = P _ { 2 ^ { n - 1 } - 2 } ( x ) + p _ { 2 ^ { n - 1 } - 1 } x P _ { 2 ^ { n - 1 } - 3 } ( x )
206c528941.png,"\left( \Gamma _ { } ^ { \left( 0 \right) 0 } , \Gamma _ { \Lambda R _ { 1 } } ^ { \left( 2 \right) - 1 } \right) ^ { a } + \widetilde { V } ^ { a } \Gamma _ { \Lambda R _ { 1 } } ^ { \left( 2 \right) - 1 } = \alpha _ { R _ { 1 } } ^ { \left( 2 \right) - 2 a } - \left( \Gamma _ { } ^ { \left( 0 \right) 1 } , \Gamma _ { \Lambda R _ { 1 } } ^ { \left( 2 \right) - 2 } \right) ^ { a }"
34314fdc1a.png,"[ { \bf { p } } _ { i } , { \bf { L } } _ { j } ] = i \hbar \epsilon _ { i j k } { \bf { p } } _ { k }"
bd018c64df3b95f.png,"{ \cal A } _ { m _ { 1 } , j _ { 2 } , m _ { 3 } } ^ { j _ { 1 } , j _ { 2 } , j _ { 3 } } = ( - ) ^ { - \tilde { \rho } s _ { - } } \triangle ( 1 + j _ { 1 } - m _ { 1 } ) \triangle ( 1 + j _ { 3 } - m _ { 3 } ) \tilde { \cal I } ( j _ { 1 } , j _ { 2 } , j _ { 3 } , k ) ,"
299a8b6093.png,"\Psi _ { \kappa } ^ { ( P ) } = \frac { i } { 2 ^ { 3 / 2 } } \, \exp \left( - \frac { \pi \kappa } 2 - i \frac { \kappa } 2 \ln \left( \frac { - x _ { + } } { - x _ { - } } \right) \right) H _ { i \kappa } ^ { ( 1 ) } \left( m \sqrt { ( - x _ { - } ) ( - x _ { + } ) } \right) ."
b041454cda798d4_basic.png,\tau _ { n } = F ( n ) ^ { - 1 } \circ \eta _ { n } .
sume_data-00005-of-00009_121466.png,\displaystyle = \cos ^ { 2 } { \delta } \ l _ { n 2 } ^ { ( 1 ) } - \sin { \delta } \cos { \delta } \cos { \theta } \ l _ { n 1 } ^ { ( 1 ) } + \sin ^ { 2 } { \delta } \sin { \theta } \cos { \phi } \ l _ { ( n + 1 ) 2 } + \sin ^ { 2 } { \delta } \sin { \theta } \sin { \phi } \ l _ { ( n + 1 ) 1 }
48dc027827bbc72_basic.png,d _ { 0 } { + } 1 = \mathrm { r e g } ( B )
f0caa110f01bcce_basic.png,"| { \mathcal A } | _ { L } ^ { 2 } = F _ { 1 } [ 1 + \alpha _ { L } \cos ^ { 2 } \theta ] ,"
process_49_8215.bmp,\begin{array} { r } { T _ { i } S _ { j } = \delta _ { i j } \quad \sum _ { n = 1 } ^ { N } S _ { j } T _ { j } = I . } \end{array}
2d840dc5dd9a741.png,"i \hbar \frac { \partial \hat { \rho } } { \partial t } = \left[ H ( t ) , \hat { \rho } \right]"
c5bcc179d7db5f2.png,H ^ { 2 } = \frac { \rho } { 3 } = \frac { 1 } { 3 } \frac { \partial ^ { 2 } Q } { \partial T \partial { \bar { T } } } \dot { T } \dot { \bar { T } } + \frac { V } { 3 }
3b586e0b37e3b49_basic.png,T _ { i } = \langle E _ { i } \rangle / ( \alpha + 1 )
25aaa728525f472.png,"\left. + i \; A _ { \mu } \epsilon ^ { \mu \nu \rho } \partial _ { \nu } ( \eta _ { \rho } - s _ { \rho } ) ] \right\} \; ,"
2dd0daaaaff2ec9_basic.png,"\sigma _ { D } ( A , B ) = \frac { m } { 2 } \sum _ { i j k l } \Theta _ { k l } ^ { i j } \sigma _ { i j } ( A ) \sigma _ { k l } ( B )"
process_49_6024.bmp,"\begin{array} { r } { \prod _ { k = 1 } ^ { \mu } ( 1 - t _ { k } ^ { - 1 } ) ^ { n _ { k } - 1 } \chi ( \widehat { \mathit { H L } } ( L ) ; t ) = \chi ( \widetilde { \mathit { H L } } ( L ) ; t ) = \chi ( \widetilde { C } ( G ) ; t ) \ , . } \end{array}"
014da08285aa02e_basic.png,"\Delta \rho = \frac { N _ { c } G _ { F } } { 8 \sqrt { 2 } \pi ^ { 2 } } \Delta m ^ { 2 } ,"
3eca549cd118ff8_basic.png,\Vert D F \Vert _ { \mathcal { H } } > 0
45b4b9388c.png,f _ { w } \left( T _ { a } ( z ) \right) = T _ { a } ^ { \prime } ( z ) \left[ f _ { w } ( z ) + \frac { ( z - \alpha _ { a } ) ( z - \beta _ { a } ) } { w _ { a } ( \alpha _ { a } - \beta _ { a } ) } \frac { \delta w _ { a } } { \epsilon } \right] \ .
a9d5521122eb7ea_basic.png,g _ { k } \equiv g ( x _ { k } ; \xi _ { N } ^ { ( k ) } )
24a704c3634bdd0_basic.png,H ^ { 2 } = ( \frac { \dot { a } } { a } ) ^ { 2 } = \frac { 8 \pi G } { 3 } \rho - \frac { k } { a ^ { 2 } }
736cd7cbd8.png,e ^ { A } = \frac { 6 c } { { \sqrt { - \Lambda } } } \frac { 1 } { \sinh c ( z - z _ { 0 } ) }
sume_data-00002-of-00009_104070.png,"\mathrm { c o c h o r d } ( \mathcal { H } ( m , k ) ) \leq { \binom { m } { k } } ."
e928c97d28.png,"S = \frac { 1 } { 8 \pi G } \int d ^ { 2 } x \, \sqrt { - g } \left( \frac { 1 } { 2 } g ^ { \mu \nu } \partial _ { \mu } \psi \partial _ { \nu } \psi + \psi R - 8 \pi G { \cal L } _ { M } \right)"
f364f83962f6499.png,"s = { \frac { 1 } { 2 } } \left( { \frac { 4 \pi } { \beta } } + \beta \right) , \; \; \; \; t = { \frac { 1 } { 2 } } \left( { \frac { 4 \pi } { \beta } } - \beta \right) ."
4b6763c627a1902.png,"A _ { { \bf 1 } } ( k , k , k _ { 3 } ) \equiv A _ { { \bf 2 } } ( k , k + 2 , k _ { 3 } )"
3ee18d5f8afe141.png,"W = - 2 \pi \alpha \oint _ { C } d { x _ { \mu } } \oint _ { C } d { { x ^ { \prime } } _ { \nu } } D ^ { \mu \nu } ( x , x ^ { \prime } ) ,"
338b55ee7b.png,"Z = \Phi _ { + } , \quad \bar { Z } = \Phi _ { - } , \quad \phi _ { i } = \Phi _ { i } ,"
sume_data-00005-of-00009_101168.png,"\displaystyle J _ { 4 , \, 2 , \, 1 }"
f6753667c44993f_basic.png,"\rho _ { i } ( k , V ) = \frac { V k ^ { 2 } } { 2 \pi ^ { 2 } } + f _ { A , i } ( k / m ) \, k \, 4 \pi R ^ { 2 } + f _ { C , i } ( k / m ) 8 \pi R + . . . , \ \ i = q , g"
30f17794ead3393_basic.png,\Psi _ { \widehat y _ { n } } ^ { - 1 } \circ \Psi _ { \widehat x _ { n } }
process_49_9483.bmp,"\begin{array} { r } { P = - \sum _ { i j } g ^ { i j } \frac { \partial ^ { 2 } } { \partial x ^ { i } \partial x ^ { j } } + \mathrm { ~ l ~ o ~ w ~ e ~ r ~ o ~ r ~ d ~ e ~ r ~ t ~ e ~ r ~ m ~ s ~ } \ , . } \end{array}"
44bd174a0c13a58_basic.png,"< p ^ { \prime } | \Gamma _ { \mu } ( q , q , 0 ) e ^ { \mu } | p ^ { \prime } > = \overline { { \psi } } _ { p ^ { \prime } } ( q ) [ f _ { 1 } ^ { \prime } ( 0 ) \hat { e } + g _ { 1 } ^ { \prime } ( 0 ) \hat { e } \gamma _ { 5 } ] | \psi _ { p ^ { \prime } } ( q ) ."
sume_data-00004-of-00009_110918.png,\displaystyle = u _ { n + 1 } f
40f12bdff2e735a.png,"\psi _ { < } ( x ^ { \pm } , { \vec { r } } _ { \perp } ) ~ = ~ \psi _ { 0 } ~ ~ ~ ~ f o r ~ x ^ { - } < 0 ~ ."
cb996fcb5230643.png,"d L _ { C S } ^ { 2 n - 1 } = \left\langle { \bf F } ^ { n } \right\rangle ,"
2e3855083ea4913.png,F _ { i j } = \mp \varepsilon _ { i j } ( 1 - \phi ^ { 3 } ) ^ { 2 } ( 1 + \phi ^ { 3 } )
ae4ce235d05c0fb_basic.png,m _ { e \mu } = m _ { \mu e } = \left( { \frac { f _ { e } a _ { \mu } m _ { \mu } + f _ { \mu } a _ { e } m _ { e } } { 2 f _ { \mu } a _ { \mu } m _ { \mu } } } \right) m _ { \mu \mu } .
5b7a7883e6a55c9.png,"S = \sum _ { i , j , k , l } A _ { i j } A _ { j k } A _ { k l } A _ { l m }"
process_49_608.bmp,"\begin{array} { r } { \| T _ { a } ( z ) \| \leq \| T _ { a } ( z ) \| _ { 2 } = \Bigl \{ \sum _ { | K | = a } \ , \sum _ { | J | = m - a } | z _ { J K } | ^ { 2 } \Bigr \} ^ { 1 / 2 } = \Bigl \{ \sum _ { | M | = m } | z _ { M } | ^ { 2 } \Bigr \} ^ { 1 / 2 } = \| z \| . } \end{array}"
447354c7993542c_basic.png,t a n ( \phi _ { U C P T H } ) = \frac { \rho ( s ) ( s - m _ { \pi } ^ { 2 } / 2 ) } { 1 6 \pi f _ { \pi } ^ { 2 } \{ 1 - s / s _ { R _ { 2 } } - { \frac { 1 } { 1 6 \pi ^ { 2 } f _ { \pi } ^ { 2 } } } [ ( s - m _ { \pi } ^ { 2 } / 2 ) R e H _ { \pi \pi } ( { s } ) + { \frac { s } { 1 2 } } ] \} }
process_49_4646.bmp,"\begin{align*} [ \Delta ( \alpha ) , \Delta ( \beta ) ] & = \Delta ( \xi ) , \\ [ \Gamma ( \xi ) , \Delta ( \alpha ) ] & = \Delta ( I ) , \\ [ \Gamma ( \xi ) , \Delta ( \beta ) ] & = \Delta ( I ) \end{align*}"
640e327b2828f42_basic.png,"\partial _ { x } ^ { \alpha } \partial _ { y } ^ { \beta } K _ { L } ^ { s } \left( w + L ^ { - 1 / 2 } x , w + L ^ { - 1 / 2 } y \right) = O \left( L ^ { ( n + | \alpha | + | \beta | - 2 s - 1 ) / 2 } \ln \left( L \right) ^ { \eta } \right)"
sume_data-00000-of-00009_111664.png,"\tau _ { \mathrm { v a r } } = \frac { \mathrm { d } t } { \mathrm { d } \, \mathrm { l n } S } ."
f8932ddc0eae41e_basic.png,| Y | \ge ( \alpha { - } 1 ) ( | Z _ { 1 } | + | Z _ { 2 } | )
8c3a4a0debb030b_basic.png,f _ { \mathrm { B E } } ( \omega ) = ( e ^ { \beta \omega } - 1 ) ^ { - 1 }
sume_data-00003-of-00009_86514.png,"\displaystyle \geq I ( u _ { n } , \mathbf { A } _ { n } )"
ba30a266f384094_basic.png,N _ { n } \simeq \frac { e ^ { k r _ { c } \pi } } { \sqrt { k r _ { c } } } | J _ { 2 } ( z _ { n } ( \pi ) ) | .
b890476ea9b615e.png,"\left[ T ^ { a } , R ^ { \pm \alpha } \right] = - \left( \lambda ^ { a } \right) _ { \beta } ^ { \alpha } R ^ { \pm \beta }"
5de9376216a84af.png,V = - { \frac { 1 } { 2 } } ( m _ { \phi } ^ { 2 } + C _ { 1 } ^ { 2 } H ^ { 2 } ) \phi ^ { 2 } + { \frac { 1 } { 4 M _ { p } ^ { 2 } } } ( m _ { \phi } ^ { 2 } + C _ { 2 } ^ { 2 } H ^ { 2 } ) \phi ^ { 4 } \ .
11e76c3175.png,\psi _ { 2 k } = \left\{ \begin{array} { l l } { { \mathrm { c o n s t . } } } & { { k = 3 } } \\ { { 0 } } & { { k \geq 4 . } } \end{array} \right.
36cb682faab8088.png,"\begin{array} { c c } { { q ^ { 3 / 2 } M = M _ { + } M _ { - } ^ { - 1 } , \ M _ { + } = \left( \begin{array} { c c } { { q ^ { - \frac { H } { 2 } } } } & { { ( q ^ { - 1 } - q ) F q ^ { \frac { H } { 2 } } } } \\ { { 0 } } & { { q ^ { H / 2 } } } \end{array} \right) , } } \\ { { M _ { - } ^ { - 1 } = \left( \begin{array} { c c } { { q ^ { - \frac { H } { 2 } } } } & { { 0 } } \\ { { ( q ^ { - 1 } - q ) E q ^ { \frac { H } { 2 } } } } & { { q ^ { H / 2 } } } \end{array} \right) } } \end{array}"
740c6a6f3d.png,"D _ { a \alpha } w _ { \beta } ^ { ~ \beta } ( \theta ) = 4 \rho _ { a \alpha } \, ."
754ab131d9.png,"R = \sum _ { n = 1 } ^ { N } x _ { n } ^ { 2 } ( S _ { n } ^ { 2 } - T _ { n } ) = \sum _ { \Omega ( n , m , m ^ { \prime } ) } \frac { x _ { n } ^ { 2 } } { ( x _ { n } ^ { 2 } - x _ { m } ^ { 2 } ) ( x _ { n } ^ { 2 } - x _ { m ^ { \prime } } ^ { 2 } ) } \ ,"
sume_data-00003-of-00009_5573.png,G _ { 1 } ^ { D } ( \zeta ) = c _ { 3 } \left( \frac { \log \left( \zeta / 4 \right) } { 4 + \zeta } - \frac { \log ( 1 + \zeta / 4 ) } { \zeta } \right) + \frac { N ^ { 2 } } { 2 ( 2 N + 3 ) } + \frac { 3 } { 2 ( 2 N + 3 ) } \left( \frac { \log \zeta } { \zeta } - \frac { \log ( 4 + \zeta ) } { 4 + \zeta } \right) .
192ae19a746f67a.png,\hat { \vec { k } } _ { \Lambda } = { \hat { \vec { k } } } _ { \Lambda } = k _ { \Lambda } ^ { i } \vec { \partial } _ { i } + k _ { \Lambda } ^ { i ^ { * } } \vec { \partial } _ { i ^ { * } } + k _ { \Lambda } ^ { u } \vec { \partial } _ { u }
7da12eb50d72004.png,\begin{array} { c } { { U _ { R } = U _ { + } V } } \\ { { U _ { L } = U _ { + } V ^ { \dagger } } } \end{array}
process_49_7572.bmp,"\begin{array} { r } { H ^ { 1 } \Bigl ( D , \bigwedge ^ { p } M _ { K _ { D } } \otimes K _ { D } ^ { \otimes 2 } ( - C _ { D } ) \Bigr ) = 0 , } \end{array}"
4f46a2bd5f.png,A _ { i } \sim \frac { 1 } { ( Q ^ { 2 } ) ^ { n - 2 } } \quad .
9362791e15.png,"L = ( - 1 ) ^ { p + 1 } D _ { 0 } ^ { - 2 p } \partial ^ { 2 p } + D _ { 0 } ^ { - 1 } \sum _ { k = 1 } ^ { 2 p } ( u _ { k } \partial ^ { 2 p - k } + \partial ^ { 2 p - k } u _ { k } ) ,"
a4f6df151431535.png,K = \epsilon ^ { i k } \epsilon ^ { j l } K _ { i j } K _ { k l } \ .
33f7bf9df8.png,"\Phi = ( G ^ { 0 } + G ^ { K R } ) \, K ^ { 0 } \Phi = \chi + G ^ { K R } \, K ^ { 0 } \Phi"
206693049c99644.png,"\rho _ { o u t } ( x , x ^ { \prime } ) = { \hat { \rho } } ( x ) \delta ( x - x ^ { \prime } )"
f18f77ab3025ed7.png,"\int \mathrm { d } ^ { 4 } x ~ \mathrm { d } ^ { 4 } y ~ \mathrm { d } ^ { 4 } z ~ P _ { 4 } ( x , y , z ) ~ \Gamma _ { x y z 0 } = 0 ,"
298b30ec380e453.png,"\begin{array} { l l c } { { \omega \frac { \displaystyle { x _ { 6 7 } } } { \displaystyle { \overline { { { x } } } _ { 2 4 } ^ { \prime } } } \frac { \displaystyle { x _ { 2 4 } ^ { \prime \prime } } } { \displaystyle { x _ { 2 } ^ { \prime \prime } } } \frac { \displaystyle { x _ { 2 } ^ { \prime \prime \prime } } } { \displaystyle { x _ { 2 4 } ^ { \prime \prime \prime } } } = 1 , } } & { { \frac { \displaystyle { \overline { { { x } } } _ { 1 3 } } } { \displaystyle { \overline { { { x } } } _ { 1 } } } \frac { \displaystyle { \overline { { { x } } } _ { 1 } ^ { \prime } } } { \displaystyle { \overline { { { x } } } _ { 1 3 } ^ { \prime } } } \frac { \displaystyle { \overline { { { x } } } _ { 1 3 } ^ { \prime \prime } } } { \displaystyle { \overline { { { x } } } _ { 1 } ^ { \prime \prime } } } \frac { \displaystyle { \overline { { { x } } } _ { 1 } ^ { \prime \prime \prime } } } { \displaystyle { \overline { { { x } } } _ { 1 3 } ^ { \prime \prime \prime } } } = 1 , } } & { { } } \\ { { \frac { \displaystyle { x _ { 5 8 } } } { \displaystyle { x _ { 5 8 } ^ { \prime } } } \frac { \displaystyle { x _ { 5 8 } ^ { \prime \prime } } } { \displaystyle { \overline { { { x } } } _ { 2 4 } ^ { \prime \prime \prime } } } = 1 , } } & { { \omega \frac { \displaystyle { x _ { 6 7 } ^ { \prime } } } { \displaystyle { \overline { { { x } } } _ { 2 4 } } } \frac { \displaystyle { x _ { 6 7 } ^ { \prime \prime \prime } } } { \displaystyle { x _ { 6 7 } ^ { \prime \prime } } } = 1 , } } & { { \frac { \displaystyle { x _ { 2 4 } } } { \displaystyle { x _ { 2 4 } ^ { \prime } } } \frac { \displaystyle { x _ { 2 4 } ^ { \prime \prime } } } { \displaystyle { x _ { 2 4 } ^ { \prime \prime \prime } } } = 1 , } } \end{array}"
77a4154cec50571_basic.png,"\{ \pi ( x _ { 1 } ) , \pi ( y _ { 1 } ) \} , \ldots , \{ \pi ( x _ { \ell } ) , \pi ( y _ { \ell } ) \}"
70fd8bf35b.png,"D _ { n } ( u ) = \exp ( - E _ { n } ( u ) ) , \quad n = 0 , 1 , 2 , \ldots"
1bd4eaf128.png,\delta _ { \epsilon } ( \mathcal { P } _ { - } \Theta ) = \mathcal { P } _ { - } \epsilon
121fe2aa3d.png,"\lbrack J _ { + } , J _ { - } ] = 2 J _ { 3 } \; , \quad \quad \lbrack J _ { 3 } , J _ { \pm } ] = \pm J _ { \pm } \;"
process_49_8458.bmp,\begin{array} { r } { \frac { A ^ { \prime } B ^ { \prime } } { A B } = \frac { 6 \cos t } { \sin ( \theta + t ) } \longrightarrow 3 6 . } \end{array}
process_49_8638.bmp,"\begin{array} { r } { k _ { - } : = \operatorname* { m i n } ( k _ { 1 } , k _ { 2 } ) , k _ { + } : = \operatorname* { m a x } ( k _ { 1 } , k _ { 2 } ) . } \end{array}"
sume_data-00004-of-00009_79260.png,"\displaystyle \frac { v ^ { 2 } r } { G ( 1 + \cos \theta ) } \, ."
01856e7ef9a79bd_basic.png,\mu _ { \star } \leq \mu \leq 1
f9068874da2f06c_basic.png,"\Pi ^ { ( n ) } ( Q ^ { 2 } , m ^ { 2 } ) = \frac { n ! } { \pi } \int _ { 4 m ^ { 2 } } ^ { \infty } d s \frac { \mathrm { I m } \, \Pi ( s , m ^ { 2 } ) } { ( s + Q ^ { 2 } ) ^ { n + 1 } } ."
ed8c28b3b3a8f96_basic.png,"F _ { t } ( t ) = \left\{ \begin{array} { l l } { { 2 [ 1 - \sqrt { 4 t - 1 } \arcsin \frac { 1 } { \sqrt { 4 t } } ] \; \; , } } & { { \; \; 4 t > 1 \; \; , } } \\ { { 2 [ 1 - \sqrt { 1 - 4 t } \ln \frac { 1 + \sqrt { 1 - 4 t } } { \sqrt { 4 t } } \; \; , } } & { { \; \; 4 t < 1 \; \; . } } \end{array} \right."
a0d0ee77974ac95.png,"\Theta ( x ) = \left\{ \begin{array} { c l } { { 1 } } & { { x > 0 , } } \\ { { 0 } } & { { x < 0 . } } \end{array} \right."
b99358c6f0473ac_basic.png,"\ell _ { \pm } ^ { + } ( t ) : = \operatorname * { l i m } _ { x \to \pm \infty } \left( 1 - \cos \left( \frac { \varphi + \phi } { 2 } \right) \right) , \quad \ell _ { \pm } ^ { - } ( t ) : = \operatorname * { l i m } _ { x \to \pm \infty } \left( 1 - \cos \left( \frac { \varphi - \phi } { 2 } \right) \right) ,"
e162f4670f3d12c_basic.png,"\mu _ { H } = \frac { F _ { Z _ { 1 } } ^ { * } \langle z _ { 1 } \rangle } { M ^ { 2 } } ,"
process_49_5208.bmp,\begin{array} { r } { \partial _ { t } x = H \nu . } \end{array}
sume_data-00003-of-00009_75373.png,i _ { x } = \operatorname* { m a x } \{ i \ | \ x \in U _ { i } \} \; .
2466412118a40a3.png,"{ \frac { \xi _ { 0 } } { \lambda } } = 2 ~ i ~ \xi _ { 0 } \left( { \frac { 1 } { 2 L } } \sum _ { n = \pm \frac { 1 } { 2 } , \pm \frac { 3 } { 2 } , \cdots ~ } \right) \int _ { - \infty } ^ { \infty } { \frac { d p ^ { - } } { 2 \pi } } { \frac { 1 } { 2 p _ { n } ^ { + } p ^ { - } - \xi _ { 0 } ^ { 2 } + i \epsilon } } ~ ,"
process_49_2847.bmp,"\begin{align*} + \sum _ { \substack { \omega ' + \omega '' = \omega \\ \omega ' < \omega , \omega '' < \omega } } c _ { \omega ' } ( ( \prod _ { i = 1 } ^ { k } S ^ { 2 j _ i + 1 } ) \times _ { T ^ k } T M ) \pi _ J ^ { * } c _ { \omega '' } ( \prod _ { i = 1 } ^ { k } \C P ^ { j _ i } ) . \end{align*}"
9f0b1e816fc8160_basic.png,m _ { 0 } = m < m _ { 1 } = g ( \ell _ { 1 } ) = g ( - 4 )
b9e0a9a2edffb5c.png,"f ( \rho ^ { \vee } \! \! \! \cdot \hat { H } ) \hat { s } _ { \rho } | \nu \rangle = \sum _ { \mu \in \Sigma _ { m i n } } \biggl \{ f ( - 1 ) \delta _ { \mu - \nu , - \rho } + f ( 0 ) \delta _ { \mu , \nu } \delta _ { \rho \cdot \mu , 0 } + f ( 1 ) \delta _ { \mu - \nu , \rho } \biggr \} | \mu \rangle ,"
73b72718d7.png,"{ \cal F } = \sum _ { r _ { 1 } > r _ { 2 } > \cdots > r _ { N } \geq 0 } ^ { \infty } \operatorname * { d e t } \left[ d _ { r _ { j } , i } \right] \operatorname * { d e t } \left[ t _ { i } ^ { r _ { j } + \frac { 1 } { 2 } } - t _ { i } ^ { - ( r _ { j } + \frac { 1 } { 2 } ) } \right] ."
74d55a1681b1c8f_basic.png,\{ a _ { i } \} _ { i \in I } \in \ ( \sum _ { i \in I } \oplus W _ { i } \ ) _ { \ell ^ { 2 } }
process_49_5056.bmp,\begin{array} { r } { ( \psi \cdot u ) ( t ) = \ ( \psi ( t ) ^ { - 1 } \ ) ^ { * } u ( t ) + \delta ^ { r } \psi ( t ) \in \mathfrak X ( M ) } \end{array}
56d3f7bf00.png,"\frac { g ^ { 2 } } { L ^ { 3 } } { \cal L } _ { \mathrm { b o s } } ^ { \mathrm { e f f } } \ = \ \frac { \dot { \vec { C } } ^ { 2 } } { 2 f ^ { 2 } ( \vec { C } ) } \,"
sume_data-00004-of-00009_136687.png,"v = \sum _ { i } u _ { i } w _ { i } ,"
0ac574a5893c487.png,U = \frac { 3 } { 8 } \frac { g ^ { 2 } d } { \ell ^ { 2 } } \ .
254199c5f1.png,d \Psi _ { e } \wedge d \Psi _ { m } = 0 .
fa013a94d92f25b_basic.png,"\Delta _ { i j : k l } ^ { - 1 ~ a b : c d } ( x _ { 1 } , y _ { 1 } : x _ { 2 } , y _ { 2 } ) = i D _ { i j : k l } ^ { - 1 ~ a b : c d } ( x _ { 1 } , y _ { 1 } : x _ { 2 } , y _ { 2 } ) - V _ { i j : k l } ^ { a b : c d } ( x _ { 1 } , y _ { 1 } : x _ { 2 } , y _ { 2 } )"
sume_data-00006-of-00009_49621.png,336.9
144bc9d156.png,"x ^ { A } \rightarrow \tilde { x } ^ { A } = x ^ { A } + \epsilon ^ { A } ,"
56775b5e045f7f2_basic.png,\overline { { { \textbf { y } } } }
sume_data-00004-of-00009_143060.png,\displaystyle \log \frac { W _ { ( K + 1 ) ^ { 2 } } } { W _ { 0 } }
sume_data-00006-of-00009_158145.png,\displaystyle T r ( x ^ { - d } y ^ { 2 a _ { 0 } } )
sume_data-00000-of-00009_142568.png,"\displaystyle = Y ^ { 2 } + \mu ,"
eac0e8f1b4a9586_basic.png,"H _ { I } ^ { \bot } : = \{ x \in L ^ { \vee } / L , \, \forall y \in H _ { I } , \, ( x , y ) = 0 \}"
ad22d25fcc92147.png,s _ { 1 } ^ { 2 } = s _ { 1 } s _ { 2 } + s _ { 2 } s _ { 1 } = s _ { 2 } ^ { 2 } = 0 .
3018176fef50b24_basic.png,- \hat { \mu } _ { 0 } \Omega w _ { 1 2 } - \hat { \mu } _ { 1 } \Omega w _ { 0 2 } + \hat { \mu } _ { 2 } \Omega w _ { 0 1 } -
0511e623e723a3b.png,"\frac { 1 } { 2 } \left( \theta _ { \mu } ^ { \mu } + i \frac { 3 } { 2 } \partial _ { \mu } j _ { R } ^ { \mu } \right) = \int d ^ { 2 } \theta M _ { h } \mathrm { T r } ( \phi _ { h } ^ { i } \phi _ { h } ^ { i } ) ,"
bba7edc872de2f7_basic.png,\Phi _ { i } = \left( \begin{array} { c } { { \phi _ { i } ^ { + } } } \\ { { \phi _ { i } ^ { 0 } } } \end{array} \right) = \left[ \begin{array} { c } { { \phi _ { i } ^ { + } } } \\ { { 2 ^ { - 1 / 2 } ( v _ { i } + \eta _ { i } + i \chi _ { i } ) } } \end{array} \right] .
7b0039351d568c6_basic.png,"\mathbf { \omega } _ { i , j } ^ { ( l ) } = \mathbf { e } _ { l }"
9d84aea1cf8cf4a_basic.png,"\operatorname * { m a x } _ { j \in [ 3 ] , j \neq i } \alpha _ { i j } + \operatorname * { m a x } _ { k \in [ 3 ] , k \neq i } \alpha _ { k i } \le \alpha _ { i i } , \forall i \in [ 3 ]"
process_49_3873.bmp,"\begin{array} { r } { d b = [ b - b ^ { 3 } ] d t + d B , } \end{array}"
5a15eac1013e5ad_basic.png,( \varphi | _ { U ( F ) } ) _ { * } ( \mu )
c481d122463033a_basic.png,\frac { q } { p } \ = \ \ ( \frac { \tilde { { \cal H } } _ { 2 1 } } { \tilde { { \cal H } } _ { 1 2 } } \ ) ^ { 1 / 2 } .
process_49_2673.bmp,"\begin{array} { r } { p = a _ { 1 } b _ { 2 } d _ { 3 } c _ { 1 } e _ { 3 } f _ { 3 } a _ { 1 1 } a _ { 2 2 } a _ { 3 3 } b _ { 3 4 } c _ { 2 5 } c _ { 3 6 } \cdot q , } \end{array}"
595b45458603ffb_basic.png,f ( t ) \leq \int _ { s } ^ { t } \left( C f ( u ) + K \right) d u
62f81d0bbf3a71b.png,"\delta G ^ { ( 2 , 2 , 2 , 2 ) } ( 1 \vert 2 \vert 3 \vert 4 ) = - \lambda \cdot \partial G ^ { ( 2 , 2 , 2 , 2 ) } ( 1 \vert 2 \vert 3 \vert 4 ) + 2 ( \Lambda ( 1 ) + \Lambda ( 2 ) + \Lambda ( 3 ) + \Lambda ( 4 ) ) G ^ { ( 2 , 2 , 2 , 2 ) } ( 1 \vert 2 \vert 3 \vert 4 ) \; ."
f14b973f62ab041_basic.png,"m _ { \mathrm { p o l } } ^ { ~ } \; = \; m ( m _ { \mathrm { p o l } } ^ { ~ } ) \left[ 1 ~ + ~ \frac { 4 } { 3 } \cdot \frac { \alpha _ { s } ( m _ { \mathrm { p o l } } ^ { ~ } ) } { \pi } \right] \; ,"
b5c287817023796.png,\int F ^ { r t \mu _ { 1 } \cdots \mu _ { p } } d S _ { 8 } = q _ { p } ( 7 - p ) \omega _ { 8 - p } l _ { s } ^ { p } = 2 \pi q _ { p } \omega _ { 6 - p } l _ { s } ^ { p } ~ .
c0bb21b7de.png,"\mathrm { e i t h e r } \quad \tilde { \gamma } ^ { a } : = i \; d x ^ { 0 } \; \tilde { \tilde { \vee } } \; d x ^ { a } \; \tilde { \vee } , \quad \mathrm { o r } \qquad \tilde { \gamma } ^ { a } = i \; \tilde { \tilde { a } } { } ^ { 0 } \; \tilde { a } ^ { a }"
564c635a4d42e07_basic.png,P _ { 2 } = { \frac { ( \mathrm { c o s } ^ { 2 } \theta - P _ { s } ) } { \mathrm { c o s } 2 \theta } }
bcd3410a650f816.png,G ^ { \pm } = { \frac { 1 } { \sqrt 2 } } \left( \pm \partial X ^ { \mu } \epsilon _ { \mu } ^ { \pm } - { \frac { 3 } { 2 } } s ^ { \pm } \right) .
53981cf2182b2da.png,"I _ { v } [ V _ { k } ] = - \int d V \left[ \frac 1 4 F _ { k } ^ { \mu \nu } F _ { k \mu \nu } + \frac 1 2 m _ { v , k } ^ { 2 } V _ { k } ^ { \mu } V _ { k \mu } \right] ~ ~ ~ ,"
process_49_1056.bmp,\begin{array} { r } { F ( \zeta _ { n } ) = F ( \zeta _ { n } ; n - 1 ) = F ( \zeta _ { n } ; N ) . } \end{array}
273902cac9.png,"z = z _ { n } + \frac { 1 } { 4 } \Phi _ { n } \ , \ \ \ \ z _ { n } = \frac { 3 } { 4 } z - \frac { 1 } { 8 } \Phi \ ,"
sume_data-00008-of-00009_49657.png,\| \varphi ^ { 2 } \| _ { \frac { 2 ^ { \sharp } } { 2 } } = \| \varphi \| _ { 2 ^ { \sharp } } ^ { 2 }
3d507e23f0.png,v \leq \left[ { \frac { V } { 4 \pi } } \right] \equiv N .
61951beca11175e.png,{ \cal L } _ { c l a s s } ^ { \prime } = - \varphi _ { 1 } \Box \varphi _ { 2 } + m ^ { 2 } \varphi _ { 1 } \varphi _ { 2 } + { \frac { \lambda } { 4 } } \varphi _ { 1 } ^ { 2 } \varphi _ { 2 } ^ { 2 } + J _ { 1 } \varphi _ { 1 } + J _ { 2 } ( \varphi _ { 2 } + \alpha \varphi _ { 1 } ^ { 2 } ) .
985f52281b24663_basic.png,Z = \int { D } \lambda { e x p } \left( \frac { N } { 2 g ^ { 2 } } \int { \lambda } d ^ { D } x - \frac { N } { 2 } t r l n ( - \partial ^ { 2 } + \lambda ) \right)
process_49_7012.bmp,"\begin{array} { r } { \omega _ { d } ( x ) \leq x ^ { 4 \alpha } \quad \forall x \geq 0 , } \end{array}"
4a60e9b59fc9e5b.png,d s ^ { 2 } \to - \frac { r ^ { 4 } } { Q ^ { 2 } } d t ^ { 2 } + \frac { Q } { r ^ { 2 } } d r ^ { 2 } + Q d \Omega _ { 3 } ^ { 2 } .
3d9b89fc2c.png,"\langle \bar { \psi } \psi \rangle = - \frac { N } { 4 \pi l ^ { 2 } } , \; \; \; \langle \psi ^ { \dagger } \psi \rangle = \frac { N } { 4 \pi l ^ { 2 } } \; \mathrm { s g n } ( \mu ) ,"
e373b01ffb34f52.png,\chi _ { i } = p _ { i } ^ { 2 } - m _ { i } ^ { 2 } \approx 0 .
e786e8573ee2e67_basic.png,"\frac { d \sigma } { d t } ( \gamma _ { L } ~ p \rightarrow \pi ^ { 0 } ~ p ) = \frac { d \sigma } { d t } ( x , Q ^ { 2 } ) \ | _ { t = \mathrm { t _ { m i n } } } \times e ^ { B ( t - t _ { m i n } ) } ,"
sume_data-00000-of-00009_46791.png,"\displaystyle V _ { 3 , 6 }"
12a049eba35b4b5_basic.png,"\Gamma ( \tilde { \rho } ^ { + } \rightarrow \pi ^ { + } \pi ^ { - } \pi ^ { + } \pi ^ { 0 } ) = \frac { 1 } { 2 } \Gamma ( \tilde { \rho } ^ { 0 } \rightarrow \pi ^ { + } \pi ^ { - } \pi ^ { + } \pi ^ { - } ) + \Gamma ( \tilde { \rho } ^ { 0 } \rightarrow \pi ^ { + } \pi ^ { - } \pi ^ { 0 } \pi ^ { 0 } ) ,"
45fcdde67bf8b9b_basic.png,"\langle J / \psi K | \tilde { \cal O } _ { 2 } ( \mu ) | B \rangle = 2 \epsilon \cdot q \, m _ { J / \psi } f _ { J / \psi } \tilde { F } _ { B K } ^ { + } ( \mu ^ { 2 } )"
d24e4ea5b54ab24.png,"\tilde { S } = 2 \, \left( \begin{array} { c c c c } { { 0 } } & { { 1 } } & { { 1 } } & { { - 1 } } \\ { { - 1 } } & { { 0 } } & { { - 1 } } & { { - 1 } } \\ { { - 1 } } & { { 1 } } & { { 0 } } & { { - 2 + c ^ { 2 } } } \\ { { 1 } } & { { 1 } } & { { 2 - c ^ { 2 } } } & { { 0 } } \end{array} \right)"
cb36f85fe7d8a13_basic.png,A _ { 3 } = A _ { 7 } = A _ { + } ( \epsilon )
05bea92c0b4a95c_basic.png,a _ { \mu } ( \mathrm { h a d ~ l - l } ) = - 7 9 . 2 \ ( 1 5 . 4 ) \times 1 0 ^ { - 1 1 }
1563af270461670_basic.png,"f _ { 1 } = \int E \frac { d ^ { 3 } \sigma ^ { H } } { d ^ { 3 } p } d ^ { 2 } p _ { \bot } = \sum _ { n = 0 } ^ { \infty } \sigma _ { n } ( s ) \varphi _ { n } ^ { H } ( s , x )"
261778b235d1370_basic.png,\lambda = \pm i \omega = \pm i \left( 2 n + 1 \right) \pi
process_49_8015.bmp,"\begin{array} { r } { M _ { j } > \operatorname* { m a x } \{ M ^ { \ast } , M ^ { * * } \} ( j = 0 , 1 , \ldots , N - 1 ) , } \end{array}"
581c666af4.png,"{ \cal P } _ { A } ^ { ( 2 \nu ) B } ( x ) \equiv \left[ U ^ { \dagger } ( x ) \, h ^ { ( 2 \nu ) } \, U ( x ) \right] _ { A } { } ^ { B } ~ ,"
sume_data-00003-of-00009_155089.png,\displaystyle \sqrt { 4 \pi \mu _ { 0 } } \ \mathbf { H }
sume_data-00002-of-00009_118909.png,\displaystyle \ll \| v _ { j } \| _ { \dot { X } ^ { s } } .
56b303f58d.png,"{ \cal F } ( k ) = { \widetilde \gamma } k ^ { 2 ( n + d / 2 - 1 ) } \prod _ { i = 1 } ^ { \infty } \left( 1 - { \frac { k ^ { 2 } } { \mu _ { i } ^ { 2 } } } \right) ,"
675a0bdbeb.png,"| \phi ( \alpha ^ { z } , \alpha ^ { i } ) \rangle = \cos ( \omega \alpha ^ { z } ) | \phi _ { s } ( \alpha ^ { i } ) \rangle + \frac { \sin ( \omega \alpha ^ { z } ) } { \omega } | \phi _ { s - 1 } ( \alpha ^ { i } ) \rangle \, ,"
5ba037d5e8a00d1.png,"\begin{array} { c } { { T _ { \mu \nu } ^ { a b c d } ( p _ { 1 } , p _ { 2 } ; k _ { 1 } , k _ { 2 } ) = { \sum _ { i = 1 } ^ { 4 } } T _ { \mu \nu } ^ { ( i ) a b c d } ( p _ { 1 } , p _ { 2 } ; k _ { 1 } , k _ { 2 } ) } } \\ { { = - i g ^ { 2 } e ^ { \rho } ( p _ { 1 } ) e ^ { \sigma } ( p _ { 2 ) } { \sum _ { i = 1 } ^ { 4 } } T _ { \rho \sigma \mu \nu } ^ { ( i ) a b c d } ( p _ { 1 } , p _ { 2 } ; k _ { 1 } , k _ { 2 } ) } } \end{array}"
ae899beb7190f5c_basic.png,[ \! [ a ] \! ] = [ \! [ b ] \! ]
c09320dd2e432a0_basic.png,"\operatorname * { l i m } _ { n \to \infty } I _ { 2 , n } ( t ) = \int _ { 0 } ^ { t } \int _ { 0 } ^ { R _ { 0 } } \int _ { R _ { 0 } } ^ { \infty } \tilde { \vartheta } ( x , y ) K ( x , y ) f ( s , x ) f ( s , y ) \ d y d x d s \, ."
21cd43f008.png,"\tilde { W } _ { \Gamma } ( E ) = \int d g \delta ( E - g \tau g ^ { - 1 } \delta _ { \Gamma } ) ,"
4e5e77a54451d30_basic.png,p _ { { \mathbf t } } ( n ) \ge p _ { { \mathbf t } } ( 3 \cdot 2 ^ { m - 1 } + 2 ) = 2 \cdot ( 3 \cdot 2 ^ { m - 1 } + 1 ) + 2 ^ { m + 1 } = 5 \cdot 2 ^ { m } + 2
e552c75c7361705_basic.png,"| n _ { \boldsymbol { r } } ^ { x } , n _ { \boldsymbol { r } ^ { \prime } } ^ { x } \rangle"
77f90766cb.png,\frac { d } { d p ^ { 2 } } A _ { 2 } ( p ) \Big | _ { p ^ { 2 } = 0 } = B _ { 2 } ( p = 0 ) = 0
3602d1d6dfdb74b.png,"H \equiv { \frac { 1 } { \sqrt { 2 } \pi m } } \left( { \frac { \alpha } { 2 } } \right) ^ { 3 } F \ ,"
8943bbd9e714ea7_basic.png,\mu _ { F } / \Delta _ { 0 } = 0 . 2
sume_data-00004-of-00009_116716.png,\displaystyle \beta \! = \! \sqrt { 2 } \operatorname { t a n h } { ( \sqrt { 2 } m \! \int \! s _ { \mu } d x ^ { \mu } ) }
df758bd4ed6a54c_basic.png,4 9 . 1 6 _ { - 0 . 1 8 } ^ { + 1 . 2 5 }
818f258b74402e1_basic.png,"\beta = ( \beta _ { 1 } , \ldots , \beta _ { n } )"
176205a7681b982_basic.png,\bar { \Gamma } \in \mathcal { R }
process_49_8506.bmp,\begin{array} { r } { \begin{array} { l l l } { 1 + 6 \displaystyle \sum _ { \ell = 1 } ^ { E [ \frac { R } { r } ] } \ell + 6 \left( k + 2 - 2 \lceil \frac { A B } { r } \rceil \right) } \\ { = 1 + 3 E [ \frac { R } { r } ] ( 1 + E [ \frac { R } { r } ] ) + 6 \left( k + 2 - 2 \left\lceil \frac { k + 1 } { 2 } - \sqrt { \frac { R ^ { 2 } } { r ^ { 2 } } - \frac { 3 } { 4 } ( k + 1 ) ^ { 2 } } \right\rceil \right) } \end{array} } \end{array}
sume_data-00003-of-00009_58671.png,\displaystyle = ( \partial _ { t } \Delta _ { t } ) ( q _ { i } ( t ) )
7f135a3b690fa4b.png,\Phi ^ { \pm } = \frac { \Phi _ { 2 } \pm \Phi _ { 1 } } { 2 }
process_49_3903.bmp,"\begin{array} { r } { p ( t ) = \sum _ { 0 = 1 } ^ { l } u _ { j } ^ { \prime } ( t ) + \sum _ { t ^ { \prime } \in T _ { k e } } v _ { t ^ { \prime } } ^ { \prime } ( t ) , } \end{array}"
1ff0100cbabe215.png,g _ { i } = z _ { i } - \frac { \lambda + \beta _ { i } } { z _ { i - 1 } }
94f699868ca9ca5_basic.png,"M \ddot { q } ( t ) + \int _ { - \infty } ^ { t } \mathrm { d } t ^ { \prime } \, \Sigma _ { m } ( t - t ^ { \prime } ) \dot { q } ( t ^ { \prime } ) = { j } ( t ) ,"
43e71c1b91.png,V \otimes \stackrel { n _ { s } } { \ldots } \otimes V \longrightarrow V ^ { \prime }
sume_data-00004-of-00009_66757.png,L ( p ) = J ( z ) + \lambda ^ { T } ( G z - g ) + \mu ^ { T } h ( z )
364edecc30.png,"b = 1 + 3 / D \, \, \, \, \, , \, \, \, \, \,"
1f4794f04e55409_basic.png,\left. H \right| _ { \gamma = 9 0 ^ { \circ } } = \frac { 1 + d ^ { 2 } } { \epsilon ^ { 2 } + d ^ { 2 } } .
sume_data-00005-of-00009_62459.png,\displaystyle \rho - w \rho = \sum _ { \beta \in R ( w ) } \beta .
process_49_3927.bmp,"\begin{array} { r } { M \left( t _ { i } , T _ { j } \right) : = \Pi \left( t _ { 0 } , T _ { j } \right) + \sum _ { k = 1 } ^ { i } \left( \Pi \left( t _ { k } , T _ { j } \right) - \mathbb { E } ^ { \mathbb { P } } \left[ \Pi \left( t _ { k } , T _ { j } \right) \left| \mathcal { F } _ { k - 1 } \right. \right] \right) } \end{array}"
process_49_194.bmp,\begin{array} { r } { n _ { + } ( C _ { \lambda } ) = \frac { 1 } 2 \left( \sum _ { i = 1 } ^ { \ell } ( - 1 ) ^ { \ell - i } \lambda _ { i } - \frac { | d _ { \lambda } + ( \ell - 2 \lfloor \frac { \ell } { 2 } \rfloor ) | } { 2 } \right) } \end{array}
5eedf35fe0.png,\frac { d S ^ { i } } { d \tau } + \{ _ { j k } ^ { i } \} u ^ { j } S ^ { k } = - G _ { j k } ^ { i } u ^ { j } S ^ { k } .
sume_data-00000-of-00009_154601.png,\displaystyle T _ { p } \mathcal { M }
2d16801cc81063a.png,H _ { N = 1 } = \frac 1 2 \left( - \partial _ { x } ^ { 2 } + \frac { \lambda ^ { 2 } } { x ^ { 2 } } - \sigma _ { 1 } \frac \lambda { x ^ { 2 } } \right)
process_49_5242.bmp,"\begin{array} { r } { \frac { d } { d t } F ( t , z ( t ) ) \ , = \ , D _ { t } F ( t , z ( t ) ) \ , + \ , \omega ( X F ( t , z ) , \dot { z } ( t ) ) . } \end{array}"
3e6242e75d99a06.png,"k _ { i } ^ { + } = x _ { i } P ^ { + } \; , \; \; { \bf k } _ { i \perp } = x _ { i } { \bf P } _ { \perp } + { \bf r } _ { i } \; ."
sume_data-00001-of-00009_9452.png,\sum _ { j = 1 } ^ { n } \frac { 1 } { n } \gamma _ { j } = \sum _ { j = 1 } ^ { n } \frac { 1 } { n } n \tau _ { j } \gamma = \gamma .
sume_data-00006-of-00009_162268.png,\displaystyle = A _ { 0 } ^ { - 1 } [ ( 1 - \gamma ) A _ { 0 } ^ { 2 } + \gamma ( A _ { 0 } A _ { m } ^ { 2 } A _ { 0 } ) ^ { 1 / 2 } ] [ ( 1 - \gamma ) A _ { 0 } ^ { 2 } + \gamma ( A _ { 0 } A _ { m } ^ { 2 } A _ { 0 } ) ^ { 1 / 2 } ] A _ { 0 } ^ { - 1 }
583b14408745925_basic.png,"\Delta = [ \Lambda , n , 0 , \beta ]"
25ad70ceaa.png,"g = \left( \begin{array} { c c } { { M } } & { { N } } \\ { { R } } & { { S } } \end{array} \right) \, ."
59d4d8388c.png,g _ { \pm \pm } = \left( \begin{array} { c c } { { u _ { \pm \pm } ^ { ( + ) } } } & { { u _ { \pm \pm } ^ { ( - ) } } } \\ { { v _ { \pm \pm } ^ { ( + ) } } } & { { v _ { \pm \pm } ^ { ( - ) } } } \end{array} \right)
875fa5588eec598_basic.png,x _ { k } ^ { \prime \prime } x _ { i } ^ { \prime \prime } \cap N _ { \delta } ( \textup { H u l l } ( T _ { \varepsilon } ( G ^ { \prime } ) ) ) / \Gamma = \emptyset .
44ff31b177.png,R ^ { 2 } \gg s \gg \frac { 1 } { V _ { 0 } ^ { 2 } R ^ { 2 } }
613bd1599f.png,v _ { S } ^ { 2 } = \frac { \partial p / \partial T } { \partial \rho / \partial T } .
process_49_4975.bmp,"\begin{array} { r } { \begin{array} { c c l } { 4 \Delta _ { b } W } & { = } & { ( A _ { 1 1 , \bar { 1 } \bar { 1 } } + A _ { \bar { 1 } \bar { 1 } , 1 1 } ) f - i ( f _ { 1 \bar { 1 } } - f _ { \bar { 1 } 1 } ) W - i ( f _ { 1 } W _ { \bar { 1 } } - f _ { \bar { 1 } } W _ { 1 } ) } \end{array} } \end{array}"
9533b704e78d687_basic.png,D = \left( \begin{array} { l l } { { \frac { 1 } { \sqrt { 2 } } } } & { { \frac { 1 } { \sqrt { 2 } } } } \\ { { \frac { 1 } { \sqrt { 2 } } } } & { { - \frac { 1 } { \sqrt { 2 } } } } \end{array} \right)
process_49_1076.bmp,"\begin{array} { r } { \Psi ( x ^ { n } ) = B _ { q , n } , } \end{array}"
d4f5999fd9d361b_basic.png,\mathcal { T } = \mathcal { K }
d0af5e10b0b3686_basic.png,"\langle \sigma _ { \mathrm { s c a t t } } v _ { \mathrm { r e l } } \rangle \simeq 1 2 8 \pi \alpha _ { 1 } ^ { 2 } \frac { E _ { \mathrm { L S P } } ^ { 2 } T _ { R } ^ { 2 } } { m _ { \tilde { e } _ { R } } ^ { 4 } m _ { \mathrm { L S P } } ^ { 2 } } ,"
sume_data-00005-of-00009_20519.png,"\displaystyle \ \ \ \, \ = e \bar { R } + e T - 2 ( e T _ { \nu } ^ { \, \, \, \nu \mu } ) _ { , \mu } \, ,"
process_49_5703.bmp,"\begin{array} { r l } { \psi _ { p , q } ^ { ( m ) } ( s ) - \psi _ { p , q } ^ { ( m ) } ( s + t ) } & { { } = ( \ln q ) ^ { m + 1 } \sum _ { n = 1 } ^ { p } \left[ \frac { n ^ { m } q ^ { n s } } { 1 - q ^ { n } } - \frac { n ^ { m } q ^ { n ( s + t ) } } { 1 - q ^ { n } } \right] } \end{array}"
process_49_1331.bmp,"\begin{array} { r } { \sum _ { x _ { s } \in \mathcal { A } } \int _ { 0 } ^ { 1 } \ | \prod _ { i = 1 } ^ { s - 1 } U _ { \mathcal { A } - x _ { s } } ( d _ { i } \alpha ) - \prod _ { i = 1 } ^ { s - 1 } \delta U _ { [ 1 , N ] - x _ { s } } ( d _ { i } \alpha ) \ | \ , d \alpha \gg \delta ^ { s } N ^ { s - 2 } - \delta N . } \end{array}"
process_49_7647.bmp,"\begin{array} { r } { d \widetilde d _ { \epsilon } \times \widetilde d _ { \epsilon } = d G ^ { \epsilon } + d ^ { * } H ^ { \epsilon } , \ d H ^ { \epsilon } = 0 \ \ \mathrm { { i n } } \ \mathbb R ^ { 3 } , } \end{array}"
15e9747fe6.png,"H _ { \infty } ^ { 2 } \equiv \frac { \kappa _ { 4 } ^ { 2 } } { 3 } \, \Lambda _ { 4 } < \frac { 1 } { 4 \omega _ { 4 } M } = \frac { 3 \pi M _ { 5 } ^ { 3 } } { 3 2 M } \, ,"
67b4e25b75e8adf_basic.png,"{ F ^ { i } } ^ { \alpha a } = ( 4 , 2 , 1 ) \, \, \, \, \, , { \bar { F } } _ { x \alpha } ^ { i } = ( \bar { 4 } , 1 , 2 )"
process_49_4572.bmp,"\begin{array} { r } { Y _ { t } = \xi + \int _ { 0 } ^ { t } \int _ { A } b ( s , Y _ { s } , \mu _ { s } ^ { x } , a ) \Lambda _ { s } ( d a ) d s + \int _ { 0 } ^ { t } \sigma ( s , Y _ { s } , \mu _ { s } ^ { x } ) d W _ { s } + \int _ { 0 } ^ { t } \sigma _ { 0 } ( s , Y _ { s } , \mu _ { s } ^ { x } ) d B _ { s } . } \end{array}"
13496c6f8461bc5_basic.png,"| p _ { 1 } , \lambda _ { 1 } ; p _ { 2 } , \lambda _ { 2 } \rangle = b ^ { \dagger } ( p _ { 1 } , \lambda _ { 1 } ) d ^ { \dagger } ( p _ { 2 } , \lambda _ { 2 } ) | 0 \rangle \, ,"
sume_data-00006-of-00009_105710.png,\displaystyle m _ { f }
sume_data-00008-of-00009_153793.png,\displaystyle w _ { 4 } \left( v \right)
process_49_1148.bmp,"\begin{array} { r } { z ( \xi , 0 ) = z _ { 0 } ( \xi ) \ \ i n \ \Omega , } \end{array}"
9eeb991286c9907_basic.png,"I m \, \lambda _ { t } = ( 1 . 3 8 \pm 0 . 3 3 ) \times 1 0 ^ { - 4 }"
d5be0c635f85b9c_basic.png,"C _ { h ^ { 0 } t c } = \frac { 1 } { \sqrt { 2 } } \left[ \xi _ { t c } P _ { R } + \xi _ { c t } ^ { \dagger } P _ { L } \right] \cos \alpha \equiv \frac { g \sqrt { m _ { t } m _ { c } } } { 2 M _ { W } } ( \chi _ { R } P _ { R } + \chi _ { L } P _ { L } ) \, \, \, \, ."
70100f86e7.png,\beta _ { B o l t } = \frac { 7 0 \pi ( r _ { b } ^ { 2 } - N ^ { 2 } ) ^ { 5 } \ell ^ { 2 } } { \rho }
2742718a6e.png,"s = \frac 3 4 s _ { 0 } = \frac { \pi ^ { 2 } } 2 N ^ { 2 } T ^ { 3 } \, ,"
13bbb725b6.png,"\unitlength . 5 c m \left\{ \begin{array} { l l } { { ( 6 , 5 ) \put ( 2 , 4 . 5 ) { \line ( 0 , - 1 ) { 4 . 5 } } \put ( 1 . 5 , 4 ) { \line ( 1 , 0 ) { 1 } } \put ( 1 . 5 , 3 ) { \line ( 1 , 0 ) { 1 } } \put ( 1 . 5 , 2 ) { \line ( 1 , 0 ) { 1 } } \put ( 1 . 5 , 1 ) { \line ( 1 , 0 ) { 1 } } \put ( 1 , . 5 ) { \line ( 1 , 0 ) { 4 . 5 } } } } \end{array} \right."
26bdf54351b0435.png,"I _ { E } ( g _ { E } , \Phi _ { 0 } ) = - { \frac { 1 } { 8 \pi G } } \int _ { \partial \Omega } [ K ] \sqrt { { } _ { 3 } g _ { E } } \; d ^ { 3 } x - { \frac { 1 } { 1 6 \pi G } } \int _ { \Omega } R \sqrt { g _ { E } } \; d ^ { 4 } x + \int _ { \Omega } { \cal L } _ { E } \sqrt { g _ { E } } \; d ^ { 4 } x ."
sume_data-00003-of-00009_170247.png,"\displaystyle \frac { \sum _ { a = 2 } ^ { 3 } A ( \theta ^ { a } , \phi ^ { a } ) } { A ( \theta , \phi ) }"
8da756b5c7a5718.png,\left( z \frac { d } { d z } \right) ^ { 2 } \Phi - z \left( z \frac { d } { d z } \right) ^ { 2 } \Phi = 0 .
process_49_7854.bmp,\begin{array} { r } { \int _ { M } \gamma \wedge ( \pi _ { * } \beta ) = \int _ { M ^ { \prime } } \pi ^ { * } \gamma \wedge \beta } \end{array}
650f9bd78b.png,"S ( q < 1 ) \approx \lambda k ^ { 2 } \sqrt { \mu _ { 0 } } T \left[ 1 . 0 8 ( q ^ { 3 } + 1 ) - \frac { ( 1 - q ^ { 3 } ) ^ { 2 } } { 2 ( 1 + q ^ { 3 } ) } \ln ^ { 2 } 3 \right] ,"
76751d539f.png,"2 \Omega = - 5 ( z _ { 1 } + z _ { 2 } ) , \quad 2 \Omega _ { 0 } = z _ { 1 } - z _ { 2 }"
511dc88968.png,D _ { \tau } X _ { i } ^ { M } = \partial _ { \tau } X _ { i } ^ { M } - \varepsilon _ { i k } A ^ { k l } X _ { l } ^ { M } .
sume_data-00004-of-00009_138659.png,\displaystyle = \alpha _ { 2 } \oslash \beta _ { 2 } ( x ) .
sume_data-00000-of-00009_15232.png,\displaystyle { \bf R } _ { \mathrm { C M } }
process_49_3959.bmp,"\begin{array} { r } { \Psi _ { p } \left( v _ { p } , \mathbb { E } ^ { \tilde { \mathbb { P } } } \left[ \Pi \right] \right) = - \mathbb { E } ^ { \tilde { \mathbb { P } } } \left[ \pi _ { p } \right] ^ { \top } v _ { p } - \frac { 1 } { 2 } \lambda _ { p } v _ { p } ^ { \top } Q _ { p } v _ { p } . } \end{array}"
process_49_7908.bmp,"\begin{array} { r } { h ( z ) = \operatorname* { l i m } _ { t \to \infty } \frac { 1 } { t } \ , \log H ( F ^ { t } ( z ) ) } \end{array}"
sume_data-00007-of-00009_6339.png,"K ^ { V } \left( \phi \right) = \pi _ { \mu \nu } ^ { V } T ^ { \mu \nu } \left( \phi \right) ,"
process_49_6956.bmp,"\begin{array} { r } { ( \mu _ { k ^ { N , M } } ^ { N , M } , z _ { k ^ { N , M } } ^ { N , M } ) \in \{ ( \mu _ { k } ^ { N , M } , z _ { k } ^ { N , M } ) , \ k = 1 , . . . , K ^ { N , M } \} , \ \ N = 1 , 2 , . . . , \ \ M = 1 , 2 , . . . , } \end{array}"
95475a028afb25c_basic.png,"{ \L } _ { \mu \, \nu \, \sigma } \equiv \left[ ( k - p ) _ { \sigma } g _ { \mu \, \nu } + ( r - k ) _ { \mu } g _ { \nu \, \sigma } + ( p - r ) _ { \nu } g _ { \mu \, \sigma } \right] \, ."
85b2a9e8667a543.png,V = \omega ( u - \frac { \kappa \omega } { 2 } ) + C ( u - \kappa \omega ) ^ { 2 }
015c277d41c0b3b_basic.png,H _ { n - 1 } ^ { ( - 2 ) } = \frac { n ( n - 1 ) ( 2 n - 1 ) } 6
89a87dd0a70c641.png,"| \mathrm { { p h y s } } ^ { \prime } \rangle \equiv U _ { 1 } | { \mathrm { p h y s } } \rangle ,"
fbef3a6efdea036_basic.png,"\widetilde V _ { V } \ = \ \widetilde V _ { V } ^ { ( 1 ) } + \widetilde V _ { V } ^ { ( 2 ) } \ = \, g a m m a _ { 1 L } \gamma _ { 2 L } ( \frac { \alpha } { 2 P _ { L } r } - \frac { \alpha ^ { 2 } } { 2 P _ { L } ^ { 2 } r ^ { 2 } } ) \ ."
69123cf997f772f.png,"X \rightarrow X + 2 \pi / \sqrt { 2 } , ~ ~ ~ \psi \rightarrow - \psi ,"
ed41dee74e4f6a4_basic.png,r = 1 . 2 \times 1 0 ^ { - 3 }
f585eeceb59205b_basic.png,"A v g ( r , c ) = N _ { N N Z } / N _ { b l o c k s } ( r , c )"
process_49_6199.bmp,\begin{array} { r } { I _ { i } ( \theta ) = \int _ { 0 } ^ { \infty } \frac { e ^ { - \eta _ { i } } } { 1 + \frac { 1 } { 2 \sin ^ { 2 } \theta } \gamma _ { i } | d _ { \mathrm { m i n } } | ^ { 2 } } \dd \eta _ { i } = \varepsilon _ { i } ( \theta ) \left[ 1 + ( \beta _ { i } - \epsilon _ { i } ( \theta ) ) e ^ { \epsilon _ { i } ( \theta ) } E _ { 1 } ( \epsilon _ { i } ( \theta ) ) \right] } \end{array}
0ea98cd1ff85e41_basic.png,"a _ { 2 } = ( \frac { 1 } { 2 } , - \frac { 1 } { 2 } )"
c1aa26d28ececd4_basic.png,"\{ \sigma _ { i } , \tau _ { i } \} \in { M }"
sume_data-00007-of-00009_65835.png,"\displaystyle \; V _ { n } ^ { \dagger } \mu ,"
fa657f015bcc75e_basic.png,\vec { \Phi } _ { k } ( \mathbf { A } - \mathbf { B } ) ( \mathbf { A } + \mathbf { B } ) = \lambda _ { k } ^ { 2 } \vec { \Phi } _ { k } \ .
149d33fa2f3bf94_basic.png,"\Delta _ { k } ^ { ( i ) } \equiv \left| Q _ { k } ^ { ( i ) } \, a \right| \left| ( Q _ { k } ^ { ( i ) } \, a ) ^ { \prime } \right| \gg 1 \, \, ~ ~ ~ ~ ~ ~ ~ ~ i = \phi , \chi"
d1603737650a385_basic.png,\pi _ { C } : C \cup C ^ { \prime } \rightarrow C
ca5ef005c467ef0_basic.png,\bar { k } _ { y } = ( 2 / \pi ) \mathrm { a r c c o s } \frac { t + \mu } { 2 t }
8aba734c0e7b4bf_basic.png,"\mathbf { c } \in \{ - 1 , 1 \} ^ { n }"
69b9d4c8da.png,"u ^ { a } = { \left( - \xi ^ { a } \xi _ { a } \right) } ^ { - { \frac { 1 } { 2 } } } \, \xi ^ { a } \equiv { \frac { 1 } { V } } \, \xi ^ { a } \; ,"
4df5bac702.png,X ^ { \mu } = x ^ { \mu } + \theta ^ { \mu \nu } A _ { \nu }
process_49_8710.bmp,\begin{array} { r l } { \mathcal { F } \ [ R _ { n } f \ ] ( \xi ) = \frac { 1 } { \pi ( 2 \pi ) ^ { n + 1 } } \int _ { \mathbb { R } ^ { n + 1 } } M _ { n + 1 } ( \xi ; \underline { { \eta } } ) } & { { } \widehat { f } ( \xi - \eta _ { 1 } - \ldots - \eta _ { n + 1 } ) } \end{array}
ea25e2193b8e458_basic.png,"h h \to \phi \phi , \bar { \psi } \psi , A A"
d90fd7fe339031b_basic.png,"\Sigma = \bigcup _ { j = 1 } ^ { N } \bigcup _ { i _ { j } = 1 } ^ { M _ { i _ { 1 } , \ldots , i _ { j - 1 } } ( x ) } ( i _ { 1 } , \ldots , i _ { j } ) ."
52d286a98e.png,A _ { 0 } ( x ^ { 1 } ) = { \frac { e ^ { \prime } } { 2 \mu } } \big ( e ^ { - \mu | x ^ { 1 } | } - e ^ { - \mu | x ^ { 1 } - a | } \big ) .
4cf26edb7d79bff_basic.png,"\mathrm { I m } \! \left\{ I _ { s } ^ { T } \right\} = \mathrm { I m } \! \left\{ I _ { s } \right\} \left[ 1 - 2 \bar { n } _ { F } + 2 \bar { n } _ { F } ^ { 2 } \right] ,"
038c49bab2a5284.png,"\phi _ { r } = P _ { a } \, \partial _ { r } X ^ { a } + P _ { - } \, \partial _ { r } X ^ { - } \approx 0 \, ."
bacd7aa5fafe79f_basic.png,"\Delta W _ { S F } \, \, = \, \, \, 4 \sqrt { Q ^ { 2 } } | \vec { q } _ { 1 } | \, \, \frac { Q ^ { 2 } } { m _ { \tau } ( m _ { u } - m _ { d } ) } \, \, \, \mathrm { I m } \left( F F _ { S } ^ { * } \right) \, \, \, \mathrm { I m } \left( \, \eta _ { S } \right) ."
32d70afff119b82.png,"\tau ( t ) = \int ^ { t } \frac { a ( t ^ { \prime } ) N ( t ^ { \prime } ) \, d t ^ { \prime } } { \sqrt { a ^ { 4 } ( t ^ { \prime } ) + 3 a _ { 0 } ^ { 4 } } } ."
b4c13dc0f280bb7_basic.png,{ \frac { d } { d t } } \left( \displaystyle { \frac { e ^ { - t } } { e ^ { t } - 1 } } \displaystyle { \frac { d } { d t } } \left( ( e ^ { t } - 1 ) ^ { 2 } G \right) \right) ~ .
daf07e6d3510499.png,"\begin{array} { l l l } { { L _ { I J } ^ { ( - ) } L _ { J K } ^ { ( - ) } } } & { { - } } & { { ( - 1 ) ^ { P _ { J } ( P _ { I } + P _ { K } ) } L _ { J K } ^ { ( - ) } L _ { I J } ^ { ( - ) } = } } \\ { { } } & { { } } & { { ( q - q ^ { - 1 } ) ( - 1 ) ^ { P _ { K } P _ { J } } L _ { J J } ^ { ( - ) } L _ { I K } ^ { ( - ) } , ( I > J > K ) } } \end{array}"
94d51781a0bb2da_basic.png,"A _ { I } e ^ { i \, \delta _ { I } } = \left( \left| ( \pi \pi ) _ { I } ^ { \mathrm { o u t } } \right> , \, T \, \left| K ^ { 0 } \right> \right) ,"
process_49_1234.bmp,"\begin{array} { r } { \int _ { - \infty } ^ { \infty } \rho \ , \dd x = 1 } \end{array}"
6690edbd0317fdc_basic.png,"\rho _ { \sigma } , \mathbf { v } _ { \sigma }"
0407602f8373a46_basic.png,"- \Delta u _ { \mathbf { m } } ( \mathbf { x } ) = \lambda _ { \mathbf { m } } u _ { \mathbf { m } } ( \mathbf { x } ) , \quad \mathbf { x } \in \Omega ."
26300740f2c2cb6.png,"y \rightarrow y ^ { \prime } = f ( \epsilon ) y ^ { - \frac { 1 } { \epsilon } } \, ,"
ac520d0bb5348c5.png,\kappa ^ { 2 } g ^ { 2 } \alpha ^ { \prime } \left[ \gamma _ { 1 } \mathrm { T r } \; \left( A ^ { \mu } A _ { \mu } A ^ { \nu } A _ { \nu } \right) + \gamma _ { 2 } \mathrm { T r } \; \left( A ^ { \mu } A ^ { \nu } A _ { \mu } A _ { \nu } \right) \right]
process_49_3421.bmp,"\begin{array} { r } { f ( \tau , y - z ) = 0 ~ ~ f ( \tau , - z ) = 0 , } \end{array}"
7fa6eb69a3542a4_basic.png,\ ( S U P ( y ) \ ) ^ { 2 } \leq y + s \leq y + 2 s \sqrt { y } + s ^ { 2 } = ( \sqrt { y } + s ) ^ { 2 } ;
sume_data-00000-of-00009_41717.png,\displaystyle = \int _ { w } e ^ { - t w ^ { 2 } } \int _ { z } e ^ { t z ^ { 2 } }
a644a911bb2d8ee.png,\delta = \sum _ { \mu = 0 } ^ { n } a _ { \mu } ( u ) x _ { \mu } - b ( u ) \quad \mathrm { w i t h } \quad \sum _ { \mu } { } ^ { \prime } a _ { \mu } ( u ) ^ { p } = 0
48351a0625.png,k = \pm \frac { 2 \alpha ( q + r + { \tilde { d } } ) } { \sqrt { { \tilde { d } } [ 2 \alpha ^ { 2 } ( q + r ) ( q + r + { \tilde { d } } ) + 4 q ^ { 2 } { \tilde { d } } ] } }
8170a16f60d23b7_basic.png,"R _ { 0 } ( t + t ^ { \prime } ) ^ { 2 } = R _ { 1 } ^ { 2 } + 2 t ^ { \prime } R _ { 1 } \mu ( t ) + t ^ { 2 } ,"
process_49_10038.bmp,"\begin{array} { r } { \begin{array} { r l } { \dot { \vec { x } } } & { { } = \vec { f } \left( { \vec { x } , \vec { y } , \varepsilon } \right) , } \\ { 0 } & { { } = \vec { g } \left( { \vec { x } , \vec { y } , \varepsilon } \right) , } \end{array} } \end{array}"
process_49_2799.bmp,"\begin{array} { r } { \delta L ( q , \dot { q } ) = \dot { p } \delta q + p \delta \dot { q } \ , , } \end{array}"
a3c6e7b89097b48.png,R e [ m M _ { i j } + ( \mathrm { d e t } M _ { i j } ) ^ { \frac { 1 } { ( N _ { f } - N _ { c } ) } } \Lambda ^ { \frac { ( 3 N _ { c } - N _ { f } ) } { ( N _ { c } - N _ { f } ) } } ]
sume_data-00005-of-00009_112217.png,"P ( a | y , M ) = \frac { P ( y | a , M ) P ( a | M ) } { P ( y | M ) } ."
sume_data-00007-of-00009_46937.png,"\displaystyle \left\| { \mathbf { Z } } _ { w , b } \right\| _ { \psi _ { 2 } }"
9c8ef631db65f6c_basic.png,\sin ^ { 2 } 2 \vartheta _ { e e }
4716707d22.png,"\psi * \chi \equiv V _ { ( \infty , - 1 ) } ^ { ( 0 ) } ( \psi ) \chi \, ,"
process_49_4891.bmp,\begin{array} { r } { \tilde { h } _ { r } = \sum _ { \Lambda \vdash ( r | 1 ) } ( \Lambda _ { 1 } + 1 ) m _ { \Lambda } h _ { s } = \sum _ { \lambda \vdash ( s | 0 ) } { m _ { \lambda } } } \end{array}
673f97e7a8.png,\Delta V ~ = ~ 3 2 \pi ^ { 2 } R e ( m _ { \lambda } \Lambda ^ { 3 } ) - { \frac { 2 5 6 \pi ^ { 4 } } { \alpha N _ { c } ^ { 2 } } } | m _ { \lambda } \Lambda | ^ { 2 }
6d2b9344d8d5d54_basic.png,"A ^ { \mathrm { S M } } ( B ^ { + } \rightarrow \pi ^ { + } K ^ { 0 } ) = - A \lambda ^ { 2 } ( 1 - \lambda ^ { 2 } / 2 ) \left[ 1 + \rho e ^ { i \theta } e ^ { i \gamma } \right] | P _ { t c } | e ^ { i \delta _ { t c } } ,"
e905b0f81c6129c.png,"A _ { \mu i j } ^ { a } = < \psi _ { j } ^ { a } | \frac { \partial \psi _ { i } ^ { a } } { \partial x ^ { \mu } } > \, { . }"
sume_data-00005-of-00009_162465.png,"\displaystyle | [ u , R _ { i } R _ { j } ] \partial _ { k } w ( X ) - [ u , R _ { i } R _ { j } ] \partial _ { k } w ( Y ) | \leq"
process_49_8516.bmp,\begin{array} { r } { \nabla _ { \lambda } g = ( \nabla _ { \lambda } i ) ^ { T } \nabla _ { i } \psi . } \end{array}
sume_data-00004-of-00009_74408.png,"\displaystyle\Big{(}U\widetilde{\gamma}_{\mu}^{\star}U^{\dagger}\Big{)}^{\top}\,,"
sume_data-00004-of-00009_29877.png,\displaystyle \left| { { I _ { 2 } } } \right|
3dd5566da3f1640_basic.png,{ \frac { d L _ { \nu _ { \alpha } } } { d t } } = { \frac { - 3 \beta ^ { 2 } \omega _ { 0 } } { 1 6 } } \left[ \langle \cos \int _ { t - \tau } ^ { t } \lambda d t ^ { \prime } \rangle - \langle \cos \int _ { t - \tau } ^ { t } \bar { \lambda } d t ^ { \prime } \rangle \right] .
3805c09aa4a968c.png,"Z _ { m , c , k } ^ { U ( 1 ) } ( 2 ) = { \cal N } Z _ { B _ { + } } ^ { U ( 1 ) } \sum _ { x } n _ { x } ."
f1d0f0a5a2387b6_basic.png,"f \colon V \to \{ 1 , \dots , n \}"
process_49_7682.bmp,\begin{array} { r } { \operatorname* { l i m } _ { \epsilon \rightarrow 0 } \int _ { \widetilde \Omega \times G _ { \Lambda } ^ { T } } | \nabla ( d _ { \epsilon } - d ) | ^ { 2 } = 0 . } \end{array}
23c6c33f6ec4e32.png,0 \to \Omega ^ { q } ( M ) \stackrel { \pi ^ { * } } { \to } \Omega ^ { q } ( Y ) \stackrel { \delta } { \to } \Omega ^ { q } ( Y ^ { [ 2 ] } ) \stackrel { \delta } { \to } \Omega ^ { q } ( Y ^ { [ 3 ] } ) \stackrel { \delta } { \to } \dots
process_49_2443.bmp,"\begin{array} { r } { f \ , \sigma _ { i } ( a , b ) \ , ( 1 - t _ { i } ) ( 1 - t _ { i + 1 } ) = f \ , \sigma _ { i } ( a , b ) ( 1 - t _ { i } ) - f \ , \tilde { \sigma } _ { i } ( a , b + 1 ) ( 1 - t _ { i } ) } \end{array}"
sume_data-00008-of-00009_7916.png,"a ( x ) = \sin ( 5 \pi x ) , \qquad x \in [ 0 , 1 ] ."
6dae220da2c686f_basic.png,"\psi _ { + } = \Lambda ^ { + } \psi = \left[ \begin{array} { l } { { \xi } } \\ { { 0 } } \end{array} \right] ~ ~ , ~ ~ \psi _ { - } = \Lambda ^ { - } \psi = \left[ \begin{array} { c } { { 0 } } \\ { { \left( \frac { 1 } { i \partial ^ { + } } \right) [ \tilde { \sigma } ^ { i } ( i \partial ^ { i } + g A ^ { i } ) + i m ] \xi } } \end{array} \right] ."
92be60441d0b7a7_basic.png,"( \gamma _ { \sigma ; D 7 } ) ( \gamma _ { \Omega R _ { 8 9 } ; D 7 } ) ( \gamma _ { \sigma ; D 7 } ) ^ { T } = ( \gamma _ { \Omega R _ { 8 9 } ; D 7 } ) ,"
2fec8e7a9606ca6_basic.png,f _ { 1 } ( l ) \to \pi ^ { + } ( p _ { + } ) \pi ^ { - } ( p _ { - } ) \gamma ( p )
595ac48757050c3_basic.png,"\Gamma _ { \bullet \ast } ^ { ~ ~ \sigma } ( k , k ^ { \prime } ) \rightarrow - { \frac { ( \vec { k } ^ { \prime } ) _ { \perp } ^ { 2 } } { \alpha _ { k } s } } p _ { 1 } ^ { \sigma } ."
6d754bb1d831f7f_basic.png,"\begin{array} { l l l l l } { { M _ { P } ^ { 2 } \, f _ { P } ^ { c } } } & { { = } } & { { h _ { P } ^ { c } } } & { { + } } & { { A _ { P } } } \\ { { \uparrow } } & { { } } & { { \uparrow } } & { { } } & { { \uparrow } } \\ { { { \mathcal O } ( 1 / m _ { c } ^ { 2 } ) } } & { { } } & { { { \mathcal O } ( 1 ) } } & { { } } & { { { \mathcal O } ( 1 ) } } \end{array}"
562c917c7f.png,"\int _ { - z } ^ { - z + 1 } \omega _ { \mu } ( t , z , \tau ) d t = - \tilde { q } ^ { - \mu } \int _ { 0 } ^ { 1 } \omega _ { - \mu } ( t , z , \tau ) d t"
e2d5c032a6.png,L = \frac { 1 } { 2 A ^ { 2 2 } } \dot { x } ^ { \mu } \dot { x } ^ { \nu } g _ { \mu \nu } \left( x \right) -
7dd01fde72a5703_basic.png,"2 . 4 B ( \lambda , L ) = \sum _ { n = 0 } ^ { \infty } \sum _ { m = n } ^ { \infty } b _ { m , n } \lambda ^ { 2 m } L ^ { n } ,"
process_49_3079.bmp,"\begin{array} { r } { \left( \mathbf { H } \mathbf { D } \mathbf { V } \mathbf { D } ^ { H } \mathbf { H } ^ { H } + \sigma _ { n } ^ { 2 } \mathbf { I } _ { M } \right) ^ { - 1 } = \ ; \frac { 1 } { \sigma _ { n } ^ { 2 } } \mathbf { I } _ { M } - \frac { 1 } { \sigma _ { n } ^ { 4 } } \mathbf { H } \left( \mathbf { E } ^ { - 1 } + \frac { 1 } { \sigma _ { n } ^ { 2 } } \mathbf { H } ^ { H } \mathbf { H } \right) ^ { - 1 } \mathbf { H } ^ { H } \ ; , } \end{array}"
process_49_638.bmp,"\begin{array} { r } { x ^ { \prime } : = \sum _ { | J _ { 1 } | = l } \ , \sum _ { | J _ { 2 } | = m - l } x _ { J _ { 1 } J _ { 2 } } \ , \overline { { y _ { J _ { 1 } } } } \ , e _ { J _ { 2 } } \in { \cal V } _ { n , m - l } . } \end{array}"
process_49_5079.bmp,"\begin{array} { r } { \ell ( \operatorname { A d } _ { h } \xi + \eta , h \cdot m ) = \ell ( \xi , m ) , h \in H , \eta \in \mathfrak h . } \end{array}"
72d8b41356.png,"n ( y , T ) = \frac { 2 } { \exp ( \frac { T _ { c } } { T } y ) - 1 } \, ,"
65d61a185e03c4b_basic.png,Z _ { n } ^ { L } ( E ) = \frac { \Gamma _ { n } } { \pi \left( \left( E - E _ { n } \right) ^ { 2 } + \frac { 1 } { 4 } \Gamma _ { n } ^ { 2 } \right) }
process_49_9021.bmp,"\begin{array} { r } { x \oplus y = x + y + \beta x y \ ; \ ; \ ; \ ; \ ; \ ; x \ominus y = \frac { x - y } { 1 + \beta y } \ ; , } \end{array}"
ab5264fc80987a3.png,"^ { c } \mathcal { D } _ { \mu } V ^ { a } = \partial _ { \mu } V ^ { a } + \left. ^ { c } \omega _ { \mu } \, ^ { a } \, _ { b } V ^ { b } \right. ."
573d5542e827da8_basic.png,\left( \frac { n _ { X } } { n _ { H } } \right) _ { \mathrm { E a r t h } } \simeq 6 \times 1 0 ^ { - 5 } \left( \frac { \mathrm { G e V } } { m _ { X } } \right) \Omega _ { X } h ^ { 2 } .
sume_data-00008-of-00009_117679.png,\mathcal { H } _ { k } ( \theta _ { y } ( E ) ) \leq C ^ { k } \int _ { E } | x - y | ^ { - k } d \mathcal { H } _ { k } ( x ) .
b6c5ab3b94.png,{ \check { x } } ^ { - n } = { \check { x } } _ { + } ^ { - n } + ( - 1 ) ^ { n } { \check { x } } _ { - } ^ { - n }
51d3e30269.png,"{ \cal W } = { \cal W } _ { \mathrm { h a r m o n i c } } + \frac { 1 } { 2 } \, \mu \, \phi _ { 2 } ^ { 2 } \, , \qquad { \cal W } _ { 2 2 } = - { \cal W } _ { 1 1 } + \mu \, ,"
sume_data-00006-of-00009_76065.png,F ( C _ { z _ { a } } ( \partial A _ { a } ^ { l } ) - C _ { z _ { b } } ( \partial A _ { b } ^ { l } ) ) < \eta
04c6b9c2ac3a491.png,\frac { \partial \phi } { \partial t } = i M ^ { 1 / 2 } \phi
36207bf8b8.png,E = 2 m + \frac { 1 } { 4 \pi } \ln m + \frac { 1 } { 2 \pi } \left( \lambda - \frac { 1 } { 2 } \ln \frac { 2 } { \pi } \right) .
78609a2593.png,"\sigma _ { 0 } ^ { n } ( \lambda ) = s ( \lambda - { \frac { ( - ) ^ { n } } { \alpha _ { 0 } } } ) = { \frac { 1 } { 2 \cosh \Bigl ( \pi ( \lambda - { \frac { ( - ) ^ { n } } { \alpha _ { 0 } } } ) \Bigr ) } } \, ,"
14bf7dfebf74b0f_basic.png,"\hat { d } _ { i , i } = \pi ( i )"
process_49_7539.bmp,"\begin{array} { r } { C _ { \eta , \tau } = \int _ { \R } e ^ { 4 \pi ( x ^ { \prime } \eta - P ( x ^ { \prime } ) \cdot \tau ) } \ , d x ^ { \prime } } \end{array}"
process_49_8082.bmp,\begin{array} { r l } \end{array}
a269c2baa3556e4_basic.png,"f ( \omega ) = \langle B ( v ) | \bar { h } _ { v } \delta ( \omega + ( i n \cdot D ) ) h _ { v } | B ( v ) \rangle \, ,"
b0e590fbe86e457_basic.png,"a _ { 3 , 2 } \le \frac { 4 b ^ { 2 } + 1 2 a b } { 4 ( a + b ) ^ { 2 } } = \frac { 1 + 3 t } { ( 1 + t ) ^ { 2 } }"
5a01c291c55bafc_basic.png,h ( \overline { { { L } } } ) = \frac { d _ { E } ( d _ { L } + c \overline { { { L } } } ) } { b _ { E } - d _ { L } - c \overline { { { L } } } }
6485e8a792b0626_basic.png,"A _ { e f f } \approx A _ { C C } + \frac { 1 } { 2 } A _ { N C } ,"
process_49_9029.bmp,"\begin{array} { r } { \lbrack \mathcal { O } _ { \lambda } ] [ \mathcal { O } _ { \mu } ] = \sum _ { \nu \subset ( k ^ { n } ) } c _ { \lambda \mu } ^ { \nu } ( t ) [ \mathcal { O } _ { \nu } ] , } \end{array}"
e75e43b19ff5da2_basic.png,"b ( t ) = \alpha ( t ) \, a + \beta ^ { * } ( t ) \, a ^ { + } , \; \; \; b ^ { + } ( t ) = \beta ( t ) \, a + \alpha ^ { * } ( t ) \, a ^ { + } ,"
process_49_9304.bmp,"\begin{array} { r } { \varrho ( \xi t , t ) = \left\{ \begin{array} { l l } { 1 / 2 , } & { \textrm { f o r } \xi \leq ( \alpha - 1 ) / 2 , } \\ { 1 - \alpha / 2 , } & { \textrm { f o r } \xi \in [ ( \alpha - 1 ) / 2 , \alpha / 2 ] . } \end{array} \right. } \end{array}"
process_49_600.bmp,"\begin{array} { r } { \pi = \bigoplus _ { j = 1 } ^ { p } \hat { a } _ { j } \pi _ { j } , \hat { a } _ { j } : = \left\{ \begin{array} { l l } { 1 } & { ( a _ { j } > 0 ) , } \\ { 0 } & { ( a _ { j } = 0 ) } \end{array} \right. } \end{array}"
process_49_7543.bmp,"\begin{array} { r } { P _ { \eta , \tau } g ( x ) = P _ { \eta , \tau } g = \frac { 1 } { C _ { \eta , \tau } } \int _ { \R } g ( x ^ { \prime } ) e ^ { 4 \pi ( x ^ { \prime } \eta - P ( x ) \cdot \tau ) } \ , d x ^ { \prime } . } \end{array}"
sume_data-00007-of-00009_57117.png,\displaystyle \leavevmode \nobreak \ 1 - \operatorname* { m a x } _ { \| a \| = 1 } \| V _ { 2 } ^ { \top } V _ { 1 } a \| ^ { 2 }
9c505a6812dbf27_basic.png,| \Psi ( t _ { k + 1 } ) \rangle
process_49_9252.bmp,"\begin{array} { r } { \sum _ { n \geq 0 } \left( \sum _ { k _ { 1 } , \ldots , k _ { m } \geq 0 } W _ { \underline { { r } } , r _ { 1 } ^ { { k _ { 1 } } } { r _ { 2 } ^ { k _ { 2 } } } \cdots r _ { m } ^ { k _ { m } } j , n } \right) q ^ { n } = \Phi _ { \underline { { r } } } ( q ) \frac { q ^ { j } } { 1 - q ^ { j } } . } \end{array}"
a412555d2da5c81.png,\Longrightarrow \boxed { \omega ^ { \mu \: * } = - \omega ^ { \mu } }
20e680f571.png,I _ { \mathrm { D } ( - 1 ) } \; = \; \left. T _ { ( - 1 ) } \; e ^ { - \Phi } + i \rho _ { ( - 1 ) } \; C ^ { ( 0 ) } \ \right| _ { \mathrm { p o s i t i o n } } \ .
3426a7b7c1.png,L _ { 4 } = \epsilon _ { a b c d } R ^ { a b } e ^ { c } e ^ { d } .
fa2ef06142a5cd7_basic.png,A = \frac { \Gamma ( B _ { c } ^ { - } \to \bar { X } ) - \Gamma ( B _ { c } ^ { + } \to X ) } { \Gamma ( B _ { c } ^ { - } \to \bar { X } ) + \Gamma ( B _ { c } ^ { + } \to X ) } .
77c8f6578588e34.png,[ \frac { i } { 2 } ( 2 ) - \frac { i } { 8 } ( 8 ) - i ( 0 ) ] T r [ t ^ { a } t ^ { b } ] \int \frac { d w _ { 1 } } { 2 \pi } w _ { 1 } ^ { 2 } X _ { i } ^ { a } ( w _ { 1 } ) X ^ { i b } ( - w _ { 1 } ) \int \frac { d w } { 2 \pi } \frac { 1 } { ( w ^ { 2 } - R ^ { 2 } ) } \frac { 1 } { [ ( w - w _ { 1 } ) ^ { 2 } - R ^ { 2 } ] } = 0
6ce41d28f22f252.png,d s ^ { 2 } = \frac { a ^ { 2 } } { y ^ { 2 } } \left( d y ^ { 2 } + d x _ { 1 } ^ { 2 } + \cdots + d x _ { N - 1 } ^ { 2 } \right)
cbf25085d439620.png,F _ { i j } = { \frac { c _ { 0 } } { r ^ { 2 } } } ( t _ { i } k _ { j } - t _ { j } k _ { i } )
sume_data-00007-of-00009_140325.png,"\displaystyle e _ { t } = t a n h ( W _ { a } [ x _ { 1 } , x _ { 2 } , \cdots , x _ { T } ] + b )"
sume_data-00001-of-00009_140069.png,"\mu = \frac { m _ { \mathrm { g a l 1 } } m _ { \mathrm { g a l 2 } } } { m _ { \mathrm { g a l 1 } } + m _ { \mathrm { g a l 2 } } } ~ { } ,"
sume_data-00001-of-00009_85749.png,\displaystyle \omega _ { k } ^ { 2 }
sume_data-00002-of-00009_53644.png,"\displaystyle = k ! S ( n , k ) ."
sume_data-00005-of-00009_94653.png,\displaystyle S _ { \uparrow }
sume_data-00008-of-00009_129311.png,T=\frac{1}{y_{+}}-\frac{3}{y_{+}}\biggl{(}1-\frac{y_{+}}{s}\biggr{)}
process_49_3400.bmp,\begin{array} { r } { \widetilde C _ { 1 } \cdot \widetilde C _ { 2 } = C _ { 1 } \cdot C _ { 2 } - ( E _ { P } \cdot \widetilde C _ { 1 } ) ( E _ { P } \cdot \widetilde C _ { 2 } ) . } \end{array}
f8c4283b4f5df7b_basic.png,S _ { a b s } ^ { 2 } ( { \mathbf b } )
e0e2e6735ca94a1_basic.png,- S _ { E } = - ( 1 / 2 ) \int d ^ { 4 } x \sqrt { g } ( R + 2 \Lambda _ { e f f } ) = \mathrm { V o l u m e } \cdot ( \Lambda + \Lambda _ { H } ) = \frac { 3 M ^ { 4 } } { \Lambda _ { e f f } }
fc10df4428008a2.png,"\Psi _ { m n } ^ { [ n _ { 1 } , n _ { 2 } ] } ( x ) = \sum _ { r = 0 } ^ { n } t _ { n - r } ( l _ { 1 } - \lambda - ( m + 1 ) + r ) V _ { m r } ^ { [ n _ { 1 } , n _ { 2 } ] } ( x )"
sume_data-00004-of-00009_124360.png,\mu ( g ) = \mu ( h ) \mu ( h ^ { \prime } ) \mathrm { d } r f ( r )
dc025d3806d0cc4_basic.png,"W _ { a a } \left( k ^ { 2 } , \frac { ( k \cdot \beta _ { 1 } ) ( k \cdot \beta _ { 2 } ) } { \beta _ { 1 } \cdot \beta _ { 2 } } , \mu ^ { 2 } , \alpha _ { s } ( \mu ^ { 2 } ) , \varepsilon \right) = W _ { a a } \left( k ^ { 2 } , k ^ { 2 } + k _ { \perp } ^ { 2 } , \alpha _ { s } ( \mu ^ { 2 } ) , \varepsilon \right) ,"
9566d70abd159eb_basic.png,"- 1 9 / 2 5 , - 1 7 / 2 5 , - 1 1 / 2 5"
process_49_2425.bmp,"\begin{array} { r } { T _ { l , 1 } ( x ^ { a } ) = \sum _ { u = 0 } ^ { l } \binom { a } { u } ( x - 1 ) ^ { u } } \end{array}"
sume_data-00007-of-00009_151904.png,\displaystyle = \exp \left( { \frac { t - t _ { - } } { 4 C _ { \textup { L S } } } } \right) ( 7 2 d L ^ { 3 } ( t - t _ { - } ) ^ { 2 } + 3 3 6 d L ^ { 2 } ( t - t _ { - } ) + 4 \varepsilon _ { 1 } ^ { 2 } )
1af1d0183846c41_basic.png,"u _ { \nu } = \frac 1 { \sqrt { 1 - w ^ { 2 } } } \left( - 1 , 0 , w , 0 \right) \qquad w \left( r \right) = \frac \kappa { \mu r } = \frac { r _ { c } } r"
8a592f1bda0202a_basic.png,"[ d x ] = \delta \, \left( 1 - \sum _ { i = 1 } ^ { n } x _ { i } \right) \prod _ { j = 1 } ^ { n } \, d x _ { j }"
sume_data-00003-of-00009_170472.png,"\displaystyle { \sf a } _ { n } ( z ) ~ { } \oplus ~ { } { \sf a } _ { n } ^ { \prime } ( z ^ { \prime } \, )"
e35b7760cb2f575_basic.png,| \mathcal { P } ^ { \prime } | + | \bigcup _ { p } \mathcal { P } _ { p r } |
process_49_6214.bmp,\begin{array} { r } { n _ { \mathrm { r d } } [ k ] = w [ k ] - v [ k ] w [ k - 1 ] . } \end{array}
process_49_2082.bmp,"\begin{array} { r } { \nabla _ { Y } ^ { n c } \left( \begin{array} { l } { 0 } \\ { X } \\ { 0 } \end{array} \right) \stackrel { ( \ref { t r a d } ) } { = } \left( \begin{array} { l } { * } \\ { \nabla _ { Y } ^ { g } X } \\ { - g ( X , Y ) } \end{array} \right) \in \Gamma ( \mathcal { H } ) , } \end{array}"
48313fc05eeab78.png,"( D \Psi ^ { + } ) _ { e f f } = - { \frac { \partial _ { \tau } X ^ { + } } { ( D \Psi ^ { + } ) _ { e f f } } } , \quad \Psi ^ { + } = - i { \frac { D X ^ { + } } { ( D \Psi ^ { + } ) _ { e f f } } } ."
process_49_2939.bmp,"\begin{array} { r l } { \operatorname* { i n f } _ { \| u \| _ { \ell ^ { 2 } ( \square ) } } \left\langle H _ { q , \epsilon } ^ { \square } ( \theta ) u , u \right\rangle } & { { } = \left\langle H _ { 0 } ^ { \square } ( \theta ) \varphi ^ { * } , \varphi ^ { * } \right\rangle + \epsilon q \left\langle V ^ { \square } \varphi ^ { * } , \varphi ^ { * } \right\rangle } \end{array}"
sume_data-00007-of-00009_7145.png,"- 0 . 0 1 5 < \kappa < 0 . 0 1 7 , \ | \tilde { \kappa } | < 0 . 3 1 ."
62778e649673b7b_basic.png,\textit { a v g } = \textit { a v e r a g e ( i n t e r v a l ) }
a9fb5b96f5737e7.png,"\chi ( \alpha , \beta ) = \int \int \frac { d ^ { 2 } m } { m _ { 2 } ^ { \mathrm { ~ } 2 } } < m , \bar { m } ; \tilde { \tau } | \alpha , \beta > \tilde { \chi } ( m , \bar { m } ; \tilde { \tau } ) ,"
79f60ea01ad2681_basic.png,p _ { r } = q _ { 0 } \varrho _ { 0 } \theta
sume_data-00002-of-00009_138457.png,\displaystyle \mathrm { e } ^ { u + u _ { i } } + \mathrm { e } ^ { u - u _ { i } } - 2
634bf8c618.png,\Gamma ^ { \tiny { m } } = \int _ { \cal M } \sqrt { g } d ^ { 2 } x \lambda ~ ~ ~ .
39bc37d8c764dc8_basic.png,"{ \mathcal T } = g ^ { \mu \nu } \langle T _ { \mu \nu } \rangle = a ^ { - 2 } \eta ^ { \mu \nu } \langle T _ { \mu \nu } \rangle ,"
3549a9cd8c653d7_basic.png,"\varepsilon _ { K } = \frac { e ^ { \frac { \pi } { 4 } i } } { \sqrt { 2 } } \frac { \mathrm { I m } \{ M _ { 1 2 } ( K ) \} } { \Delta m _ { K } } , ~ ~ ~ ~ ~ M _ { 1 2 } ( K ) = - \frac { \langle K ^ { 0 } | { \cal L } ^ { \Delta S = 2 } | \bar { K } ^ { 0 } \rangle } { 2 m _ { K } } ."
3e93455537.png,"a _ { i } X _ { i + 1 } + b _ { i } X _ { i - 1 } + c _ { i } X _ { i } = f _ { i } ,"
7191e4cebdb10d8_basic.png,"\delta _ { \omega } \Gamma _ { 0 } [ u ] = \sum _ { n } L ( n ) + O ( f ^ { 2 } ) ,"
e5e743b2272c73c.png,"\left< \Psi \right| { \frac { T _ { i j } ( \vec { y } , \tau ) } { N } } \left| \Psi \right> \sim i \xi _ { i j } \int { d \omega f ( \omega ) | \omega | ^ { 3 } e ^ { - i \omega \tau } } ."
98eb539557e4177_basic.png,s = ( 1 + \gamma ^ { 2 } ) / ( 4 \gamma ^ { 2 } )
37ae71a1ac045cf_basic.png,I m C _ { I } ^ { p . s } = \frac { 3 M _ { Q } } { 4 \pi } ( 1 - x ) \left[ 1 + \frac { 4 \alpha _ { s } } { 3 \pi } \left( f ( x ) + \frac 3 4 x + \frac 3 2 x \ln \left( \frac { x } { 1 - x } \right) \right) \right]
d70529f874849f5_basic.png,"f _ { j } = [ f _ { j , j } \ f _ { j , j + 1 } ] ^ { \top }"
394779ef9d5a06a_basic.png,\boldsymbol { v } = 2 ( \boldsymbol { A } \boldsymbol { s } + \boldsymbol { A ^ { \prime } } \boldsymbol { s ^ { \prime } } )
6c1f9031d4145f6_basic.png,\bar { P } ( \nu _ { e } \rightarrow \nu _ { e } ) = \left( 1 - \frac { 3 } { 2 } s ^ { 2 } \right) \left[ \cos ^ { 2 } \theta _ { m } ^ { 0 } - P _ { 1 2 } \cos 2 \theta _ { m } ^ { 0 } \right] + \frac { s ^ { 2 } } { 2 }
process_49_9226.bmp,\begin{array} { r } { \sum _ { i } v _ { i } v _ { i } ^ { T } = V . } \end{array}
17a60b5f41.png,"S = \int d ^ { 2 } x \, [ e ^ { \lambda } \nabla ^ { 2 } \sigma - e ^ { \sigma } V ( \lambda ) ] ."
bdf0210244a0cd3_basic.png,"D _ { g } ^ { g } ( \xi , Y ) | _ { D L } = \beta ^ { 2 } \ln \frac { Y - \xi + \lambda } { \lambda } + \beta ^ { 4 } \int _ { 0 } ^ { Y - \xi } d \tau \ln \frac { \tau + \lambda } { \lambda } \ln \frac { \tau + \xi + \lambda } { \tau + \lambda } + \cdots"
902c7a67ac9f040_basic.png,"\delta A _ { b } = - 0 . 6 4 1 \delta s _ { W } ^ { 2 } = - 2 . 1 8 \times 1 0 ^ { - 3 } \, S + 1 . 5 5 \times 1 0 ^ { - 3 } \, T \, ."
beac596e2a007eb_basic.png,"\langle \, i D ^ { \mu } \, i D ^ { \nu } \, i D ^ { \alpha } \, \rangle = A _ { 3 } \, ( v ^ { \mu } v ^ { \alpha } - g ^ { \mu \alpha } ) \, v ^ { \nu } \, ,"
1dfd9178e1.png,"F ( r ) \equiv - A ^ { 2 } r ^ { 2 } \, G ( - 1 / A r ) = ( 1 - \frac { r _ { - } } { r } ) ( 1 - \frac { r _ { + } } { r } - A ^ { 2 } r ^ { 2 } ) ."
sume_data-00002-of-00009_18523.png,\displaystyle h \circ \rho ^ { - 1 } ( v )
604bb1694536fde_basic.png,"A _ { N F } = \frac { \int \! d E \, \lambda ( \sigma _ { e } - \sigma _ { x } ) ( \overline { { { P } } } _ { N } - \overline { { { P } } } _ { F } ) } { 2 \int \! d E \, \lambda \sigma _ { e } + \int \! d E \, \lambda ( \sigma _ { e } - \sigma _ { x } ) ( \overline { { { P } } } _ { N } + \overline { { { P } } } _ { F } - 2 ) } \ ,"
5dfb545a89.png,\gamma = \lambda \left( n \sigma - \pi _ { C } ^ { * } \eta + n \pi _ { C } ^ { * } c _ { 1 } ( B ) \right)
sume_data-00003-of-00009_113352.png,"| \partial \Omega | ^ { 2 } \geq 2 \pi | \Omega | ,"
process_49_4797.bmp,\begin{array} { r } { M = [ W ] _ { \mathrm { { s y m } } } \otimes I _ { 4 } + [ W ] _ { \mathrm { { s k e w } } } \otimes K } \end{array}
process_49_7578.bmp,\begin{array} { r } { { \bf E } ( t ) : = \int _ { \Omega } \ ( \frac 1 2 \rho | u | ^ { 2 } + \frac { a \rho ^ { \gamma } } { \gamma - 1 } + \frac 1 2 | \nabla d | ^ { 2 } \ ) ( t ) } \end{array}
sume_data-00005-of-00009_21858.png,\displaystyle B_{0\alpha}^{IJ}-B_{0\beta}^{IJ}\bigl{|}_{M_{\alpha\beta}}
sume_data-00006-of-00009_116957.png,D _ { n } ( h ) : = \{ x \in X \ | \ \mathrm { r a n k } ( h ( x ) : E ( x ) \rightarrow F ( x ) ) \leq n \}
ab0db451e6c612a_basic.png,"G = \left\{ x \in E : \forall \epsilon > 0 , \exists r < \epsilon , \int _ { B ( x , 1 0 r ) } \rho \, d \mathcal { H } ^ { 2 } \leq 2 0 0 \int _ { B ( x , r ) } \rho \, d \mathcal { H } ^ { 2 } \right\} ."
347794e5e1.png,"Z _ { d } ( \beta , \gamma ) \equiv \sum _ { \{ N _ { n } ^ { i } \} } \exp ( - \beta \, N \, [ N _ { n } ^ { i } ] - \gamma \, { \cal R } \, [ N _ { n } ^ { i } ] ) \, ,"
7a28a3a026.png,W = h _ { 1 } \tilde { \cal Q } A _ { 1 } J _ { 1 } { \cal Q } - h _ { 1 } { \cal Q } A _ { 2 } J _ { 2 } \tilde { \cal Q } + h _ { 2 } q { \cal Q } p + h _ { 2 } \tilde { p } \tilde { \cal Q } \tilde { q } .
f6d07cf6bec8bc2_basic.png,\Delta u _ { N \Delta } ( x ) - \Delta d _ { N \Delta } ( x ) = \sqrt { 2 } ( \Delta u _ { N } ( x ) - \Delta d _ { N } ( x ) ) \left( 1 + { \cal O } ( 1 / N _ { c } ^ { 2 } ) \right)
d4ff9494825895a.png,\left[ \left( \gamma ^ { 0 } \otimes \mathrm { I } + \mathrm { I } \otimes \gamma ^ { 0 } \right) \pi _ { 0 } - \left( \overrightarrow { \alpha } \otimes \gamma ^ { 0 } + \gamma ^ { 0 } \otimes \overrightarrow { \alpha } \right) \cdot \overrightarrow { \pi } \mathrm { } - m \gamma ^ { 0 } \otimes \gamma ^ { 0 } \right] \Psi \left( x \right) = 0 \mathrm { ~ . }
0548a4ef08952f5_basic.png,"K _ { 6 } ( { \bf r } ) = - \frac { \beta _ { \omega } ^ { 2 } } { 2 m _ { \omega } ^ { 2 } } \int \mathrm { d } ^ { 3 } x ~ { \bf B } ^ { 2 } ( U _ { 1 } U _ { 2 } ) ~ ~ ,"
sume_data-00001-of-00009_7323.png,| T | < 8 \sqrt { N } | E |
sume_data-00006-of-00009_169463.png,\displaystyle t=T:
5351152f9e.png,< H H > = < \sum ( c \hat { \sigma } _ { i } . \vec { p } _ { i } ) ( c \hat { \sigma } _ { i } . \vec { p } _ { i } ) > = - \sum c ^ { 2 } p _ { i } ^ { 2 }
sume_data-00003-of-00009_173162.png,"\displaystyle \rho ( t ) = \mathrm { C o v } ( R _ { 0 } , R _ { t } ) = \frac { a \sigma ^ { 2 } } { 2 b } e ^ { - b t } ."
ae9116ece9833c0_basic.png,R _ { \ensuremath { \mathrm { R S } } } ^ { i }
a6ef16c0b13a3e0_basic.png,S = S _ { 0 } + i \int { \overline { { q } } } \gamma _ { \mu } D _ { \mu } ( A + Q ) \quad q
4b2d1e3f8d2e61a.png,"( \bar { C } _ { \alpha } , \bar { C } _ { \beta } ^ { \dagger } ) _ { \Omega } = \bar { U } _ { \alpha \beta } ^ { \gamma } \bar { C } _ { \gamma } ( - 1 ) ^ { \varepsilon _ { \beta } } + \bar { C } _ { \gamma } ^ { \dagger } \bar { U } _ { \beta \alpha } ^ { \dagger \gamma } ( - 1 ) ^ { \varepsilon _ { \alpha } } ,"
process_49_4346.bmp,\begin{array} { r } { F _ { n } ( \lambda ) : = f _ { \lambda } ^ { n } ( c ( \lambda ) ) \quad \Lambda . } \end{array}
ce333fbf4a326ba_basic.png,"\mathrm { e } ^ { 2 x } x ^ { m } \Psi _ { 0 , 2 1 } ^ { 0 } ( x )"
fea770ff086468c.png,\mathrm { A ) } \qquad \ell \geq 2 + 2 j _ { 2 } - r + { \frac { 2 m } { N } } \geq 2 + 2 j _ { 1 } + r + 2 m _ { 1 } - { \frac { 2 m } { N } }
6f3f22888e5222b_basic.png,u _ { 0 } ^ { k } = \frac { 1 } { 3 v } \left( ( u _ { B } ^ { i } ) ^ { 2 } - 2 ( u _ { B } ^ { k } ) ^ { 2 } \right) + \sqrt { ( u _ { B } ^ { i } ) ^ { 2 } - ( u _ { B } ^ { k } ) ^ { 2 } }
1c9bc0878626a9a_basic.png,"\mathcal { H } ^ { 2 } ( B ( x , r ) ) \leq C r ^ { 2 }"
6252e409c5544e3_basic.png,\rho \approx \rho ^ { \prime } = 1 + O ( K ^ { 2 } / v _ { R } ^ { 2 } ) .
process_49_1827.bmp,"\begin{array} { r } { \widetilde R _ { \alpha } ( - g ( i y , \alpha ) ) = - \frac 1 2 + \frac 1 2 \sqrt { 1 + 4 | \alpha | ^ { 2 } g ( i y , \alpha ) ^ { 2 } } \ , , } \end{array}"
sume_data-00003-of-00009_62824.png,\displaystyle { \cal O } _ { e _ { L } e _ { L } \mathrm { W } \mathrm { W } }
sume_data-00005-of-00009_133449.png,2 . 0 1 9 { \times } 1 0 ^ { - 3 0 }
ff18b4e57d3b73d.png,"z y ^ { 2 } = 4 ( x - a z ) ( x ^ { 2 } + a x z + b z ^ { 2 } ) ,"
process_49_817.bmp,\begin{array} { r } { H ^ { 2 } ( \mathcal { O } _ { Y } ( - K _ { Y } - C ) ) = H ^ { 0 } ( \mathcal { O } _ { Y } ( 2 K _ { Y } + C ) ) . } \end{array}
d544e6cdc3ecf34_basic.png,\operatorname * { d e t } \textbf { M } = \operatorname * { d e t } ( \textbf { D } ) \operatorname * { d e t } ( \textbf { M } / \textbf { D } )
5a211402f150b83.png,"\hat { U } ( t , t _ { 0 } ) : \psi _ { 1 , t _ { 0 } } \wedge \dots \wedge \psi _ { n , t _ { 0 } } \rightarrow \psi _ { 1 , t _ { 0 } } ( t ) \wedge \dots \wedge \psi _ { n , t _ { 0 } } ( t )"
sume_data-00003-of-00009_45718.png,"\lambda _ { \operatorname* { m i n } } ( G ) { \| \mathbf { x } \| } ^ { 2 } \leq \mathbf { x } ^ { T } G \mathbf { x } \leq \lambda _ { \operatorname* { m a x } } ( G ) { \| \mathbf { x } \| } ^ { 2 } ,"
6c19a79e6cedee8_basic.png,\partial _ { t } c = - { \textstyle { \frac { 2 } { 3 } } } ( \nu + 2 ) b \partial _ { t } a + { \textstyle { \frac { 2 } { 3 } } } ( \nu - 2 ) a \partial _ { t } b .
66e009a6e5.png,\frac { { \cal M } _ { M } ^ { n 0 } \times { \cal W } _ { M } \times { \cal E } _ { M } ^ { d } } { { \cal D } _ { M } ^ { n } } \; \; \; .
180fa34bb8451fd_basic.png,"V ( \Phi ) = m ^ { 2 } \, \Phi ^ { \dagger } \Phi + \lambda \, ( \Phi ^ { \dagger } \Phi ) ^ { 2 }"
sume_data-00005-of-00009_130006.png,"Z = X + i e ^ { - 2 r } I ,"
ce410fc2da.png,\Delta _ { G l ( d ) } = \sum _ { i \leq j ; k \leq l } \frac { \partial } { \partial g _ { i j } } g _ { i k } g _ { j l } \frac { \partial } { \partial g _ { k l } } - \frac { d + 1 } { 2 } \sum _ { i \leq j } g _ { i j } \frac { \partial } { \partial g _ { i j } }
3aa9e5a4ac.png,\epsilon _ { \lambda } ^ { ~ \nu \rho } \partial _ { \nu } A _ { \rho } = - \frac { L } l A _ { \lambda }
657bed90b4453f6.png,"[ U ( W + \overline { { W } } ) ] _ { D } + [ S _ { 0 } ^ { 3 } \, W ] _ { F } ."
ba373e7dc42083a.png,\delta \langle \phi | \phi ^ { \prime } \rangle = i \langle \phi | \delta S | \phi ^ { \prime } \rangle
72a58be3340be5c.png,| N _ { k } \rangle \langle M _ { l } | = \prod _ { i = 1 } ^ { k } { \bf A } _ { n _ { i } } | \Xi \rangle \langle \Xi | \prod _ { j = 1 } ^ { l } { \bf A } _ { m _ { j } } .
ee1e930dbc.png,"u ( x , t ) = 3 v \mathrm { s e c h } ^ { 2 } { \frac { \sqrt { v } } { 2 } } ( x + v t )"
67c8bff017f5730_basic.png,m _ { L L } ^ { \prime } = \left( \begin{array} { c c c } { { 0 . 3 2 6 6 8 } } & { { - 0 . 7 4 1 6 3 } } & { { - 0 . 5 7 1 2 2 } } \\ { { - 0 . 7 4 1 6 3 } } & { { 0 . 1 7 0 1 4 } } & { { - 0 . 6 4 1 8 5 } } \\ { { - 0 . 5 7 1 2 2 } } & { { - 0 . 6 4 1 8 5 } } & { { 0 . 5 0 3 0 6 } } \end{array} \right) m _ { 0 }
c9abe161707c4da.png,"S [ \widetilde { \Psi } _ { E N } ] = S _ { S } [ \tilde { \Psi } _ { S } ] + S _ { 0 } [ \tilde { \Psi } _ { E } ] + S _ { I } [ \tilde { \Psi } _ { E } , \tilde { \Psi } _ { S } ] \, ,"
process_49_9895.bmp,\begin{align*} \overline { \omega } ^ m \left ( \frac { b ^ { d - 1 } d ^ d } { a ^ d ( d - 1 ) ^ { d - 1 } } \right ) \prod _ { i = 0 } ^ { r - 1 } \prod _ { h = 1 } ^ { d - 2 } \frac { \Gamma _ p ( \langle ( \frac { h } { d - 1 } - \frac { m } { q - 1 } ) p ^ i \rangle ) } { \Gamma _ p ( \langle \frac { h p ^ i } { d - 1 } \rangle ) } \prod _ { \substack { h = 1 \\ h \neq \frac { d } { 2 } } } ^ { d - 1 } \frac { \Gamma _ p ( \langle ( \frac { h } { d } + \frac { m } { q - 1 } ) p ^ i \rangle ) } { \Gamma _ p ( \langle \frac { h p ^ i } { d } \rangle ) } = \phi ( b ) . \end{align*}
process_49_5560.bmp,\begin{array} { r l } { \rho _ { i } ^ { * } } & { { } = \left[ { \left( { { X _ { i } } { W _ { i } } + { X _ { i } } + { Y _ { i } } { Z _ { i } } + { Z _ { i } } } \right) - } \right. } \end{array}
f2871acf1c1ee75_basic.png,\sum _ { r } \left( \Lambda ^ { C } \right) _ { \beta } ^ { \gamma } q _ { r \alpha } ^ { \dagger } q _ { r } ^ { \beta } q _ { r \gamma } ^ { \dagger } q _ { r } ^ { \alpha } + \sum _ { r } \left( \Lambda ^ { C } \right) _ { \zeta } ^ { \alpha } q _ { r \alpha } ^ { \dagger } q _ { r } ^ { \beta } q _ { r \beta } ^ { \dagger } q _ { r } ^ { \zeta } .
411d3222db.png,"\{ G _ { r } , G _ { s } \} = 2 L _ { r + s } + \frac { c } { 1 2 } ( 4 r ^ { 2 } - 1 ) \delta _ { r + s , 0 } \ ."
beb7dc810bf618f_basic.png,H _ { 0 } = { \frac { 1 } { 2 } } \int \! d x _ { + } d ^ { 2 } x _ { \! \perp } \biggl ( \overline { { { \widetilde \Psi } } } \gamma ^ { + } { \frac { m ^ { 2 } + ( i \nabla _ { \! \! \perp } ) ^ { 2 } } { i \partial ^ { + } } } \widetilde \Psi +
c20c379fe34593f.png,"H _ { \mu \nu } ( p , z = 0 ) \approx M _ { P } ^ { 2 - D } { \frac { 1 } { 2 p } } \left[ T _ { \mu \nu } ( p ) - { \frac { 1 } { D - 2 } } \eta _ { \mu \nu } T ( p ) \right] ~ ."
process_49_6341.bmp,\begin{array} { r } { x E ^ { \delta } ( n + 1 ) = \rho ( x ) E ^ { \delta } ( n + 1 ) = E ^ { \delta } ( n + 1 ) x . } \end{array}
27d667ff0a.png,"U _ { \mu } ^ { ( a ) } \rightarrow \zeta _ { \mu } ^ { ( a ) } U _ { \mu } ^ { ( a ) } , \hspace { 2 c m } \zeta _ { \mu } ^ { ( a ) } \in { \bf Z } _ { n } ~ ~ ,"
1bcd3aca22.png,"G = d U ^ { 1 } d V ^ { 1 } + d U ^ { 2 } d V ^ { 2 } + ( d Y ^ { 1 } ) ^ { 2 } + ( d Y ^ { 2 } ) ^ { 2 } ~ ,"
sume_data-00008-of-00009_119091.png,\displaystyle \eta ^ { * } ( t )
4ee54d2e81.png,"\Phi ^ { \mu } ( \xi , \theta _ { + } , \theta _ { - } ) = X ^ { \mu } ( \xi ) + i \theta _ { + } \psi ^ { \mu + } ( \xi ) - i \theta _ { - } \psi ^ { \mu - } ( \xi ) + i \theta _ { + } \theta _ { - } F ^ { \mu } ( \xi )"
7f88d6df50.png,\chi _ { ( \alpha _ { 1 } \ldots \alpha _ { 2 n } ) } = ( \psi _ { ( \dot { \alpha } _ { 1 } \ldots \dot { \alpha } _ { 2 n } ) } ) ^ { * } \; .
c7874d909ef047c_basic.png,\mathbf { u } ^ { + } = \mathbf { u } ^ { - }
d31d4101be3509d_basic.png,\frac { \delta V } { \delta \phi _ { 2 } } = 0 = 4 \lambda _ { 2 } v _ { 2 } ^ { 3 } + 2 \lambda _ { 4 } v _ { 1 } ^ { 2 } v _ { 2 } + 2 \lambda _ { 6 } v _ { 2 } v _ { 3 } ^ { 2 } - 2 n _ { 2 } ^ { 2 } v _ { 2 }
sume_data-00004-of-00009_155588.png,"E = \Gamma _ { 0 } \Gamma _ { \mu } p ^ { \mu } + \Gamma _ { 0 } \Gamma _ { I } v _ { i j } ^ { I } ,"
process_49_8111.bmp,\begin{array} { r } { \phi \cdot f _ { u u } = \frac { ( f _ { v } \cdot f _ { u } ) _ { u } - ( f _ { u v } \cdot f _ { u } ) } v = - \frac { ( f _ { u v } \cdot f _ { u } ) } v = - \frac { E _ { v } } { 2 v } = - \frac { 2 E _ { 0 } + v ( E _ { 0 } ) _ { v } } { 2 } . } \end{array}
d86b344c51a81cc.png,"K = K _ { o } ( h _ { l } , h _ { l ^ { * } } ) + \sum K _ { i } \phi _ { i } \phi _ { i } ^ { * } + ( Z H _ { 1 } H _ { 2 } + h . c ) ,"
1986e9e677cf784.png,"L _ { r } [ a , \mu ] \, \widetilde { H } = J ( r , \, p , \, \bar { p } )"
59627b386a2980d_basic.png,\frac { d \sigma _ { \mathrm { B r } } ^ { \gamma g } } { d v d w } = \sum _ { i = 1 } ^ { 6 } \left( \frac { d \sigma _ { \mathrm { B r } } ^ { \gamma g } } { d v d w } \right) ^ { ( i ) }
80d8487680f2d63.png,V _ { 1 } = \Phi _ { A } ^ { * ( 2 ) } \frac { \vec { \delta } } { \delta \bar { \Phi } _ { A } }
ea044b0329f433c.png,"\delta _ { \theta } \ \Gamma ( A ) = - i \ \Phi _ { + } ( \theta , A ) + i \ \Phi _ { - } ( \theta , A )"
process_49_4547.bmp,"\begin{array} { r } { v _ { 0 } ^ { ( 1 , 2 ) } = v _ { 0 } ^ { ( 2 , 3 ) } = v _ { 0 } ^ { ( 2 , 4 ) } \ I _ { 2 } \times ( 0 , T ) , } \\ { h _ { 1 , 2 } \partial _ { x _ { 2 } } v _ { 0 } ^ { ( 1 , 2 ) } = h _ { 2 , 3 } \partial _ { x _ { 2 } } v _ { 0 } ^ { ( 2 , 3 ) } + h _ { 2 , 4 } \partial _ { x _ { 2 } } v _ { 0 } ^ { ( 2 , 4 ) } \ I _ { 2 } \times ( 0 , T ) . } \end{array}"
8381785bc665919_basic.png,"\frac { 1 } { x } F _ { 2 , \mathrm { L O } } ^ { \gamma } ( x , Q ^ { 2 } ) = q ( x , Q ) ,"
process_49_1480.bmp,"\begin{array} { r } { d ( \# _ { k } \Sigma ( 2 , 3 , 5 ) ) = 2 k \geq d ( \pm Z ) + n _ { \pm Z } + 8 . } \end{array}"
sume_data-00001-of-00009_53838.png,"\operatorname* { l i m } _ { i \to \infty } \operatorname* { m a x } _ { g \in \varphi _ { \infty } ( \pi ( x ) , \alpha ) } d ( x ^ { - 1 } k _ { n _ { i } } ^ { - 1 } g , x ^ { - 1 } k ^ { - 1 } \varphi _ { \infty } ( \pi ( x ) , \alpha ) ) = 0 ."
1d90543d0d93190.png,"\langle 0 \mid [ F ( \phi ) , \; \frac { 1 } { z - \phi } ] _ { + } \mid 0 \rangle = \langle 0 \mid \frac { 1 } { z - \phi } \mid 0 \rangle ^ { 2 }"
sume_data-00003-of-00009_32169.png,"\displaystyle \widetilde { \alpha } _ { 4 } ( t ^ { \prime } , t )"
5cb2cd82fb5ea99.png,"x _ { c , N } = \left[ \left( N + 1 \right) ! { \frac { \epsilon _ { T , N } } { 2 } } \left( { \frac { 4 } { \lambda } } \right) ^ { ( N + 1 ) } \right] ^ { 1 / ( 4 ( N + 5 / 4 ) ) } ."
d58879aa3f626fc.png,"\mathscr { C } ^ { A } \rightarrow \pm \bar { \mathscr { C } } ^ { A } , \quad \bar { \mathscr { C } } ^ { A } \rightarrow \mp \mathscr { C } ^ { A } , \quad \mathscr { B } ^ { A } \rightarrow - \bar { \mathscr { B } } ^ { A } , \quad \bar { \mathscr { B } } ^ { A } \rightarrow - \mathscr { B } ^ { A } , \quad ( \mathscr { A } _ { \mu } ^ { A } \rightarrow \mathscr { A } _ { \mu } ^ { A } ) ."
sume_data-00002-of-00009_34287.png,\displaystyle = f _ { 6 } ( d ; u )
process_49_7087.bmp,"\begin{array} { r } { m = \int _ { - \infty } ^ { x } \rho ( x ^ { \prime } , t ) d x ^ { \prime } = \int _ { - \infty } ^ { x _ { 0 } } \rho ( x _ { 0 } ^ { \prime } , 0 ) d x _ { 0 } ^ { \prime } , } \end{array}"
55d480d1fc5682c.png,"\frac { d V ( r ) } { d r } \mid _ { r = r _ { o } } = 0 , \; \; \; \frac { d ^ { 2 } V ( r ) } { d r ^ { 2 } } \mid _ { r = r _ { o } } < 0 ,"
77c91bc815b8658.png,\tilde { \chi } _ { \nu } = \chi _ { \nu } + Z _ { \nu \sigma } c ^ { \sigma }
sume_data-00007-of-00009_18089.png,"\displaystyle \tilde { L } ^ { s h } f ( \psi , m ) ="
144d4315bf6cca9_basic.png,"( 1 - \rho ) ^ { k \tau } \geq 1 - k \tau \rho \qquad \textnormal { f o r i n t e g e r s } \quad k \tau \geq 0 \, ."
sume_data-00006-of-00009_41675.png,\displaystyle = k _ { M _ { L } } ( \chi _ { Z ( \mu _ { 1 } ) } \cdot \chi _ { Z ( \mu _ { 2 } \cdots \mu _ { n + 2 } ) } )
471c4ff035d8447.png,\frac { \partial S _ { \Lambda } } { \partial \Lambda } = \frac { \delta S _ { \Lambda } } { \delta \psi _ { \alpha a } ^ { \phantom { a } } } \frac { C ^ { \prime } } { \Lambda ^ { 2 } } \delta _ { \alpha } ^ { \phantom { \alpha } \beta } \frac { \delta S _ { \Lambda } } { \delta \bar { \psi } _ { a } ^ { \beta } } - \mathrm { t r } \left( \frac { C ^ { \prime } } { \Lambda ^ { 2 } } \delta _ { \alpha } ^ { \phantom { \alpha } \beta } \frac { \delta ^ { 2 } S _ { \Lambda } } { \delta \psi _ { \alpha a } ^ { \phantom { a } } \delta \bar { \psi } _ { a } ^ { \beta } } \right)
705921e1eb.png,V ( r ) = \nu M _ { s } ^ { 4 } \left( 1 - \frac { \zeta } { 4 } \frac { z ^ { 4 } } { r ^ { d _ { \perp } - 2 } } \right)
process_49_3055.bmp,"\begin{array} { r } { \begin{array} { r l } { D _ { N } ^ { * } ( M _ { 1 } x , \ldots , M _ { N } x ) \ : \ : \ : } & { { } = \ : \ : \ : \operatorname* { s u p } _ { \beta \in [ 0 , 1 ) ^ { d } } \left| \frac { \sum _ { n = 1 } ^ { N } f _ { \beta } ( M _ { n } x ) } { N } \right| } \end{array} } \end{array}"
f6d7d07840d6aed_basic.png,"H _ { i } = \frac { | z _ { i } - z _ { i - 1 } | } { x _ { i } - x _ { i - 1 } } , ~ 2 \leq i \leq k ."
1a6e7a17a1.png,"{ \vec { f } } _ { i } ( x ) = \sum _ { j = 1 } ^ { N } \, \sum _ { k = 1 } ^ { n } \, \left( 1 + x \Lambda + \frac { x ^ { 2 } } { 2 ! } \Lambda ^ { 2 } + \cdots + \frac { x ^ { n - 1 } } { ( n - 1 ) ! } \Lambda ^ { n - 1 } \right) _ { i k } C _ { k j } { \vec { e } } _ { j } ."
sume_data-00001-of-00009_114030.png,\displaystyle \dot { V } _ { i } (
7bf7c694c3.png,"L _ { f } = \sum _ { \alpha } \frac { 1 } { \alpha ! } ( \frac { \partial } { \partial \bar { z } } ) ^ { \alpha } f \ ( L _ { \bar { z } } - \bar { z } ) ^ { \alpha } ,"
4718893f46.png,"| \theta \rangle = \sum _ { N = - \infty } ^ { \infty } e ^ { - i N \theta } | V _ { N } \rangle \; ,"
2bd9f0937e.png,\left( \begin{array} { c c c c c c } { { 0 } } & { { 1 } } & { { } } & { { } } & { { } } & { { } } \end{array} \right)
sume_data-00004-of-00009_97799.png,"\displaystyle \mathcal { F } = \frac { 1 } { 2 } { } k _ { c } ( K - C _ { 0 } ) ^ { 2 } ,"
process_49_7713.bmp,"\begin{array} { r } { m _ { j _ { k } ^ { \prime } } = \arg \ , \operatorname* { m i n } _ { m \in \left\{ \mathrm { I } , \mathrm { I I } , \mathrm { I I I } \right\} } \ , ( \phi _ { j _ { k } ^ { \prime } , m } ) . } \end{array}"
54f629728b.png,"{ \frac { 1 } { 2 } } - 2 { \frac { d D } { d \phi } } { \frac { d \ln \Omega } { d \phi } } = 0 ,"
sume_data-00008-of-00009_98260.png,"\displaystyle \partial _ { \mu } \partial ^ { \mu } \chi + \mu ^ { 2 } \chi + g ^ { 2 } | \phi | ^ { 2 } \, \chi"
process_49_5638.bmp,"\begin{array} { r } { \langle \rho ( E ) , \sigma \rangle = \underbrace { \langle \alpha ^ { \vee } , \sigma \rangle } _ { \leq 0 } - \underbrace { \langle \rho ( D ) , \sigma \rangle } _ { > 0 } < 0 , } \end{array}"
7ef09b716c2e4a2.png,"\omega ^ { ( N ) - 1 } ( x ) \tilde { A } _ { i } ^ { ( N ) } ( x ) \omega ^ { ( N ) } ( x ) - \omega ^ { ( S ) - 1 } ( x ) \tilde { A } _ { i } ^ { ( S ) } ( x ) \omega ^ { ( S ) } ( x ) = - 2 \sqrt { 6 } \{ { \cal T } _ { i } ^ { ( N ) } ( x ) - { \cal T } _ { i } ^ { ( S ) } ( x ) \} ,"
a4f29a2b9ce167a_basic.png,\displaystyle \frac { d \Gamma } { d \Phi } = I _ { 1 } + I _ { 2 } \cos \Phi + I _ { 3 } \sin \Phi + I _ { 4 } \cos 2 \Phi + I _ { 5 } \sin 2 \Phi ~ .
sume_data-00006-of-00009_75399.png,2 . 5 4 \pm 0 . 2 6
9b41a68046.png,"( A _ { 1 } ^ { C S } ) _ { i } = ( A _ { 1 } ) _ { i } + ( A _ { 1 , \beta } ) _ { i } ~ ~ ~ , ~ ~ ~ i = s , d ~ ~ ~ ,"
d6cb1f2e69bfa78_basic.png,"\alpha _ { i } \in [ 1 / R ^ { 2 } , 1 ]"
sume_data-00004-of-00009_122873.png,"\displaystyle 2 | { { \cal I } _ { + } \backslash { \cal J } _ { + } ^ { ( t ) } } | \lambda _ { t } ^ { 2 } ,"
bc48d46bb69ba09_basic.png,L _ { \varphi _ { 1 } ^ { - 1 } ( \rho _ { 0 } ) } \leq A \leq U _ { \rho _ { 0 } }
process_49_2491.bmp,"\begin{array} { r } { \Sigma : = { \frac { 1 } { N } } X _ { N , k } ^ { \dagger } X _ { N , k } . } \end{array}"
25a9c2db50af362.png,"\widehat I = \mathrm { T r } \int _ { X } d ^ { 4 } x \ \varepsilon ^ { \mu \nu \rho \sigma } \widehat { \cal R } _ { \mu \nu } \widehat { \cal R } _ { \rho \sigma } ,"
66cacf5eb5.png,"{ \cal F } ( X _ { 0 } , Y _ { 0 } ; r ) \simeq \frac { \pi } { 2 } ( \omega Y _ { 0 } ) ^ { 2 } \, r ."
f5bb0558641902f_basic.png,S _ { \nu } = \left( \begin{array} { c c c } { { r _ { \Delta } s _ { 1 } ^ { 2 } } } & { { 0 } } & { { 2 r _ { \delta } s _ { 2 } c _ { 2 } } } \\ { { 0 } } & { { r _ { \Delta } c _ { 1 } ^ { 2 } } } & { { 0 } } \\ { { 2 r _ { \delta } s _ { 2 } c _ { 2 } } } & { { 0 } } & { { 1 } } \end{array} \right)
process_49_5839.bmp,"\begin{array} { r l } { M _ { 0 } } & { { } = e _ { - \alpha _ { 2 } } \cdots e _ { - \alpha _ { h } } V ( \mu ) _ { \mu } , } \\ { M _ { - } } & { { } = \sum _ { m \ge 0 } e _ { - \alpha _ { 1 } } ^ { m } M _ { 0 } . } \end{array}"
6460326709.png,"U . v : = ( x ^ { * * } - i ) ( x ^ { * * } + i ) ^ { - 1 } . v \qquad \forall v \in ( x ^ { * * } + i ) . D _ { x ^ { * * } } = L _ { + i , x ^ { * * } }"
process_49_9078.bmp,"\begin{array} { r } { r _ { 2 3 } ( q _ { 1 } ) L _ { 1 2 } ( x _ { i } ; t _ { j } ) \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { q _ { 1 } } \end{array} \right) _ { 1 } L _ { 1 3 } ( x _ { i } ; t _ { j ^ { \prime } } ) = L _ { 1 3 } ( x _ { i } ; t _ { j ^ { \prime } } ) \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { q _ { 1 } } \end{array} \right) _ { 1 } L _ { 1 2 } ( x _ { i } ; t _ { j } ) r _ { 2 3 } ( q _ { 1 } ) , } \end{array}"
process_49_3275.bmp,"\begin{array} { r } { p ( x ) = \int _ { \zeta } ^ { x } \exp \left[ - 2 \left( - \frac { 3 \zeta ^ { 4 } } { 4 } + \frac { \zeta ^ { 3 } \lambda } { 3 } + \frac { 3 \zeta ^ { 2 } } { 2 } - \zeta \lambda + \frac { 3 s ^ { 4 } } { 4 } - \frac { \lambda s ^ { 3 } } { 3 } - \frac { 3 s ^ { 2 } } { 2 } + \lambda s \right) \right] \ , d s , } \end{array}"
sume_data-00004-of-00009_12686.png,\displaystyle \hat { \Sigma } _ { h ^ { 0 } h ^ { 0 } } ( q ^ { 2 } )
sume_data-00001-of-00009_134277.png,"( H _ { \omega _ { 2 } } ^ { M } , \in _ { \mathbf { N S } _ { \omega _ { 1 } } , \mathcal { A } } ^ { M } , , B _ { 1 } ^ { V } \cap M , \dots , B _ { k } ^ { V } \cap M ) \models \exists \vec { x } \, \phi ( \vec { x } , a ) ."
1bb1179d4811f2e_basic.png,"E _ { \theta } \approx \frac { 1 } { 2 } \omega _ { 0 } - 2 \rho \cos { \theta } , \quad 0 \leq \theta \leq \pi , \qquad \Delta E \approx 4 \rho ."
383d99f11baebb1_basic.png,\nu _ { m } = \sum _ { k = 0 } ^ { \infty } \mathbf { 1 } _ { \{ X _ { k } = m \} }
33d419020817665_basic.png,"\frac { \Delta k } { k } \approx \frac { 1 } { 3 } \left( \frac { e } { 2 \pi ^ { 2 } } \frac { B } { T ^ { 2 } } \right) ,"
6ff9978a67.png,"K _ { \mathrm { { B T Z } , \Omega } } = i r _ { \Omega } \left( d _ { \Omega } ^ { \dagger L } d _ { \Omega } ^ { \dagger R } - d _ { \Omega } ^ { L } d _ { \Omega } ^ { R } \right)"
f90c1112508859b.png,"\partial _ { + } Z S _ { 1 } { \widetilde S } ^ { \dot { 1 } } - \partial _ { - } Z S _ { 2 } { \widetilde S } ^ { \dot { 2 } } - \partial _ { l } Z S _ { 1 } { \widetilde S } ^ { \dot { 2 } } - \partial _ { \bar { l } } Z S _ { 2 } { \widetilde S } ^ { \dot { 1 } } \ ,"
4a4fc35992f9d37_basic.png,d ^ { \mu \nu } ( q ^ { 2 } ) = - { \frac { i } { q ^ { 2 } } } g ^ { \mu \nu }
process_49_8497.bmp,"\begin{array} { r } { \operatorname* { l i m } _ { k \rightarrow + \infty } \ ; \mathcal { Q } _ { t + 1 } ( x _ { 1 : t } ^ { y ( m , k ) } ) = \mathcal { Q } _ { t + 1 } ( x _ { [ m ] } ^ { * } ) . } \end{array}"
3e9876692c7bd8c_basic.png,"k ^ { 2 } \simeq k _ { \perp } ^ { 2 } \, , \, \, \, ( q - k ) ^ { 2 } \simeq ( q - k ) _ { \perp } ^ { 2 } \, ."
sume_data-00001-of-00009_50281.png,"\langle E \rangle _ { \beta } = \langle H _ { \gamma , \xi } ( z , \Phi ) \rangle _ { \beta }"
5b23792209.png,"\sum _ { a , b \in \{ i , j \} } q _ { s } ^ { a } q _ { s } ^ { b } = \sum _ { a ^ { \prime } , b ^ { \prime } \in \{ i ^ { \prime } , j ^ { \prime } \} } q _ { s } ^ { a ^ { \prime } } q _ { s } ^ { b ^ { \prime } }"
sume_data-00004-of-00009_64890.png,\omega _ { i } - m _ { A } \sim m _ { A } v _ { \mathrm { D M } } ^ { 2 } \sim 1 0 ^ { - 6 } m _ { A } .
40187eddff9bdec.png,H _ { R } ( K ) = \bigcap _ { W \supset K } H _ { R } ( W )
26146ed764.png,\left\langle P _ { n - l } ( x ) ( V _ { 1 } ^ { \prime } ( x ) - y ) Q _ { n } ( y ) \right\rangle = 0
72d674323d77cc2.png,"< g _ { m n } ( t ) \Psi ( u ) > _ { q } \rightarrow u _ { m n } ( t ) ,"
535108991447256_basic.png,"W _ { \mu \nu } = \int \frac { d ^ { 4 } k } { ( 2 \pi ) ^ { 4 } } \frac { 1 } { k ^ { 4 } } C _ { \mu \nu } ^ { \alpha \beta } ( q , k ; m _ { q } ) d _ { \alpha \alpha ^ { \prime } } ( k ) d _ { \beta \beta ^ { \prime } } ( k ) \Gamma ^ { \alpha ^ { \prime } \beta ^ { \prime } } ( k , p ) ,"
7b4fcd54dd06ef1_basic.png,"V _ { 4 } \rightarrow \frac { \alpha _ { \bar { S } } ^ { 2 } } { \pi r ^ { 3 } } \left[ \frac { 2 } { 3 } - \frac { 8 n _ { f } } { 9 } \right] ,"
e55743092580081_basic.png,"M _ { C } { } ^ { - 4 } V \cong - \frac { 4 ( n - 1 ) } { ( 2 n - 1 ) } \, \rho _ { x } { } ^ { 2 } x _ { 0 } { } ^ { 2 } ,"
40950e4939.png,"\tilde { \nabla } _ { \mu } = \hat { \mathcal { D } } _ { \mu } + i g A _ { \mu } \sigma ^ { 2 } + { \textstyle \frac { 1 } { 4 } } \not \! \tilde { F } \gamma _ { \mu } \sigma ^ { 2 } \, ,"
sume_data-00005-of-00009_88407.png,( F i g . 3 a ) t o 1 5 0 ~ { } \mathrm { m } \mathrm { m } ~ { } \mathrm { s } ^ { - 1 }
sume_data-00007-of-00009_165474.png,"F ^ { - 1 } ( y ) : = \{ x \in X | \, y \in F ( x ) \} , \quad y \in Y ,"
276b420e6585e6c_basic.png,"\Delta m _ { K } = ( \Delta m _ { K } ) _ { \mathrm { S D } } + ( \Delta m _ { K } ) _ { \mathrm { L D } } ,"
3023a33e59.png,"\frac 1 4 { \sum _ { i n t } } ^ { \prime } | \langle \Psi _ { 0 } | \sum _ { n } q _ { n + 1 , n } ^ { - i } | \Psi _ { i n t } \rangle | ^ { 2 }"
5b65f9928963eec_basic.png,\nabla ( \nabla \phi ) ^ { 2 } = 2 ( \nabla ^ { 2 } \phi ) \nabla \phi
aed338c0283b8ef_basic.png,"s = 2 . 6 , s ^ { \prime } = 3 . 5 8 , 2 \leq \phi \leq 2 . 5"
process_49_483.bmp,"\begin{array} { r } { W _ { t } ^ { ( G ) } : = \ < . , g _ { t } ^ { \prime } > , } \end{array}"
8404759f94813bf_basic.png,N _ { c a n } = N _ { g c } { \frac { I _ { 1 } ( N _ { g c } ) } { I _ { 0 } ( N _ { g c } ) } } .
process_49_8468.bmp,"\begin{array} { r } { \left\{ \begin{array} { l } { \displaystyle \operatorname* { i n f } _ { x _ { t } } \ ; F _ { t } ^ { k - 1 } ( x _ { 1 : t } , \Psi _ { t } ) : = f _ { t } ( x _ { 1 : t } , \Psi _ { t } ) + \mathcal { Q } _ { t + 1 } ^ { k - 1 } ( x _ { 1 : t } ) } \\ { x _ { t } \in \mathcal { X } _ { t } , g _ { t } ( x _ { 0 : t } , \Psi _ { t } ) \leq 0 , \ ; \ ; \displaystyle \sum _ { \tau = 0 } ^ { t } \ ; A _ { t , \tau } x _ { \tau } = b _ { t } . } \end{array} \right. } \end{array}"
ea170caf93fab0f_basic.png,x q ( x ) = { \frac { f ( x ) } { \exp ( { \frac { x - x _ { q } } { \bar { x } } } ) + 1 } }
process_49_1926.bmp,"\begin{array} { r l } { \frac { d } { d t } [ ( \tilde { \rho } } & { { } ( t , q ( t , x ) ) + 1 ) q _ { x } ( t , x ) ] } \end{array}"
9384cc8f064b460_basic.png,\widetilde { X } _ { j } ^ { A } ( t _ { n } ) = \widetilde { X } _ { j } ^ { B } ( t _ { n } ) = 0
sume_data-00008-of-00009_19583.png,\displaystyle \| G - b G \|
46362ae03c.png,\partial _ { \mu } { \theta } ^ { a } ( x ) = \partial _ { \mu } { \omega } ^ { a } ( x ) + { \theta } _ { \mu } ^ { a } ( x ) .
5abac6dfbe.png,"Z ( x ) = 2 ^ { 8 } \prod _ { n } \left( \frac { 1 + x ^ { n } } { 1 - x ^ { n } } \right) ^ { 8 } \, ."
sume_data-00001-of-00009_105098.png,"\displaystyle a \dot { E } - B + a ^ { - 1 } \delta t _ { c } = a \dot { \nu } - \mu \, ,"
3f5f39b9be051cc_basic.png,2 0 \varepsilon _ { \mathrm { t h } } < \varepsilon < 1 0 0 \varepsilon _ { \mathrm { t h } }
2606834275.png,"e ^ { - K } = i \langle \bar { w } , w \rangle"
1a20a391b0d7062_basic.png,"u _ { [ i , i + \ell ) } = \alpha \sigma ^ { p } ( u _ { i ^ { \prime } } ) \sigma ^ { p } ( u _ { i ^ { \prime } + 1 } ) \dots \sigma ^ { p } ( u _ { i ^ { \prime } + k - 1 } ) \beta"
f8fe5682fed0744_basic.png,"\langle f , g \rangle = \int \frac { d t _ { 1 } d t _ { 2 } d \bar { \theta } _ { 1 } d \theta _ { 2 } } { \langle 1 2 \rangle } \frac { d t _ { 3 } d t _ { 4 } d \bar { \theta } _ { 3 } d \theta _ { 4 } } { \langle 3 4 \rangle } f \cdot g \equiv \int d \mu \left( 1 , 2 \right) d \mu \left( 3 , 4 \right) f \cdot g ."
sume_data-00003-of-00009_170787.png,\displaystyle - \Lambda ^ { * } \overline { { \mathbf { q } } }
376c7eb3f661d4d_basic.png,"\left. \mathbf { n } _ { 1 } \cdot ( - D _ { 1 } \nabla c ) \right| _ { z \to 0 _ { + } } = - \mathbf { n } _ { 2 } \cdot \left. ( - D _ { 2 } \nabla c ) \right| _ { z \to 0 _ { - } } \, ,"
sume_data-00002-of-00009_157268.png,"\mathcal { G } _ { { \mathcal { K } } } { h } = \operatorname* { l i m } _ { t \rightarrow 0 ^ { + } } \frac { { \mathcal { K } } ^ { t } { h } - { h } } { t } = \frac { d } { d t } { h } ,"
b19408dffc271e3_basic.png,L = \bar { \psi } \left( i \gamma ^ { \mu } \partial _ { \mu } + \gamma ^ { \mu } { \cal B } _ { \mu } - m \right) \psi
e87e8b6d1e5da2c.png,"J ^ { \mu } = \frac { 1 } { 2 \pi } \, \epsilon ^ { \mu \nu } \partial _ { \nu } \theta + \dots"
ad27840dfa277c2_basic.png,"\frac { d ^ { 3 } p ^ { \prime } } { 2 E ^ { \prime } } \simeq \frac { 2 \pi \sqrt { s } } { s + Q ^ { 2 } } d t d \omega ,"
process_49_9705.bmp,"\begin{array} { r } { A ^ { \sigma , \theta } = \sum _ { e \in \Lambda _ { Q } ^ { \sigma , + } } A _ { \mu = 0 } ^ { \theta } ( q , \{ q ^ { \frac { 1 } { 2 } - \chi ( e , d ) - \mathcal { E } ( d ) } x _ { d } \} _ { d } ) \star \Omega _ { e } ^ { \sigma , \theta } \xi _ { e } } \end{array}"
sume_data-00003-of-00009_119458.png,"{ \frac { \dot { m _ { * } } } { M } } = { \frac { 1 } { t _ { \mathrm { a c c r } } } } \left( { \frac { m _ { * } } { M } } \right) ^ { 2 / 3 } ,"
process_49_5121.bmp,\begin{array} { r l } { { \Theta _ { M } } { i n d _ { J } ^ { M } } ( [ x _ { K } ^ { J } ] ) } & { { } = { \Theta _ { M } } ( { i n d _ { J } ^ { M } } ( [ x _ { K } ^ { J } ] ) ) } \end{array}
3e21a4e598.png,"A = { \frac { i } { 2 } } \left( A _ { 0 } 1 \! \! 1 + A _ { a } \sigma ^ { a } \right) ,"
1df06db10a7b62b_basic.png,r _ { \mathrm { m i n } } ( 9 ) = 0 . 9 6 4 4 0 4
d18467f83dae73e_basic.png,W _ { q } = \frac { N } { L | R _ { l } | ^ { 2 } + \epsilon }
process_49_2601.bmp,"\begin{array} { r } { ( t _ { \lambda } , L _ { \lambda } , S _ { \lambda } ) = \left( \frac { 1 } { \sqrt { \gamma _ { 0 } } \lambda ^ { \frac { n } { 4 } } } f ( x ) , \frac { 1 } { \sqrt { \gamma _ { 1 } } \lambda ^ { \frac { n + 2 } { 4 } } } d _ { x } f , \frac { 1 } { \sqrt { \gamma _ { 2 } } \lambda ^ { \frac { n + 4 } { 4 } } } \nabla _ { x } ^ { 2 } f \right) } \end{array}"
7fe21e5453eef4f_basic.png,"< Z ^ { M } > = \int d \mu ( { \bf J } ) \int { \cal D } { \bf \chi } e ^ { i { \cal A } } ,"
sume_data-00004-of-00009_155702.png,\displaystyle \int D \Psi \exp \left[ - i \int d { \bf r } \Psi ^ { \dagger } ( { \bf r } ) L \times \right.
b490f7d13852a44_basic.png,k < k _ { L P M } = { \frac { E ( E - k ) } { E _ { L P M } } }
sume_data-00000-of-00009_159363.png,"h ( \tau ) = \omega ( \tau ) V _ { t } ( ( | \Delta | f ^ { 2 } \nu d f _ { 1 } f _ { 2 } ) ^ { 2 } ; k , \tau ) ."
c21ef929ebaba4a_basic.png,\lvert \mathbf { u } \rvert _ { 1 } < \eta _ { 4 }
1980b11104d1f6a_basic.png,"\Psi ^ { \mathrm { P M } } ( p _ { \mathrm { P M } } ) = f ^ { \mathrm { P M } } \, \phi ^ { \mathrm { P M } } ( x _ { 1 } ) \, \chi ^ { \mathrm { P M } } \, \frac { 1 } { \sqrt { 2 } } ( \not { p } _ { \mathrm { P M } } + m _ { \mathrm { P M } } ) \gamma _ { 5 } \, ,"
6bcec314e2499bb_basic.png,\hat { a } _ { L L } ( g g \rightarrow g \chi _ { 2 } ) = \frac { - z ( 2 - 3 z + 2 z ^ { 2 } ) } { ( 1 - z + z ^ { 2 } ) ^ { 2 } } = - \hat { a } _ { L L } ( g g \rightarrow g \chi _ { 0 } ) .
11bdbfc20c.png,\frac { 1 } { | W | } \sum _ { \sigma } ( l + \rho ) ^ { \sigma _ { a } } ( l + \rho ) ^ { \sigma _ { b } } = p ^ { a b } ( l + \rho ) ^ { 2 } + m ^ { a b } n ^ { 2 }
sume_data-00000-of-00009_19695.png,"\displaystyle ~ { } A _ { { \psi } r } = \partial _ { r } \partial _ { \psi } V - \frac { 1 } { 2 } \frac { \partial _ { r } f } { f } \partial _ { \psi } V = 0 \, ,"
sume_data-00002-of-00009_111872.png,\displaystyle \Delta N _ { + }
7ef7dc0faf.png,"S _ { \mathrm { i n t . } } ( \Sigma , j _ { \mu } ) = \frac { 1 } { 4 \pi ^ { 2 } } \varepsilon _ { \mu \nu \lambda \rho } \int d ^ { 4 } x d ^ { 4 } y j _ { \mu } ( x ) \frac { ( y - x ) _ { \nu } } { | y - x | ^ { 4 } } \Sigma _ { \lambda \rho } ( y )"
51c9a7451b9eaf4_basic.png,v _ { k } = \beta _ { k } p _ { k - 1 } + \eta _ { k } p _ { k }
process_49_9768.bmp,"\begin{array} { r l } { U _ { v } ( N , \alpha , T ) } & { { } = \operatorname* { i n f } \{ \nu _ { v } ( T ( x ) - f ( x ) ) : f \in S _ { v } ( \alpha , N ) \} } \end{array}"
9f87197c2518c82_basic.png,"n + { ^ 3 { \mathrm { H } } } \rightarrow { ^ 4 { \mathrm { H e } } } + e ^ { - } + \bar { \nu _ { e } } \, ,"
278066fdca.png,"\delta S _ { 2 } = \int ( { \cal H } \delta \bar { \theta } \psi ^ { 2 } d \theta - { \frac { 1 } { 6 0 } } \delta \bar { \theta } \psi ^ { 5 } d \theta ) ,"
sume_data-00008-of-00009_139457.png,\displaystyle - A _ { 1 } + A _ { 2 } - A _ { 6 } + A _ { 8 } .
e6b4af97e902a26_basic.png,"c ^ { 2 } ~ c _ { e q } ^ { 4 } \ge 1 0 , \, \, \, \, i . e . \, \, \, c _ { e q } \ge \frac { 1 . 8 } { \sqrt { c } } \, ."
ddd82f23ec7892c_basic.png,"\operatorname * { l i m } _ { \omega \to 1 } \tau _ { 1 / 2 } ( \omega ) = \operatorname * { l i m } _ { \epsilon \to 0 } \mathrm { C o n s t . } \frac { 1 } { \epsilon \cdot v } A \epsilon \cdot v ,"
ab8334eb96c159a.png,"\partial ^ { 2 } V + 8 \pi ( 1 + a ^ { 2 } ) m ^ { 2 } U ^ { 3 } | \varphi | ^ { 2 } = 0 \, ."
71f50f33ee.png,x y = z ^ { 2 k + 2 } + f _ { 1 } z ^ { 2 k + 1 } + \epsilon f _ { 2 } z ^ { 2 k } .
e8b158b9eaa35d5_basic.png,"\mathcal { L } ( \phi , \partial \phi ) = \frac { 1 } { 2 } \epsilon ^ { 2 } \partial _ { M } \phi ~ \partial ^ { M } \phi - 2 ~ \epsilon ~ \delta _ { \pi R } ~ \phi ~ \partial _ { y } \phi + 2 ~ \delta _ { \pi R } ^ { 2 } ~ \phi ^ { 2 } ~ ~ ,"
sume_data-00008-of-00009_121774.png,\displaystyle 2 \frac { x _ { t } - W _ { t } } { ( x _ { t } - W _ { t } ) ^ { 2 } + y _ { t } ^ { 2 } }
c30a556eadb7f53_basic.png,"{ \cal Z } = \int { \cal D } x _ { \mu } ( \xi ) { \cal D } h _ { \mu \nu } \exp \Biggl \{ - \int d ^ { 4 } x \left[ \frac 1 { 1 2 \eta ^ { 2 } } H _ { \mu \nu \lambda } ^ { 2 } + g _ { m } ^ { 2 } h _ { \mu \nu } ^ { 2 } + i \pi h _ { \mu \nu } \hat { \Sigma } _ { \mu \nu } \right] \Biggr \} ,"
ae328f5fd2ccf3d_basic.png,m _ { \pi } / f _ { \pi } \sim 4 \pi
sume_data-00004-of-00009_49997.png,"\varepsilon = \frac { 1 } { \tilde { \tau } \operatorname* { m a x } \left\{ [ w ] _ { A _ { p } ^ { + } } , \left[ w ^ { - \frac { 1 } { p - 1 } } \right] _ { A _ { p ^ { \prime } } ^ { - } } \right\} } = \frac { 1 } { \tilde { \tau } [ w ] _ { A _ { p } ^ { + } } ^ { \operatorname* { m a x } \left\{ 1 , \frac { 1 } { p - 1 } \right\} } } ."
sume_data-00005-of-00009_81842.png,\bigvee A : = \bigvee _ { x \in A } x \qquad \mathrm { a n d } \qquad \bigwedge A : = \bigwedge _ { x \in A } x
21cd99e576571a1_basic.png,{ \cal P } = m _ { \mathrm { p o l e } } / m _ { \mathrm { m i d c e l l } }
sume_data-00008-of-00009_83950.png,( X \ominus A ) \cap A
09c58ca2663a9c4_basic.png,\left( M _ { 3 \xi } ^ { 2 } - x _ { 1 } \right) H _ { 1 } = 0 .
69664699487834b_basic.png,a _ { 0 } ( Q ^ { 2 } ) \approx a _ { 0 } ( Q _ { 0 } ^ { 2 } ) \left( 1 + { \frac { \gamma _ { 1 } ^ { S } } { 8 \pi \beta _ { 0 } } } \left( \alpha _ { s } ( Q ^ { 2 } ) - \alpha _ { s } ( Q _ { 0 } ^ { 2 } ) \right) + { \cal O } ( \alpha _ { s } ^ { 3 } ) \right)
process_49_2332.bmp,"\begin{array} { r } { Q ( n ) = Q _ { 1 } ( n ) < \frac { \pi } { 2 \sqrt { 3 n } } \cdot e ^ { \pi \sqrt { \frac { n } { 3 } } } , } \end{array}"
process_49_7813.bmp,"\begin{array} { r } { a _ { h } ^ { + } ( u , w ) = a _ { h } ( u , w ) = \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } \left( \frac { \partial u } { \partial x } \frac { \partial w } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial w } { \partial y } \right) \ , d x d y , } \end{array}"
6ccd2f50d6.png,\delta { \ddot { R } } + h ^ { 2 } ( 1 - h ^ { 2 } D ^ { 2 } ) \delta R = 0
process_49_1808.bmp,\begin{array} { r } { \mu _ { a + b } = \mu _ { a } \boxplus \mu _ { b } \quad \mu _ { a b } = \mu _ { a } \boxtimes \mu _ { b } } \end{array}
sume_data-00006-of-00009_24129.png,"\mathcal { A } ^ { C } ( s , t ) = ( 1 - q ) \exp \left( \frac { \log { \sigma } \log { \tau } } { \log { q } } \right) \prod _ { n = 0 } ^ { \infty } \frac { \left( 1 - \frac { q ^ { n } } { \sigma \tau } \right) ( 1 - q ^ { n + 1 } ) } { \left( 1 - \frac { q ^ { n } } { \sigma } \right) \left( 1 - \frac { q ^ { n } } { \tau } \right) } ~ { } ,"
773092f8d768bb3_basic.png,"F _ { M N } \equiv \partial _ { M } A _ { N } - \partial _ { N } A _ { M } + i g _ { 5 } [ A _ { M } , A _ { N } ] ~ ."
5f911cc2c24630f_basic.png,- \gamma \approx \delta _ { 1 3 } ^ { * } .
sume_data-00006-of-00009_168276.png,\displaystyle v _ { 3 } \delta _ { i j k l }
sume_data-00008-of-00009_50152.png,\displaystyle = ( C + Z ) + i ( C - Z )
2089c71256b0013_basic.png,\langle q _ { \perp } ^ { 2 } \rangle = \mu ^ { 2 } \ln \frac { 3 E T } { 2 \mu ^ { 2 } } .
96d63b71471af70.png,"\left\{ \begin{array} { l } { { ( z _ { 1 } + i z _ { 2 } ) \xi _ { 1 } - ( z _ { 3 } + i z _ { 4 } ) \xi _ { 2 } = 0 } } \\ { { ( z _ { 3 } - i z _ { 4 } ) \xi _ { 1 } + ( z _ { 1 } - i z _ { 2 } ) \xi _ { 2 } = 0 } } \end{array} \right. ~ , \quad \mathrm { w h e r e } \quad \left\{ \begin{array} { l } { { z _ { 1 } \pm i z _ { 2 } \equiv e ^ { \pm i \omega } ( z _ { 1 } \pm i z _ { 2 } ) } } \\ { { z _ { 3 } \pm i z _ { 4 } \equiv e ^ { \pm i \omega } ( z _ { 3 } \pm i z _ { 4 } ) } } \end{array} \right. ~ ."
sume_data-00002-of-00009_174680.png,"\displaystyle \hskip 6 0 . 0 p t \times e ^ { - i S _ { y } \beta / \hbar } | s , m ^ { \prime } \rangle ,"
50ed5d39dc1c8da_basic.png,"A _ { 1 } ( \epsilon , n ) \frac { ( \Delta p ) ^ { n } } { p ^ { 2 } } \left( \frac { M ^ { 2 } } { p ^ { 2 } } \right) ^ { 3 \epsilon }"
2dc1dabeda.png,\begin{array} { r c l } { { \nu _ { P } } } & { { = } } & { { \displaystyle \frac { \nu _ { \mathrm { v i b } } } { 2 } \left[ 2 \left( v ^ { \prime } + { \frac { 1 } { 2 } } + c _ { 0 } + c _ { 1 } J ( J - 1 ) \right) \right] _ { \left< \left( \gamma _ { 0 } + \gamma _ { 1 } J ( J - 1 ) \right) / 2 \right> } } } \end{array}
process_49_5644.bmp,"\begin{array} { r } { \langle \rho ( D ) , \sigma \rangle = \underbrace { \langle \alpha ^ { \vee } , \sigma \rangle } _ { < 0 } - \underbrace { \langle \rho ( E ) , \sigma \rangle } _ { = - 1 } \leq 0 } \end{array}"
process_49_9352.bmp,"\begin{array} { r } { \pi _ { R } ( H ) f ( g ) = \Lambda ( H ) f ( g ) , \pi _ { R } ( X ) f ( g ) = 0 , H \in { \mathfrak g } ^ { 0 } , X \in { \mathfrak g } ^ { - } . } \end{array}"
30c1d71c05946d5.png,"V ^ { \alpha } = ( \sigma ^ { A } , \ \alpha _ { A ^ { \prime } } ) , \qquad \qquad \qquad { \bar { V } } _ { \alpha } = ( { \bar { \alpha } _ { A } } , \ { \bar { \sigma } } ^ { A ^ { \prime } } ) ,"
68344057ab.png,"h _ { ( p , q ) } = \bar { h } _ { ( p , q ) } = \frac { ( ( m + 1 ) p - m q ) ^ { 2 } - 1 } { 4 m ( m + 1 ) } ,"
7c0594adc5.png,"\frac { d } { d r } \left\{ \frac { w ^ { \prime } } { \sqrt { 1 + V ^ { 2 } + 2 K ^ { 2 } } } \right\} = - \frac { w \, V } { \sqrt { 1 + V ^ { 2 } + 2 K ^ { 2 } } } ,"
fc9f217ced502ab.png,"{ \cal { Z } } ^ { F } ( X _ { 1 } , \cdots , X _ { M } ) = \prod _ { j } ( 1 + X _ { j } ) ~ ~ ~ ~ ~ ."
sume_data-00002-of-00009_40743.png,"\displaystyle \varphi ( d _ { 1 } , d _ { 2 } , d _ { 3 } ) = - \varphi ( d _ { 1 } , d _ { 3 } , d _ { 2 } ) ."
process_49_1151.bmp,\begin{array} { r } { B \left[ \begin{array} { c } { u _ { 1 } } \\ { . } \\ { . } \\ { u _ { p } } \end{array} \right] = \overset { p } { \underset { i = 1 } { \sum } } g _ { i } u _ { i } . } \end{array}
badac1a4e1777f4.png,g _ { \mu \nu } = \left( \begin{array} { r r r r } { { 0 } } & { { 0 } } & { { 0 } } & { { 1 / 2 } } \\ { { 0 } } & { { - 1 } } & { { 0 } } & { { 0 } } \\ { { 0 } } & { { 0 } } & { { - 1 } } & { { 0 } } \\ { { 1 / 2 } } & { { 0 } } & { { 0 } } & { { 0 } } \end{array} \right)
819a433553a5397_basic.png,2 \omega = 3 6 0 ~ \mathrm { k H z }
sume_data-00008-of-00009_113731.png,\displaystyle \partial _ { \lambda } \Gamma _ { \lambda } [ \rho ]
5b22da5f5e.png,"{ } F ^ { 0 } ( \bar { g } ^ { \mu \nu } ) = \bar { g } ^ { 1 2 } , \ F ^ { 1 } ( \bar { g } ^ { \mu \nu } ) = \bar { g } ^ { 1 1 } + \bar { g } ^ { 2 2 } ."
5ae9851681.png,"i D _ { i } | \psi \rangle = \frac { 1 } { r } ( \gamma { \cal R } _ { i } ^ { ( s ) \pm } + { \cal R } _ { i } ^ { ( j ) - } ) | \psi \rangle ~ , \nonumber"
ab3b98d2832e8dc_basic.png,"( 1 | 2 , 3 , 4 ) , ( 2 | 1 , 3 , 4 ) , ( 3 | 1 , 2 , 4 ) , ( 4 | - )"
process_49_5136.bmp,"\begin{array} { r } { p _ { , i } ( t , x ; s , y ) = \operatorname* { l i m } _ { h \downarrow 0 } \frac { p ( t , x + h e _ { i } ; s , y ) - p ( t , x ; s , y ) } { h } , } \end{array}"
8508416351d9612_basic.png,\ell ( \pi ) = m _ { 1 } \circ m _ { 2 } \circ \dots \circ m _ { n } .
sume_data-00008-of-00009_117116.png,"\langle \langle w _ { i } | { w } _ { j } \rangle \rangle = ( U \tau U ^ { T } ) _ { i j } ,"
process_49_6182.bmp,"\begin{array} { r } { n _ { 0 } [ k ] = w _ { 0 } [ k ] - \alpha _ { 0 } v [ k ] w _ { 0 } [ k - 1 ] + \sqrt { 1 - \alpha _ { 0 } ^ { 2 } } \sqrt { P _ { 0 } } s [ k ] e _ { 0 } [ k ] , } \end{array}"
process_49_5815.bmp,"\begin{array} { r } { { \mathfrak S } ( T _ { \lambda } ) = \sum _ { \mu \in X _ { * } ( { \widetilde { \bf T } } ) _ { + } } c ( \mu , \lambda ) \sigma _ { \mu } \quad \mathrm { ~ w ~ i ~ t ~ h ~ } c ( \mu , \lambda ) \in R , } \end{array}"
51f8dee13b.png,\alpha _ { C } = { \frac { g _ { C } ^ { 2 } } { 4 \pi } } = { \frac { \pi } { 4 } } { \frac { 1 } { N } }
e0b1301f2d384e5_basic.png,"V _ { Z } ( q ) _ { i j } - V _ { Z } ( q _ { 0 } ) _ { i j } \sim ( m _ { q _ { i } } m _ { q _ { j } } / m _ { Q } ^ { 2 } ) \epsilon _ { q { \mathrm { - } } Q } ^ { 2 } ~ ,"
657f9be59d3c1a0.png,"\frac { 1 } { ( 2 ^ { 6 } \cdot 5 ) ^ { 2 } } ~ { \cal I } _ { \mu \nu , \alpha \beta } ^ { ( 2 ) } ( x ) ~"
10309b1ea1.png,"n ^ { \mu 2 } \equiv \left( \frac { r \beta e ^ { - \psi } \cos \delta } { \sqrt { e ^ { 2 \psi } \alpha ^ { 2 } - \beta ^ { 2 } r ^ { 2 } } } , 0 , - \frac { 1 } { r } \sin \delta , \frac { \alpha e ^ { \psi } \cos \delta } { r \sqrt { e ^ { 2 \psi } \alpha ^ { 2 } - \beta ^ { 2 } r ^ { 2 } } } \right)"
73125f46d9.png,0 \longrightarrow \mathcal { E } \longrightarrow ( q \times i d _ { X } ) ^ { * } \mathcal { F } \longrightarrow \mathcal { G } \longrightarrow 0 .
f088a40ea7c46a0_basic.png,\mathbf { E } _ { n } ^ { \prime } = ( \mathbf { r } \cdot \nabla ) \mathbf { E } _ { n } / k _ { n }
237be91280ae3ac_basic.png,"T _ { P } ( k ^ { 2 } , k ^ { \prime 2 } ) \equiv \sum _ { f } \, a _ { f } ^ { P } \, Q _ { f } ^ { 2 } \, { \widetilde T } _ { f \bar { f } } ( k ^ { 2 } , k ^ { \prime 2 } ) \, ,"
c7d47217ef6a74d_basic.png,\gamma ^ { 1 } - \gamma ^ { 1 }
175e118be8.png,F _ { N = 2 } ^ { S S } ( \beta ) = \frac { \beta - i \pi } { \beta + i \pi }
bfb8206ae4d65d7.png,"\mathcal R ( R ) ^ { * } \Theta _ { \alpha A } \mathcal R ( R ) = \widetilde { R } _ { \alpha \beta } \Theta _ { \beta A } \; ,"
4813fcf150.png,S = { \frac { 1 } { 2 } } \int d t d \theta \; \left[ E ^ { - 1 } D X \cdot \dot { X } - B D B + 2 m B E ^ { 1 / 2 } \right] \ .
4300c834ccf1441.png,S = { \frac { 1 } { 8 \pi } } \int d x d y \left[ ( \partial _ { x } \Phi ) ^ { 2 } + ( \partial _ { y } \Phi ) ^ { 2 } + \Lambda ( 2 e ^ { - { \frac { i } { \sqrt { 2 } } } \beta \Phi } + e ^ { i \sqrt { 2 } \beta \Phi } ) \right]
1df7da014e.png,D _ { m _ { a } m _ { d } } ^ { J _ { E } } ( U _ { 4 } ) \; D _ { i _ { d } i _ { a } } ^ { J _ { A } } ( U _ { 4 } ^ { \dagger } )
15c54769aea6589.png,"C _ { \mu } : = \phi ^ { * } \, ( D _ { \mu } \varphi ) , \qquad { } E _ { \mu } : = \varphi ^ { * } \, ( D _ { \mu } \varphi ) , \qquad { } F _ { \mu } : = \phi ^ { * } \, ( D _ { \mu } \phi ) ,"
ace8125801f15ef.png,+ ( H _ { 1 } ^ { ( 2 ) } H _ { 2 } ^ { ( 2 ) } ) ^ { - 1 } ( d y _ { 5 } ^ { 2 } + d y _ { 6 } ^ { 2 } ) + d x ^ { \alpha } d x ^ { \alpha } ]
1dd229880cbf847.png,"\Phi _ { \alpha } = \Phi ( { \bf x } \cdot \alpha ; u ) , \quad \Phi ( x ; u ) = { \frac { \sigma ( x - u ) } { \sigma ( x ) \sigma ( u ) } } \mathrm { e } ^ { \zeta ( u ) x } ,"
3000fecc8233154_basic.png,"\rho ( h ) = \rho _ { 0 } e ^ { - h / h _ { 0 } } ,"
88b69eb56ac03ab_basic.png,"{ \tilde { x } } = \frac { M _ { 0 } ( { \bf k } ) - m _ { d } ( 1 - x ) } { \omega ( { \bf k } ) + k ^ { z } } , \quad { \tilde { q } } ^ { 2 } = - \frac { | q ^ { 2 } | } { m _ { d } x } [ M _ { 0 } ( { \bf k } ) - m _ { d } ( 1 - x ) ]"
process_49_5070.bmp,"\begin{array} { r } { \diamond : \ C ^ { \infty } ( M ) \times C ^ { \infty } ( M ) ^ { * } \to \mathfrak X ( M ) ^ { * } , f \diamond \rho = \rho d f \in \mathfrak X ( M ) ^ { * } , } \end{array}"
62918edbcbf40b6_basic.png,"\mathrm { ~ a ( \bar { a } ) ~ - b r a n c h } : \left[ - \frac { \Lambda } { 2 } + K , \frac { \Lambda } { 2 } - K \right] , \; \; \; \mathrm { ~ b ( \bar { b } ) ~ - b r a n c h } : \left[ - \frac { \Lambda } { 2 } - K , \frac { \Lambda } { 2 } + K \right] ."
1bd6580f7653155.png,"\begin{array} { c c c } { { Y _ { a } = \theta _ { a b } ^ { - 1 } \, S ^ { \dagger } x _ { b } S ~ ~ ~ } } & { { ~ \Longrightarrow ~ } } & { { ~ ~ ~ F _ { a b } = \theta _ { a b } ^ { - 1 } \, P _ { 0 } \, . } } \end{array}"
f87e44f35cbda1f_basic.png,f _ { 2 } ^ { + - } ( Q ) = 1 + \lambda \exp ( Q ^ { 2 } ( R + \Delta R ) ^ { 2 } )
process_49_4916.bmp,\begin{array} { r } { 0 \longrightarrow { \textstyle \bigoplus _ { i = 1 } ^ { d } } R _ { m - n - \mu _ { i } } \longrightarrow R _ { m - n } ^ { d + 1 } \longrightarrow R _ { m } \longrightarrow ( R / I ) _ { m } \longrightarrow 0 . } \end{array}
process_49_2783.bmp,\begin{array} { r } { L _ { 0 } = \frac { \partial F ^ { \lambda } } { \partial x ^ { \lambda } } + \sum _ { 0 \le | { \overline { { \nu } } } | \le l - 1 } \frac { \partial F ^ { \lambda } } { \partial \varphi _ { \overline { { \nu } } } } \varphi _ { \overline { { \nu } } \lambda } } \end{array}
189c933190.png,{ \frac { \alpha } { n } } \bigg ( { \frac { ( 2 \pi ) ^ { 2 } } { 2 m } } { \frac { \kappa ^ { 4 } } { \lambda ^ { 6 } } } \bigg ) ^ { 1 / 3 } = { \frac { 1 } { 8 \pi } } .
process_49_8504.bmp,\begin{array} { r } { E \left[ \frac { \omega _ { n } \left( R + \frac { r } { 2 } \right) ^ { n } } { \omega _ { n } \left( \frac { r } { 2 } \right) ^ { n } } \right] = E \left[ \left( 1 + \frac { 2 R } { r } \right) ^ { n } \right] . } \end{array}
ac51298e8f85c94_basic.png,\mathcal { D } _ { 1 } \equiv \eta _ { 1 } - \eta _ { 0 }
sume_data-00000-of-00009_1465.png,x ( t ) = \sum _ { l = 1 } ^ { k } c _ { l } \exp ( i 2 \pi f _ { l } t )
sume_data-00000-of-00009_5286.png,\operatorname* { s u p } _ { 0 \leq t < t _ { 0 } } \left| \tilde { A } _ { \bullet } ^ { ( n ) } ( t ) - a ( t ) \right| \stackrel { { \scriptstyle \mathrm { p } } } { { \longrightarrow } } 0
fb252becfa4b990_basic.png,\mu _ { m a x } = { \frac { 2 } { T } } \ln \bigl ( 1 + \sqrt { 2 } \bigr ) \approx 0 . 2 3 7 7 \ .
process_49_9686.bmp,"\begin{array} { r } { a _ { d ^ { \prime } } ^ { \sigma , \theta _ { 0 } ^ { \prime } } ( v ^ { 2 } ) = v ^ { \mathcal { E } ( d ^ { \prime } ) } \frac { v ^ { - 2 \mathcal { E } ( d ) } } { v ^ { 2 } - 1 } P _ { \mathfrak { M } _ { d ^ { \prime } } ^ { \sigma , \theta _ { 0 } ^ { \prime } } ( Q ^ { \prime } ) } ( v ) . } \end{array}"
process_49_5662.bmp,"\begin{array} { r } { { \mathcal { B } } _ { 0 } \left( u - { \mathcal { P } } _ { 0 } u , v \right) = 0 \forall \ ; v \in S _ { 0 } ( \lambda , p ) . } \end{array}"
process_49_8042.bmp,"\begin{array} { r l } { \operatorname* { l i m } \operatorname* { i n f } A _ { n } } & { { } = \{ x \in X : \operatorname* { l i m } \operatorname* { s u p } d ( x , A _ { n } ) = 0 \} , \textrm { ~ a n d ~ } } \\ { \operatorname* { l i m } \operatorname* { s u p } A _ { n } } & { { } = \{ x \in X : \operatorname* { l i m } \operatorname* { i n f } d ( x , A _ { n } ) = 0 \} . } \end{array}"
b3deadb13af09eb_basic.png,\langle \frac { d V ( \hat { x } ) } { d \hat { x } } \rangle \approx \frac { d V ( \langle \hat { x } \rangle ) } { d \langle \hat { x } \rangle }
d3ba754c11184a5_basic.png,"\lbrack q _ { r } , q _ { s } ] = 0 \, , \, \, [ q _ { r } , h ] = 0 \, ."
sume_data-00001-of-00009_17058.png,{ } ^ { \textnormal { c } ) } [ 9 0 ]
c09259d7535ea31.png,"A = \frac { 1 } { 4 } \Bigl ( - \frac { \partial \Omega } { \partial r } d t + \frac { \partial \Omega } { \partial t } d r \Bigr ) + f d \hat { x } + g \epsilon _ { i j k } \frac { x _ { i } } { r ^ { 2 } } d x _ { j } \sigma _ { k } ,"
process_49_6114.bmp,"\begin{array} { r } { \mathcal { A } _ { 2 } ( ) = \left( \begin{array} { l l } { 2 } & { - 1 } \\ { - 1 } & { 2 } \end{array} \right) , \ ; \mathcal { B } _ { 2 } = \left( \begin{array} { l l } { 2 } & { - 1 } \\ { - 2 } & { 2 } \end{array} \right) , \ ; \mathcal { G } _ { 2 } = \left( \begin{array} { l l } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right) . } \end{array}"
3cbf412ac3785c9_basic.png,"\frac { \mathrm { d } ^ { 3 } \sigma \ ( e + p \rightarrow e + X + p ) } { \mathrm { d } Q ^ { 2 } \ \mathrm { d } x _ { I \! \! P } \ \mathrm { d } \beta } = \frac { 4 \pi \alpha ^ { 2 } } { \beta Q ^ { 4 } } \ ( 1 - y + \frac { y ^ { 2 } } { 2 ( 1 + R _ { D } ) } ) \ F _ { 2 } ^ { D ( 3 ) } ( Q ^ { 2 } , x _ { I \! \! P } , \beta ) ,"
4119e41b5589f5c.png,\Sigma _ { \alpha \beta } = T _ { \alpha \beta } + \frac { 1 } { 4 8 \pi } g _ { \alpha \beta } R ~ .
f9ae1685ac607f9.png,"W ^ { 2 } ( x , a _ { 0 } ) + W ^ { \prime } ( x , a _ { 0 } ) = W ^ { 2 } ( x , a _ { 1 } ) - W ^ { \prime } ( x , a _ { 1 } ) + R ( a _ { 0 } ) ~ ~ ."
process_49_4490.bmp,"\begin{array} { r } { \mathcal { G } _ { v , b , d , \zeta } \left( z \right) = \left[ \zeta \int _ { 0 } ^ { z } t ^ { \zeta - 1 } \left( e ^ { D _ { \lambda } ^ { n , \gamma } \varphi _ { v , b , d } ( t ) } \right) ^ { \zeta } d t \right] ^ { 1 / \zeta } } \end{array}"
4e925494cff8e38.png,"{ \cal W } ^ { \mathrm { t o t } } = { \cal W } ^ { \mathrm { c l } } ( e + \hbar \delta e , v + \hbar \delta v ) + \hbar { \cal W } ^ { 1 - l o o p } \, ,"
sume_data-00008-of-00009_132823.png,"\displaystyle c _ { i , 1 } + c _ { n + 1 - i , m } = m ( d _ { i } + d _ { n + 1 - i } ) + m - 1 = m ( n - 1 ) + m - 1 = m n - 1 ,"
500b2c760b9b4d2.png,"\Box G _ { 1 1 } ( v ) { \overleftarrow { D } } _ { v } = 0 , ~ ~ ~ ~ o r ~ ~ ~ \Box _ { x } G _ { 1 1 } ( x p ^ { - 1 } ) { \overleftarrow { D } } _ { x } = 0 ,"
8e499f4e8dd4549_basic.png,\gamma _ { \rho } \gamma _ { \alpha } \gamma _ { \sigma } = \delta _ { \rho \alpha } \gamma _ { \sigma } - \delta _ { \rho \sigma } \gamma _ { \alpha } + \delta _ { \alpha \sigma } \gamma _ { \rho } - \epsilon _ { \rho \alpha \sigma \beta } \gamma _ { \beta } \gamma _ { 5 } .
84394d89a4eada1_basic.png,{ \bf e } = \frac { 1 } { 2 } ( \boldsymbol { \partial } { \bf u } + \boldsymbol { \partial } { \bf u } ^ { T } )
sume_data-00005-of-00009_120953.png,\displaystyle [ D \vec { x } ] _ { v _ { 1 } } - [ D \vec { x } ] _ { v _ { 2 } } =
process_49_3858.bmp,"\begin{array} { r } { \int _ { 0 } ^ { t } X \mathcal { Z } _ { i , j } d \tilde { W } _ { k , m } = \ ( \frac { \emph { q } _ { m , m } ^ { k , k } \emph { q } _ { j , j } ^ { i , i } } { \lambda _ { j } } \ ) ^ { \frac { 1 } { 2 } } \mathcal { O } ( \varepsilon ^ { - r } ) , } \end{array}"
419a66c023f78fd_basic.png,\operatorname * { s u p } _ { x \in F } \phi ( x ) \ge \phi ( v )
395071fd76.png,1 \; \equiv \; { \frac { \int d { \bf z } \exp - { \frac { N \beta } { 2 } } ( { \bf z } - \sum _ { i = 1 } ^ { d } { \bf s } _ { i } ) ^ { 2 } } { \int d { \bf z } \exp - { \frac { N \beta } { 2 } } { \bf z } ^ { 2 } } } \; .
dfc2a9c0ac97d6b.png,X \equiv g \ \epsilon ^ { 5 j k l m } \Omega _ { j k } \Omega _ { l m } . \quad Y \equiv g \ \Phi ^ { j } \Omega _ { j 5 }
ea50d23721065a8.png,A = \int d c _ { 1 } d b _ { 2 } d h _ { 2 } d x e ^ { - S _ { 2 } } .
process_49_9499.bmp,"\begin{array} { r l } { ( x , \omega , a , \tau ) } & { { } \circ ( x ^ { \prime } , \omega ^ { \prime } , a ^ { \prime } , \tau ^ { \prime } ) = ( x + a x ^ { \prime } , \omega + \frac { 1 } { a } \omega ^ { \prime } , a a ^ { \prime } , \tau + \tau ^ { \prime } + \omega a x ^ { \prime } ) . } \end{array}"
1abdaa96c0b1ff4_basic.png,f _ { y _ { i } } \in \mathcal { H } _ { y _ { i } }
2889ff58b6.png,{ \cal T } _ { p } ^ { s } = \prod _ { r \in P } \frac { 1 } { ( k _ { p } ^ { s } - p _ { r } ) ^ { 2 } - m ^ { 2 } }
88443e32ab.png,"\psi ( - L ) = 0 ; \quad \psi ( - L ) ^ { \prime } = 1 ,"
b5309d147b.png,"V ( r ) = - \frac { \hbar ^ { 2 } } { 2 M } \, \frac { \lambda } { r ^ { 2 } } \; ,"
sume_data-00006-of-00009_143533.png,\pi _ { 1 } ^ { - 1 } ( H _ { 1 } ) \cap \ldots \cap \pi _ { 1 } ^ { - 1 } ( H _ { a } ) \cap \pi _ { 2 } ^ { - 1 } ( H _ { 1 } ^ { \prime } ) \cap \ldots \cap \pi _ { 2 } ^ { - 1 } ( H _ { b } ^ { \prime } ) .
f12ed21d9301ef1_basic.png,\Lambda _ { \mathrm { C a r d y } } / \Lambda _ { \mathrm { w i n d i n g } }
sume_data-00008-of-00009_113525.png,"\partial _ { t } \rho ^ { i } + \nabla \cdot ( { \textbf { v } } ^ { i } \rho ^ { i } ) = 0 , \ i = 1 , 2"
sume_data-00000-of-00009_115717.png,"a _ { k } \leq f ( a _ { k - 1 } , b _ { k } , B _ { \circ , k } ) ,"
7c7344f6af.png,"h _ { 1 , 2 j + 1 } = \frac { j ( ( \delta - 2 ) j - 2 ) } { 2 \delta } \; ,"
process_49_196.bmp,\begin{array} { r } { w ( x ^ { * } ) = - 3 A ( x ^ { * } ) B ( x ^ { * } ) w ^ { \prime \prime } ( x ^ { * } ) = - \delta A ( x ^ { * } ) B ( x ^ { * } ) } \end{array}
18fbf404bd70c81_basic.png,"f ( x _ { 1 } , x _ { 2 } ) = 1 0 x _ { 1 } \exp ( - \sqrt { x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } } )"
d2b329cd704773f_basic.png,"\chi ( x , y ) = \frac { \sqrt { \pi } } { 2 } [ \mathrm { e r f } ( y ) - \mathrm { e r f } ( x ) ]"
1ea704edfa58524_basic.png,"\rho ^ { \prime } + 2 \Phi ^ { \prime } \sqrt { \rho ^ { 4 } + \sin ^ { 2 } \theta } = 0 ,"
process_49_711.bmp,"\begin{array} { r } { K _ { Y ^ { \prime } } = g ^ { \ast } K _ { Y } } \\ { K _ { Y ^ { \prime } } = \phi ^ { \ast } K _ { Z } + F , } \end{array}"
1f899ae1afdac3e_basic.png,"e _ { \alpha } ^ { k } = \lambda \delta _ { \alpha } ^ { k } \quad , \quad e _ { k } ^ { \alpha } = \lambda ^ { - 1 } \delta _ { k } ^ { \alpha } = \lambda ^ { - 2 } e _ { \alpha } ^ { k }"
sume_data-00000-of-00009_4645.png,\displaystyle \partial _ { \mu } \delta \vec { \theta } = g \vec { A } _ { \mu } \times \delta \vec { \theta }
44bab25205.png,A ( Y _ { 1 } - Y _ { 2 } ) = \int _ { 0 } ^ { \infty } \frac { d l ^ { \prime } } { l ^ { \prime } } \eta ( i l ^ { \prime } ) ^ { - 2 4 } \exp \{ - \frac { 1 } { 2 \pi \alpha ^ { \prime } } l ^ { \prime } ( Y _ { 1 } - Y _ { 2 } ) ^ { 2 } \}
process_49_3884.bmp,"\begin{array} { r } { \mathcal { A } _ { \delta } = \nabla _ { 0 } + L _ { 1 , \delta } ^ { 2 } ( T ^ { * } \Sigma ^ { o } \otimes \mathfrak { g } _ { P } ) , } \end{array}"
sume_data-00006-of-00009_31981.png,"\displaystyle \partial _ { t } \psi _ { Y } ( t , i u , i v )"
0edff8ab4bb9d77.png,"N _ { i j } ^ { ~ ~ r } ~ = ~ \sum _ { s } ~ { \frac { S _ { i s } S _ { j s } S _ { s } ^ { \dagger r } } { S _ { 0 s } } } ~ ,"
process_49_8739.bmp,\begin{array} { r l } \end{array}
110f2a1da03f8bd.png,{ \frac { m ^ { 2 } ( S ) } { m ^ { 2 } ( V ) } } = { \frac { 1 } { 6 ( 4 \pi ) ^ { 2 } } } \left[ 3 6 e ^ { 2 } + { \frac { \lambda ^ { 2 } \xi ^ { 2 } } { e ^ { 2 } } } \left( 1 5 + { \frac { 3 } { 4 \omega ^ { 2 } } } - { \frac { 9 \xi } { \omega ^ { 2 } } } + { \frac { 2 7 \xi ^ { 2 } } { \omega ^ { 2 } } } \right) \right] .
process_49_7678.bmp,\begin{array} { r } { \Delta d + | \nabla d | ^ { 2 } d = \tau \ \ \mathrm { { i n } } \ \ \Omega } \end{array}
d308719c1ca8ad4_basic.png,\Psi _ { + v ^ { \prime } } = \left[ \left( 1 + i m \delta v \cdot x + \frac { \delta \slash v } { 2 } \right) B _ { + } + \frac { \delta \slash v } { 2 } B _ { - } \right] \Psi _ { + v }
864b52172f.png,\langle \; . . \; \rangle = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } \langle \; . . \; \rangle _ { 0 } ^ { \theta } \; d \theta \; .
56f36abc01.png,\theta ( n - 2 ) = \left\{ \begin{array} { l l } { { 1 } } & { { n > 2 } } \\ { { 0 } } & { { n \leq 2 } } \end{array} \right.
d804ed875abf3ef_basic.png,\mathcal { D } [ u ] ^ { * } = \mathcal { D } [ u ]
9923cc22d8870d6_basic.png,"\frac { 1 } { 2 } \left( 1 - \sqrt { 1 - \sin ^ { 2 } 2 \vartheta _ { \mu \tau } ^ { \mathrm { ( m i n ) } } } \right) \leq | U _ { \mu 3 } | ^ { 2 } \leq \frac { 1 } { 2 } \left( 1 + \sqrt { 1 - \sin ^ { 2 } 2 \vartheta _ { \mu \tau } ^ { \mathrm { ( m i n ) } } } \right) \, ."
sume_data-00005-of-00009_65498.png,p _ { 1 } = P _ { 1 } \frac { \eta _ { s } } { 2 }
4d7a979f491f0ad.png,"S _ { \mathrm { k i n e t i c } } = \frac { i } { 2 } \int d ^ { 1 0 } x \bar { \psi _ { \mu } } ( x ) \Gamma ^ { \mu \rho \nu } \partial _ { \rho } \psi _ { \nu } ( x ) ,"
process_49_3124.bmp,"\begin{array} { r } { \chi _ { i } ^ { 2 } ( 2 ) = z _ { i , 1 } ^ { 2 } + z _ { i , 2 } ^ { 2 } \ ; , } \end{array}"