hoang-quoc-trung
commited on
Commit
•
5b30d19
1
Parent(s):
13da346
Delete val
Browse files- val/handwitten_val.csv +0 -797
- val/non_handwritten_val.csv +0 -0
- val/total_val.csv +0 -0
val/handwitten_val.csv
DELETED
@@ -1,797 +0,0 @@
|
|
1 |
-
image_filename,latex
|
2 |
-
TrainData2_9_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
3 |
-
2009210-947-221.bmp,j
|
4 |
-
4b316ab3-e6c5-464c-a3dc-b87ea5b7972e.jpg,\ln { h } = \frac { \operatorname* { l i m } _ { u \to \pi / 7 ^ { - } } - 2 \sin ^ { 3 } { u } } { \operatorname* { l i m } _ { u \to \pi / 2 ^ { - } } 2 \sin ^ { 4 } { u } \tan { u } }
|
5 |
-
0f1d2eb2-019e-4a5a-b720-83391221c356.jpg,\frac { \operatorname* { l i m } _ { a \to 7 } \frac { d } { d a } 1 1 \cos { \left( 8 a \right) } \tan { \left( 2 a \right) } } { \operatorname* { l i m } _ { a \to 4 } \frac { d } { d a } 8 a }
|
6 |
-
ecebdadc-c09a-48e9-bee9-57a00f089731.jpg,\operatorname* { l i m } _ { b \to 1 } \frac { b + - 2 \tan { b } } { b ^ { 0 } }
|
7 |
-
formulaire026-equation043.bmp,f _ { 0 } - f _ { 1 } + f _ { 2 }
|
8 |
-
TrainData2_26_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
9 |
-
f307ec08-b174-4a2a-a3dc-aa5d777bf47f.jpg,\operatorname* { l i m } _ { x \to 2 } \frac { 0 + \sin { x } } { \sin ^ { 1 } { x } }
|
10 |
-
87160.png,"\widehat { S } \, \theta _ { a } ( z ) = \theta _ { a - 1 } ( z ) ,"
|
11 |
-
TrainData2_2_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
12 |
-
formulaire001-equation051.bmp,\beta ( s )
|
13 |
-
7104.png,"\sinh \rho \, \sin \phi = { C } \, ."
|
14 |
-
TrainData2_7_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
15 |
-
f2378c4e-4819-444b-a20a-184e81bf0849.jpg,\operatorname* { l i m } _ { g \to 1 } \frac { 8 8 g - 2 - 1 } { \left( g - 2 \right) \left( \sqrt { 9 g - 8 } + 2 \right) }
|
16 |
-
5338c06a-d7d8-495f-9c5e-80de7f7e0d91.jpg,\operatorname* { l i m } _ { \theta \to 7 ^ { + } } \frac { - 4 \sin { \theta } \cos ^ { 1 } { \theta } } { \sin ^ { 4 } { \theta } + \left( 4 \theta \cos { \theta } + 3 \right) \tan ^ { 2 } { \theta } }
|
17 |
-
bab1bb70-80a6-43b1-ab9f-b66828f3453d.jpg,\operatorname* { l i m } _ { b \to \frac { \pi } { 2 } } \frac { 4 \tan ^ { 5 } { b } + 9 \tan ^ { 4 } { b } } { 2 }
|
18 |
-
3930.png,\frac { { \cal F } } { N } = \frac { m ^ { 2 } } { 2 N g ^ { 2 } } - \int \frac { \mathrm { d } k } { 2 \pi } \left[ \epsilon ( k ) + \frac { 2 } { \beta } \ln \left( 1 + \mathrm { e } ^ { - \beta \epsilon ( k ) } \right) \right] \ .
|
19 |
-
459be8f9-5c4e-400d-8acd-40081cae536f.jpg,\operatorname* { l i m } _ { p \to 7 } \frac { 2 \cdot 5 \sin { \left( 7 p \right) } } { 2 2 \cdot 4 }
|
20 |
-
TrainData2_2_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
21 |
-
27180.png,L _ { E } = \frac 1 { 1 6 \pi G } \int d ^ { 3 } x \ \sqrt { - g } \ R
|
22 |
-
96491.png,\begin{array} { c } { < O _ { k } O _ { l } P > _ { c } = ( \frac { 1 } { \rho ^ { 2 } } \frac { \partial \rho } { \partial t _ { l } } + \frac { 1 } { \rho ^ { 2 } } \frac { \partial \rho } { \partial \mu } \frac { \partial \mu } { \partial t _ { l } } ) < O _ { k } P > } \\ { - \frac { 1 } { \rho } ( < O _ { k } O _ { l } P > + \frac { \partial \mu } { \partial t _ { l } } < O _ { k } P P > ) . } \end{array}
|
23 |
-
30abc84a-9d78-49c6-9455-b79ae2e0d113.jpg,\ln { b } = \frac { \operatorname* { l i m } _ { x \to \frac { \pi } { 3 } ^ { - } } \frac { d } { d x } \cos { x } } { \operatorname* { l i m } _ { x \to \frac { \pi } { 9 } ^ { - } } \frac { d } { d x } - 3 \sec ^ { 9 } { x } }
|
24 |
-
formulaire014-equation014.bmp,\operatorname* { l i m } _ { x \rightarrow a } \frac { f ( x ) } { g ( x ) } = 1
|
25 |
-
formulaire007-equation036.bmp,\pi ( e _ { 1 } )
|
26 |
-
d0a8eaad-fb5a-452f-908e-ccbe43d6a41e.jpg,\frac { \operatorname* { l i m } _ { y \to 4 } \frac { d } { d y } \ln { \left( 9 + y \right) } } { \operatorname* { l i m } _ { y \to 8 } \frac { d } { d y } y }
|
27 |
-
39691151-3b5e-4feb-b3bf-e23248e3b45d.jpg,\operatorname* { l i m } _ { s \to - \infty } \frac { \left| s \right| } { s + 2 }
|
28 |
-
43484.png,"\varphi _ { \alpha } ( p , q ) , \quad ( \alpha = 1 , 2 , \dots , m )"
|
29 |
-
a9e50f07-8136-4c90-8047-ffce8372a782.jpg,\operatorname* { l i m } _ { b \to 3 ^ { + } } \frac { - 5 \sin { b } \sec ^ { 0 } { b } } { \left( 4 + 3 b \tan { b } \right) \sin ^ { 8 } { b } }
|
30 |
-
formulaire017-equation027.bmp,\frac { d } { d t } e ^ { X ( t ) } = \int _ { 0 } ^ { 1 } e ^ { ( 1 - \alpha ) X ( t ) } \frac { d X ( t ) } { d t } e ^ { \alpha X ( t ) } d \alpha
|
31 |
-
TrainData1_4_sub_5.bmp,e ^ { i \pi } + 1 = 0
|
32 |
-
45fb15e6-8624-417d-a253-6fb690851f59.jpg,\operatorname* { l i m } _ { h \to 2 ^ { + } } \frac { \frac { 2 } { h } } { - 7 \tan { h } \cot { h } }
|
33 |
-
MfrDB1534.bmp,\sqrt { x } = 1 0 ^ { ( \log x ) / 2 }
|
34 |
-
cebdc4c1-382c-4a2d-b2f9-69f8e8bbbb2f.jpg,\ln { y } = \frac { \operatorname* { l i m } _ { u \to \pi / 8 ^ { - } } - 7 \sin ^ { 4 } { u } } { \operatorname* { l i m } _ { u \to \pi / 6 ^ { - } } 2 \sin ^ { 8 } { u } \sin { u } }
|
35 |
-
2b1d7422-b033-4443-bf8c-cbb9b7acdde4.jpg,\operatorname* { l i m } _ { y \to 7 ^ { + } } \frac { - 2 \tan { y } \cos ^ { 6 } { y } } { \left( 1 + y \sin { y } \right) \sin ^ { 7 } { y } }
|
36 |
-
41930.png,\begin{array} { r c l } { \overline { { D _ { m } ( k _ { 1 } + p ) } } } & { = } & { \displaystyle D _ { m } ( k _ { 1 } ) \left[ - 2 k _ { 1 } \cdot p D _ { m } ( k _ { 1 } ) \right. } \end{array}
|
37 |
-
TrainData2_4_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
38 |
-
formulaire033-equation031.bmp,y ^ { - 1 }
|
39 |
-
TrainData2_26_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
40 |
-
TrainData2_8_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
41 |
-
200922-949-176.bmp,h ^ { 0 }
|
42 |
-
23cc9246-5e8c-4015-86ca-993e0272e482.jpg,\operatorname* { l i m } _ { z \to 4 } \frac { \cos { \left( 8 z \right) } } { \cos { \left( 3 z \right) } }
|
43 |
-
124e12dc-2da4-4a17-9320-77d5ea2992a3.jpg,\operatorname* { l i m } _ { b \to 8 ^ { + } } e ^ { \cot { b } \ln { \left( 0 + b \right) } }
|
44 |
-
TrainData2_8_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
45 |
-
53831.png,"( 1 - W ^ { 2 } ) \left\{ \frac { 3 \gamma } { 2 } ( \hat { \Omega } _ { \rho } + 2 \hat { \Omega } _ { \lambda } ) - 1 \right\} = - \hat { \Omega } _ { \cal U } \, ."
|
46 |
-
e3c135cf-1bd3-4d0b-b32c-bc5b82d513d2.jpg,\operatorname* { l i m } _ { w \to 1 } \frac { 7 + \cos { w } } { 9 + - 8 \tan ^ { 2 } { w } }
|
47 |
-
74471.png,\Pi _ { i } = - i l \partial _ { i } - l ^ { - 1 } \theta _ { i } \hskip 1 c m
|
48 |
-
3678127d-0edf-4aa2-a682-d8b0ac9f4b38.jpg,\operatorname* { l i m } _ { w \to 6 } \frac { \left( w - 2 \right) \left( w + 6 \right) \left( w ^ { 6 } + 8 \right) } { w - 1 }
|
49 |
-
MfrDB3129.bmp,x _ { 1 } = \frac { ( 1 - \frac { 2 } { \sqrt { N - 1 } } ) N } { L }
|
50 |
-
TrainData2_4_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
51 |
-
9e378cb9-13d2-468c-b19c-c75e2d932769.jpg,\operatorname* { l i m } _ { t \to 5 } \frac { \frac { d } { d t } \left( 0 + - 6 \cos { \left( 6 t \right) } \right) } { \frac { d } { d t } 2 t ^ { 1 } }
|
52 |
-
200925-1126-94.bmp,4 . 6
|
53 |
-
MfrDB3521.bmp,a _ { n } = a _ { 1 } + ( n - 1 ) d
|
54 |
-
KME2G3_29_sub_30.bmp,\sum _ { i = 2 n + 3 m } ^ { 1 0 } i x
|
55 |
-
11_em_99.bmp,P ^ { \mu } P _ { \mu }
|
56 |
-
84807.png,d s _ { 1 0 } ^ { 2 } = \tilde { f } _ { + + } ^ { - \alpha } ( d x _ { / / } ^ { 2 } + d \rho ^ { * 2 } ) + \tilde { f } _ { + } ^ { - 2 / ( 7 - p ) } \tilde { f } _ { + + } ^ { \beta _ { + } } \rho ^ { 2 } d \Omega _ { 8 - p } ^ { 2 }
|
57 |
-
7f4f87d5-4307-4b5a-96c4-3f020e378069.jpg,\frac { 7 } { 7 } \operatorname* { l i m } _ { t \to \frac { \pi } { 6 } ^ { - } } \frac { 2 t + \left( - 2 \pi \right) ^ { 8 } } { \tan ^ { 5 } { t } }
|
58 |
-
68932.png,"\tilde { F } : = \theta _ { \mu \nu } F _ { \mu \nu } , \quad \tilde { D } _ { \mu } : = \theta _ { \mu \nu } D _ { \nu } ."
|
59 |
-
MfrDB1561.bmp,2 ^ { x + 1 } - 2 ^ { x } = 1 6
|
60 |
-
MfrDB1937.bmp,x ^ { 2 } - x - 6 < 0
|
61 |
-
TrainData2_26_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
62 |
-
106_edwin.bmp,y ^ { 4 } + y + 1 = 0
|
63 |
-
TrainData2_4_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
64 |
-
48299.png,"\varepsilon ^ { \mu } \rightarrow \varepsilon ^ { \prime \mu } = { D ^ { \mu } } _ { \nu } ( \alpha , \beta , \gamma ) \varepsilon ^ { \nu } = \varepsilon ^ { \mu } - \frac { i } { m } ( \alpha a + \beta b + \gamma c ) p ^ { \mu }"
|
65 |
-
85_leissi.bmp,"( a \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , \frac { 2 b t } { 1 + t ^ { 2 } } )"
|
66 |
-
formulaire018-equation027.bmp,\frac { d y } { d t } = y ( a - b y )
|
67 |
-
30492.png,B ( w ) = \sum _ { \alpha = 0 } ^ { n } s _ { \alpha } w ^ { n - \alpha } .
|
68 |
-
3957.png,"\alpha _ { - n _ { 1 } } ^ { \mu _ { 1 } } \cdots \alpha _ { - n _ { i } } ^ { \mu _ { i } } b _ { - m _ { 1 } } \cdots b _ { - m _ { j } } c _ { - \ell _ { 1 } } \cdots c _ { - \ell _ { k } } | \Omega \rangle ,"
|
69 |
-
TrainData2_6_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
70 |
-
f219ad8d-49c6-4357-9f72-f043d750671c.jpg,\operatorname* { l i m } _ { x \to 9 ^ { + } } \frac { \frac { d } { d x } \left( 1 + - 2 \cos ^ { 8 } { x } \right) } { \frac { d } { d x } \left( \sin { x } + x \sin ^ { 2 } { x } \right) }
|
71 |
-
TrainData2_7_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
72 |
-
formulaire009-equation062.bmp,"n _ { i , j } \neq 0"
|
73 |
-
56503.png,Z ^ { b } ( u n c ) = \prod _ { n = 1 } ^ { \infty } \frac 1 { \left( 1 - q ^ { 2 n } e ^ { - 2 ( v _ { 1 } - v _ { 2 } ) } \right) \left( 1 - q ^ { 2 n } e ^ { 2 ( v _ { 1 } - v _ { 2 } ) } \right) } \; .
|
74 |
-
3108c441-b7fa-478b-a28e-d8516bc4fe48.jpg,\operatorname* { l i m } _ { \theta \to \pi / 5 ^ { - } } \frac { \tan ^ { 4 } { \theta } } { \frac { - 4 } { 6 \theta + \left( - 4 \pi \right) ^ { 2 } } }
|
75 |
-
249.png,C _ { \mu } ^ { + } \equiv \frac { 1 } { 2 } ( C _ { \mu } + ^ { * } C _ { \mu } ) = \frac { 1 } { 2 } ( C _ { \mu } + i E _ { \mu \nu } C ^ { \nu } ) \; .
|
76 |
-
15651.png,"( \bar { L } _ { m } ) _ { j \, k } = i g ( 1 - \delta _ { j \, k } ) / \sin [ \pi ( j - k ) / ( r + 1 ) ] ,"
|
77 |
-
TrainData2_8_sub_20.bmp,a + b + c + d + e
|
78 |
-
200925-1126-37.bmp,1 3 + \pi r ^ { 2 }
|
79 |
-
TrainData2_2_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
80 |
-
3c433ae1-7b42-410c-8e90-1e5b4dec6ba1.jpg,\operatorname* { l i m } _ { x \to 7 ^ { + } } \frac { \frac { 7 } { x } } { - 6 \sin { x } \cot { x } }
|
81 |
-
TrainData2_5_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
82 |
-
TrainData2_2_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
83 |
-
79bbd775-301c-4734-9327-f641f45b3d94.jpg,\operatorname* { l i m } _ { s \to \frac { \pi } { 4 } ^ { - } } \frac { \tan ^ { 3 } { s } } { \frac { - 2 } { 8 s + \left( - 7 \pi \right) ^ { 4 } } }
|
84 |
-
75019.png,\langle V _ { v / r ^ { 8 } } \rangle = { \frac { 1 0 5 \sqrt { 2 } \tilde { R } ^ { 7 } } { r ^ { 9 } N ^ { 2 } } } ( r _ { i } v _ { i + 3 } - r _ { i + 3 } v _ { i } ) \left( 1 - { \frac { 1 0 } { 3 N ^ { 2 } } } + { \frac { 7 } { 3 N ^ { 4 } } } \right) \ .
|
85 |
-
MfrDB0992.bmp,1 + 6
|
86 |
-
formulaire024-equation066.bmp,2 \pm \sqrt { 2 }
|
87 |
-
90fb6186-f17f-48e9-923f-374a161cd096.jpg,\operatorname* { l i m } _ { z \to 5 ^ { + } } \frac { 3 / z } { - 6 \cos { z } \csc { z } }
|
88 |
-
MfrDB0115.bmp,E = m c ^ { 2 }
|
89 |
-
200923-1251-238.bmp,\sqrt { \alpha }
|
90 |
-
72142.png,"\operatorname* { d e t } ( L ( \lambda ) _ { C _ { n } } - v \cdot I d ) = \sum _ { j = 0 } ^ { 2 n } \frac { ( \sigma ( \lambda ) ) ^ { ^ { ( j - 1 ) } } \sigma ( \lambda + j \gamma ) } { ( \sigma ( \gamma + \lambda ) ) ^ { j } } ( - v ) ^ { 2 n - j } ( H _ { j } ) _ { C _ { n } } = 0 ,"
|
91 |
-
20bf42d4-f652-48dc-9d9f-2f5e78b05d6e.jpg,\operatorname* { l i m } _ { n \to 8 } \frac { \sqrt [ 3 ] { 9 + 4 n } + 5 } { n }
|
92 |
-
c9e328ca-d3fe-4e85-9f69-cee51c60e86e.jpg,\operatorname* { l i m } _ { v \to \infty } \frac { 3 v ^ { 2 } + 5 } { 5 \left| v ^ { 1 } \right| }
|
93 |
-
formulaire025-equation007.bmp,y _ { 1 } + u
|
94 |
-
TrainData2_8_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
95 |
-
35821a23-7b82-425f-8df8-4e2c8fcc1414.jpg,\operatorname* { l i m } _ { u \to 4 } \frac { 6 } { u + 5 } \operatorname* { l i m } _ { u \to - 3 } \frac { \cos { \left( u + 8 \right) } } { u + 6 }
|
96 |
-
0f0c84c4-280f-433d-adf8-14f866fbd9a4.jpg,\operatorname* { l i m } _ { z \to 1 ^ { + } } \frac { z + 6 } { z ^ { 0 } \left( z - 7 \right) \left( z + 0 \right) }
|
97 |
-
200923-1553-269.bmp,5
|
98 |
-
7333.png,\partial _ { \mu } j ^ { \mu } + \partial _ { \tau } j ^ { 5 } = 0
|
99 |
-
TrainData2_5_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
100 |
-
TrainData2_6_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
101 |
-
TrainData2_9_sub_20.bmp,a + b + c + d + e
|
102 |
-
911d779e-b1a8-418f-a979-92dfc288d54f.jpg,\ln { g } = \frac { \operatorname* { l i m } _ { s \to \frac { \pi } { 3 } ^ { - } } - 8 \sin ^ { 2 } { s } } { \operatorname* { l i m } _ { s \to \frac { \pi } { 2 } ^ { - } } 6 \tan ^ { 2 } { s } \sin { s } }
|
103 |
-
TrainData2_6_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
104 |
-
75_leo.bmp,c ^ { 2 } = a ^ { 2 } + b ^ { 2 } - 2 a b \cos C
|
105 |
-
39051.png,"v _ { \mathrm { e f f } } ( \alpha ) = - { \frac { 1 } { 8 \pi N } } \, \sum _ { i = 1 } ^ { N } ( \alpha - h _ { i } ) \, \ln { \frac { \alpha - h _ { i } } { e \Lambda ^ { 2 } } } \cdotp"
|
106 |
-
22534.png,\frac { \Delta \theta _ { D } } { x _ { * } } > > 1 .
|
107 |
-
3611.png,"\overline { { \Psi } } ( x ) \Psi ( x ) = s c a l a r , \, \, \overline { { \Psi } } ( x ) \gamma _ { \mu } \Psi ( x ) = v e c t o r \, \, e t c ."
|
108 |
-
TrainData2_2_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
109 |
-
540a7d64-3348-4189-a18e-ef4ffb862f88.jpg,\frac { \operatorname* { l i m } _ { s \to 4 } \frac { d } { d s } 9 7 \sin { \left( 2 s \right) } \sin { \left( 0 \right) } } { \operatorname* { l i m } _ { s \to 1 } \frac { d } { d s } 9 s }
|
110 |
-
200923-131-197.bmp,\beta
|
111 |
-
77295.png,"Z _ { N , l } ^ { U } = \prod _ { k = 0 } ^ { N - 1 } h _ { k , l } , \; \; \; \tau _ { 0 } = 1 ."
|
112 |
-
TrainData2_3_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
113 |
-
formulaire011-equation018.bmp,x = \sqrt { r ^ { 2 } + a ^ { 2 } } \sin \theta \cos \phi
|
114 |
-
d0d2ea88-8301-4788-b50b-fff2284cb136.jpg,\operatorname* { l i m } _ { r \to 2 } \frac { r } { \left| r + 9 \right| }
|
115 |
-
126_Frank.bmp,| x - \frac { p _ { n } } { q _ { n } } | \leq \frac { 1 } { q _ { n } q _ { n + 1 } } < \frac { 1 } { q _ { n } ^ { 2 } }
|
116 |
-
6bf255c4-f843-4b50-88ac-00f4ce302eaa.jpg,\operatorname* { l i m } _ { g \to 5 } \frac { g ^ { \frac { 9 } { 4 } } } { g + - 5 \sqrt { 2 g } }
|
117 |
-
fbd35d1d-f410-46db-ba7d-f25571cd88fb.jpg,\operatorname* { l i m } _ { c \to \infty } \frac { \log _ { 1 0 } { 6 } } { \log _ { 9 2 } { 8 } }
|
118 |
-
MfrDB2833.bmp,a x + b < c
|
119 |
-
457db9ef-1b97-4262-b935-d14e0fca3c9b.jpg,\operatorname* { l i m } _ { x \to \frac { \pi } { 2 } } \frac { 3 \cos { x } + - 2 \sin { x } } { 9 x + - 2 \frac { \pi } { 4 } }
|
120 |
-
formulaire005-equation014.bmp,X \rightarrow p \rightarrow q
|
121 |
-
39516.png,"E _ { s p a c e t i m e } ^ { a } ( y , \gamma ) = \oint { \frac { d z } { 2 i \pi } } \lbrack { \frac { E _ { w s } ^ { a } ( z ) } { ( y - \gamma ( z ) ) } } \rbrack ."
|
122 |
-
TrainData2_8_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
123 |
-
TrainData2_4_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
124 |
-
94944.png,p _ { \mu } T _ { \mu \nu } ^ { S \rightarrow A A } = 2 m i T _ { \nu } ^ { S \rightarrow P A }
|
125 |
-
37525.png,"| \psi _ { 0 } \rangle \rightarrow | \psi _ { 2 } \rangle \, ,"
|
126 |
-
TrainData2_7_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
127 |
-
25704.png,"A _ { 3 } = \widetilde { Z } ^ { 1 / 2 } A _ { 3 } ^ { R } ; \; \; \; \; A _ { \mu } = Z _ { 3 } ^ { 1 / 2 } A _ { \mu } ^ { R } ; \; \; \; \mu = 0 , 1 , 2 \; \; \; g = Z _ { 1 } g ^ { R }"
|
128 |
-
200922-949-138.bmp,- L
|
129 |
-
95320.png,S _ { E G H } ^ { b o u n d } = - { \frac { 1 } { 3 2 \pi ^ { 2 } } } \int _ { \partial M } \epsilon _ { a b c d } \; ( 2 \theta ^ { a b } \wedge R ^ { c d } - { \frac { 4 } { 3 } } \; \theta ^ { a b } \wedge \theta ^ { a } { } _ { e } \wedge \theta ^ { e b } )
|
130 |
-
41779.png,"S ^ { P S } = \int d x ( \pi _ { i } \dot { \phi } ^ { i } - H ( \phi , \pi , \nabla \phi ) ) ,"
|
131 |
-
98914.png,f _ { a b c } ^ { ( N ) } x _ { j b } p _ { j c } = 0
|
132 |
-
38181283-589e-4deb-aae6-bf67b9f665c4.jpg,\operatorname* { l i m } _ { h \to - \infty } e ^ { 1 2 h }
|
133 |
-
5944.png,"Q = \int d ^ { 2 } x \ J _ { 0 } = e \, g \int d ^ { 2 } x \ | \phi | ^ { 2 } B"
|
134 |
-
77950.png,"E _ { 1 } ^ { - } ( j _ { 2 } ) = ( - 1 ) ^ { n } \prod _ { k = 1 } ^ { n } c _ { k } { \cal E } ^ { n } ( \bar { y } _ { 1 } , \dots , \bar { y } _ { n } ) \ + \mathrm { o t h e r \ \ t e r m s } ."
|
135 |
-
MfrDB3523.bmp,\int _ { 0 } ^ { \infty } \sqrt { x } e ^ { - x } d x = \frac { 1 } { 2 } \sqrt { \pi }
|
136 |
-
MfrDB0005.bmp,\operatorname* { l i m } _ { n \rightarrow \infty } \frac { ( n ! ) ^ { \frac { 1 } { n } } } { n } = e
|
137 |
-
4ea6bd66-6476-4de8-9175-4160d9f43bd7.jpg,\operatorname* { l i m } _ { u \to 6 } \frac { - 2 } { 3 + \sec { u } }
|
138 |
-
200924-1331-234.bmp,\sqrt { v - q }
|
139 |
-
200924-1312-80.bmp,e ^ { \int x ^ { 2 } d x }
|
140 |
-
131_Frank.bmp,f ( x ) = a _ { n } x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \cdots + a _ { 1 } x + a _ { 0 }
|
141 |
-
8b92a464-5f39-4930-8409-f90d1d40c892.jpg,\operatorname* { l i m } _ { w \to 9 2 } \frac { \sqrt [ 4 ] { x } - 6 } { w - 7 5 }
|
142 |
-
TrainData2_3_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
143 |
-
54903.png,"( { \nabla } ^ { 2 } - m ^ { 2 } ( \eta ) ) \Phi ( x , \eta ) = 0 ."
|
144 |
-
formulaire037-equation054.bmp,q ( t )
|
145 |
-
9d2028ef-7d3f-4cb8-8d9d-86a36ce0548e.jpg,\operatorname* { l i m } _ { p \to 2 } \frac { \tan { p } - 7 } { \tan ^ { 3 } { p } }
|
146 |
-
96446.png,"d s ^ { 2 } \, = \, \left( 1 - \frac { | q | } { r } \right) ^ { 2 } d t ^ { 2 } \, - \, \left( 1 - \frac { | q | } { r } \right) ^ { - 2 } d r ^ { 2 } - r ^ { 2 } d \Omega ^ { 2 }"
|
147 |
-
a9ecae7d-8b8a-47d1-879c-19d2729b39c5.jpg,\operatorname* { l i m } _ { k \to - 3 } \frac { \sin { \left( k + 3 \right) } } { k ^ { 1 } + 2 k + 3 8 }
|
148 |
-
TrainData2_6_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
149 |
-
78548.png,"\hat { R } _ { m n } \epsilon \equiv \left[ \hat { \nabla } _ { m } , \hat { \nabla } _ { n } \right] \epsilon = 0 ,"
|
150 |
-
75735.png,"V _ { a b c _ { n } d _ { n } } ^ { n + 1 } ( p , T , M ( T ) ) = \frac { 1 } { 2 } \rho ^ { n + 1 } \Bigl ( \frac { \Sigma _ { r e n . } ^ { 1 } ( p , M ( T ) ) + \Sigma _ { T } ^ { 1 } ( p , M ( T ) , T ) } { 2 } \Bigr ) ^ { n } v _ { a b c _ { n } d _ { n } } ^ { ( n + 1 ) } ."
|
151 |
-
TrainData2_26_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
152 |
-
7083adac-9258-4f3f-b27a-da1e6cdb0898.jpg,\operatorname* { l i m } _ { c \to 2 ^ { + } } \csc { c } + - 3 \frac { 6 } { c }
|
153 |
-
439be2b4-86fa-460b-9bbd-77876ef3fff1.jpg,\operatorname* { l i m } _ { y \to \pi / 4 ^ { - } } 6 / 5 \cos ^ { 6 } { y } \left( 9 y + \left( - 4 \pi \right) ^ { 3 } \right)
|
154 |
-
formulaire039-equation045.bmp,1 3 6 - 9 1 + 1 4 7 \geq - 1 0 2
|
155 |
-
2009220-1327-107.bmp,3 7
|
156 |
-
85_alfonso.bmp,"( a \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , \frac { 2 b t } { 1 + t ^ { 2 } } )"
|
157 |
-
TrainData2_8_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
158 |
-
a59b9856-63ae-4467-902c-8ba9ce6f0c1a.jpg,\operatorname* { l i m } _ { y \to \frac { \pi } { 9 } } \frac { 2 \sin { y } + - 5 \tan { y } } { 2 y + - 5 \frac { \pi } { 6 } }
|
159 |
-
TrainData2_5_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
160 |
-
200925-1126-157.bmp,\frac { H - [ x ] } { I ^ { G } ( N ) }
|
161 |
-
15382.png,"m _ { c } = \frac { 1 } { c } ( a ~ N _ { c } - 1 ) \, \, \, \, \,"
|
162 |
-
8741.png,"M ( x ) = - j - \frac { \alpha } { 2 \pi } \ln ( x ) \int _ { 0 } ^ { x } d y \frac { M ( y ) } { y + M _ { 0 } ^ { 2 } } - \frac { \alpha } { 2 \pi } \int _ { x } ^ { 1 } d y \ln ( y ) \frac { M ( y ) } { y + M _ { 0 } ^ { 2 } } ,"
|
163 |
-
28a8960d-7f98-4d50-abae-e8c03a17e455.jpg,\operatorname* { l i m } _ { h \to \infty } \frac { \frac { d } { d h } \ln { \left( 5 h + 1 \right) } } { \frac { d } { d h } \left( \ln { \left( 4 h + 2 \right) } + 5 \right) }
|
164 |
-
9fd0e523-769e-4d58-a8c7-9de93a2f6970.jpg,\operatorname* { l i m } _ { r \to 1 ^ { + } } 0 + r ^ { \csc { r } }
|
165 |
-
30037.png,"\widehat { N } a = \frac 1 { i \hbar } [ N , a ] , \quad N = - \frac 1 2 \omega _ { i j } \theta ^ { i } \theta ^ { j }"
|
166 |
-
TrainData2_7_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
167 |
-
c27651c0-f277-4ff2-bd16-e6742d13612d.jpg,\operatorname* { l i m } _ { y \to 8 } \frac { \cosy ^ { 4 } } { y }
|
168 |
-
4bd9e927-caf2-4de5-bb31-160107d7fc50.jpg,\operatorname* { l i m } _ { x \to 7 } \frac { 4 9 + x - 5 7 } { x \left( \sqrt { 5 + x } + 2 \right) }
|
169 |
-
formulaire027-equation051.bmp,\cos ^ { 2 } \theta _ { 1 }
|
170 |
-
TrainData2_6_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
171 |
-
107ea2d3-de50-49ba-9765-53a995d9afdd.jpg,\operatorname* { l i m } _ { a \to 1 ^ { + } } \frac { - 2 \tan { a } \sec ^ { 1 } { a } } { \left( 3 + 8 a \sin { a } \right) \csc ^ { 1 } { a } }
|
172 |
-
139f9f52-3861-4b7e-b160-8f25d04a178a.jpg,\operatorname* { l i m } _ { u \to 2 } \frac { \left| u - 1 \right| } { u - 7 }
|
173 |
-
200922-949-16.bmp,\frac { \frac { p } { n } + v } { - H }
|
174 |
-
TrainData2_5_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
175 |
-
b0fa765e-67ab-4b8f-a26a-3858f303796a.jpg,\operatorname* { l i m } _ { g \to 4 ^ { + } } \frac { \frac { 5 } { g } } { - 3 \sin { g } \cos { g } }
|
176 |
-
91_Nina.bmp,\sin \theta = \frac { y } { \sqrt { x ^ { 2 } + y ^ { 2 } } }
|
177 |
-
35470.png,"\left\{ \begin{array} { l l } { \psi _ { 1 } ( 0 ) } & { = e ^ { - i \beta \phi _ { 0 } } \psi _ { 2 } ( 0 ) } \\ { \psi _ { 1 } ^ { \dagger } ( 0 ) } & { = e ^ { i \beta \phi _ { 0 } } \psi _ { 2 } ^ { \dagger } ( 0 ) , } \end{array} \right."
|
178 |
-
200926-1617-185.bmp,\sqrt { B }
|
179 |
-
TrainData2_3_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
180 |
-
TrainData2_7_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
181 |
-
formulaire002-equation002.bmp,\phi ( n ) = ( p - 1 ) ( q - 1 ) = n + 1 - s
|
182 |
-
18dd150c-ff01-4abd-b4b3-0745c9dcb346.jpg,e ^ { \operatorname* { l i m } _ { v \to 4 ^ { + } } \sin { v } \frac { \ln { \left( 9 + v \right) } } { \cos { v } } }
|
183 |
-
a36e505a-7ba1-4c5b-9958-160d490e382b.jpg,\operatorname* { l i m } _ { v \to \pi / 3 } \frac { 3 \cos ^ { 7 } { v } + 6 \tan ^ { 3 } { v } } { 6 }
|
184 |
-
54734.png,"\Im F ( a , b ; c ; z ) = - \frac { \pi \Gamma ( c ) ( z - 1 ) ^ { c - a - b } \theta ( z - 1 ) } { \Gamma ( a ) \Gamma ( b ) \Gamma ( 1 - a - b + c ) } F ( c - a , c - b ; c - a - b + 1 ; 1 - z ) ,"
|
185 |
-
5136e565-f6e6-4320-b62a-564fcd737428.jpg,\operatorname* { l i m } _ { r \to 2 ^ { + } } \frac { 6 / r } { - 8 \sin { r } \cos { r } }
|
186 |
-
MfrDB3070.bmp,\operatorname* { l i m } _ { x \rightarrow c } f ( x ) = f ( c )
|
187 |
-
MfrDB2901.bmp,x _ { 1 } = \frac { ( 1 - \frac { 2 } { \sqrt { N - 1 } } ) N } { L }
|
188 |
-
85763.png,"\langle T _ { \mu } ^ { \nu } ( x ) \rangle _ { R e n . } ( \mu ) - \langle T _ { \mu } ^ { \nu } ( x ) \rangle _ { R e n . } ( \mu ^ { \prime } ) = \frac 1 { 1 6 \pi ^ { 2 } } \frac 1 { \sqrt { g } } \frac { \delta } { \delta g ^ { \mu \nu } } \int d ^ { 4 } x \sqrt { g } a _ { 2 } ( x ) \ln ( \mu / \mu ^ { \prime } ) \ ,"
|
189 |
-
82730.png,a ( t ) \sim \exp \biggl ( \sqrt { \frac { \Lambda } { 3 } } t \biggr ) .
|
190 |
-
7440cb79-d080-48ec-b66e-c5eebf516093.jpg,\operatorname* { l i m } _ { w \to \pi / 9 } \frac { 5 \cos { w } + - 6 \cos { w } } { 4 w + - 3 \pi / 8 }
|
191 |
-
80_caue.bmp,\frac { 1 } { r ^ { 2 } } = \frac { 1 } { ( R - m ) ^ { 2 } } + \frac { 1 } { ( R + m ) ^ { 2 } }
|
192 |
-
TrainData2_9_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
193 |
-
124_Nina.bmp,\sum _ { i = 1 } ^ { k } \frac { x ^ { a _ { i } } } { 1 - x ^ { b _ { i } } } = \frac { 1 } { 1 - x }
|
194 |
-
1643.png,"\hat { \cal L } = \frac { 1 } { 2 } \gamma ^ { \alpha } \gamma ^ { \beta } \hat { L } _ { \alpha \beta } ~ ,"
|
195 |
-
78081.png,\cosh \pi b ( s _ { 1 } \pm i b ) = \mu _ { 1 } ^ { ( \pm ) } \sqrt { \sin \pi b ^ { 2 } / \mu }
|
196 |
-
TrainData2_3_sub_20.bmp,a + b + c + d + e
|
197 |
-
TrainData2_9_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
198 |
-
aa55fc68-90ba-4504-be14-4a3740b92921.jpg,\operatorname* { l i m } _ { h \to \infty } \frac { \log _ { 2 9 } { h } \log _ { 4 1 } { 3 } } { \log _ { 1 1 } { 2 } \log _ { 2 0 } { h } }
|
199 |
-
8cff5c10-c9bf-4596-8fb9-6d5576f726cd.jpg,\ln { a } = \frac { \operatorname* { l i m } _ { b \to \pi / 7 ^ { - } } - 6 \sin ^ { 8 } { b } } { \operatorname* { l i m } _ { b \to \pi / 7 ^ { - } } 2 \cos ^ { 5 } { b } \tan { b } }
|
200 |
-
TrainData2_8_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
201 |
-
TrainData2_7_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
202 |
-
TrainData1_6_sub_21.bmp,A = \sqrt { a + \frac { 1 } { \sqrt { a + \frac { 1 } { \sqrt { a } } } } } + \sqrt { b }
|
203 |
-
5701edf1-7e6e-4720-921e-51a3a914f028.jpg,\operatorname* { l i m } _ { w \to \infty } \frac { 4 w ^ { 3 } + 5 } { 8 \left| w ^ { 7 } \right| }
|
204 |
-
5c6d797b-37cd-4e89-b3cc-fb1fb46242c3.jpg,\operatorname* { l i m } _ { u \to 8 ^ { + } } \frac { - \tan { u } \sin ^ { 0 } { u } } { \sec ^ { 5 } { u } + \left( 4 u \sin { u } + 1 \right) \sin ^ { 9 } { u } }
|
205 |
-
99772.png,"p \cdot \psi = p ^ { - } \psi + p ^ { + } \bar { \psi } \, ."
|
206 |
-
c4995f61-9a82-401a-8ad3-45d1eb9843ac.jpg,\operatorname* { l i m } _ { a \to \frac { \pi } { 3 } ^ { - } } \frac { \cos ^ { 2 } { a } \left( 8 a + \left( - 4 \pi \right) ^ { 3 } \right) } { - 9 }
|
207 |
-
69f0cbad-d52f-4098-8e56-e3d5e1fd1090.jpg,\operatorname* { l i m } _ { h \to 2 } \frac { h ^ { 6 } + - h + 8 } { h ^ { 5 } - 2 }
|
208 |
-
TrainData2_4_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
209 |
-
8467e48c-4ab9-4f96-8f96-6db59caba61f.jpg,\operatorname* { l i m } _ { x \to \frac { \pi } { 9 } } \frac { 8 \sin ^ { 5 } { x } + - 5 \sin ^ { 9 } { x } } { 7 }
|
210 |
-
45919.png,"{ \cal L } _ { c l a s s } = \sum _ { i } \lambda _ { i } { \cal G } _ { i } ,"
|
211 |
-
5899.png,\alpha ^ { 2 } X _ { 3 } ( M ^ { 3 } { } _ { \mu } ) X _ { 3 } ( M ^ { 3 \mu } ) = - m _ { Z } ^ { 2 } .
|
212 |
-
TrainData2_14_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
213 |
-
TrainData2_4_sub_20.bmp,a + b + c + d + e
|
214 |
-
63152.png,+ ( U _ { 2 } ^ { ( 1 ) } U _ { 1 } ^ { ( 2 ) } ) ^ { - 1 } d y _ { 5 } ^ { 2 } + ( U _ { 2 } ^ { ( 1 ) } U _ { 2 } ^ { ( 2 ) } ) ^ { - 1 } d y _ { 6 } ^ { 2 } + d x ^ { \alpha } d x ^ { \alpha } ]
|
215 |
-
TrainData2_6_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
216 |
-
27441.png,f _ { e + f + g + h } ^ { ( 2 ) } = \frac { g _ { 1 } ^ { 2 } } { 8 \pi ^ { 2 } } \frac { g _ { 2 } ^ { 2 } } { 8 \pi ^ { 2 } } \int _ { \lambda _ { 1 } ^ { 2 } } ^ { 1 } \frac { d \alpha _ { 1 } } { \alpha _ { 1 } } \int _ { \lambda _ { 1 } ^ { 2 } / \alpha _ { 1 } } ^ { 1 } \frac { d \beta _ { 1 } } { \beta _ { 1 } } \int _ { \lambda _ { 2 } ^ { 2 } } ^ { 1 } \frac { d \alpha _ { 2 } } { \alpha _ { 2 } } \int _ { \lambda _ { 2 } ^ { 2 } / \alpha _ { 2 } } ^ { 1 } \frac { d \beta _ { 2 } } { \beta _ { 2 } } .
|
217 |
-
51227.png,\sim ~ \frac { \Gamma ( \frac { 1 } { 2 } s - \frac { 1 } { 8 } Q ^ { 2 } ) \Gamma ( \frac { 1 } { 2 } t ) } { \Gamma ( \frac { 1 } { 2 } s + \frac { 1 } { 2 } t - \frac { 1 } { 8 } Q ^ { 2 } ) }
|
218 |
-
8e135b45-80ab-4647-8f78-fb8808ceb573.jpg,\operatorname* { l i m } _ { s \to 3 } \frac { 9 } { s - 3 - 2 }
|
219 |
-
TrainData2_9_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
220 |
-
ca0b226f-79ff-41fd-b048-bcc0bfccd734.jpg,\operatorname* { l i m } _ { h \to 3 } h \sin { h }
|
221 |
-
ad41a8df-8b37-4cf9-8fae-d09f73d41fd8.jpg,\operatorname* { l i m } _ { x \to \pi } \frac { - 3 \cos { x } } { 2 x + - 2 \pi }
|
222 |
-
TrainData2_4_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
223 |
-
MfrDB2748.bmp,"g ( 2 , 3 , 4 ) = 3 4 ^ { - 3 }"
|
224 |
-
9132de64-6e26-4685-bb33-8026d713c6d8.jpg,\operatorname* { l i m } _ { y \to \infty } \frac { 1 4 \ln { y } \frac { 6 } { y } } { \frac { 5 } { 5 \sqrt { x } } } \frac { 2 \sqrt { x } } { 8 \sqrt { x } }
|
225 |
-
01c8174f-9daa-43c1-b29f-68b0e830c5b6.jpg,\operatorname* { l i m } _ { u \to 8 ^ { - } } \frac { u \left( u - 2 \right) } { \left| u \right| }
|
226 |
-
TrainData2_6_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
227 |
-
TrainData2_7_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
228 |
-
76373.png,\operatorname* { l i m } _ { \tau \rightarrow \infty } \Upsilon = 2 C Q _ { + } P { p } ^ { 2 m } .
|
229 |
-
936c1fe8-eb70-41a7-8527-e2d96f34259c.jpg,\operatorname* { l i m } _ { x \to 8 } \frac { 4 + - 7 x + \ln { x } } { 2 + \sec { \pi } x }
|
230 |
-
2009213-139-103.bmp,\sqrt { S - a }
|
231 |
-
100004.png,"Q = c _ { 0 } , \ \ | \Psi \rangle = - b _ { 0 } | P \rangle _ { M } | I ^ { r } \rangle _ { G } ."
|
232 |
-
b3d0b497-f6f7-43ce-857c-fbad96416113.jpg,\operatorname* { l i m } _ { b \to 2 ^ { + } } \frac { 2 b ^ { 0 } + 0 b ^ { 0 } } { b - 1 }
|
233 |
-
formulaire014-equation018.bmp,5 \sqrt { 5 } + 2 \sqrt { 2 }
|
234 |
-
TrainData2_2_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
235 |
-
TrainData2_7_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
236 |
-
MfrDB2483.bmp,3 ^ { 2 } - 1 = 8
|
237 |
-
TrainData2_8_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
238 |
-
28849.png,"\gamma _ { \theta , 3 } = \mathrm { d i a g } ( I _ { 2 } , \alpha I _ { 1 } )"
|
239 |
-
TrainData2_3_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
240 |
-
formulaire024-equation034.bmp,"( m , n )"
|
241 |
-
formulaire019-equation020.bmp,1 3 3 + 1 4 5 \neq - 8 8
|
242 |
-
TrainData2_3_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
243 |
-
200923-131-207.bmp,\sum B + z
|
244 |
-
TrainData2_5_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
245 |
-
105_edwin.bmp,\frac { b ^ { 2 } c ^ { 2 } - 4 b ^ { 3 } d - 4 a c ^ { 3 } + 1 8 a b c d - 2 7 a ^ { 2 } d ^ { 2 } } { a ^ { 4 } }
|
246 |
-
28209.png,"\begin{array} { c } { \dim H ^ { 1 } ( M , T ) = \dim H ^ { 1 } ( \tilde { M } , T ^ { \star } ) ~ , } \\ { \dim H ^ { 1 } ( M , T ^ { \star } ) = \dim H ^ { 1 } ( \tilde { M } , T ) ~ . } \end{array}"
|
247 |
-
formulaire005-equation055.bmp,( ( 9 8 + 1 5 0 ) + ( 7 6 \div 1 6 ) ) + ( ( 9 7 \div 9 2 ) \times 1 5 1 ) \neq 3 2 6
|
248 |
-
84883.png,"\frac { 1 } { 4 \pi } L _ { C M } = \frac { v g } { 2 k } \left( \sum _ { j = 1 } ^ { k } \vec { V } _ { j } \right) ^ { 2 } - \frac { v } { 2 g k } \left( \sum _ { j = 1 } ^ { k } q _ { j } \right) ^ { 2 } + \frac { b } { k } \left( \sum _ { j = 1 } ^ { k } q _ { j } \right) \left( \sum _ { l = 1 } ^ { k } V _ { l \chi } \right) ,"
|
249 |
-
9609afbd-d112-47ed-8c83-ce0644ceab98.jpg,\ln { \theta } = \frac { \operatorname* { l i m } _ { w \to \pi / 5 ^ { - } } \frac { d } { d w } \sec { w } } { \operatorname* { l i m } _ { w \to \pi / 6 ^ { - } } \frac { d } { d w } - 2 \cos ^ { 8 } { w } }
|
250 |
-
40852.png,\dot { \alpha } _ { n } + i \Omega _ { n } \alpha _ { n } - i \dot { x } \sum _ { m = 1 } ^ { \infty } g _ { m n } \alpha _ { m } = 0
|
251 |
-
22263.png,"p _ { ( i ) , \mu } \equiv i \frac { \partial } { \partial x _ { i } ^ { \mu } } ,"
|
252 |
-
TrainData2_3_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
253 |
-
TrainData2_3_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
254 |
-
TrainData2_2_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
255 |
-
3783.png,{ \Psi } _ { \pm } = \frac { 1 { \pm } { \Gamma } } { 2 } { \cal A } { \otimes } M a t _ { 1 6 } .
|
256 |
-
2009220-1327-112.bmp,[ h ]
|
257 |
-
41462021-5955-4532-aff1-3a1330bf2917.jpg,\operatorname* { l i m } _ { \theta \to \infty } \frac { 4 \cdot 3 \theta ^ { 9 } + - 5 \theta } { 4 \cdot 4 \theta ^ { 9 } }
|
258 |
-
TrainData2_7_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
259 |
-
TrainData2_8_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
260 |
-
31606.png,d _ { 1 } ( A ) / \operatorname* { d e t } ( A ) = : \tilde { d } _ { 0 } ( \sigma ( \log A ) )
|
261 |
-
1fe05969-415b-4a0d-aac1-b35c796e441d.jpg,\operatorname* { l i m } _ { c \to 8 } \frac { 2 + \tan { c } } { \tan ^ { 1 } { c } }
|
262 |
-
TrainData2_4_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
263 |
-
d49a79d0-d11d-4aa6-b6cd-c5db34a3a1e6.jpg,\operatorname* { l i m } _ { g \to 1 } g ^ { 1 } + 7 g ^ { 4 } + 5 g ^ { 6 } + 5 g + 1 0
|
264 |
-
64235.png,"\dot { r } ^ { 2 } + V ( r ) = 0 ; \; \; \; \; \; \; \; \; V ( r ) = ( 1 + 2 E H ) r ^ { 2 } - E ^ { 2 } ,"
|
265 |
-
200923-1556-29.bmp,a
|
266 |
-
43547.png,\gamma ^ { 2 } { \cal L } = \partial _ { z } r \partial _ { \bar { z } } r + \operatorname { t a n h } ^ { 2 } r \partial _ { z } t \partial _ { \bar { z } } t .
|
267 |
-
64080.png,"\delta f = \frac { \partial f } { \partial \Theta _ { 1 } } \delta \Theta _ { 1 } + \frac { \partial f } { \partial \Theta _ { 2 } } \delta \Theta _ { 2 } ,"
|
268 |
-
9334e4f3-6d40-40db-8e37-cdef9ebbebc9.jpg,\operatorname* { l i m } _ { y \to \pi / 2 } \sin ^ { 9 } { y } + \operatorname* { l i m } _ { y \to \pi / 4 } \csc ^ { 6 } { y }
|
269 |
-
TrainData2_5_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
270 |
-
TrainData2_9_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
271 |
-
16269c24-7ef8-48ff-bdb7-593234e224b0.jpg,\operatorname* { l i m } _ { r \to \pi / 2 } \frac { 8 \cos ^ { 5 } { r } + 9 \cos ^ { 2 } { r } } { 2 }
|
272 |
-
MfrDB1272.bmp,\int \cos t d t = \sin t
|
273 |
-
TrainData2_4_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 3 } { 2 } \alpha _ { n } + \beta - 3 \beta
|
274 |
-
43741.png,"g _ { - } ^ { - 1 } ( u ) E _ { j j } ^ { ( n ) } g _ { - } ( u ) = g _ { - } ^ { - 1 } ( u ) \left( \frac { \partial } { \partial u _ { j } ^ { ( n ) } } g _ { - } ( u ) \right) + \left( \frac { \partial } { \partial u _ { j } ^ { ( n ) } } g _ { + } ( u ) \right) g _ { + } ^ { - 1 } ( u ) \, ."
|
275 |
-
TrainData2_5_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
276 |
-
543f1d23-3e24-46be-ba4e-a815f64458ae.jpg,\operatorname* { l i m } _ { w \to 6 } \frac { 3 } { w + 7 } \left( \frac { 4 } { \sqrt { w + 3 } } + - 3 \frac { 4 } { 5 } \right)
|
277 |
-
TrainData2_8_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
278 |
-
75835.png,"l _ { 0 } = { \tilde { l } } _ { 0 } = w _ { 0 } = j _ { 0 } = 0 \; ,"
|
279 |
-
MfrDB1695.bmp,a _ { n } = a _ { 1 } \cdot q ^ { n - 1 }
|
280 |
-
TrainData2_2_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
281 |
-
TrainData2_2_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
282 |
-
6564.png,E x p \left\{ - \frac { 1 } { 2 } t r l n [ ( g s { \bf F } ) ^ { - 1 } S i n ( g s { \bf F } ) ] \right\} = \frac { g ^ { 2 } s ^ { 2 } { \cal F } _ { 2 } } { \Im C o s h ( g s X ) }
|
283 |
-
200924-1331-63.bmp,o _ { \sigma } \frac { e + i } { C }
|
284 |
-
c8522aeb-7611-4d0a-a3ba-dc9fd55563e0.jpg,\operatorname* { l i m } _ { b \to \pi / 3 ^ { - } } \frac { \cos ^ { 9 } { b } \left( 2 b + \left( 8 \pi \right) ^ { 3 } \right) } { 6 }
|
285 |
-
10849.png,\Pi _ { o } ^ { ( 1 ) } = \frac { 7 } { 3 \kappa } \mathrm { s g n } ( \kappa ) .
|
286 |
-
f250e490-fc5f-4dd2-9b8c-5c0b2d32ed71.jpg,\operatorname* { l i m } _ { b \to 6 } \frac { 9 2 b - 2 - 4 } { \left( b - 4 \right) \left( \sqrt { 1 4 b - 7 } + 5 \right) }
|
287 |
-
TrainData2_10_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
288 |
-
45423.png,"\tilde { x } _ { \mu } = x _ { \mu } + \tilde { x } _ { \mu } ^ { ( 1 ) } + ( h i g h e r ~ \phi ^ { \alpha } - t e r m s ) ~ ,"
|
289 |
-
TrainData2_2_sub_20.bmp,a + b + c + d + e
|
290 |
-
200923-1251-19.bmp,x ^ { 2 } + y ^ { 2 } = z ^ { 2 }
|
291 |
-
e760307e-6c83-4772-91b8-789aa74a65d7.jpg,\operatorname* { l i m } _ { s \to 5 } \frac { s - 6 } { \left( s - 6 ^ { 4 } \right) \left( s - 5 \right) }
|
292 |
-
TrainData2_6_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
293 |
-
fbf8e1fb-fbbc-47b2-b25c-2b6d6783c4c7.jpg,\frac { \operatorname* { l i m } _ { u \to 8 } \frac { d } { d u } 9 2 \cos { \left( 2 u \right) } \cos { \left( 3 u \right) } } { \operatorname* { l i m } _ { u \to 1 } \frac { d } { d u } 0 }
|
294 |
-
55340.png,"{ \{ \pi _ { i } , \pi _ { j } \} } _ { D ( \Phi ) } = g G _ { i j } ^ { a } ( x ) I ^ { a } + i g \left( \nabla _ { k } ^ { a b } G _ { i j } ^ { b } ( x ) \right) I ^ { a } \xi _ { k } ( { \cal P } _ { m } \xi _ { m } ) \frac { ( b \kappa + a ) } { \tilde { \beta } ( \omega + \tilde { m } ) } = g G _ { i j } ^ { a } ( q ) I _ { \varphi } ^ { a } ,"
|
295 |
-
TrainData2_8_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
296 |
-
b3529e98-b689-49de-aed1-2e3b08ac394e.jpg,\operatorname* { l i m } _ { u \to - \infty } u ^ { 3 } + - 7 \sqrt { u ^ { 9 } + 2 u ^ { 1 } }
|
297 |
-
TrainData2_5_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
298 |
-
96228.png,C _ { A B } = \left( \mu _ { A B } + \frac { \delta _ { A B } } { | \vec { x } _ { A } | } + \frac { 1 } { | \sum _ { E = 1 } ^ { n + 1 } \vec { x } _ { E } - 2 \pi \vec { \zeta } / l \; | } \right) .
|
299 |
-
7f36a0ee-4749-4371-95ae-2b3143fa4ac2.jpg,\operatorname* { l i m } _ { u \to 2 ^ { + } } \frac { - 4 \tan { u } \tan ^ { 5 } { u } } { \left( 3 + 2 u \cot { u } \right) \tan ^ { 1 } { u } }
|
300 |
-
MfrDB0088.bmp,\frac { \frac { 1 } { 2 } - \frac { 1 } { 3 } + \frac { 1 7 } { 9 } } { 3 2 + 1 }
|
301 |
-
formulaire024-equation038.bmp,z = x + \frac { 1 } { x }
|
302 |
-
TrainData2_7_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
303 |
-
formulaire026-equation037.bmp,q = k _ { i } - k _ { d }
|
304 |
-
b4c17e1d-f45f-4992-b62e-13291c9d01ee.jpg,\operatorname* { l i m } _ { c \to \infty } \frac { 3 + \frac { 5 } { c } } { \frac { \sqrt { c ^ { 3 } + c + 4 } + \sqrt { c ^ { 9 } + - 5 c } } { \sqrt { c ^ { 5 } } } }
|
305 |
-
9a8a038c-caf6-47bb-a00c-cb8707f32a9b.jpg,\operatorname* { l i m } _ { n \to \pi / 2 } \frac { 8 \cos ^ { 2 } { n } + - 3 \sin ^ { 7 } { n } } { 3 }
|
306 |
-
98_caue.bmp,\cos \alpha = \frac { a } { \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } }
|
307 |
-
formulaire016-equation062.bmp,X = - \frac { p } { e }
|
308 |
-
2009212-1031-117.bmp,\sqrt { f }
|
309 |
-
MfrDB3264.bmp,\operatorname* { l i m } _ { x \rightarrow c } f ( x ) = f ( c )
|
310 |
-
a54a06eb-c920-4498-a00e-4fce07338bd1.jpg,= \operatorname* { l i m } _ { h \to 0 } \frac { \sqrt { 2 5 h - 5 } - 1 } { h - 4 } \frac { \sqrt { 6 h - 4 } + 0 } { \sqrt { 0 - 4 } + 8 }
|
311 |
-
TrainData2_8_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
312 |
-
TrainData2_4_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
313 |
-
TrainData2_7_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } a _ { n } + \beta - 3 \beta
|
314 |
-
25207.png,"A _ { n } = \int d x _ { 1 } . . . \int d x _ { n } \int d y _ { 1 } . . . \int d y _ { n } { \frac { \delta ^ { n } S } { \delta \sigma ( x _ { 1 } , y _ { 1 } ) . . . . . \delta \sigma ( x _ { n } , y _ { n } ) } } | _ { \sigma ^ { 0 } } \eta ( x _ { 1 } , y _ { 1 } ) . . . . . \eta ( x _ { n } , y _ { n } )"
|
315 |
-
90550.png,"\{ \hat { X } ^ { \mu } , \hat { X } ^ { \nu } \} ^ { \prime } = - \frac { 1 } { P \cdot ( P + \bar { P } ) } \frac { 1 } { 4 \sqrt { P ^ { 2 } } } ( P ^ { \mu } \bar { P } ^ { \nu } - P ^ { \nu } \bar { P } ^ { \mu } ) \bar { \theta } \theta ."
|
316 |
-
TrainData2_13_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
317 |
-
600fea23-e6d9-4744-80fa-a9715c81ed06.jpg,\operatorname* { l i m } _ { x \to \infty } \frac { 5 } { \sqrt { x ^ { 6 } + 4 r x } + 9 \sqrt { x ^ { 7 } + 3 x } } \frac { \sqrt { x ^ { 2 } + 3 r x } + \sqrt { x ^ { 5 } + 3 x } } { \sqrt { x ^ { 2 } + 7 r x } + \sqrt { x ^ { 7 } + 5 x } }
|
318 |
-
TrainData2_3_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
319 |
-
TrainData2_3_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
320 |
-
formulaire023-equation033.bmp,k _ { 1 } = k _ { 2 }
|
321 |
-
5ab3b6de-5ecf-4d3d-af02-62edf760402c.jpg,\operatorname* { l i m } _ { n \to - \infty } 3 / 9
|
322 |
-
TrainData2_9_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
323 |
-
71167.png,d S ^ { 2 } = g ^ { A B } d x _ { A } d x _ { B } = g ^ { \mu \nu } d x _ { \mu } d x _ { \nu } - ( d x ^ { 5 } ) ^ { 2 }
|
324 |
-
dc8bfca1-13a9-40a7-ad30-1a02e74cd609.jpg,\operatorname* { l i m } _ { v \to \pi / 4 ^ { - } } \frac { \cos ^ { 3 } { v } } { \frac { - 6 } { 8 v + \left( - 2 \pi \right) ^ { 5 } } }
|
325 |
-
TrainData2_5_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
326 |
-
TrainData2_4_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
327 |
-
18299.png,T = T _ { 2 } - \partial _ { z } ^ { 2 } \phi = ( \partial _ { z } \phi ) ^ { 2 } - \partial _ { z } \psi \psi - \partial _ { z } ^ { 2 } \phi .
|
328 |
-
formulaire014-equation068.bmp,- \frac { 1 0 1 } { 1 0 0 }
|
329 |
-
MfrDB1623.bmp,( 2 - a ) ^ { ( b + a ) }
|
330 |
-
2009213-137-80.bmp,e ^ { \int x ^ { 2 } d x }
|
331 |
-
70992.png,\mathcal { L } = \bar { \Psi } ( i \gamma ^ { \mu } D _ { \mu } - M ) \Psi
|
332 |
-
ec3997e9-9ca1-4703-b0ba-3ced1a1fc8de.jpg,\operatorname* { l i m } _ { x \to 2 ^ { - } } \frac { x } { \ln { x } }
|
333 |
-
TrainData2_6_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
334 |
-
92966.png,"[ A ( f ) , \varphi ( g ) ] = 0 \quad \quad \mathrm { i f } \quad ( x - y ) ^ { 2 } < 0 \quad \forall ( x , y ) \in ( \mathrm { s u p p } f \times \mathrm { s u p p } g ) ."
|
335 |
-
09d41eb9-4dc3-42ec-b58a-ce186d109edd.jpg,2 / 2 \operatorname* { l i m } _ { s \to \infty } \frac { s \sin { 3 / s } } { 7 }
|
336 |
-
TrainData2_4_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
337 |
-
77971.png,"e _ { 0 } \ q ^ { \mu } \Gamma _ { \mu } ^ { ( 3 ) } ( p , P ; q , Q ) - \sigma Q \ 2 M \Gamma ^ { ( 4 ) } ( p , P ; q , Q , k , k ^ { \prime } ) = e _ { 0 } ^ { 2 } \left[ \frac { 1 } { G ^ { ( 2 ) } ( p ^ { \prime } , P ^ { \prime } ) } - \frac { 1 } { G ^ { ( 2 ) } ( p , P ) } \right] \ ."
|
338 |
-
TrainData2_9_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
339 |
-
formulaire005-equation006.bmp,e ^ { X } e ^ { Y }
|
340 |
-
formulaire001-equation001.bmp,\phi ( x )
|
341 |
-
formulaire037-equation012.bmp,"a _ { i , i }"
|
342 |
-
369734bd-b138-4e99-8e2b-7dc0f904d23b.jpg,\operatorname* { l i m } _ { v \to 0 ^ { + } } \frac { - \sec { v } \cos ^ { 3 } { v } } { \sec ^ { 2 } { v } + \left( 8 v \tan { v } + 1 \right) \tan ^ { 3 } { v } }
|
343 |
-
TrainData2_8_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
344 |
-
TrainData2_2_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
345 |
-
TrainData2_7_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
346 |
-
21161.png,"\langle \phi _ { a } ^ { I } ( x ) \phi _ { b J } ^ { \dagger } ( y ) \rangle _ { _ { ( 0 ) } } = \frac { \delta _ { a b } } { ( 2 \pi ) ^ { 2 } } \frac { \delta _ { J } ^ { I } } { ( x - y ) ^ { 2 } } \; ,"
|
347 |
-
formulaire017-equation041.bmp,\frac { a } { b } + \frac { - a } { b } = \frac { 0 } { b ^ { 2 } }
|
348 |
-
200923-1253-48.bmp,\sin ( \frac { \pi } { 3 } ) = \frac { 1 } { 2 }
|
349 |
-
formulaire037-equation034.bmp,\beta = \frac { u } { c }
|
350 |
-
55456.png,\beta ( \tau ) = - 2 v b ^ { \prime } \Lambda ( \partial _ { a } \tau ) _ { \Lambda } = 2 v { \frac { b ^ { \prime } } { b } } \beta ^ { ( a ) } ( \tau ) .
|
351 |
-
TrainData2_6_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
352 |
-
5682.png,"{ \bf J } \cdot \widehat { \bf p } \, \, \Theta _ { [ j ] } \, \left[ \phi _ { _ { L , R } } ^ { h } ( { p } ^ { \mu } ) \right] ^ { \ast } \, = \, - \, h \, \Theta _ { [ j ] } \, \left[ \phi _ { _ { L , R } } ^ { h } ( { p } ^ { \mu } ) \right] ^ { \ast } \quad ."
|
353 |
-
bff7892a-bc89-4a03-9ae5-baf47263d027.jpg,\operatorname* { l i m } _ { x \to \pi / 3 ^ { - } } \frac { \csc ^ { 4 } { x } } { \frac { 9 } { 2 x + \left( 4 \pi \right) ^ { 5 } } }
|
354 |
-
45369.png,"\left( \partial _ { 0 } ^ { 2 } - \partial _ { 3 } ^ { 2 } + M _ { n } ^ { 2 } \right) a _ { n } ( x ^ { 0 } , x ^ { 3 } ) = 0 ."
|
355 |
-
21361.png,"\overline { { \delta } } \psi _ { k } ( x ) = \delta \psi _ { k } ( x ) + \delta x ^ { \alpha } \ \partial _ { \alpha } \psi _ { k } ( x ) \, ."
|
356 |
-
29250.png,"{ \cal P } _ { + } \kappa = 0 \ , \qquad { \cal P } _ { - } \theta \equiv \theta ^ { - } = 0"
|
357 |
-
2009210-947-54.bmp,\log _ { 2 } ( 2 ^ { 5 } ) = 5
|
358 |
-
e7a9f9c9-c1b1-4698-aa93-43c11aa3c698.jpg,\operatorname* { l i m } _ { v \to \pi / 6 } \frac { 7 \tan ^ { 5 } { v } + 9 \cos ^ { 6 } { v } } { 2 }
|
359 |
-
b6129bcf-7ae6-4275-96e4-551dcdb36e78.jpg,\operatorname* { l i m } _ { u \to \infty } 6 u ^ { 5 } + - 6 u ^ { 2 } + u - 7 2
|
360 |
-
TrainData2_6_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
361 |
-
8294bf04-52b8-413d-8138-ea33d7cfe5ed.jpg,\operatorname* { l i m } _ { t \to 6 } \frac { 2 + \tan { t } } { 4 + - 4 \cos ^ { 8 } { t } }
|
362 |
-
MfrDB2057.bmp,f ( x ) = x ^ { n }
|
363 |
-
18ea187c-9a59-48f7-a539-330b96a36acc.jpg,\operatorname* { l i m } _ { \theta \to 4 } \frac { 9 + - 8 \left( 4 + - 8 \sec ^ { 6 } { \theta } \right) } { \csc { \theta } }
|
364 |
-
TrainData2_9_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
365 |
-
47929.png,\pi ^ { a } = { \frac { \partial { \cal L } _ { \sigma } } { \partial \partial _ { + } \phi ^ { a } } } = c \partial _ { + } \phi ^ { a } + s \partial _ { - } \phi ^ { a } .
|
366 |
-
a59a340f-5842-4686-b55a-95281f45e6be.jpg,\operatorname* { l i m } _ { \theta \to 4 } 5 + \left( 4 \theta \right) ^ { 8 / \theta }
|
367 |
-
ce16fdad-e5c4-4755-b498-6768a4026a41.jpg,\operatorname* { l i m } _ { s \to 5 ^ { + } } \frac { \frac { 6 } { s } } { - 8 \csc { s } \sin { s } }
|
368 |
-
e8787231-65ad-4b13-bdff-7414ef1822a2.jpg,\operatorname* { l i m } _ { w \to \infty } \sin ^ { w ^ { 5 } } \frac { 5 } { w ^ { 2 } }
|
369 |
-
52716.png,"\mathrm { D t r } \ G ^ { - 1 / 2 } = \operatorname* { l i m } _ { N \rightarrow \infty } \frac { 1 } { \log N } \sum _ { j = 0 } ^ { N - 1 } \left[ a ( j + c ) ^ { 2 } + q \right] ^ { - 1 / 2 } = \frac { 1 } { \sqrt { a } } ,"
|
370 |
-
15868.png,\mathcal { F } _ { \tau _ { B } } \cap \{ \Delta = 0 \} = \emptyset .
|
371 |
-
304384c6-5590-47fe-861b-02da8420b108.jpg,\operatorname* { l i m } _ { w \to \pi / 3 } \cos ^ { 2 } { w } + \operatorname* { l i m } _ { w \to \pi / 9 } \cos ^ { 9 } { w }
|
372 |
-
b8fde25b-0276-4170-90a6-1cb1848c8c16.jpg,\operatorname* { l i m } _ { b \to 0 } \frac { b \cos { b } } { 2 + - 9 \sin { b } }
|
373 |
-
TrainData2_25_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
374 |
-
200922-1017-80.bmp,e ^ { \int x ^ { 2 } d x }
|
375 |
-
102258.png,"\pi _ { \mathrm { N S } } ( x ) = \pi _ { S _ { \mathrm { N S } } } ( x _ { \mathrm { N S } } ) , \qquad \pi _ { \mathrm { R } } ( x ) = \pi _ { S _ { \mathrm { R } } } ( x _ { R } ) ."
|
376 |
-
TrainData2_9_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
377 |
-
MfrDB2078.bmp,\frac { 2 ^ { 5 } } { 3 + 1 }
|
378 |
-
49309.png,"Z _ { N } ( \tau ) = Z _ { N } ^ { N S } ( \tau ) + \tilde { Z } _ { N } ^ { N S } ( \tau ) + Z _ { N } ^ { R } ( \tau ) + \tilde { Z } _ { N } ^ { R } ( \tau ) ,"
|
379 |
-
de169c4a-dab2-4e45-ad2b-e5624a63fdf3.jpg,\operatorname* { l i m } _ { v \to 8 } \frac { \sin { \left( 8 v \right) } } { v \tan { \left( 7 v \right) } }
|
380 |
-
formulaire011-equation065.bmp,3 - ( ( 3 7 \div 1 5 ) - ( 1 8 9 - 1 1 7 ) ) \geq 7 2
|
381 |
-
formulaire004-equation009.bmp,\sqrt { 5 + 2 \sqrt { 6 } }
|
382 |
-
71304.png,"\Sigma _ { L } ^ { \beta \alpha } \equiv - k ^ { 2 } g ^ { \beta \alpha } \, + \, i \theta \epsilon ^ { \beta \rho \alpha } k _ { \rho } \, ,"
|
383 |
-
TrainData2_5_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
384 |
-
100302.png,"{ \cal L } _ { g f } = { \frac { 1 } { 2 \alpha } } ( \partial _ { \mu } A ^ { \mu } ) ^ { 2 } ,"
|
385 |
-
TrainData2_26_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
386 |
-
95454.png,"L ^ { 2 } ( { \cal A } _ { \gamma } \times { \cal F } _ { \gamma } ) = \bigoplus _ { \rho _ { e } \in \mathrm { R e p } ( G ) , \; \rho _ { v } \in S } \quad \bigotimes _ { v \in V } \bigl ( \bigotimes _ { t ( e ) = v } \rho _ { e } ^ { * } \otimes \bigotimes _ { s ( e ) = v } \rho _ { e } \otimes \rho _ { v } \bigr )"
|
387 |
-
TrainData2_9_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
388 |
-
20974.png,"S _ { T } = - { \frac { 1 } { 6 k _ { 1 1 } ^ { 2 } } } \int _ { M _ { 1 1 } } C \wedge G ^ { 2 } + { \frac { T _ { 3 } } { 1 2 ( 2 \pi ) ^ { 4 } } } \int _ { M _ { 1 1 } } C \wedge X _ { 8 } ,"
|
389 |
-
dad46ace-6384-4ece-9c43-fc4ff7cd86fc.jpg,\operatorname* { l i m } _ { w \to \infty } \frac { \log _ { 2 1 } { w } } { \log _ { 1 6 } { 1 } } \frac { \log _ { 4 2 } { 3 } } { \log _ { 4 2 } { w } }
|
390 |
-
TrainData2_9_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
391 |
-
TrainData2_26_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
392 |
-
28141.png,"\{ f , g \} ^ { \prime } = { \frac { f \star g - g \star f } { \kappa } }"
|
393 |
-
TrainData2_5_sub_20.bmp,a + b + c + d + e
|
394 |
-
MfrDB2902.bmp,v _ { c } = v _ { c - 1 } ( \frac { r - c } { c } )
|
395 |
-
formulaire023-equation069.bmp,f ( a i + b j + c k ) = \frac { 1 + i + j + k } { 2 } ( a i + b j + c k ) \frac { 1 - i - j - k } { 2 }
|
396 |
-
200923-131-27.bmp,A ^ { C + R }
|
397 |
-
200926-1617-234.bmp,j
|
398 |
-
8573a58a-e7c5-40cf-9586-72d56cb61330.jpg,\operatorname* { l i m } _ { x \to 3 } \frac { 9 } { x + 9 } \left( \frac { 3 } { \sqrt { x + 7 } } + - 6 \frac { 3 } { 7 } \right)
|
399 |
-
4dc4e722-c190-4182-a886-b8dcd7f39730.jpg,\operatorname* { l i m } _ { s \to \infty } \frac { 5 s } { s + \left| s \right| }
|
400 |
-
fd7c047b-e4ff-48c9-81ae-b742a5e02c75.jpg,\operatorname* { l i m } _ { t \to 1 ^ { + } } \frac { \ln { t } } { \csc { t } }
|
401 |
-
f4db2914-c2cd-40b9-a306-e0e1384d90c6.jpg,\operatorname* { l i m } _ { x \to \infty } \frac { \log _ { 1 2 } { x } \log _ { 1 3 } { 1 } } { \log _ { 4 1 } { 2 } \log _ { 3 1 } { x } }
|
402 |
-
0bbf2237-9342-44cf-9dab-2d2f1b2c3dd7.jpg,\operatorname* { l i m } _ { n \to \pi / 2 } \frac { 6 \sin + - 6 \sec { n } } { 4 n + - 9 \pi / 2 }
|
403 |
-
6391e54f-fc42-4e0a-9bc7-1495684c84ce.jpg,\operatorname* { l i m } _ { w \to \infty } \sqrt { w ^ { 3 } + w } + - 4 \sqrt { w ^ { 0 } + - 7 w }
|
404 |
-
6e578bde-f94e-410a-82bb-88c28670d2f0.jpg,\operatorname* { l i m } _ { t \to 2 ^ { + } } \frac { \frac { d } { d t } \left( 3 + - 2 \cos ^ { 2 } { t } \right) } { \frac { d } { d t } \left( \tan { t } + t \cos ^ { 1 } { t } \right) }
|
405 |
-
TrainData2_5_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
406 |
-
46184.png,( \partial _ { t } + \partial _ { x } v ) ( \partial _ { t } + v \partial _ { x } ) \phi = \partial _ { x } ^ { 2 } \phi - \frac { 1 } { k _ { 0 } ^ { 2 } } \partial _ { x } ^ { 4 } \phi .
|
407 |
-
TrainData2_7_sub_20.bmp,a + b + c + d + e
|
408 |
-
60289.png,"y ^ { 2 } = \Pi _ { i = 1 } ^ { 6 } ( x - e _ { i } ) = P _ { 6 } ( x , e _ { i } ) , \; \; e _ { i } \neq e _ { j } , \; f o r \; i \neq j ,"
|
409 |
-
24005.png,+ \sum _ { i } ^ { } \left[ \left| \left( \partial _ { \mu } - i g _ { m } { \bf q } _ { i } { \bf B } _ { \mu } \right) \Phi _ { i } \right| ^ { 2 } + \lambda \left( | \Phi _ { i } | ^ { 2 } - \eta ^ { 2 } \right) ^ { 2 } \right] - \frac { i \Theta g _ { m } ^ { 2 } } { 1 6 \pi ^ { 2 } } \left( { \bf F } _ { \mu \nu } + { \bf F } _ { \mu \nu } ^ { ( \alpha ) } \right) \left( \tilde { \bf F } _ { \mu \nu } + \tilde { \bf F } _ { \mu \nu } ^ { ( \alpha ) } \right) \Biggr ] \Biggr \} .
|
410 |
-
TrainData2_5_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
411 |
-
05f4ef02-d9ce-4d10-b2f1-abf0b181492c.jpg,\ln { w } = \frac { \operatorname* { l i m } _ { n \to \frac { \pi } { 9 } ^ { - } } \frac { d } { d n } \csc { n } } { \operatorname* { l i m } _ { n \to \frac { \pi } { 9 } ^ { - } } \frac { d } { d n } - 2 \csc ^ { 6 } { n } }
|
412 |
-
92_lucelia.bmp,y = \frac { x \prime \sin \theta + y \prime \sin ( w \prime + \theta ) } { \sin w }
|
413 |
-
43300f50-ec7b-4063-adb4-70be5d69c301.jpg,\operatorname* { l i m } _ { h \to 1 } \frac { 3 \cos { \left( 2 h \right) } } { 7 h \sin { \left( 6 h \right) } }
|
414 |
-
TrainData2_26_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
415 |
-
49002.png,X _ { \bar { w } m n } = < T _ { \bar { w } m } \phi _ { n } > = < \bar { B } _ { \bar { w } m } \phi _ { n } > = < \bar { B } _ { \bar { w } } ( E ^ { - 1 } ) _ { m n } > = < T _ { \bar { w } } ( E ^ { - 1 } ) _ { m n } >
|
416 |
-
200923-1254-366.bmp,H
|
417 |
-
11553.png,"d \omega ^ { k _ { s } , \alpha _ { s } } = - \frac { 1 } { 2 } C _ { i _ { p } , \beta _ { p } \; j _ { q } , \gamma _ { q } } ^ { k _ { s } , \alpha _ { s } } \; \omega ^ { i _ { p } , \beta _ { p } } \wedge \omega ^ { j _ { q } , \gamma _ { q } } \quad ,"
|
418 |
-
TrainData2_3_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
419 |
-
TrainData2_6_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
420 |
-
a0413f29-5bbe-4cef-ad3a-4b3c36c060fa.jpg,\operatorname* { l i m } _ { x \to - 6 } \left( x ^ { 4 } + - 9 x + 7 \right) \left( x ^ { 1 } + 3 x + 8 \right)
|
421 |
-
TrainData2_9_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
422 |
-
e8a801c8-0407-4e54-ad55-73f268c3a8b1.jpg,\operatorname* { l i m } _ { x \to \pi / 6 } \frac { 7 \cos ^ { 2 } { x } + - 4 \sin ^ { 4 } { x } } { 4 }
|
423 |
-
95346.png,T _ { o r b } = e ^ { \frac { 2 \pi \mathrm { i } } { n } ( T ^ { 1 2 } - T ^ { 3 4 } ) } .
|
424 |
-
f2869744-78dc-4a27-ae90-c4f5c2135c8b.jpg,\operatorname* { l i m } _ { n \to \frac { \pi } { 6 } } \frac { 2 \tan ^ { 6 } { n } + 2 \tan ^ { 6 } { n } } { 6 }
|
425 |
-
formulaire029-equation049.bmp,v ( x )
|
426 |
-
109576bd-f186-4bf9-bc3d-685bd2801246.jpg,\operatorname* { l i m } _ { h \to 0 } \frac { \ln { h } + 2 - 2 } { \ln { h } \left( \ln { h } + 0 \right) }
|
427 |
-
TrainData2_9_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
428 |
-
TrainData2_26_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
429 |
-
TrainData2_2_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
430 |
-
TrainData2_4_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
431 |
-
51595.png,\exp ( - i \gamma _ { b a } ) = { \frac { { \cal W } _ { b } - { \cal W } _ { a } } { | { \cal W } _ { b } - { \cal W } _ { a } | } } ~ .
|
432 |
-
formulaire024-equation058.bmp,a = \alpha + i \beta
|
433 |
-
200923-1556-137.bmp,- \sum m - T
|
434 |
-
63168.png,"{ \cal L } = { \frac { 1 } { 2 } } ( { \vec { l } } \, ^ { 2 } - c ^ { 2 } { \vec { w } } ^ { 2 } ) ,"
|
435 |
-
53e6138c-127f-4e4f-99f4-14a3eb348080.jpg,\operatorname* { l i m } _ { h \to \infty } \frac { - 2 \left( \sec { 3 / h } + - 5 8 / h \cos { 9 / h } \right) } { - 3 h ^ { - 9 } }
|
436 |
-
72110.png,{ S _ { a } S _ { b } } \rightarrow S _ { a } S _ { b } - { \frac { 1 } { s t + s u + t u } } .
|
437 |
-
TrainData2_4_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
438 |
-
7c0e934a-cf7a-43fe-99b9-7e7e3bf11231.jpg,\ln { p } = \frac { \operatorname* { l i m } _ { r \to \pi / 4 ^ { - } } \frac { d } { d r } \cos { r } } { \operatorname* { l i m } _ { r \to \pi / 3 ^ { - } } \frac { d } { d r } - 2 \tan ^ { 4 } { r } }
|
439 |
-
TrainData2_25_sub_9.bmp,\sqrt { b ^ { 2 } - 4 a c }
|
440 |
-
ac178236-4f84-4c4c-ba50-c0a2ed04f9f4.jpg,\operatorname* { l i m } _ { \theta \to - \infty } \frac { \left| \theta \right| } { 2 \theta + 2 }
|
441 |
-
44570.png,\begin{array} { c } { ( f ^ { - } ) ^ { 2 } ~ = ~ 0 } \\ { ( f ^ { + } ) ^ { 2 } ~ = ~ 0 } \end{array}
|
442 |
-
49779.png,"\phi _ { n } ( x _ { \mu } , x _ { 4 } ) = a _ { n } e ^ { i \frac { n } { R } x _ { 4 } } \varphi ( x _ { \mu } ) ."
|
443 |
-
TrainData2_5_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
444 |
-
MfrDB0216.bmp,1 + 1
|
445 |
-
TrainData2_2_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
446 |
-
MfrDB2937.bmp,( 1 + x ) ^ { r } \geq 1 + r x
|
447 |
-
TrainData1_8_sub_19.bmp,x = \frac { - b \pm \sqrt { b ^ { 2 } - 4 a c } } { 2 a }
|
448 |
-
formulaire008-equation046.bmp,b = \frac { 4 } { 3 } \pi \frac { ( 2 r _ { 0 } ) ^ { 3 } } { 2 }
|
449 |
-
TrainData2_7_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
450 |
-
200923-1254-287.bmp,[ P ]
|
451 |
-
96464.png,"\partial _ { i } V _ { j } = C _ { i j } ^ { \bar { l } } V _ { \bar { l } } + A _ { i j } ^ { k } V _ { k } + ( 3 , 0 )"
|
452 |
-
TrainData2_6_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
453 |
-
TrainData2_5_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
454 |
-
200923-1556-126.bmp,\sum s - \pi H
|
455 |
-
TrainData2_6_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
456 |
-
MfrDB1487.bmp,s = s _ { 0 } t + \frac { 1 } { 2 } a t ^ { 2 }
|
457 |
-
formulaire033-equation019.bmp,"( x _ { 0 } , \pm y _ { 0 } )"
|
458 |
-
200925-1126-183.bmp,3 4 . 8
|
459 |
-
85229.png,- \int _ { V } \left( \frac { 2 } { K } T _ { [ e ] } ^ { \mu \nu } * \frac { \partial K } { \partial x ^ { \mu } } \right) d V = \int _ { V } \left( \frac { \partial T _ { [ e ] } ^ { \mu \nu } } { \partial x ^ { \mu } } \right) d V = 0
|
460 |
-
200923-1251-119.bmp,d
|
461 |
-
200923-1253-179.bmp,t X
|
462 |
-
TrainData2_6_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
463 |
-
35443.png,"[ a ( \vec { k } \, ) , a ^ { \dagger } ( \vec { \ell } \, ) ] = ( 2 \pi ) ^ { 3 } 2 \omega ( \vec { k } \, ) \delta ^ { ( 3 ) } \left( \vec { k } - \vec { \ell } \, \right) = [ b ( \vec { k } \, ) , b ^ { \dagger } ( \vec { \ell } \, ) ] \ ."
|
464 |
-
TrainData2_3_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
465 |
-
200582f0-09ba-4f6b-807a-1abfac4d81a6.jpg,\ln { w } = \frac { \operatorname* { l i m } _ { v \to \frac { \pi } { 5 } ^ { - } } - 7 \cos ^ { 9 } { v } } { \operatorname* { l i m } _ { v \to \frac { \pi } { 7 } ^ { - } } 2 \csc ^ { 3 } { v } \csc { v } }
|
466 |
-
KME2G3_9_sub_81.bmp,\pi \int _ { c } ^ { d } \{ g ( y ) \} ^ { 2 } d y
|
467 |
-
200923-1553-45.bmp,9
|
468 |
-
97694.png,[ \psi ] ~ [ \psi ] ~ = ~ [ \phi ] ~ + ~ \cdots
|
469 |
-
64834.png,"x _ { A } ^ { \alpha \beta } = x ^ { \alpha \beta } - i \left( \theta ^ { 1 [ \alpha } \theta ^ { 4 \beta ] } + \theta ^ { 2 [ \alpha } \theta ^ { 3 \beta ] } \right) \, , \qquad \theta ^ { I \alpha } = \theta ^ { i \alpha } u _ { i } ^ { I }"
|
470 |
-
2021.png,"\alpha = \frac { 1 } { 1 - ( r _ { I } / r _ { H } ) ^ { 2 } } ,"
|
471 |
-
95366.png,"x ^ { * } = x , \ \ \ \ \ p ^ { * } = p , \ \ \ \ \ K ^ { * } = K , \ \ \ \ \ \Lambda ^ { * } = \Lambda ,"
|
472 |
-
99729.png,"g ^ { m } \; ( x ) \left( m = \pm 1 , \pm 2 , \ldots \right) ."
|
473 |
-
0ab6ee08-2249-4205-9ed7-59f48e8780e2.jpg,\operatorname* { l i m } _ { p \to \pi / 2 ^ { - } } 5 / 5 \sin ^ { 3 } { p } \left( 8 p + \left( - 3 \pi \right) ^ { 3 } \right)
|
474 |
-
MfrDB1881.bmp,\operatorname* { l i m } _ { n \rightarrow \infty } n ^ { \frac { 1 } { n } } = 1
|
475 |
-
MfrDB3401.bmp,a _ { 1 } + a _ { 2 }
|
476 |
-
formulaire035-equation057.bmp,"k _ { 1 } , k _ { 2 } , k _ { 3 } , k _ { 4 }"
|
477 |
-
59043.png,"h _ { 1 } = 0 , h _ { 3 } = h _ { \overline { { 3 } } } = \frac { 2 } { 9 } , h _ { 8 } = \frac { 1 } { 2 } , h _ { 6 } = h _ { \overline { { 6 } } } = \frac { 5 } { 9 } , h _ { 1 0 } = h _ { \overline { { 1 0 } } } = 1 , h _ { 1 5 } = h _ { \overline { { 1 5 } } } = \frac { 8 } { 9 } \ \ ."
|
478 |
-
TrainData2_6_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
479 |
-
TrainData2_9_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
480 |
-
200923-1553-190.bmp,- M
|
481 |
-
200926-1550-63.bmp,L + V
|
482 |
-
MfrDB3282.bmp,\operatorname* { l i m } _ { n \rightarrow \infty } \frac { 1 } { n ^ { p } } = 0
|
483 |
-
99112.png,"| j , m \rangle , \ J _ { + } | j , m \rangle , \ . . . , \ J _ { + } ^ { p } | j , m \rangle \ \ \ \ \ \mathrm { ~ c o n } \ \ \ ( p > 0 ) \in Z"
|
484 |
-
46931.png,{ \cal F } = - 2 i \ln \frac { q Q ^ { \prime } } { Q ( Q + q ) } .
|
485 |
-
TrainData2_15_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
486 |
-
35fb2265-783d-414f-92c3-f146826301bf.jpg,\operatorname* { l i m } _ { s \to 6 } s - 2
|
487 |
-
b704292c-243e-4344-978f-52849f0361ea.jpg,\operatorname* { l i m } _ { w \to \frac { \pi } { 3 } } \cos ^ { 3 } { w } + \operatorname* { l i m } _ { w \to \frac { \pi } { 2 } } \sec ^ { 2 } { w }
|
488 |
-
TrainData2_26_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
489 |
-
TrainData2_2_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
490 |
-
MfrDB1323.bmp,\sqrt { x ^ { 2 } } = | x |
|
491 |
-
TrainData2_7_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
492 |
-
55731.png,"\phi ( x ) = \sum _ { n = 0 } ^ { \infty } \frac { 1 } { n ! } \sum _ { j _ { i } } \int \sum _ { j } d ^ { 4 n } x _ { i } f ^ { ( n ) } ( \{ x - x _ { i } \} ) : \prod _ { i = 1 } ^ { n } \phi _ { j _ { i } } ^ { i n } ( x _ { i } ) : ,"
|
493 |
-
89587.png,"F ( \bar { y } , z ) = \sum _ { s } \oint \frac { \bar { d u } } { 2 \pi i } \frac { 1 } { ( \bar { y } - \bar { u } ) ^ { 2 } } \oint \frac { d v } { 2 \pi i } \frac { 1 } { ( v - z ) } \frac { \xi _ { s } ^ { \prime } ( v ) } { \xi _ { s } ( v ) ( 1 - \bar { \xi } _ { s } ( u ) \xi _ { s } ( v ) ) }"
|
494 |
-
TrainData2_2_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
495 |
-
f106eecb-eb8f-4eb1-baa3-ecc09fedb468.jpg,\operatorname* { l i m } _ { w \to 8 ^ { - } } \frac { \sin { w } } { \tan ^ { 8 } { w } - 8 }
|
496 |
-
200926-1617-106.bmp,\frac { k + i n } { \gamma - u }
|
497 |
-
53568c42-50b9-40c9-a466-8cadad9792ec.jpg,e ^ { \operatorname* { l i m } _ { w \to 4 ^ { + } } \frac { \frac { d } { d w } \ln { \left( 8 + w \right) } } { \frac { d } { d w } \sin { w } } }
|
498 |
-
70352a39-b35f-4481-93e7-4269a648a40c.jpg,2 \operatorname* { l i m } _ { s \to 2 } \frac { \sin { \left( 2 s \right) } } { 2 s }
|
499 |
-
MfrDB1720.bmp,t = \frac { t _ { 0 } } { \sqrt { 1 - \frac { v ^ { 2 } } { c ^ { 2 } } } }
|
500 |
-
82114.png,\langle 0 | \hat { \psi } _ { n } \hat { \psi } _ { n } ^ { + } | 0 \rangle = - \langle 0 | \hat { \psi } _ { n } ^ { + }
|
501 |
-
14289.png,"L ( \lambda ) | a , \theta > = | a , \theta + \lambda >"
|
502 |
-
e3316d45-cb9f-4755-b521-efa620eb5caa.jpg,\operatorname* { l i m } _ { x \to 2 } \frac { \frac { d } { d x } \sin { \left( 5 x \right) } } { \frac { d } { d x } \tan { \left( x \right) } }
|
503 |
-
TrainData2_2_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
504 |
-
TrainData2_26_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
505 |
-
93882.png,"\begin{array} { l } { x ^ { i } d x ^ { j } = q \hat { R } _ { k l } ^ { i j } d x ^ { k } x ^ { l } ~ , } \\ { { \cal P } _ { S } ( d { \bf x } \wedge d { \bf x } ) = 0 ~ , ~ ~ ~ ~ ~ { \cal P } _ { 1 } ( d { \bf x } \wedge d { \bf x } ) = 0 ~ , } \\ { \partial ^ { i } x ^ { j } = ( C ^ { - 1 } ) ^ { i j } + q ( \hat { \cal R } ^ { - 1 } ) _ { k l } ^ { i j } x ^ { k } \partial ^ { l } ~ , } \\ { \left. { \cal P } _ { A } \right. _ { k l } ^ { i j } \partial _ { j } \partial _ { i } = 0 ~ , } \\ { \partial ^ { i } d x ^ { j } = q ^ { - 1 } \hat { \cal R } _ { k l } ^ { i j } d x ^ { k } \partial ^ { l } ~ , } \\ { \partial ^ { i } d = q ^ { - 2 } d \partial ^ { i } - ( q ^ { - 2 } - q ^ { 3 } ) \frac { 1 - q ^ { 2 } } { ( 1 - q ^ { 5 } ) ( 1 + q ^ { - 3 } ) } d x ^ { i } C _ { j k } \partial ^ { j } \partial ^ { k } ~ . } \end{array}"
|
506 |
-
TrainData2_7_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
507 |
-
200922-949-235.bmp,\sum _ { P = p } ^ { \sum 1 } k
|
508 |
-
f58cc8da-555a-41db-8cc5-15e4d6648e1c.jpg,\operatorname* { l i m } _ { k \to \pi / 4 } \frac { 4 \cos ^ { 3 } { k } + 5 \cos ^ { 7 } { k } } { 8 }
|
509 |
-
KME1G3_11_sub_22.bmp,\operatorname* { l i m } _ { x \rightarrow \infty } \int _ { 0 } ^ { x } e ^ { - y ^ { 2 } } d y = \frac { \sqrt { \pi } } { 2 }
|
510 |
-
TrainData2_4_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
511 |
-
c341185a-e7d9-47e6-9fef-c1d626de678c.jpg,\operatorname* { l i m } _ { v \to - \infty } \frac { 6 v ^ { 3 } } { 1 \left| v ^ { 4 } \right| }
|
512 |
-
TrainData2_9_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
513 |
-
e27b3ee7-4f9f-42f9-90d5-0be7e096d0ab.jpg,\operatorname* { l i m } _ { x \to 3 ^ { + } } \frac { 6 / x } { - 2 \tan { x } \cot { x } }
|
514 |
-
2220.png,"\alpha _ { 1 2 } \leftrightarrow \alpha _ { 3 4 } , \alpha _ { 1 3 } \leftrightarrow \alpha _ { 2 4 } \qquad \mathrm { a n d } \quad \alpha _ { 2 3 } \leftrightarrow \alpha _ { 2 3 } \, ,"
|
515 |
-
formulaire011-equation058.bmp,e ^ { - x ^ { 2 } }
|
516 |
-
2009212-952-31.bmp,\frac { - b - \sqrt { b ^ { 2 } - 4 a c } } { 2 a }
|
517 |
-
f6f29e59-d062-4b7b-ae9e-7087db95a2d1.jpg,\operatorname* { l i m } _ { z \to \frac { \pi } { 6 } } \sin ^ { 3 } { z } + \operatorname* { l i m } _ { z \to \frac { \pi } { 8 } } \tan ^ { 4 } { z }
|
518 |
-
ac39a097-cbd0-4f38-ba08-bb3d5d2a8ed9.jpg,\operatorname* { l i m } _ { x \to \infty } \frac { \log _ { 3 5 } { x } } { \log _ { 0 } { 0 } } \frac { \log _ { 1 3 } { 3 } } { \log _ { 6 8 } { x } }
|
519 |
-
80129.png,L = \bar { \psi } i \gamma ^ { \mu } D _ { \mu } \psi - m \bar { \psi } \psi + { \frac { g } { 2 } } ( \bar { \psi } \gamma ^ { \mu } T ^ { a } \psi ) ^ { 2 } .
|
520 |
-
0ed203ea-0ffe-47a8-a897-2ca278bae139.jpg,\operatorname* { l i m } _ { r \to \pi / 2 } \frac { 3 \sin { r } + - 7 \tan { r } } { 2 r + - 2 \pi / 2 }
|
521 |
-
6c6589ef-1f1c-490e-8052-df7ec28019dd.jpg,\operatorname* { l i m } _ { w \to 8 } \frac { \csc { \left( 3 w \right) } } { w \cos { \left( 2 w \right) } }
|
522 |
-
d80ad7dd-5fbe-48f0-89b5-68c161187e93.jpg,\operatorname* { l i m } _ { p \to \pi } \frac { \tan { p } } { p + - 9 \pi }
|
523 |
-
200923-1253-7.bmp,\sum _ { m } f ( m + 3 )
|
524 |
-
58546.png,e ^ { - \Phi } \star H _ { 3 } = - m U \epsilon _ { 7 } + m ^ { - 1 } T _ { i j } ^ { - 1 } \star { \cal D } T _ { j k } \wedge ( \mu ^ { k } { \cal D } \mu ^ { i } ) - { \frac { m ^ { - 2 } } { 2 } } T _ { i k } ^ { - 1 } T _ { j l } ^ { - 1 } \star F ^ { i j } \wedge { \cal D } \mu ^ { k } \wedge { \cal D } \mu ^ { l }
|
525 |
-
TrainData2_8_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
526 |
-
TrainData2_9_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
527 |
-
78f49907-a8e0-4dd4-a538-604efdb77a94.jpg,\operatorname* { l i m } _ { u \to 5 } \frac { \sec { \left( 6 u \right) } } { u \tan { \left( 8 u \right) } }
|
528 |
-
formulaire029-equation054.bmp,h = - r
|
529 |
-
2009213-137-159.bmp,2
|
530 |
-
TrainData2_6_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
531 |
-
32ce98c9-b4e7-450d-844f-d9e2eb5911e4.jpg,\operatorname* { l i m } _ { c \to 5 ^ { + } } \frac { - 2 \sin { c } \sin ^ { 1 } { c } } { \cos ^ { 8 } { c } + \left( 5 c \tan { c } + 2 \right) \cos ^ { 6 } { c } }
|
532 |
-
200923-131-280.bmp,P r
|
533 |
-
TrainData1_7_sub_28.bmp,( z ^ { \frac { n } { 2 } } + y ^ { \frac { n } { 2 } } ) ( z ^ { \frac { n } { 2 } } - y ^ { \frac { n } { 2 } } ) = x
|
534 |
-
formulaire018-equation021.bmp,1 0 ^ { i } r _ { 0 }
|
535 |
-
49228.png,"T [ \xi ] = \int _ { - L / 2 } ^ { L / 2 } d z T _ { + + } \xi ( z ) ~ ~ ,"
|
536 |
-
36793.png,"\{ L _ { 1 } ( u ) , L _ { 2 } ( v ) \} = [ r _ { 1 2 } ( u , v ) , L _ { 1 } ( u ) ] - [ r _ { 2 1 } ( u , v ) , L _ { 2 } ( v ) ] ,"
|
537 |
-
9ff15aad-b84a-47ab-bfd9-f65ac3ba5cc0.jpg,\operatorname* { l i m } _ { k \to \infty } \frac { 6 7 k ^ { 8 } } { 4 1 k ^ { 9 } }
|
538 |
-
36863.png,"D _ { \mu } f = \partial _ { \mu } f - { \frac { i g } { 2 } } d ^ { B C C } ( A _ { \mu } ^ { B } \star f - f \star A _ { \mu } ^ { B } ) = \partial _ { \mu } f - { \frac { i g } { 2 } } d ^ { B C C } \, [ A _ { \mu } ^ { B } , f ] _ { \mathrm { M } }"
|
539 |
-
96961.png,"\mathrm { Y M } ( \rho e ^ { 2 } , { \cal M } ) e ^ { - e ^ { 2 } \rho / 4 }"
|
540 |
-
caec0a42-7c1f-4eca-8c4f-95e825e2b802.jpg,\operatorname* { l i m } _ { v \to \frac { \pi } { 7 } ^ { - } } \frac { \cos { v } } { - 4 \cos { v } }
|
541 |
-
TrainData2_3_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
542 |
-
77322.png,"\delta \psi _ { \mu } ^ { \alpha } = 2 \nabla _ { \mu } \epsilon ^ { \alpha } - { \frac { 1 } { 1 6 } } \gamma ^ { \nu \lambda } T _ { \nu \lambda } ^ { - } \gamma _ { \mu } \epsilon ^ { \alpha \beta } \epsilon _ { \beta } + i A _ { \mu } \epsilon ^ { \alpha } \ ,"
|
543 |
-
37891.png,"\delta { \cal M } ^ { 2 } = \sum _ { a = ( 4 5 ) , ( 6 7 ) , ( 8 9 ) } ( 2 n _ { a } + 2 \Sigma _ { a } + 1 ) \, e p s i l o n _ { a } \ ,"
|
544 |
-
e0e7a1fe-d3af-4c0a-90d3-26364bb37177.jpg,\operatorname* { l i m } _ { h \to \frac { \pi } { 5 } } \frac { \csc { h } + - 2 \cot { h } } { h + - 3 \frac { \pi } { 8 } }
|
545 |
-
2009210-947-148.bmp,- E _ { q } - \cdots + P E
|
546 |
-
df788af8-3d07-4d0b-ae16-dbd6fc9ccda6.jpg,\operatorname* { l i m } _ { h \to \frac { \pi } { 3 } ^ { - } } \frac { \tan { h } } { - 2 \tan { h } }
|
547 |
-
200924-1331-169.bmp,\sqrt { i } ^ { T }
|
548 |
-
TrainData2_7_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
549 |
-
TrainData2_24_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
550 |
-
2009212-952-39.bmp,( V )
|
551 |
-
25896.png,"\hspace { + 5 e m } [ F _ { i j } , F _ { k l } ] = \varphi ( g _ { j k } F _ { i l } - g _ { i k } F _ { j l } + g _ { i l } F _ { j k } - g _ { j l } F _ { i k } ) ,"
|
552 |
-
3df83eb0-8654-4041-8387-3c932fb68169.jpg,\operatorname* { l i m } _ { x \to \infty } \frac { \frac { \log _ { 7 2 } { x } } { \log _ { 2 0 } { 3 } } } { \frac { \log _ { 9 6 } { x } } { \log _ { 3 3 } { 6 } } }
|
553 |
-
6a294171-0bcb-410e-8b58-d3a316af0f31.jpg,\operatorname* { l i m } _ { v \to 5 } v \sin { v }
|
554 |
-
TrainData2_3_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
555 |
-
54342.png,( - \Delta + m _ { i } ^ { 2 } ) G ( x - y ; m _ { i } ) = \delta ^ { d } ( x - y ) .
|
556 |
-
200923-131-257.bmp,S - p
|
557 |
-
TrainData2_9_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
558 |
-
61702.png,\Psi _ { 1 } = c _ { 1 } \exp ( - x / 2 ) x ^ { \frac 1 2 ( 1 / 2 + \mu ) } L _ { n } ^ { \mu } ( x )
|
559 |
-
TrainData2_3_sub_6.bmp,x _ { i } - x _ { i + 1 } + x _ { i + 2 }
|
560 |
-
MfrDB2982.bmp,\int _ { 3 } ^ { 6 } \int _ { 2 } ^ { 4 } 2 d x d y = 2 \cdot ( 6 - 3 ) \cdot ( 4 - 2 ) = 1 2
|
561 |
-
a4317021-74de-44f2-a824-49d4ee89755d.jpg,\operatorname* { l i m } _ { n \to \pi / 7 } \frac { 8 \sec ^ { 3 } { n } + - 2 \tan ^ { 3 } { n } } { 4 }
|
562 |
-
92_edwin.bmp,y = \frac { x \prime \sin \theta + y \prime \sin ( w \prime + \theta ) } { \sin w }
|
563 |
-
TrainData2_8_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
564 |
-
TrainData2_4_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
565 |
-
4150bdb3-3ab0-46ad-b518-70aed154a7bd.jpg,\operatorname* { l i m } _ { b \to 1 ^ { + } } \frac { - 2 \sin { b } \tan ^ { 9 } { b } } { \left( 7 + 7 b \tan { b } \right) \cos ^ { 6 } { b } }
|
566 |
-
TrainData2_3_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
567 |
-
7c3a3c53-316a-4f29-81b1-b681e0a90257.jpg,\operatorname* { l i m } _ { u \to 3 ^ { + } } \frac { \frac { d } { d u } \left( 1 + - 3 \cos ^ { 2 } { u } \right) } { \frac { d } { d u } \left( \cos { u } + u \cot ^ { 8 } { u } \right) }
|
568 |
-
TrainData2_26_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
569 |
-
TrainData2_5_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
570 |
-
MfrDB0040.bmp,f ( x y ) = f ( x ) + f ( y )
|
571 |
-
TrainData2_7_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
572 |
-
101285.png,G ( x - y ) = G ( x - y ) \vert _ { V \to \infty } + g ( x - y ) \ .
|
573 |
-
f82bd2d1-4478-4ab4-a397-265760363608.jpg,\operatorname* { l i m } _ { s \to \infty } \frac { 8 } { \sqrt { s ^ { 8 } + 8 \thetas } + 8 \sqrt { s ^ { 3 } + 3 s } } \frac { \sqrt { s ^ { 2 } + 9 \thetas } + \sqrt { s ^ { 7 } + 2 s } } { \sqrt { s ^ { 8 } + 2 \thetas } + \sqrt { s ^ { 6 } + 9 s } }
|
574 |
-
101300.png,"G _ { E , k } ( x , x ^ { \prime } ) = \theta ( x ^ { \prime } - x ) \frac { u _ { 1 } ( x ) u _ { 2 } ( x ^ { \prime } ) } { W } + \theta ( x - x ^ { \prime } ) \frac { u _ { 1 } ( x ^ { \prime } ) u _ { 2 } ( x ) } { W }"
|
575 |
-
696c1f84-72a6-4d17-97c9-0c8bc7e6c3f4.jpg,\operatorname* { l i m } _ { \theta \to \infty } \frac { \frac { \log _ { 2 1 } { \theta } } { \log _ { 3 1 } { 1 } } } { \frac { \log _ { 2 1 } { \theta } } { \log _ { 1 0 } { 9 } } }
|
576 |
-
82684.png,"M = 2 T S + 2 \Omega J _ { \mathrm { H } } - \frac { 1 } { 4 \pi } \int _ { \Sigma } R _ { 0 } ^ { 0 } \sqrt { - g } d x d \theta d \varphi \ ,"
|
577 |
-
TrainData2_5_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
578 |
-
21314.png,S _ { + } ( \eta ) = \left( \begin{array} { l l l l } { \cosh \eta } & { \sinh \eta } & { 0 } & { 0 } \\ { \sinh \eta } & { \cosh \eta } & { 0 } & { 0 } \\ { 0 } & { 0 } & { \cosh \eta } & { \sinh \eta } \\ { 0 } & { 0 } & { \sinh \eta } & { \cosh \eta } \end{array} \right) .
|
579 |
-
TrainData2_2_sub_46.bmp,\operatorname* { l i m } _ { x \rightarrow - 1 } \frac { x ^ { 3 } + 1 } { x + 1 }
|
580 |
-
TrainData2_3_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
581 |
-
85700.png,"s i g n ( x _ { 1 } , x _ { 2 } , . . . , x _ { n - r } , x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , . . . , x _ { r } ^ { \prime } )"
|
582 |
-
KME2G3_5_sub_28.bmp,z _ { 1 } ^ { 2 } + 1 ^ { z } - z _ { 2 } ^ { 2 } + 2 ^ { z }
|
583 |
-
97936.png,"A _ { W } ( \Pi q , \Pi p ) = \int d v ~ e ^ { - i p \cdot v / \hbar } \left\langle q + \frac { v } { 2 } \Biggm | A ( \hat { z } ) \Biggm | q - \frac { v } { 2 } \right\rangle ."
|
584 |
-
TrainData2_11_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
585 |
-
200926-1550-127.bmp,X > \int 3 d S
|
586 |
-
TrainData2_7_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
587 |
-
390e1f54-b04d-49ce-82f1-23479840150c.jpg,\frac { \operatorname* { l i m } _ { y \to 9 } \frac { d } { d y } 5 9 \csc { \left( y \right) } \sin { \left( 7 y \right) } } { \operatorname* { l i m } _ { y \to 2 } \frac { d } { d y } 4 y }
|
588 |
-
2ff17dc2-7149-4b8d-94a4-645f0a952497.jpg,\operatorname* { l i m } _ { y \to 2 } \frac { y ^ { 4 } + - y + 8 } { 8 y }
|
589 |
-
TrainData2_8_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
590 |
-
TrainData2_6_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
591 |
-
200922-949-243.bmp,8
|
592 |
-
77589.png,j ^ { \mu } ( x ) = q \int { \delta ^ { 4 } ( x - x ( \tau ) ) \dot { x } ^ { \mu } ( \tau ) d \tau }
|
593 |
-
TrainData2_7_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
594 |
-
262cd688-d2e4-49c5-88a3-bb3bd4fa3b1e.jpg,\operatorname* { l i m } _ { p \to \infty } \frac { \log _ { 2 7 } { 4 } } { \log _ { 9 1 } { 1 } }
|
595 |
-
TrainData2_26_sub_20.bmp,a + b + c + d + e
|
596 |
-
bd901349-43f9-4840-8ef6-1d0af2eef3d3.jpg,\operatorname* { l i m } _ { v \to \pi / 2 ^ { - } } \frac { \sec ^ { 7 } { v } } { 5 \frac { 2 } { 2 v + \left( 2 \pi \right) ^ { 9 } } }
|
597 |
-
MfrDB3390.bmp,\operatorname* { l i m } _ { y \rightarrow \infty } y \sin ( \frac { c } { y } ) = c
|
598 |
-
TrainData2_26_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
599 |
-
2c5b3b57-fb63-4e62-9d2f-f6aa606f9e2e.jpg,- 2 \operatorname* { l i m } _ { u \to - \infty } u ^ { 3 }
|
600 |
-
200922-947-88.bmp,\sin L
|
601 |
-
7583.png,"\varepsilon _ { l } ^ { + } \rightarrow \varepsilon _ { u } , \ \ \ \, v a r e p s i l o n _ { u } ^ { - } \rightarrow \varepsilon _ { l } , \ \ \ \, \eta _ { * } = 1 ,"
|
602 |
-
d393df79-d6d9-4ad8-8b11-68f42b93e831.jpg,\operatorname* { l i m } _ { x \to 6 } \frac { x - 1 } { x ^ { 2 } }
|
603 |
-
21454.png,"i \hbar \frac { \partial \hat { \rho } } { \partial t } = \left[ H ( t ) , \hat { \rho } \right]"
|
604 |
-
87230.png,"F _ { a b c d } = e \, \varepsilon _ { a b c d } ~ ."
|
605 |
-
bd4112be-6d84-4862-8614-ae8e4f66c56a.jpg,\operatorname* { l i m } _ { t \to \frac { \pi } { 2 } ^ { - } } \frac { \cos ^ { 3 } { t } \left( 8 t + \left( - 3 \pi \right) ^ { 2 } \right) } { - 8 }
|
606 |
-
ef27f0e8-e70c-4483-953f-9ab5337c8062.jpg,\frac { \operatorname* { l i m } _ { h \to 3 } \frac { d } { d h } 3 1 \tan { \left( 4 h \right) } \tan { \left( 4 h \right) } } { \operatorname* { l i m } _ { h \to 2 } \frac { d } { d h } 6 h }
|
607 |
-
a8421aff-f2c7-4350-aedb-1fddf8ee38ad.jpg,\operatorname* { l i m } _ { y \to 3 ^ { + } } \frac { \frac { 6 } { y } } { - 6 \cos { y } \cot { y } }
|
608 |
-
103371.png,V \otimes \stackrel { n _ { s } } { \ldots } \otimes V \longrightarrow V ^ { \prime }
|
609 |
-
TrainData2_2_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d _ { x }
|
610 |
-
KME2G3_13_sub_74.bmp,\int _ { \log 3 } ^ { 0 } \frac { 1 } { e ^ { t } + 1 } d t
|
611 |
-
55081.png,"\begin{array} { l } { [ H _ { i } , H _ { j } ] = 0 ~ , } \\ { [ H _ { i } , X _ { j } ^ { \pm } ] = \pm a _ { i j } X _ { i } ^ { \pm } ~ , } \\ { [ X _ { i } ^ { + } , X _ { j } ^ { - } ] = \delta _ { i j } [ H _ { i } ] _ { q _ { i } } ~ , } \\ { [ X _ { i } ^ { \pm } , X _ { j } ^ { \pm } ] = 0 ~ , ~ ~ ~ ~ ~ \mathrm { i f } ~ a _ { i j } = 0 ~ , } \\ { \displaystyle \sum _ { m = 0 } ^ { 1 - a _ { i j } } ( - 1 ) ^ { m } \left[ \begin{array} { c } { 1 - a _ { i j } } \\ { m } \end{array} \right] _ { q _ { i } } ( X _ { i } ^ { \pm } ) ^ { 1 - a _ { i j } - m } X _ { j } ^ { \pm } ( X _ { i } ^ { \pm } ) ^ { m } = 0 ~ , ~ ~ ~ ~ ( i \not = j ) ~ , } \\ { \Delta ( H _ { i } ) = H _ { i } \otimes 1 + 1 \otimes H _ { i } ~ , } \\ { \Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \otimes q _ { i } ^ { H _ { i } } + q _ { i } ^ { - H _ { i } } \otimes X _ { i } ^ { + } ~ , } \\ { \epsilon ( H _ { i } ) = 0 = \epsilon ( X _ { i } ^ { \pm } ) ~ , } \\ { S ( H _ { i } ) = - H _ { i } ~ , ~ ~ ~ ~ S ( X _ { i } ^ { \pm } ) = - q ^ { - \rho } X _ { i } ^ { \pm } q ^ { \rho } ~ , } \end{array}"
|
612 |
-
931af2e5-79b2-431e-b614-4f04b9db91ff.jpg,\operatorname* { l i m } _ { \theta \to 5 ^ { + } } - 9 \frac { \sin ^ { 1 } { \theta } } { \theta \tan { \theta } }
|
613 |
-
TrainData2_9_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
614 |
-
TrainData2_5_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
615 |
-
45648.png,"{ f _ { 5 } } = - 1 - { \frac { 1 6 \pi G \mu } { 3 r ^ { 2 } \; \mathrm { { V o l } } ( { H ^ { 3 } } / { \Gamma } ) } } + { \frac { r ^ { 2 } } { L ^ { 2 } } } ,"
|
616 |
-
36336.png,"\psi _ { \mu \nu } = - w _ { \mu } ^ { \, \, \gamma } g _ { \gamma \nu } - w _ { \nu } ^ { \, \, \gamma } g _ { \gamma \mu } ."
|
617 |
-
80d3854b-41ca-4551-bc66-b7b3ba74cc98.jpg,= \operatorname* { l i m } _ { z \to \infty } \frac { 3 2 z ^ { 2 } } { 8 \left| z ^ { 9 } \right| }
|
618 |
-
b4903348-2cdd-4eeb-8202-44e2026c35ea.jpg,\operatorname* { l i m } _ { k \to \infty } \frac { 6 + \frac { 4 } { k } } { \sqrt { 9 + \frac { 9 } { k } + \frac { 9 } { k ^ { 7 } } } + \sqrt { 8 + 2 \frac { 2 } { k } } }
|
619 |
-
192.png,"\{ Q ^ { \alpha } , \bar { Q } _ { \beta } \} = - i ( \Gamma ^ { a } ) _ { \beta } ^ { \alpha } P _ { a } - i ( \Gamma ^ { a b c d e } ) _ { \beta } ^ { \alpha } Z _ { a b c d e } ,"
|
620 |
-
b7d03d0d-1a44-4fd1-aa10-c82d585024c3.jpg,\operatorname* { l i m } _ { t \to \infty } \frac { 2 e ^ { 2 t } } { - 2 e ^ { 2 t } }
|
621 |
-
108_danilo.bmp,a ^ { x } a ^ { y } = a ^ { x + y }
|
622 |
-
76426.png,"R _ { i j } \! \! - \! \frac { 1 } { 2 } R g _ { i j } \! = \! 8 \pi G T _ { i j } ^ { m } \! + \! ( { \cal R } _ { \mu \nu } \! - \! \frac { 1 } { 2 } { \cal R } { \cal G } _ { \mu \nu } ) Z _ { , i } ^ { \mu } Z _ { , j } ^ { \nu } \! + \! Q _ { i j } + S _ { i j }"
|
623 |
-
1ef73efe-f63d-4bf2-ad14-7652e7ed94fa.jpg,\operatorname* { l i m } _ { h \to 2 } \frac { e ^ { h } + \sec { h } } { 6 9 h ^ { 1 } + 7 4 h + 1 0 }
|
624 |
-
489b308b-aede-40c0-834b-a44144ca6eff.jpg,\operatorname* { l i m } _ { h \to 1 ^ { + } } e ^ { \ln { \left( 0 + h ^ { \cos { h } } \right) } }
|
625 |
-
86677.png,"{ \frac { \gamma } { 2 } } \cong - b _ { i } ( \omega _ { r } , \kappa ) { \big \vert } _ { \omega _ { r } = \kappa } \, ,"
|
626 |
-
dbfeeb39-1f41-4d13-a55e-42567b821224.jpg,\operatorname* { l i m } _ { y \to \infty } \frac { 0 y ^ { 6 } } { 0 y ^ { 3 } }
|
627 |
-
89549.png,"\int \overline { { D _ { q q ^ { \prime } } ^ { j } ( x ) } } D _ { q q ^ { \prime } } ^ { j } ( \tilde { x } ) \, d \mu ( j ) d \mu ( q ) d \mu ( q ^ { \prime } ) = \delta ( x , \tilde { x } ) ."
|
628 |
-
47969.png,"X _ { d } = \mathrm { d i a g } \left( x _ { 1 } , x _ { 2 } , \ldots , x _ { n } \right) , \; \; Y _ { d } = \mathrm { d i a g } \left( y _ { 1 } , y _ { 2 } , \ldots , y _ { n } \right)"
|
629 |
-
TrainData2_4_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
630 |
-
529d74d9-a608-4e61-b1d2-b34ed3a08d8a.jpg,\operatorname* { l i m } _ { t \to 2 ^ { + } } \frac { - 4 \csc { t } \cos ^ { 0 } { t } } { \sin ^ { 2 } { t } + \left( 3 t \csc { t } + 2 \right) \tan ^ { 5 } { t } }
|
631 |
-
formulaire034-equation059.bmp,h ( t ) = 0
|
632 |
-
622379c8-fdb2-42bd-adb1-d313be280862.jpg,= \operatorname* { l i m } _ { x \to - \infty } \frac { x ^ { 7 } + - x + 3 } { 2 x + 3 }
|
633 |
-
TrainData2_26_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
634 |
-
31785.png,"\Phi = \left( \begin{array} { l l } { 0 } & { h } \\ { { \frac { a } { h } } } & { 0 } \end{array} \right) ~ d z \quad ,"
|
635 |
-
2009212-1031-50.bmp,\frac { [ t ] } { \sum P }
|
636 |
-
e7ec2504-dba8-46d9-8471-960f51fb6a7f.jpg,\frac { \operatorname* { l i m } _ { w \to 2 } \frac { d } { d w } 2 4 \sin { \left( 7 w \right) } \cos { \left( 6 w \right) } } { \operatorname* { l i m } _ { w \to 9 } \frac { d } { d w } 3 w }
|
637 |
-
3073.png,"\left( \Phi _ { \alpha _ { 0 } } ^ { * } , \Phi _ { \alpha _ { 2 k } } ^ { * } \right) , \; k = 1 , \cdots , a ,"
|
638 |
-
TrainData2_26_sub_17.bmp,x _ { 1 } - x _ { 2 } + y _ { 1 } - y _ { 2 } + z _ { 1 } - z _ { 2 }
|
639 |
-
be66d378-6c5a-41dc-aaab-285fb283c6a9.jpg,\operatorname* { l i m } _ { t \to \infty } \frac { \tan { t } } { e ^ { t } }
|
640 |
-
637ea593-31f7-4f0b-a46d-76d3e1b6e711.jpg,\operatorname* { l i m } _ { x \to - \infty } \frac { 2 } { e ^ { x } }
|
641 |
-
65_david.bmp,x = r \cos \theta
|
642 |
-
TrainData2_6_sub_20.bmp,a + b + c + d + e
|
643 |
-
formulaire008-equation005.bmp,2 0 + ( 9 6 \div 9 2 ) = 2 1 . 0 4
|
644 |
-
334ac169-a975-42e5-83f1-a7f2de08b8f5.jpg,\operatorname* { l i m } _ { b \to 2 ^ { + } } e ^ { \tan { b } \ln { \left( 6 + b \right) } }
|
645 |
-
TrainData2_8_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
646 |
-
TrainData2_2_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
647 |
-
9913.png,\phi _ { w } ( z ) = \mathrm { e x p } ( - e ^ { - z } ) .
|
648 |
-
TrainData2_3_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
649 |
-
3b11362f-dca0-4506-8de5-639df1d66bc7.jpg,\ln { u } = \frac { \operatorname* { l i m } _ { k \to \pi / 2 ^ { - } } - 6 \sin ^ { 3 } { k } } { \operatorname* { l i m } _ { k \to \pi / 6 ^ { - } } 3 \sin ^ { 7 } { k } \cot { k } }
|
650 |
-
MfrDB1070.bmp,e ^ { 5 }
|
651 |
-
MfrDB1577.bmp,\int _ { a } ^ { b } f ( x ) d x = F ( b ) - F ( a )
|
652 |
-
39177.png,"\hat { x } ( \pi / 2 ) \; | { \Xi } _ { 0 } \rangle = 0 ,"
|
653 |
-
TrainData2_3_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
654 |
-
TrainData2_2_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
655 |
-
108_edwin.bmp,a ^ { x } a ^ { y } = a ^ { x + y }
|
656 |
-
c4beea3a-1f16-4386-b020-90331533868e.jpg,\operatorname* { l i m } _ { p \to \pi / 6 ^ { - } } 6 / 9 \cos ^ { 7 } { p } \left( 7 p + \left( - 8 \pi \right) ^ { 3 } \right)
|
657 |
-
63226e3d-f7f3-4617-b661-a74ca55f5673.jpg,\operatorname* { l i m } _ { h \to 7 ^ { + } } \frac { \frac { 3 } { h } } { - 2 \tan { h } \cos { h } }
|
658 |
-
TrainData2_26_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
659 |
-
7001a0c5-7d02-4875-a872-dd4f17d41b43.jpg,\ln { r } = \frac { \operatorname* { l i m } _ { x \to \frac { \pi } { 2 } ^ { - } } - 7 \sin ^ { 2 } { x } } { \operatorname* { l i m } _ { x \to \frac { \pi } { 2 } ^ { - } } 2 \sin ^ { 4 } { x } \tan { x } }
|
660 |
-
TrainData2_9_sub_51.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { \pi } { 2 } + 0 } \tan x = - \infty
|
661 |
-
37079.png,I _ { s i n g } = ( { \bf p } ^ { 2 } / 2 ) { \cal N } \delta ( { \bf k } ^ { 2 } - { \bf p } ^ { 2 } )
|
662 |
-
107_leissi.bmp,a ^ { 2 } + b ^ { 2 } = ( a + b i ) ( a - b i )
|
663 |
-
MfrDB3188.bmp,\frac { 3 x + y } { z } = ( \frac { A - 1 } { x ^ { 2 } + y ^ { 2 } } )
|
664 |
-
TrainData2_7_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
665 |
-
91078.png,"P _ { M } = \frac { \partial _ { M } B } { 1 - B \, B ^ { * } } \, \, \, \, \, \, \, \, \, Q _ { M } = \frac { I m ( B \partial _ { M } B ^ { * } ) } { 1 - B \, B ^ { * } }"
|
666 |
-
645ee423-3c1f-429b-916d-bcde40d6cfa2.jpg,\operatorname* { l i m } _ { x \to 3 ^ { + } } \frac { 5 / x } { - 4 \sec { x } \tan { x } }
|
667 |
-
8927d026-00ab-42d4-a810-c9b04109b739.jpg,\operatorname* { l i m } _ { g \to \pi / 6 ^ { - } } \frac { \tan ^ { 6 } { g } } { 8 \frac { - 4 } { 5 g + \left( - 9 \pi \right) ^ { 9 } } }
|
668 |
-
88836.png,p = y ^ { 6 } + z _ { 3 } ^ { 6 } + z _ { 4 } ^ { 6 } + z _ { 5 } ^ { 2 } + . . .
|
669 |
-
12080.png,"S _ { \mathrm { D B I } } ^ { ( \mathrm { M 1 0 } ) } = - \int _ { R ^ { 9 + 1 } } | { \hat { k } } | ^ { 3 } \sqrt { | \mathrm { d e t } \left( { \hat { \Pi } } + | { \hat { k } } | ^ { - 1 } { \hat { \cal F } } \right) | } \, { \hat { R } } ( { \hat { T } } , \partial { \hat { T } } , \dots ) \, ."
|
670 |
-
08447ad2-d703-4190-a746-47e48d45a307.jpg,\operatorname* { l i m } _ { g \to 4 ^ { + } } \frac { 0 \cos { g } \sec ^ { 9 } { g } } { \tan ^ { 6 } { g } + \left( 2 g \sin { g } + 0 \right) \cos ^ { 1 } { g } }
|
671 |
-
15874.png,"\frac { E _ { 0 } \left( \ell , \mu , d = 3 \right) } { L ^ { 2 } } \approx - \frac { 3 \mu ^ { 1 / 2 } } { 2 ^ { 5 } \pi ^ { 3 / 2 } \ell ^ { 3 } } \, e ^ { - 2 \mu } ,"
|
672 |
-
76_carlos.bmp,a = b \cos C + c \cos B
|
673 |
-
18062.png,"W [ \vec { x } ( s ) ] = \int _ { \left\{ \begin{array} { c } { \vec { x } | _ { \partial D } = \vec { x } ( s ) } \\ { y | _ { \partial D } = ? } \end{array} \right. } \mathcal { D } y ( \xi ) \mathcal { D } \vec { x } ( \xi ) e ^ { - S [ \vec { x } ( \xi ) , y ( \xi ) ] } \; ."
|
674 |
-
TrainData2_3_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
675 |
-
TrainData2_26_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
676 |
-
TrainData2_4_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
677 |
-
200923-1254-199.bmp,( l ) = ( \lambda )
|
678 |
-
73928.png,( \gamma _ { + } t ^ { 2 } - 2 h t + \gamma _ { - } ) ^ { 1 / 2 } ( \gamma _ { - } t ^ { 2 } - 2 h t + \gamma _ { + } ) ^ { 1 / 2 } \; \frac { d \alpha _ { l } ^ { \pm } } { d t } = \pm \mathrm { i } \tilde { \lambda } _ { l } \alpha _ { l } ^ { \mp } ( t )
|
679 |
-
TrainData2_9_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
680 |
-
200923-1251-37.bmp,1 3 + \pi r ^ { 2 }
|
681 |
-
14656.png,L _ { 3 } = \left( \begin{array} { l l l l } { 0 } & { - i } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } \end{array} \right) .
|
682 |
-
45525.png,\phi ( x ) = i \int _ { \Gamma _ { + } + \Gamma _ { - } } d k e ^ { i k x } \frac { 1 } { f ( - k ^ { 2 } ) } a ( k ) = \int d k [ e ^ { i k x } a ( k ) + e ^ { - i k x } \bar { a } ( k ) ] \delta ^ { + } G ( k ^ { 2 } ) ~ ~ ~ .
|
683 |
-
67240.png,"b _ { - 1 / 2 } ^ { \mu , j } b _ { - 1 / 2 } ^ { \nu , j ^ { \prime } } | 0 \rangle H _ { j j ^ { \prime } } ^ { \mu \nu } ( p )"
|
684 |
-
formulaire014-equation028.bmp,x = 3
|
685 |
-
200923-1553-133.bmp,[ v l ]
|
686 |
-
4758243b-4183-4661-b3ca-618aee128e33.jpg,\operatorname* { l i m } _ { h \to \frac { \pi } { 8 } } \frac { \sin { h } + - 8 \cot { h } } { h + - 5 \frac { \pi } { 8 } }
|
687 |
-
12451.png,"( \nabla _ { a } E _ { \alpha q } ^ { \underline { \alpha } } ) E _ { \underline { \alpha } , \beta r } = { \frac { 1 } { 4 } } \hat { \Omega } _ { a , b } ^ { ~ ~ i } m _ { b } ^ { ~ c } \gamma _ { c \alpha \beta } ( \gamma _ { i } ) _ { q r } + { \cal D } _ { a } h _ { \alpha \beta } C _ { q r } ."
|
688 |
-
9036e91e-9964-4b38-9cf0-e071065853ff.jpg,\operatorname* { l i m } _ { s \to 2 } 6 / s
|
689 |
-
TrainData2_6_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
690 |
-
TrainData2_4_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
691 |
-
TrainData2_26_sub_88.bmp,3 0 \times 2 9 x ^ { 2 8 }
|
692 |
-
formulaire021-equation059.bmp,f ( z ) = \sum _ { n = - \infty } ^ { + \infty } a _ { n } ( z - a ) ^ { n }
|
693 |
-
22152.png,"\{ \phi _ { i } ^ { \alpha } , \bar { \phi } _ { \bar { j } \beta } \} = - i g _ { i \bar { j } } \delta _ { \beta } ^ { \alpha }"
|
694 |
-
0396a348-9fdf-4fe9-be58-a676324b066b.jpg,\operatorname* { l i m } _ { u \to 0 } \frac { \sin { 1 } u } { \sin { 2 } u }
|
695 |
-
32918.png,"d s ^ { 2 } = \frac { \rho _ { 1 } ^ { 2 } } { a ( x _ { 1 } ) } d x _ { 1 } ^ { 2 } + \frac { \rho _ { 2 } ^ { 2 } } { a ( x _ { 2 } ) } d x _ { 2 } ^ { 2 } + \frac { ( \rho _ { 1 } \rho _ { 2 } ) ^ { 2 } } { a ( x ) } d x ^ { 2 } + d \rho _ { 1 } ^ { 2 } + d \rho _ { 2 } ^ { 2 } ,"
|
696 |
-
TrainData1_5_sub_3.bmp,x ^ { 2 } + y ^ { 2 } < 1
|
697 |
-
MfrDB3128.bmp,( 1 + x ) ^ { r } \geq 1 + r x
|
698 |
-
TrainData2_17_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
699 |
-
30115.png,\begin{array} { l } { W ( G ) = \int d x \phi ^ { 2 } G ( a _ { 1 } J J + a _ { 2 } \partial J ) } \end{array}
|
700 |
-
15174.png,{ \cal O } _ { r } \equiv \frac { d ^ { 2 } } { d r ^ { 2 } } + \frac { D - 1 } { r } \frac { d } { d r } - \frac { \ell ( \ell + d - 2 ) } { r ^ { 2 } } - r ^ { 2 } + \lambda ^ { 2 } + D Q .
|
701 |
-
77828.png,I ^ { ( \gamma _ { i } ) } = \int _ { { \gamma } _ { k _ { i } } } W _ { k _ { i } } \; .
|
702 |
-
74137e64-abbc-4097-8866-8e2399854805.jpg,\operatorname* { l i m } _ { r \to 0 } \frac { r + - 6 \tan { r } } { r ^ { 0 } }
|
703 |
-
79134.png,"\int _ { 0 } ^ { \infty } x ^ { \nu - 1 } \, e ^ { - \, x \, - \, { \frac { \mu ^ { 2 } } { 4 x } } } \, d x = 2 \Big ( { \frac { \mu } { 2 } } \Big ) ^ { \nu } K _ { - \nu } ( \mu ) \ ,"
|
704 |
-
TrainData2_6_sub_1.bmp,x _ { 1 } + x _ { 2 } = x _ { 3 }
|
705 |
-
TrainData2_8_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
706 |
-
TrainData2_4_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
707 |
-
TrainData2_5_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
708 |
-
50441.png,"\rho _ { m , n } = \sigma _ { m , n } \psi _ { m , n } + L _ { - P } \xi _ { m , n } \, ,"
|
709 |
-
a8240256-dd0a-4388-809f-49a8aebe244f.jpg,\operatorname* { l i m } _ { z \to 7 } \frac { z - 9 } { \tan { z } }
|
710 |
-
a8a01758-99ef-402c-b465-379a61ffa43e.jpg,\operatorname* { l i m } _ { r \to 4 ^ { - } } \frac { r + 3 } { r ^ { 2 } \left( r - 9 \right) \left( r + 2 \right) }
|
711 |
-
11_em_91.bmp,\Delta L
|
712 |
-
a52799e7-3daf-412c-ab1a-85ada07c1874.jpg,\operatorname* { l i m } _ { x \to 7 ^ { + } } \frac { 2 x ^ { 8 } + - 2 x ^ { 2 } } { \left| x - 2 \right| }
|
713 |
-
77320.png,"f ^ { i j } \; = : \; \frac { \epsilon ^ { i j \; i _ { 2 } \cdots i _ { M } } } { \sqrt { \zeta } \, ( M - 1 ) ! } \ f _ { i _ { 2 } \cdots i _ { M } } \ ,"
|
714 |
-
MfrDB0048.bmp,a ^ { 2 } - b ^ { 2 } = ( a + b ) ( a - b )
|
715 |
-
TrainData2_9_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
716 |
-
76404578-ec8c-4001-a669-08334f0762af.jpg,\operatorname* { l i m } _ { b \to 7 ^ { + } } \frac { - \sec { b } \tan ^ { 4 } { b } } { \left( 1 + 2 b \cos { b } \right) \cos ^ { 8 } { b } }
|
717 |
-
TrainData2_8_sub_43.bmp,\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
|
718 |
-
TrainData2_8_sub_39.bmp,\sin x - \sin y - \sin ( x - y )
|
719 |
-
MfrDB3411.bmp,\frac { x ^ { 4 } } { 2 ^ { 3 } } - ( \frac { 2 } { x } ) ^ { - 4 }
|
720 |
-
fe176366-3037-4df6-ae98-2e59d0fa1ab2.jpg,\operatorname* { l i m } _ { a \to 8 } a \frac { 6 } { \sin { a } }
|
721 |
-
ffe316bb-1b5c-4c5e-8b63-e803d9b32eb2.jpg,\operatorname* { l i m } _ { \theta \to 6 } \frac { 3 } { \tan { \left( 4 \theta \right) } } \operatorname* { l i m } _ { \theta \to 6 } \frac { \cot { \left( 6 \theta \right) } } { 8 \theta }
|
722 |
-
61721.png,"\lambda _ { n k } = ( \omega _ { n } + A _ { 0 } + i \mu ) ^ { 2 } + \vec { k } ^ { 2 } + M ^ { 2 } \; ,"
|
723 |
-
200923-1556-7.bmp,\sum _ { m } f ( m + 3 )
|
724 |
-
formulaire002-equation024.bmp,\sqrt { 1 3 h }
|
725 |
-
TrainData2_8_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
726 |
-
TrainData2_22_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
727 |
-
TrainData2_7_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
728 |
-
TrainData2_26_sub_95.bmp,\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
|
729 |
-
74484.png,( \partial T ^ { 3 } ) _ { s t } \: \equiv \: \Sigma ^ { o u t }
|
730 |
-
31320.png,"\Delta = \frac { T } { 2 } \sum \left( \omega _ { \mathrm { \, b r e a t h e r } } - \omega _ { \mathrm { g r o u n d } } \right) ,"
|
731 |
-
TrainData2_4_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
732 |
-
200923-1556-2.bmp,\int e ^ { x ^ { 2 } } x ^ { 3 } d x
|
733 |
-
d6f72292-addc-4fac-82e2-2137af3d7c37.jpg,\operatorname* { l i m } _ { t \to 8 } \frac { \tan ^ { 7 } { t } } { 3 + - 5 \tan { t } }
|
734 |
-
MfrDB3230.bmp,3 a ^ { 2 } b ^ { 3 } + 5 a ^ { 3 } b ^ { 2 } - \frac { a ^ { 5 } b ^ { 8 } } { 2 }
|
735 |
-
05644553-0065-4c05-80dc-67e7f23ea6bf.jpg,\operatorname* { l i m } _ { s \to \infty } \frac { \log _ { 3 3 } { s } \log _ { 2 9 } { 8 } } { \log _ { 1 5 } { 3 } \log _ { 5 2 } { s } }
|
736 |
-
TrainData2_4_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
737 |
-
TrainData2_5_sub_33.bmp,\log _ { 2 } 8 + \log _ { 3 } 9 + \log _ { 4 } 1 6
|
738 |
-
57213757-be4d-4dce-b0ee-1eab2fbbac06.jpg,\operatorname* { l i m } _ { p \to 7 ^ { + } } \frac { \frac { d } { d p } \left( 2 + - \sin ^ { 8 } { p } \right) } { \frac { d } { d p } \left( \cos { p } + p \sec ^ { 6 } { p } \right) }
|
739 |
-
9936.png,F _ { 0 } ^ { ( 3 ) } = - { N ^ { 2 } } { \frac { 1 } { t ( 1 + t ) } }
|
740 |
-
bdcfdc3d-6403-438b-b23e-651f12d3ded7.jpg,3 / 8 \operatorname* { l i m } _ { y \to 6 } \frac { \cos { \left( 6 y \right) } } { 2 y }
|
741 |
-
42723.png,( 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ - \frac { 7 } { 2 } ) = [ { \bf 1 } _ { B } \oplus { \bf \overline { { 8 } } } _ { F } \oplus { \bf \overline { { 2 8 } } } _ { B } \oplus { \bf \overline { { 5 6 } } } _ { F } \oplus { \bf 7 0 } _ { B } \oplus { \bf 5 6 } _ { F } \oplus { \bf 2 8 } _ { B } \oplus { \bf 8 } _ { F } \oplus { \bf 1 } _ { B } ] .
|
742 |
-
91643.png,< \bar { 0 } | : T _ { \epsilon } ^ { \hat { 0 } \hat { 0 } } : | _ { P _ { 0 } } | \bar { 0 } > = \frac { 1 } { 2 4 \pi } \frac { \frac { \partial ^ { 3 } \bar { f } _ { \epsilon } } { \partial x ^ { 3 } } | _ { P _ { 0 } } } { \frac { \partial \bar { f } _ { \epsilon } } { \partial x } | _ { P _ { 0 } } }
|
743 |
-
53980.png,"S _ { v a c } = S ( 1 ) + S ( 2 ) + S ( 3 ) + O [ \Re ^ { 4 } ] ,"
|
744 |
-
78832.png,e B ^ { * } = \frac { e ^ { 2 } | m | } { 4 \pi } .
|
745 |
-
26540.png,"u _ { l } ( r ) \stackrel { ( r \rightarrow \infty , \epsilon \rightarrow 0 ) } { \sim } \left\{ \begin{array} { l l } { A _ { l } \, \sqrt { r } \, K _ { 0 } ( \kappa r ) } & { \mathrm { f o r } \; E = - \kappa ^ { 2 } < 0 } \\ { \sqrt { r } \, \left[ \widetilde { A } _ { l } ^ { ( + ) } H _ { 0 } ^ { ( 1 ) } ( k r ) + \widetilde { A } _ { l } ^ { ( - ) } H _ { 0 } ^ { ( 2 ) } ( k r ) \right] } & { \mathrm { f o r } \; E = k ^ { 2 } > 0 } \end{array} \right. \; ."
|
746 |
-
85231.png,a _ { r } ^ { ( m ) } \begin{array} { c } { \to } \\ { { \cal B } } \end{array} a _ { r } ^ { \prime ( m - 1 } ) = ( r + 1 ) ( 6 m - 4 r - 1 ) a _ { r + 1 } ^ { ( m ) }
|
747 |
-
formulaire012-equation050.bmp,1 0 0 + 1 8 9 \neq - 8 1
|
748 |
-
cce5572a-8517-4a89-bf80-a400ad9825c5.jpg,\ln { k } = \frac { \operatorname* { l i m } _ { h \to \frac { \pi } { 5 } ^ { - } } \frac { d } { d h } \sec { h } } { \operatorname* { l i m } _ { h \to \frac { \pi } { 3 } ^ { - } } \frac { d } { d h } - 2 \cos ^ { 7 } { h } }
|
749 |
-
16583.png,= ( e x p ( i \mathrm { ~ } X _ { 0 } ) N _ { 0 } - N _ { 0 } e x p ( i \mathrm { ~ } X _ { 0 } ) ) b _ { { \bf { q } } } + e x p ( i \mathrm { ~ } X _ { 0 } ) b _ { { \bf { q } } }
|
750 |
-
formulaire036-equation033.bmp,z ^ { 3 } - 6 z ^ { 2 } + 1 7 z - 3 6 = 0
|
751 |
-
200922-1017-75.bmp,6
|
752 |
-
5364d5b5-4c0b-4c8b-872d-70016aefcc80.jpg,\operatorname* { l i m } _ { p \to 8 ^ { + } } \frac { - 8 \cos { p } \cos ^ { 2 } { p } } { \left( 4 + 8 p \csc { p } \right) \tan ^ { 0 } { p } }
|
753 |
-
76443.png,\int d ^ { 4 } k \left| \Gamma _ { 1 } ( k ) \right| < \infty .
|
754 |
-
31880.png,{ A ^ { B } } _ { A | a } = { \frac { 1 } { 4 } } \lambda \delta _ { A } ^ { B } \bar { \zeta } ^ { I } \gamma _ { a } \zeta _ { I } .
|
755 |
-
TrainData2_5_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
756 |
-
88731.png,i \frac { \partial \tilde { \psi } } { \partial t } = U ^ { - 1 } H _ { 0 } U \tilde { \psi }
|
757 |
-
TrainData2_2_sub_71.bmp,\frac { \sin B + \sin C } { \cos B + \cos C }
|
758 |
-
82956.png,V ( y ) = k \sum _ { m _ { i } } [ \sum _ { i } ( y _ { i } + m _ { i } L _ { i } ) ^ { 2 } ] ^ { p - 7 }
|
759 |
-
formulaire032-equation069.bmp,\alpha _ { m i n }
|
760 |
-
34388.png,"F = F ^ { \mathrm { A N O } } + \varepsilon ^ { 2 } F ^ { ( 2 ) } + { \cal O } ( \varepsilon ^ { 4 } ) , \hskip 5 m m \chi = \chi ^ { \mathrm { A N O } } + \varepsilon ^ { 2 } \chi ^ { ( 2 ) } + { \cal O } ( \varepsilon ^ { 4 } ) ,"
|
761 |
-
TrainData2_6_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
762 |
-
formulaire022-equation039.bmp,n ^ { p - 2 } = n ^ { - 1 }
|
763 |
-
formulaire012-equation011.bmp,r \sqrt { 2 }
|
764 |
-
67275.png,M { \overline { { \psi _ { 1 L } ^ { c } } } } \psi _ { 2 L } + \mathrm { h . c . } ~ .
|
765 |
-
c0ef2b9d-510c-4ea7-b65a-21091319e1a8.jpg,\operatorname* { l i m } _ { h \to \frac { \pi } { 6 } ^ { - } } \frac { 8 } { 4 } \tan ^ { 3 } { h } \left( 3 h + \left( - 3 \pi \right) ^ { 7 } \right)
|
766 |
-
511c87ab-1298-4c5c-b3e8-c3a7c75cda74.jpg,\operatorname* { l i m } _ { u \to 8 } \frac { 6 + - \left( 4 + - 6 \cot ^ { 1 } { u } \right) } { \tan { u } }
|
767 |
-
84744.png,\pi _ { a } = \dot { \sigma } _ { a } + \sigma _ { a } \theta .
|
768 |
-
formulaire029-equation022.bmp,\sum _ { j = 1 } ^ { i } x _ { j } ^ { p } \leq 9 ^ { p } i
|
769 |
-
96522.png,"\Bigr ( { \cal P } _ { \pm } \Bigr ) _ { \; \nu } ^ { \mu } \equiv Q _ { \nu } ^ { \mu } P _ { \mp } + n ^ { \mu } n _ { \nu } P _ { \pm } \; ,"
|
770 |
-
35952.png,a _ { i } a _ { j } = - \delta _ { i j } + \epsilon _ { i j k } a _ { k } .
|
771 |
-
TrainData2_3_sub_13.bmp,\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
|
772 |
-
aaaf025b-22c9-4fae-95eb-562ce6916a1e.jpg,\operatorname* { l i m } _ { h \to 7 ^ { + } } \frac { - 7 \cos { h } \sin ^ { 6 } { h } } { \left( 9 + 7 h \cos { h } \right) \cos ^ { 9 } { h } }
|
773 |
-
ebc8573a-96b5-4d9d-b1ae-799d12c73e34.jpg,\operatorname* { l i m } _ { x \to 4 } \frac { x + - 7 \tan { x } } { x ^ { 2 } }
|
774 |
-
2009210-947-55.bmp,\frac { 1 } { \sin ( x ) + 1 }
|
775 |
-
78669.png,f ( t ) = { \alpha } \sinh ( c t ) + { \beta } \cosh ( c t )
|
776 |
-
TrainData2_25_sub_98.bmp,\operatorname* { l i m } _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
|
777 |
-
8333.png,( f ^ { * } ) _ { n } ( x _ { 1 } . . . . x _ { n } ) = \overline { { f _ { n } ( x _ { n } . . . . x _ { 1 } ) } }
|
778 |
-
5b284a24-92ab-4e26-a5a1-43c4152a1121.jpg,\operatorname* { l i m } _ { z \to 5 ^ { + } } \frac { 9 / z } { - 7 \cos { z } \cos { z } }
|
779 |
-
76_danilo.bmp,a = b \cos C + c \cos B
|
780 |
-
TrainData2_26_sub_63.bmp,\frac { 1 } { a } F ( a x + b ) + C
|
781 |
-
2de4c0b0-f667-4a99-8722-7af217f20359.jpg,\operatorname* { l i m } _ { t \to \pi / 9 } \frac { 9 \sin ^ { 9 } { t } + 3 \csc ^ { 2 } { t } } { 9 }
|
782 |
-
TrainData2_3_sub_41.bmp,\frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta }
|
783 |
-
TrainData2_26_sub_73.bmp,\alpha _ { n + 1 } - 3 \beta = \frac { 2 } { 3 } \alpha _ { n } + \beta - 3 \beta
|
784 |
-
2009213-137-87.bmp,e ^ { \sqrt { g } } ( L )
|
785 |
-
TrainData2_14_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
786 |
-
formulaire033-equation047.bmp,"u _ { 2 } = 1 2 , 1"
|
787 |
-
TrainData2_8_sub_11.bmp,\sqrt { x - y - z + x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }
|
788 |
-
55627.png,\begin{array} { r l } { s _ { g a u g e } = } & { \beta _ { 1 } \int _ { 0 } ^ { T } d t \left( \frac { 1 } { S ( t ) } \frac { d S ( t ) } { d t } + ( r _ { 1 } - r _ { b } ) \right) ^ { 2 } + } \end{array}
|
789 |
-
75051.png,"L = \frac { 1 } { 8 } \, T _ { ( \mu \nu ) \sigma } T ^ { ( \mu \nu ) \sigma } + \frac { 1 } { 4 } T _ { ( \mu \nu ) \sigma } T ^ { ( \mu \sigma ) \nu } + \frac { 1 } { 2 } T _ { ( \mu \nu ) \sigma } \epsilon ^ { \mu \nu \alpha \beta } \partial _ { \alpha } h _ { \; \beta } ^ { \sigma } + h ^ { \alpha \beta } \Theta _ { \alpha \beta } \ ,"
|
790 |
-
2009213-137-118.bmp,z B _ { B }
|
791 |
-
TrainData2_2_sub_29.bmp,x ^ { i + 2 j \times k ^ { 3 } - 2 \frac { j } { i } }
|
792 |
-
TrainData2_5_sub_61.bmp,\int ( 2 ^ { x } - 3 e ^ { x } ) d x
|
793 |
-
formulaire002-equation051.bmp,\frac { 1 } { n ^ { k + 2 } }
|
794 |
-
86155.png,"\left\| r _ { t , x , y } ^ { ( m ) } ( \nu ) \right\| _ { l } \le C _ { l } t ^ { - n / 2 + m - l / 2 } ."
|
795 |
-
92c34d87-be65-49cb-adb8-7c57f8916a37.jpg,\operatorname* { l i m } _ { g \ton } \frac { g + \left( - 8 n \right) ^ { 3 } + 0 + n } { g + - 7 n }
|
796 |
-
200925-1126-135.bmp,m C
|
797 |
-
TrainData2_26_sub_15.bmp,( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
val/non_handwritten_val.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
val/total_val.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|