repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
microhh/microhh
kernel_tuner/statistics.py
5
1185
import matplotlib.pyplot as pl import numpy as np import json import glob pl.close('all') pl.ion() def get_timings(kernel_name, gridsizes): dt = np.zeros_like(gridsizes, dtype=float) for i,gridsize in enumerate(gridsizes): with open( '{0}_{1:03d}.json'.format(kernel_name, gridsize) ) as f: data = json.load(f) timings = data[0] fastest = 1e9 for timing in timings: fastest = min(fastest, timing['time']) dt[i] = fastest return dt if __name__ == '__main__': gridsize = np.arange(32, 513, 32) normal = get_timings('diff_c_g', gridsize) smem = get_timings('diff_c_g_smem', gridsize) fac = gridsize**3 pl.figure(figsize=(8,4)) pl.subplot(121) pl.plot(gridsize, normal/fac, 'k-x', label='non smem') pl.plot(gridsize, smem /fac, 'r-x', label='smem') pl.ylim(0, 2e-7) pl.ylabel('time/gridpoint (s)') pl.xlabel('gridpoints (-)') pl.legend() pl.grid() pl.subplot(122) pl.plot(gridsize, normal/smem, 'k-x') pl.ylabel('non_smem/smem (-)') pl.xlabel('gridpoints (-)') pl.grid() pl.tight_layout()
gpl-3.0
altairpearl/scikit-learn
examples/manifold/plot_mds.py
88
2731
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # License: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0, label='True Position') plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS') plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS') plt.legend(scatterpoints=1, loc='best', shadow=False) similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
timpalpant/KaggleTSTextClassification
scripts/plot_feature_label_correlations.py
1
1976
#!/usr/bin/env python ''' Compute mutual information between individual features and labels ''' import argparse import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from common import * def opts(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('features', type=load_npz, help='Training data features (npz)') parser.add_argument('labels', type=load_npz, help='Training data labels (npz)') parser.add_argument('output', help='Output file with plots (pdf)') return parser if __name__ == "__main__": args = opts().parse_args() print "Loading labels" labels = args.labels['labels'] header = args.labels['header'] pdf = PdfPages(args.output) #print "Plotting boolean features conditioned on labels" #bf = args.features['bfeatures'] #n = bf.shape[1] #m = np.zeros((n,11)) #m[:,0] = np.sum(bf==-1, axis=0) #m[:,1] = np.sum(bf==0, axis=0) #m[:,2] = np.sum(bf==1, axis=0) #fig = plt.figure() #pdf.savefig(fig) #plt.close() print "Plotting float features conditioned on labels" ff = args.features['ffeatures'] n = ff.shape[1] x = np.arange(n) for i, l in enumerate(labels.T): print "label %d" % i for j, f in enumerate(ff.T): print "...ffeature %d" % j fig = plt.figure() plt.hist(f[l], normed=True, label='P(f | l)', color='blue', alpha=0.4, range=(f.min(),f.max()), bins=25) plt.hist(f[np.logical_not(l)], normed=True, label='P(f | ~l)', color='green', alpha=0.4, range=(f.min(),f.max()), bins=25) plt.xlim(f.min(), f.max()) plt.xlabel('f') plt.ylabel('P(f)') plt.title('FFeature %d, Label %s' % (j, header[i])) pdf.savefig(fig) plt.close() pdf.close()
gpl-3.0
harlowja/networkx
examples/algorithms/blockmodel.py
32
3009
#!/usr/bin/env python # encoding: utf-8 """ Example of creating a block model using the blockmodel function in NX. Data used is the Hartford, CT drug users network: @article{, title = {Social Networks of Drug Users in {High-Risk} Sites: Finding the Connections}, volume = {6}, shorttitle = {Social Networks of Drug Users in {High-Risk} Sites}, url = {http://dx.doi.org/10.1023/A:1015457400897}, doi = {10.1023/A:1015457400897}, number = {2}, journal = {{AIDS} and Behavior}, author = {Margaret R. Weeks and Scott Clair and Stephen P. Borgatti and Kim Radda and Jean J. Schensul}, month = jun, year = {2002}, pages = {193--206} } """ __author__ = """\n""".join(['Drew Conway <drew.conway@nyu.edu>', 'Aric Hagberg <hagberg@lanl.gov>']) from collections import defaultdict import networkx as nx import numpy from scipy.cluster import hierarchy from scipy.spatial import distance import matplotlib.pyplot as plt def create_hc(G): """Creates hierarchical cluster of graph G from distance matrix""" path_length=nx.all_pairs_shortest_path_length(G) distances=numpy.zeros((len(G),len(G))) for u,p in path_length.items(): for v,d in p.items(): distances[u][v]=d # Create hierarchical cluster Y=distance.squareform(distances) Z=hierarchy.complete(Y) # Creates HC using farthest point linkage # This partition selection is arbitrary, for illustrive purposes membership=list(hierarchy.fcluster(Z,t=1.15)) # Create collection of lists for blockmodel partition=defaultdict(list) for n,p in zip(list(range(len(G))),membership): partition[p].append(n) return list(partition.values()) if __name__ == '__main__': G=nx.read_edgelist("hartford_drug.edgelist") # Extract largest connected component into graph H H=nx.connected_component_subgraphs(G)[0] # Makes life easier to have consecutively labeled integer nodes H=nx.convert_node_labels_to_integers(H) # Create parititions with hierarchical clustering partitions=create_hc(H) # Build blockmodel graph BM=nx.blockmodel(H,partitions) # Draw original graph pos=nx.spring_layout(H,iterations=100) fig=plt.figure(1,figsize=(6,10)) ax=fig.add_subplot(211) nx.draw(H,pos,with_labels=False,node_size=10) plt.xlim(0,1) plt.ylim(0,1) # Draw block model with weighted edges and nodes sized by number of internal nodes node_size=[BM.node[x]['nnodes']*10 for x in BM.nodes()] edge_width=[(2*d['weight']) for (u,v,d) in BM.edges(data=True)] # Set positions to mean of positions of internal nodes from original graph posBM={} for n in BM: xy=numpy.array([pos[u] for u in BM.node[n]['graph']]) posBM[n]=xy.mean(axis=0) ax=fig.add_subplot(212) nx.draw(BM,posBM,node_size=node_size,width=edge_width,with_labels=False) plt.xlim(0,1) plt.ylim(0,1) plt.axis('off') plt.savefig('hartford_drug_block_model.png')
bsd-3-clause
MannyGrewal/Manny.CIFAR
Manny.CIFAR/CIFAR/CIFARPlotter.py
1
1321
import math import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import pylab ######################################################################## # 2017 - Manny Grewal # Purpose of this class is to visualise a list of images from the CIFAR dataset # How many columns to show in a grid MAX_COLS = 5 #PlotImages method takes an list of Images and their respective labels in the second parameter #Then it renders them using matplotlib imshow method in a 5 column matrix def PlotImages(arrayImages,arrayClassLabels,reShapeRequired=False): totalImages=len(arrayImages) if(reShapeRequired==True): arrayImages = np.reshape(arrayImages, (totalImages,32,32,3)) totalRows= math.ceil(totalImages/MAX_COLS) fig = plt.figure(figsize=(5,5)) gs = gridspec.GridSpec(totalImages, MAX_COLS) # set the space between subplots and the position of the subplots in the figure gs.update(wspace=0.1, hspace=0.4, left = 0.1, right = 0.7, bottom = 0.1, top = 0.9) arrayIndex=0 for g in gs: if(arrayIndex<totalImages): axes=plt.subplot(g) axes.set_axis_off() axes.set_title(arrayClassLabels[arrayIndex]) axes.imshow(arrayImages[arrayIndex]) arrayIndex+=1 #plt.show()
mit
terkkila/scikit-learn
sklearn/cross_decomposition/cca_.py
209
3150
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
mailhexu/pyDFTutils
pyDFTutils/vasp/procar_reader.py
2
3569
#!/usr/bin/env python from numpy import zeros,inner import numpy as np import re from pyDFTutils.ase_utils import symbol_number import matplotlib.pyplot as plt def fix_line(line): line=re.sub("(\d)-(\d)", r'\1 -\2',line) return line class procar_reader(): def __init__(self,fname='PROCAR'): self.read(fname=fname) def get_dos(self,iion,orb_name,iband): dos=inner(self.dos_array[iion,self.orb_dict[orb_name],iband,:],self.weight) return dos def filter_band(self,iion,orb_name,thr=0.01): """ return a energy array 2D. energy(iband,nkpt). """ band_ids=[] for iband in range(self.nbands): d=self.get_dos(iion,orb_name,iband) print(d) if d>thr: band_ids.append(iband) return self.energy[np.array(band_ids,dtype=int)] def plot_band(self,iion,orb_name,thr=0.01): earray=self.filter_band(iion,orb_name,thr=thr) for k_e in earray: plt.plot(k_e) plt.ylim(-3,2) #plt.show() def plot_band_alpha(self,iion,orb_name,color='k'): for iband in range(self.nbands): d=self.get_dos(iion,orb_name,iband) print(d) plt.plot(self.energy[iband],color,linewidth=d*50,alpha=0.5) def read(self,fname='PROCAR'): lines=open(fname).readlines() iline=0 self.has_phase=bool(lines[iline].rfind('phase')) iline=1 p=lines[iline].split() self.nkpts=int(p[3]) self.nbands=int(p[7]) self.nions=int(p[11]) self.dos_label=lines[7].split()[1:-1] self.norb=len(self.dos_label) self.orb_dict=dict(list(zip(self.dos_label,list(range(self.norb))))) print(self.orb_dict) self.dos_array=zeros((self.nions,self.norb,self.nbands,self.nkpts),dtype='float') self.weight=zeros(self.nkpts,dtype='float') self.energy=zeros((self.nbands,self.nkpts)) self.band_occ=zeros((self.nbands,self.nkpts)) self.kpts=zeros((self.nkpts,3)) iline+=1 for ikpts in range(self.nkpts): iline+=1 line_k=fix_line( lines[iline]).split() self.kpts[ikpts]=[float(x) for x in line_k[3:6]] self.weight[ikpts]=float(line_k[-1]) iline+=2 for iband in range(self.nbands): line_b=lines[iline].split() self.energy[iband,ikpts]=float(line_b[4]) self.band_occ[iband,ikpts]=float(line_b[7]) iline+=3 for iion in range(self.nions): #print iline line_dos=lines[iline].strip().split() #print iline #print line_dos self.dos_array[iion,:,iband,ikpts]=[float(x) for x in line_dos[1:-1]] iline+=1 #if self.has_phase: #iline+=1+self.nions*2 iline+=3 self.efermi=np.max(self.energy[self.band_occ>0.5]) print(self.efermi) self.energy=self.energy-self.efermi def test(iion=0,orb_name='dx2',thr=0.005): p=procar_reader() #for e in p.filter_band(0,orb_name,thr=thr): # plt.plot(e,'.',color='green') #for e in p.filter_band(1,'dx2',thr=thr): # plt.plot(e,'-',color='red') #plt.plot(p.filter_band(iion,'dz2',thr=thr)) p.plot_band_alpha(1,'dx2',color='r') p.plot_band_alpha(1,'dz2',color='g') plt.ylim(-5,5) plt.show() if __name__=='__main__': test()
lgpl-3.0
alalbiol/trading-with-python
lib/qtpandas.py
77
7937
''' Easy integration of DataFrame into pyqt framework Copyright: Jev Kuznetsov Licence: BSD ''' from PyQt4.QtCore import (QAbstractTableModel,Qt,QVariant,QModelIndex,SIGNAL) from PyQt4.QtGui import (QApplication,QDialog,QVBoxLayout, QHBoxLayout, QTableView, QPushButton, QWidget,QTableWidget, QHeaderView, QFont,QMenu,QAbstractItemView) from pandas import DataFrame, Index class DataFrameModel(QAbstractTableModel): ''' data model for a DataFrame class ''' def __init__(self,parent=None): super(DataFrameModel,self).__init__(parent) self.df = DataFrame() self.columnFormat = {} # format columns def setFormat(self,fmt): """ set string formatting for the output example : format = {'close':"%.2f"} """ self.columnFormat = fmt def setDataFrame(self,dataFrame): self.df = dataFrame self.signalUpdate() def signalUpdate(self): ''' tell viewers to update their data (this is full update, not efficient)''' self.layoutChanged.emit() def __repr__(self): return str(self.df) def setData(self,index,value, role=Qt.EditRole): if index.isValid(): row,column = index.row(), index.column() dtype = self.df.dtypes.tolist()[column] # get column dtype if np.issubdtype(dtype,np.float): val,ok = value.toFloat() elif np.issubdtype(dtype,np.int): val,ok = value.toInt() else: val = value.toString() ok = True if ok: self.df.iloc[row,column] = val return True return False def flags(self, index): if not index.isValid(): return Qt.ItemIsEnabled return Qt.ItemFlags( QAbstractTableModel.flags(self, index)| Qt.ItemIsEditable) def appendRow(self, index, data=0): self.df.loc[index,:] = data self.signalUpdate() def deleteRow(self, index): idx = self.df.index[index] #self.beginRemoveRows(QModelIndex(), index,index) #self.df = self.df.drop(idx,axis=0) #self.endRemoveRows() #self.signalUpdate() #------------- table display functions ----------------- def headerData(self,section,orientation,role=Qt.DisplayRole): if role != Qt.DisplayRole: return QVariant() if orientation == Qt.Horizontal: try: return self.df.columns.tolist()[section] except (IndexError, ): return QVariant() elif orientation == Qt.Vertical: try: #return self.df.index.tolist() return str(self.df.index.tolist()[section]) except (IndexError, ): return QVariant() def data(self, index, role=Qt.DisplayRole): if role != Qt.DisplayRole: return QVariant() if not index.isValid(): return QVariant() col = self.df.ix[:,index.column()] # get a column slice first to get the right data type elm = col[index.row()] #elm = self.df.ix[index.row(),index.column()] if self.df.columns[index.column()] in self.columnFormat.keys(): return QVariant(self.columnFormat[self.df.columns[index.column()]] % elm ) else: return QVariant(str(elm)) def sort(self,nCol,order): self.layoutAboutToBeChanged.emit() if order == Qt.AscendingOrder: self.df = self.df.sort(columns=self.df.columns[nCol], ascending=True) elif order == Qt.DescendingOrder: self.df = self.df.sort(columns=self.df.columns[nCol], ascending=False) self.layoutChanged.emit() def rowCount(self, index=QModelIndex()): return self.df.shape[0] def columnCount(self, index=QModelIndex()): return self.df.shape[1] class TableView(QTableView): """ extended table view """ def __init__(self,name='TableView1', parent=None): super(TableView,self).__init__(parent) self.name = name self.setSelectionBehavior(QAbstractItemView.SelectRows) def contextMenuEvent(self, event): menu = QMenu(self) Action = menu.addAction("delete row") Action.triggered.connect(self.deleteRow) menu.exec_(event.globalPos()) def deleteRow(self): print "Action triggered from " + self.name print 'Selected rows:' for idx in self.selectionModel().selectedRows(): print idx.row() # self.model.deleteRow(idx.row()) class DataFrameWidget(QWidget): ''' a simple widget for using DataFrames in a gui ''' def __init__(self,name='DataFrameTable1', parent=None): super(DataFrameWidget,self).__init__(parent) self.name = name self.dataModel = DataFrameModel() self.dataModel.setDataFrame(DataFrame()) self.dataTable = QTableView() #self.dataTable.setSelectionBehavior(QAbstractItemView.SelectRows) self.dataTable.setSortingEnabled(True) self.dataTable.setModel(self.dataModel) self.dataModel.signalUpdate() #self.dataTable.setFont(QFont("Courier New", 8)) layout = QVBoxLayout() layout.addWidget(self.dataTable) self.setLayout(layout) def setFormat(self,fmt): """ set non-default string formatting for a column """ for colName, f in fmt.iteritems(): self.dataModel.columnFormat[colName]=f def fitColumns(self): self.dataTable.horizontalHeader().setResizeMode(QHeaderView.Stretch) def setDataFrame(self,df): self.dataModel.setDataFrame(df) def resizeColumnsToContents(self): self.dataTable.resizeColumnsToContents() def insertRow(self,index, data=None): self.dataModel.appendRow(index,data) #-----------------stand alone test code def testDf(): ''' creates test dataframe ''' data = {'int':[1,2,3],'float':[1./3,2.5,3.5],'string':['a','b','c'],'nan':[np.nan,np.nan,np.nan]} return DataFrame(data, index=Index(['AAA','BBB','CCC']))[['int','float','string','nan']] class Form(QDialog): def __init__(self,parent=None): super(Form,self).__init__(parent) df = testDf() # make up some data self.table = DataFrameWidget(parent=self) self.table.setDataFrame(df) #self.table.resizeColumnsToContents() self.table.fitColumns() self.table.setFormat({'float': '%.2f'}) #buttons #but_add = QPushButton('Add') but_test = QPushButton('Test') but_test.clicked.connect(self.testFcn) hbox = QHBoxLayout() #hbox.addself.table(but_add) hbox.addWidget(but_test) layout = QVBoxLayout() layout.addWidget(self.table) layout.addLayout(hbox) self.setLayout(layout) def testFcn(self): print 'test function' self.table.insertRow('foo') if __name__=='__main__': import sys import numpy as np app = QApplication(sys.argv) form = Form() form.show() app.exec_()
bsd-3-clause
shiinoandra/wavegano
Program/Wavegano/Wavegano/Wavegano.py
1
21939
import operation as op import random import math import Helper import GRDEI import RDE import GDE import Wave import os import numpy import matplotlib.pyplot as plt numpy.set_printoptions(threshold=numpy.nan) #def encode(payload_path,cover_path,threshold,segment_size,partition_segment_size,method): # file_name = cover_path.split("\\")[len(cover_path.split("\\"))-1] # path = cover_path.replace(file_name,'') # print(" PROSES ENCODING ") # print(" METODE YANG DIGUNAKAN : " + method) # payload = Helper.payloadIO.open(payload_path) # bin_payload = op.operation.stringToBinary(payload) # print "besar payload : " # payload_size = len(bin_payload) # print(payload_size) # medium = Helper.WavIO.open(cover_path) # print "bitrate: " # print(medium.bitrate) # samples = op.operation.numToBinary(medium.samples) # (M1,M2,Partisi) = op.operation.intel_partition(samples,partition_segment_size) # intM1 = op.operation.binaryTonum(M1) # intM2 = op.operation.binaryTonum(M2) # if method == "GDE" : # kapasitas_M1 = GDE.checkCapacity(intM1,segment_size,threshold) # kapasitas_M2 = GDE.checkCapacity(intM2,segment_size,threshold) # elif method == "GRDEI": # kapasitas_M1 = GRDEI.checkCapacity(intM1,segment_size,threshold) # kapasitas_M2 = GRDEI.checkCapacity(intM2,segment_size,threshold) # print(" kapasitas segmen 1 : " + str(kapasitas_M1)) # print(" kapasitas segmen 2 : " + str(kapasitas_M2)) # capacity = kapasitas_M1+kapasitas_M2 # print "Kapasitas penyimpanan :" # print(capacity) # if capacity >= payload_size: # print "stegano dapat dilakukan" # payload_seg1 = bin_payload[:kapasitas_M1] # payload_seg2 = bin_payload[kapasitas_M1:len(bin_payload)] # if method == "GDE" : # (encoded_1,locMap_1) = GDE.encode(intM1,payload_seg1,segment_size,threshold) # (encoded_2,locMap_2) = GDE.encode(intM2,payload_seg2,segment_size,threshold) # elif method == "GRDEI": # (encoded_1,locMap_1,reduceMap_1) = GRDEI.encode(intM1,payload_seg1,segment_size,threshold) # (encoded_2,locMap_2,reduceMap_2) = GRDEI.encode(intM2,payload_seg2,segment_size,threshold) # encoded_1 = op.operation.numToBinary(encoded_1) # encoded_2 = op.operation.numToBinary(encoded_2) # for i in range(len(encoded_1)): # encoded_1[i]=encoded_1[i][8:16] # for i in range(len(encoded_2)): # encoded_2[i]=encoded_2[i][8:16] # encoded_1_bin = numpy.array(encoded_1,dtype=int) # encoded_2_bin = numpy.array(encoded_2,dtype=int) # _M = op.operation.reconstructPartition(encoded_1_bin,encoded_2_bin,Partisi) # _M_int2= numpy.asarray(op.operation.binaryTonum(_M),dtype=numpy.uint16) # _M_int = numpy.asarray(op.operation.binaryTonum(_M),dtype=numpy.int16) # new_wav = Wave.Wave(method+"_encoded_"+str(file_name)) # new_wav.samples = _M_int # new_wav.bitrate = medium.bitrate # time_axis = numpy.linspace(0,len(medium.samples)/medium.bitrate,num=len(medium.samples)) # plt.subplot(3,1,1) # plt.title("perbandingan wav asli dan hasil encode") # plt.plot(time_axis,numpy.array(medium.samples,dtype= "int16")) # plt.ylabel("WAV asli") # plt.subplot(3,1,2) # plt.plot(time_axis,numpy.array(_M_int,dtype= "int16")) # plt.ylabel("Hasil Encode") # plt.subplot(3,1,3) # plt.plot(time_axis,numpy.array(_M_int,dtype= "int16")) # plt.subplot(3,1,3) # plt.plot(time_axis,numpy.array(medium.samples,dtype= "int16")) # plt.ylabel("perbandingan") # plt.xlabel("Waktu (s)") # plt.savefig("original-encoded.png") # #print(medium.samples) # #raw_input() # #print(new_wav.samples) # #new_wav.print_info() # #medium.print_info() # Helper.WavIO.write(path,new_wav) # if method == "GDE" : # return(locMap_1,locMap_2,Partisi) # elif method == "GRDEI": # return(locMap_1,locMap_2,reduceMap_1,reduceMap_2,Partisi) # else: # print "kapasitas tidak mencukupi" # return -1 def encode(intM1,intM2,payload_seg1,payload_seg2,threshold,segment_size,partition_segment_size,Partisi,method): if method == "GDE" : (encoded_1,locMap_1) = GDE.encode(intM1,payload_seg1,segment_size,threshold) (encoded_2,locMap_2) = GDE.encode(intM2,payload_seg2,segment_size,threshold) elif method == "GRDEI": (encoded_1,locMap_1,reduceMap_1) = GRDEI.encode(intM1,payload_seg1,segment_size,threshold) (encoded_2,locMap_2,reduceMap_2) = GRDEI.encode(intM2,payload_seg2,segment_size,threshold) encoded_1 = op.operation.numToBinary(encoded_1) encoded_2 = op.operation.numToBinary(encoded_2) for i in range(len(encoded_1)): encoded_1[i]=encoded_1[i][8:16] for i in range(len(encoded_2)): encoded_2[i]=encoded_2[i][8:16] encoded_1_bin = numpy.array(encoded_1,dtype=int) encoded_2_bin = numpy.array(encoded_2,dtype=int) _M = op.operation.reconstructPartition(encoded_1_bin,encoded_2_bin,Partisi) _M_int2= numpy.asarray(op.operation.binaryTonum(_M),dtype=numpy.uint16) if method == "GDE" : return(_M_int2,locMap_1,locMap_2,Partisi) elif method == "GRDEI": return(_M_int2,locMap_1,locMap_2,reduceMap_1,reduceMap_2,Partisi) def decode(file_path,segment_size,payload_size,method,Partition,locMap_1,locMap_2,reduceMap_1 = None , reduceMap_2 = None): file_name = file_path.split("\\")[len(file_path.split("\\"))-1] path = file_path.replace(file_name,'') print(" PROSES DECODING ") print(" METODE YANG DIGUNAKAN : " ) medium_encoded = Helper.WavIO.open(file_path) print "bitrate: " print(medium_encoded.bitrate) samples_decode = op.operation.numToBinary(medium_encoded.samples) (_M1,_M2,P) = op.operation.intel_partition(samples_decode,0,Partition) _intM1 = op.operation.binaryTonum(_M1) _intM2 = op.operation.binaryTonum(_M2) if method == "GDE" : (decoded_M1,message1) = GDE.decode(_intM1,segment_size,locMap_1) (decoded_M2,message2) = GDE.decode(_intM2,segment_size,locMap_2) elif method == "GRDEI": (decoded_M1,message1) = GRDEI.decode(_intM1,segment_size,locMap_1,reduceMap_1) (decoded_M2,message2) = GRDEI.decode(_intM2,segment_size,locMap_2,reduceMap_2) message_decoded = [] message_decoded.extend(message1) message_decoded.extend(message2) message_decoded = message_decoded[:payload_size] print(len(message_decoded)) message_write = op.operation.revStringToBinary(message_decoded) Helper.payloadIO.write(path+"payload_decoded.txt",message_write) decoded_1 = op.operation.numToBinary(decoded_M1) decoded_2 = op.operation.numToBinary(decoded_M2) for i in range(len(decoded_1)): decoded_1[i]=decoded_1[i][8:16] for i in range(len(decoded_2)): decoded_2[i]=decoded_2[i][8:16] decoded_1_bin = numpy.array(decoded_1,dtype=int) decoded_2_bin = numpy.array(decoded_2,dtype=int) M_awal = op.operation.reconstructPartition(decoded_1_bin,decoded_2_bin,Partition) M__awal = numpy.asarray(op.operation.binaryTonum(M_awal),dtype=numpy.int16) new_wav2 = Wave.Wave(file_name.replace("encoded","decoded")) new_wav2.samples = M__awal new_wav2.bitrate = medium_encoded.bitrate plt.clf() time_axis = numpy.linspace(0,len(medium_encoded.samples)/medium_encoded.bitrate,num=len(medium_encoded.samples)) plt.subplot(2,1,1) plt.title("perbandingan hasil encode dan hasil decode") plt.plot(time_axis,numpy.array(medium_encoded.samples,dtype= "int16")) plt.ylabel("WAV encoded") plt.subplot(2,1,2) plt.plot(time_axis,numpy.array(M__awal,dtype= "int16")) plt.ylabel("WAV Hasil Dencode") plt.xlabel("Waktu (s)") plt.savefig("encoded-decoded.png") Helper.WavIO.write(path,new_wav2) def multilayer_encode(payload_path,cover_path,threshold,segment_size,partition_segment_size,method,n_layer): locmap_list = [] reducemap_list = [] capacities = [] payload_sizes = [] total_capacity = 0 file_name = cover_path.split("\\")[len(cover_path.split("\\"))-1] path = cover_path.replace(file_name,'') print(" PROSES ENCODING ") print(" METODE YANG DIGUNAKAN : " + str(method)) payload = Helper.payloadIO.open(payload_path) bin_payload = op.operation.stringToBinary(payload) print "besar payload : " payload_size = len(bin_payload) print(payload_size) medium = Helper.WavIO.open(cover_path) print "bitrate: " print(medium.bitrate) audio_sample = medium.samples #for i in range(n_layer): # samples = op.operation.numToBinary(audio_sample) # (M1,M2,Partisi) = op.operation.intel_partition(samples,partition_segment_size) # intM1 = op.operation.binaryTonum(M1) # intM2 = op.operation.binaryTonum(M2) # if method == "GDE" : # kapasitas_M1 = GDE.checkCapacity(intM1,segment_size,threshold) # kapasitas_M2 = GDE.checkCapacity(intM2,segment_size,threshold) # elif method == "GRDEI": # kapasitas_M1 = GRDEI.checkCapacity(intM1,segment_size,threshold) # kapasitas_M2 = GRDEI.checkCapacity(intM2,segment_size,threshold) # print(" kapasitas segmen 1 : " + str(kapasitas_M1)) # print(" kapasitas segmen 2 : " + str(kapasitas_M2)) # capacity = kapasitas_M1+kapasitas_M2 # capacities.append((kapasitas_M1,kapasitas_M2)) # print "Kapasitas penyimpanan layer ke "+str(i)+":"+str(capacity) # payload_seg1 = [1 for i in range(kapasitas_M1)] # payload_seg2 = [1 for i in range(kapasitas_M2)] # total_capacity+=capacity # audio_sample = encode(intM1,intM2,payload_seg1,payload_seg2,threshold,segment_size,partition_segment_size,Partisi,method)[0] #print("total kapasitas "+str(total_capacity)) #if(total_capacity > payload_size): # print("stegano dapat dilakukan") #time_axis = numpy.linspace(0,len(medium.samples)/medium.bitrate,num=len(medium.samples)) #plt.subplot(n_layer+1,1,1) #plt.title("perbandingan wav asli dan hasil encode multi-layer") #plt.plot(time_axis,numpy.array(medium.samples,dtype= "int16")) #plt.ylabel("WAV asli") P = op.operation.intel_partition(op.operation.numToBinary(audio_sample),partition_segment_size)[2] payload_counter = 0 for i in range(n_layer): print("layer ke " + str(i)) samples = op.operation.numToBinary(audio_sample) (M1,M2,Partisi) = op.operation.intel_partition(samples,partition_segment_size,P) intM1 = op.operation.binaryTonum(M1) intM2 = op.operation.binaryTonum(M2) if method == "GDE" : kapasitas_M1 = GDE.checkCapacity(intM1,segment_size,threshold) kapasitas_M2 = GDE.checkCapacity(intM2,segment_size,threshold) elif method == "GRDEI": kapasitas_M1 = GRDEI.checkCapacity(intM1,segment_size,threshold) kapasitas_M2 = GRDEI.checkCapacity(intM2,segment_size,threshold) capacities.append((kapasitas_M1,kapasitas_M2)) kapasitas_total_layer = kapasitas_M1+kapasitas_M2 total_capacity += kapasitas_total_layer if((payload_size - payload_counter) > kapasitas_total_layer): payload_i = bin_payload[payload_counter:kapasitas_total_layer] payload_sizes.append(kapasitas_total_layer) payload_counter+=kapasitas_total_layer print(len(payload_i)) else: payload_i = bin_payload[payload_counter:payload_size] payload_sizes.append((payload_size-payload_counter)) payload_counter+=(payload_size-payload_counter) print(len(payload_i)) payload_seg1 = payload_i[:kapasitas_M1] print(len(payload_seg1)) payload_seg2 = payload_i[kapasitas_M1:len(payload_i)] print(len(payload_seg2)) if method == "GDE" : (audio_sample,locMap_1,locMap_2,Partisi)= encode(intM1,intM2,payload_seg1,payload_seg2,threshold,segment_size,partition_segment_size,P,method) locmap_list.append((locMap_1,locMap_2)) elif method == "GRDEI": (audio_sample,locMap_1,locMap_2,reduceMap_1,reduceMap_2,Partisi) = encode(intM1,intM2,payload_seg1,payload_seg2,threshold,segment_size,partition_segment_size,P,method) locmap_list.append((locMap_1,locMap_2)) reducemap_list.append((reduceMap_1,reduceMap_2)) #audio_sample = numpy.asarray(audio_sample2,dtype="uint16") #plt.subplot(n_layer+1,1,i+2) #plt.plot(time_axis,numpy.array(audio_sample,dtype= "int16")) #plt.ylabel("Hasil Encode layer ke "+str(i+1)) #plt.xlabel("Waktu (s)") #plt.savefig("original-multiencode-"+str(n_layer)+".png") if(payload_counter>=payload_size): print("stegano berhasil dilakukan") print(total_capacity) _M_int = numpy.asarray(audio_sample,dtype=numpy.int16) new_wav = Wave.Wave(method+"_encoded_"+str(file_name)) new_wav.samples = _M_int new_wav.bitrate = medium.bitrate Helper.WavIO.write(path,new_wav) if method == "GDE" : return(locmap_list,payload_sizes,P) elif method == "GRDEI": return(locmap_list,reducemap_list,payload_sizes,P) else: print("kapasitas tidak mencukupi") #else: # print "kapasitas tidak mencukupi" # return -1 def multilayer_decode(file_path,segment_size,payload_sizes,Partition,method,n_layer,locmap_list,reducemap_list = None,): full_messages=[] file_name = file_path.split("\\")[len(file_path.split("\\"))-1] path = file_path.replace(file_name,'') print(" PROSES DECODING ") print(" METODE YANG DIGUNAKAN : " ) print(method) medium_encoded = Helper.WavIO.open(file_path) print "bitrate: " print(medium_encoded.bitrate) audio_samples = medium_encoded.samples for i in range (n_layer): print("layer ke " + str(i)) (locmap_i_1,locmap_i_2) = locmap_list.pop() if(method == "GRDEI"): (reducemap_i_1,reducemap_i_2) = reducemap_list.pop() samples = op.operation.numToBinary(audio_samples) (_M1,_M2,P) = op.operation.intel_partition(samples,0,Partition) _intM1 = op.operation.binaryTonum(_M1) _intM2 = op.operation.binaryTonum(_M2) if method == "GDE" : (decoded_M1,message1) = GDE.decode(_intM1,segment_size,locmap_i_1) (decoded_M2,message2) = GDE.decode(_intM2,segment_size,locmap_i_2) elif method == "GRDEI": (decoded_M1,message1) = GRDEI.decode(_intM1,segment_size,locmap_i_1,reducemap_i_1) (decoded_M2,message2) = GRDEI.decode(_intM2,segment_size,locmap_i_2,reducemap_i_2) message_decoded = [] message_decoded.extend(message1) message_decoded.extend(message2) payload_i_size = payload_sizes.pop() full_messages.insert(0,message_decoded[0:payload_i_size]) decoded_1 = op.operation.numToBinary(decoded_M1) decoded_2 = op.operation.numToBinary(decoded_M2) for i in range(len(decoded_1)): decoded_1[i]=decoded_1[i][8:16] for i in range(len(decoded_2)): decoded_2[i]=decoded_2[i][8:16] decoded_1_bin = numpy.array(decoded_1,dtype=int) decoded_2_bin = numpy.array(decoded_2,dtype=int) M_awal = op.operation.reconstructPartition(decoded_1_bin,decoded_2_bin,Partition) audio_samples = numpy.asarray(op.operation.binaryTonum(M_awal),dtype=numpy.uint16) for i in audio_samples: if(i<0): print(i) message_write = [] for i in range(len(full_messages)): message_write.extend(full_messages[i]) message_write = op.operation.revStringToBinary(message_write) Helper.payloadIO.write(path+"payload_decoded.txt",message_write) new_wav = Wave.Wave(file_name.replace("encoded","decoded")) M__awal = numpy.asarray(audio_samples,dtype=numpy.int16) new_wav.samples = M__awal new_wav.bitrate = medium_encoded.bitrate Helper.WavIO.write(path,new_wav) if __name__ == "__main__": #(map1,map2,rmap1,rmap2,p) = encode("D:\\payload.txt","D:\\coba16.wav",100,20,10,"GRDEI") (locmap_list,reducemap_list,payload_sizes,partisi) = multilayer_encode("D:\\payload.txt","D:\\coba16.wav",50,20,10,"GRDEI",20) #print(len(locmap_list)) # print(len(reducemap_list)) multilayer_decode("D:\\GRDEI_encoded_coba16.wav",20,payload_sizes,partisi,"GRDEI",20,locmap_list,reducemap_list) #locmap_list.pop() #(map1_1,map1_2) = locmap_list.pop() #reducemap_list.pop() #(rmap1_1,rmap1_2) = reducemap_list.pop() #decode("D:\\GRDEI_encoded2_coba16.wav",20,1187,"GRDEI",partisi,map1_1,map1_2,rmap1_1,rmap1_2) #print(len(locmap_list),len(reducemap_list)) # # print "data payload : " # #print(payload) # #arr = [13954, 4369, 37385, 3995, 2556, 46896, 13816, 17865, 40433, 42503, 27740, 14980, 22323, 27920, 48381, 40456, 58866, 60412, 36991, 30730, 14601, 31475, 50583, 57144, 18332, 46140, 47181, 62996, 19071, 30753, 55953, 62831, 8814, 44566, 2191, 16703, 36414, 55831, 28696, 43850] # #samples = op.operation.numToBinary(arr) # besar_segmen = 2 # threshold = 200 # ########### DECODING ###############
mit
drandykass/fatiando
gallery/gravmag/eqlayer_transform.py
6
3046
""" Equivalent layer for griding and upward-continuing gravity data ------------------------------------------------------------------------- The equivalent layer is one of the best methods for griding and upward continuing gravity data and much more. The trade-off is that performing this requires an inversion and later forward modeling, which are more time consuming and more difficult to tune than the standard griding and FFT-based approaches. This example uses the equivalent layer in :mod:`fatiando.gravmag.eqlayer` to grid and upward continue some gravity data. There are more advanced methods in the module than the one we are showing here. They can be more efficient but usually require more configuration. """ from __future__ import division, print_function import matplotlib.pyplot as plt from fatiando.gravmag import prism, sphere from fatiando.gravmag.eqlayer import EQLGravity from fatiando.inversion import Damping from fatiando import gridder, utils, mesher # First thing to do is make some synthetic data to test the method. We'll use a # single prism to keep it simple props = {'density': 500} model = [mesher.Prism(-5000, 5000, -200, 200, 100, 4000, props)] # The synthetic data will be generated on a random scatter of points area = [-8000, 8000, -5000, 5000] x, y, z = gridder.scatter(area, 300, z=0, seed=42) # Generate some noisy data from our model gz = utils.contaminate(prism.gz(x, y, z, model), 0.2, seed=0) # Now for the equivalent layer. We must setup a layer of point masses where # we'll estimate a density distribution that fits our synthetic data layer = mesher.PointGrid(area, 500, (20, 20)) # Estimate the density using enough damping so that won't try to fit the error eql = EQLGravity(x, y, z, gz, layer) + 1e-22*Damping(layer.size) eql.fit() # Now we add the estimated densities to our layer layer.addprop('density', eql.estimate_) # and print some statistics of how well the estimated layer fits the data residuals = eql[0].residuals() print("Residuals:") print(" mean:", residuals.mean(), 'mGal') print(" stddev:", residuals.std(), 'mGal') # Now I can forward model gravity data anywhere we want. For interpolation, we # calculate it on a grid. For upward continuation, at a greater height. We can # even combine both into a single operation. x2, y2, z2 = gridder.regular(area, (50, 50), z=-1000) gz_up = sphere.gz(x2, y2, z2, layer) fig, axes = plt.subplots(1, 2, figsize=(8, 6)) ax = axes[0] ax.set_title('Original data') ax.set_aspect('equal') tmp = ax.tricontourf(y/1000, x/1000, gz, 30, cmap='viridis') fig.colorbar(tmp, ax=ax, pad=0.1, aspect=30, orientation='horizontal').set_label('mGal') ax.plot(y/1000, x/1000, 'xk') ax.set_xlabel('y (km)') ax.set_ylabel('x (km)') ax = axes[1] ax.set_title('Gridded and upward continued') ax.set_aspect('equal') tmp = ax.tricontourf(y2/1000, x2/1000, gz_up, 30, cmap='viridis') fig.colorbar(tmp, ax=ax, pad=0.1, aspect=30, orientation='horizontal').set_label('mGal') ax.set_xlabel('y (km)') plt.tight_layout() plt.show()
bsd-3-clause
g2p/systems
lib/systems/context.py
1
17949
# vim: set fileencoding=utf-8 sw=2 ts=2 et : from __future__ import absolute_import from __future__ import with_statement from logging import getLogger import networkx as NX import yaml from systems.collector import Aggregate, CResource from systems.registry import get_registry from systems.typesystem import EResource, Transition, ResourceRef __all__ = ('Realizer', ) LOGGER = getLogger(__name__) DESC_LIMIT = 64 def describe(thing): return '%s' % str(thing)[:DESC_LIMIT] class CycleError(Exception): pass class Node(object): def __init__(self): if type(self) == Node: raise TypeError def __repr__(self): return '<%s>' % self def __str__(self): return type(self).__name__ class CheckPointNode(Node): pass class ExpandableNode(Node): def __init__(self, res): super(ExpandableNode, self).__init__() if type(self) == ExpandableNode: # Abstract class raise TypeError self._res = res class BeforeExpandableNode(ExpandableNode): def __str__(self): return 'Before %s' % self._res class AfterExpandableNode(ExpandableNode): def __str__(self): return 'After %s' % self._res class GraphFirstNode(Node, yaml.YAMLObject): yaml_tag = u'GraphFirstNode' class GraphLastNode(Node, yaml.YAMLObject): yaml_tag = u'GraphLastNode' node_types = (CheckPointNode, BeforeExpandableNode, AfterExpandableNode, GraphFirstNode, GraphLastNode, Transition, Aggregate, CResource, EResource, ResourceRef) class ResourceGraph(yaml.YAMLObject): """ A graph of resources and transitions linked by dependencies. Resources are positioned as two sentinels in the transition graph. Invariant: directed, acyclic. """ def __init__(self, top=None): self._graph = NX.DiGraph() self._first = GraphFirstNode() self._last = GraphLastNode() self._graph.add_edge(self._first, self._last) # Contains CResource and EResource, despite the name. # Used to enforce max one resource per id. self.__expandables = {} # Received references, by name. self.__received_refs = {} # What nodes were processed (meaning expanding or collecting) self.__processed = set() # Pre-bound args pased by ref. Allow putting extra depends on them. if top is not None: if not isinstance(top, ResourceGraph): raise TypeError(top, ResourceGraph) self.__top = top else: self.__top = self yaml_tag = u'!ResourceGraph' @classmethod def from_yaml(cls, loader, ynode): rg = cls() # Deep because of aliases and anchors, I think. mp = loader.construct_mapping(ynode, deep=True) pred_rels = mp['nodes'] for rel in pred_rels: rg._add_node(rel['node'], depends=rel['depends']) return rg @classmethod def to_yaml(cls, dumper, rg): # This is incomplete. pred_rels = [{'node': node, 'depends': list(depends), } for (node, depends) in rg._iter_pred_rels()] return dumper.represent_mapping(cls.yaml_tag, { 'nodes': pred_rels, }) def _iter_node_preds(self, node0): return (node for node in self._graph.predecessors_iter(node0) if node not in (self._first, self._last)) def _iter_pred_rels(self): return ((node, self._iter_node_preds(node)) for node in self.sorted_nodes() if node not in (self._first, self._last)) def sorted_nodes(self): return NX.topological_sort(self._graph) def sorted_transitions(self): return [n for n in self.sorted_nodes() if isinstance(n, Transition)] def iter_uncollected_resources(self): for nod in self._graph.nodes_iter(): if isinstance(nod, CResource): if not nod in self.__processed: yield nod def iter_unexpanded_resources(self): for nod in self._graph.nodes_iter(): if isinstance(nod, EResource): if not nod in self.__processed: yield nod def iter_unexpanded_aggregates(self): for agg in self._graph.nodes_iter(): if isinstance(agg, Aggregate): if not agg in self.__processed: yield agg def iter_unprocessed(self): for nod in self.iter_uncollected_resources(): yield nod for nod in self.iter_unexpanded_resources(): yield nod for nod in self.iter_unexpanded_aggregates(): yield nod def has_unprocessed(self): l = list(self.iter_unprocessed()) return bool(l) # Tests for non-emptiness def require_acyclic(self): if not NX.is_directed_acyclic_graph(self._graph): # XXX NX doesn't have a 1-line method for listing those cycles raise CycleError def _add_node(self, node, depends=()): if not isinstance(node, node_types): raise TypeError(node, node_types) self._graph.add_node(node) self._graph.add_edge(self._first, node) self._graph.add_edge(node, self._last) for dep in depends: depn = self._intern(dep) self._add_node_dep(depn, node) return node def add_checkpoint(self, depends=()): return self._add_node(CheckPointNode(), depends) def add_transition(self, transition, depends=()): if not isinstance(transition, Transition): raise TypeError(transition, Transition) return self._add_node(transition, depends) def _add_aggregate(self, aggregate, depends=()): if not isinstance(aggregate, Aggregate): raise TypeError(aggregate, Aggregate) return self._add_node(aggregate, depends) def add_resource(self, resource, depends=()): """ Add a resource. If an identical resource exists, it is returned. """ if not isinstance(resource, (CResource, EResource)): raise TypeError(resource, (CResource, EResource)) if resource.identity in self.__expandables: # We have this id already. # Either it's the exact same resource, or a KeyError is thrown. resource = self._intern(resource) # XXX Need to bypass _intern for already expanded. # XXX When we use add_to_top, we sometimes have to deal # with a resource that's already been expanded. # Those are not in the graph anymore. How do we refer to them? else: self.__expandables[resource.identity] = resource # Even if already there, we need to add the depends. resource = self._add_node(resource, depends) # If already there, notice we aliase it. return self.make_ref(resource) def make_ref(self, res, depends=()): res = self._intern(res) if not isinstance(res, (CResource, EResource)): raise TypeError(res, (CResource, EResource)) depends = list(depends) depends.append(res) return self._add_node(ResourceRef(res), depends) def make_alias_ref(self, ref, depends=()): ref = self._intern(ref) if not isinstance(ref, ResourceRef): raise TypeError(ref, ResourceRef) depends = list(depends) depends.append(ref) return self._add_node(ResourceRef(ref.unref), depends) def add_to_top(self, res): """ Add a resource to the top ResourceGraph. Use it to put things that you don't necessarily want to be after the outside dependencies the current graph has. """ ref = self.__top.add_resource(res) return self._add_node(ref) def _add_node_dep(self, node0, node1): if not isinstance(node0, node_types): raise TypeError(node0, node_types) if not isinstance(node1, node_types): raise TypeError(node1, node_types) if not self._graph.has_node(node0): raise KeyError(node0) if not self._graph.has_node(node1): raise KeyError(node1) if self._graph.has_edge(node0, node1): return False if node0 == node1: # Disallow self-loops to keep acyclic invariant. # Also they don't make sense. raise ValueError(node0) # Invariant check rev_path = NX.shortest_path(self._graph, node1, node0) if rev_path is not False: raise CycleError(rev_path) self._graph.add_edge(node0, node1) return True def _intern(self, thing): if not isinstance(thing, node_types): raise TypeError if thing not in self._graph: raise KeyError(thing) return thing def add_dependency(self, elem0, elem1): node0 = self._intern(elem0) node1 = self._intern(elem1) return self._add_node_dep(node0, node1) def _is_direct_rconnect(self, r0, r1): s0 = self._intern(r0) s1 = self._intern(r1) # shortest_path is also a test for connectedness. return bool(NX.shortest_path(self._graph, s0, s1)) def resources_connected(self, r0, r1): return self._is_direct_rconnect(r0, r1) \ or self._is_direct_rconnect(r1, r0) def draw(self, fname): return self.draw_agraph(fname) def draw_agraph(self, fname): # XXX pygraphviz has steep dependencies (x11 libs) # and recommends (texlive) for a headless box. # We duplicate the graph, otherwise networkx / pygraphviz # would make a lossy conversion (sometimes refusing to convert), by adding # nodes as their string representation. Madness, I know. gr2 = NX.create_empty_copy(self._graph, False) for node in self._graph.nodes_iter(): gr2.add_node(id(node)) for (n0, n1) in self._graph.edges_iter(): gr2.add_edge(id(n0), id(n1)) names = dict((id(node), { 'label': describe(node)}) for node in self._graph.nodes_iter()) gr2.delete_node(id(self._first)) gr2.delete_node(id(self._last)) g = NX.to_agraph(gr2, { 'graph': { 'nodesep': '0.2', 'rankdir': 'TB', 'ranksep': '0.5', }, 'node': { 'shape': 'box', }, }, names) g.write(fname + '.dot') # Dot is good for DAGs. g.layout(prog='dot') g.draw(fname + '.svg') with open(fname + '.yaml', 'w') as f: yaml.dump(self, f) # Fails with the expanded graph, due to instancemethod #yaml.load(yaml.dump(self)) def draw_matplotlib(self, fname): # Pyplot is stateful and awkward to use. import matplotlib.pyplot as P # Disable hold or it definitely won't work (probably a bug). P.hold(False) NX.draw(self._graph) P.savefig(fname) def collect_resources(self, r0s, r1): """ Replace an iterable of resources with one new resource. May break the acyclic invariant, caveat emptor. """ # The invariant is kept iff the r0s don't have paths linking them. # For our use case (collectors), we could allow paths provided they are # internal to r0s. This introduces self-loops that we would then remove. for r0 in r0s: r0 = self._intern(r0) if r0 in self.__processed: raise RuntimeError if r1 in self._graph: raise ValueError(r1) r1 = self._add_aggregate(r1) for r0 in r0s: r0 = self._intern(r0) self._move_edges(r0, r1) self.__processed.add(r0) self.require_acyclic() def _move_edges(self, n0, n1): if n0 == n1: raise RuntimeError n0 = self._intern(n0) n1 = self._intern(n1) # list is used as a temporary # add after delete in case of same. for pred in list(self._graph.predecessors_iter(n0)): self._graph.delete_edge(pred, n0) self._graph.add_edge(pred, n1) for succ in list(self._graph.successors_iter(n0)): self._graph.delete_edge(n0, succ) self._graph.add_edge(n1, succ) self._graph.delete_node(n0) # Can't undo. Invariant will stay broken. def _split_node(self, res): res = self._intern(res) before = self._add_node(BeforeExpandableNode(res)) after = self._add_node(AfterExpandableNode(res)) self._graph.add_edge(before, after) for pred in list(self._graph.predecessors_iter(res)): self._graph.delete_edge(pred, res) self._graph.add_edge(pred, before) for succ in list(self._graph.successors_iter(res)): self._graph.delete_edge(res, succ) self._graph.add_edge(after, succ) self._graph.delete_node(res) return before, after def _receive_by_ref(self, name, ref): if name in self.__received_refs: raise RuntimeError(name, ref) ref = self._add_node(ref) self.__received_refs[name] = ref return ref def _pass_by_ref(self, subgraph, name, ref): # The origin/value distinction is important # for aliased arguments (two refs, same val). ref = self._intern(ref) if not isinstance(ref, ResourceRef): raise TypeError(ref, ResourceRef) subgraph._receive_by_ref(name, ref) def expand_resource(self, res): """ Replace res by a small resource graph. The resource_graph is inserted in the main graph between the sentinels that represent the resource. """ res = self._intern(res) # We're processing from the outside in. if res in self.__processed: raise RuntimeError resource_graph = ResourceGraph(self.__top) if isinstance(res, EResource): for (name, ref) in res.iter_passed_by_ref(): # ref will be present in both graphs. self._pass_by_ref(resource_graph, name, ref) elif isinstance(res, Aggregate): pass else: raise TypeError(res) res.expand_into(resource_graph) # We expand from the outside in if bool(resource_graph.__processed): raise RuntimeError # Do not skip sentinels. for n in resource_graph._graph.nodes_iter(): self._add_node(n) for (n0, n1) in resource_graph._graph.edges_iter(): self._add_node_dep(n0, n1) for (id1, res1) in resource_graph.__expandables.iteritems(): # We expand from the outside in. assert res1 not in self.__processed if id1 in self.__expandables: # Pass by reference if you must use the same resource # in different contexts. raise RuntimeError('ResourceBase collision.', res, res1) else: self.__expandables[id1] = res1 before, after = self._split_node(res) self.__processed.add(res) self._move_edges(resource_graph._first, before) self._move_edges(resource_graph._last, after) # What may break the invariant: # Passing a ref to res, and making res depend on ref. # ref ends up on both sides of ref.before. self.require_acyclic() class Realizer(object): """ A graph of realizables linked by dependencies. """ def __init__(self, expandable): self.__resources = ResourceGraph() self.__expandable = expandable self.__state = 'init' def require_state(self, state): """ Raise an exception if we are not in the required state. """ if self.__state != state: raise RuntimeError(u'Realizer state should be «%s»' % state) def ensure_frozen(self): """ Build the finished dependency graph. Merge identical realizables, collect what can be. """ if self.__state == 'frozen': return # Order is important self.require_state('init') self.__expandable.expand_into(self.__resources) #self.__resources.draw('/tmp/freezing') self._expand() #self.__resources.draw('/tmp/pre-collect') self._collect() self._expand_aggregates() assert not bool(list(self.__resources.iter_unprocessed())) self.__state = 'frozen' #self.__resources.draw('/tmp/frozen') def _collect(self): # Collects compatible nodes into merged nodes. def can_merge(part0, part1): for n0 in part0: for n1 in part1: if self.__resources.resources_connected(n0, n1): return False return True def possibly_merge(partition): # Merge once if possible. Return true if did merge. e = dict(enumerate(partition)) n = len(partition) # Loop over the triangle of unordered pairs for i in xrange(n): for j in xrange(i + 1, n): part0, part1 = e[i], e[j] if can_merge(part0, part1): partition.add(part0.union(part1)) partition.remove(part0) partition.remove(part1) return True return False reg = get_registry() for collector in reg.collectors: # Pre-partition is made of parts acceptable for the collector. pre_partition = collector.partition( [r for r in self.__resources.iter_uncollected_resources() if collector.filter(r)]) for part in pre_partition: # Collector parts are split again, the sub-parts are merged # when dependencies allow. # Not a particularly efficient algorithm, just simple. # Gives one solution among many possibilities. partition = set(frozenset((r, )) for r in part for part in pre_partition) while possibly_merge(partition): pass # Let the collector handle the rest for part in partition: if not bool(part): # Test for emptiness. # Aggregate even singletons. continue merged = collector.collect(part) self.__resources.collect_resources(part, merged) assert not bool(list(self.__resources.iter_uncollected_resources())) def _expand(self): # Poor man's recursion while True: fresh = set(r for r in self.__resources.iter_unexpanded_resources()) if bool(fresh) == False: # Test for emptiness break for r in fresh: self.__resources.expand_resource(r) assert not bool(list(self.__resources.iter_unexpanded_resources())) def _expand_aggregates(self): for a in list(self.__resources.iter_unexpanded_aggregates()): self.__resources.expand_resource(a) assert not bool(list(self.__resources.iter_unexpanded_aggregates())) # Enforce the rule that aggregates can only expand into transitions. if self.__resources.has_unprocessed(): raise RuntimeError(list(self.__resources.iter_unprocessed())) def realize(self): """ Realize all realizables and transitions in dependency order. """ self.ensure_frozen() for t in self.__resources.sorted_transitions(): t.realize() self.__state = 'realized'
gpl-2.0
hsiaoyi0504/scikit-learn
sklearn/manifold/t_sne.py
106
20057
# Author: Alexander Fabisch -- <afabisch@informatik.uni-bremen.de> # License: BSD 3 clause (C) 2014 # This is the standard t-SNE implementation. There are faster modifications of # the algorithm: # * Barnes-Hut-SNE: reduces the complexity of the gradient computation from # N^2 to N log N (http://arxiv.org/abs/1301.3342) # * Fast Optimization for t-SNE: # http://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf import numpy as np from scipy import linalg from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from ..base import BaseEstimator from ..utils import check_array from ..utils import check_random_state from ..utils.extmath import _ravel from ..decomposition import RandomizedPCA from ..metrics.pairwise import pairwise_distances from . import _utils MACHINE_EPSILON = np.finfo(np.double).eps def _joint_probabilities(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances. Parameters ---------- distances : array, shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity conditional_P = _utils._binary_search_perplexity( distances, desired_perplexity, verbose) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P def _kl_divergence(params, P, alpha, n_samples, n_components): """t-SNE objective function: KL divergence of p_ijs and q_ijs. Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. alpha : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution n = pdist(X_embedded, "sqeuclidean") n += 1. n /= alpha n **= (alpha + 1.0) / -2.0 Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) kl_divergence = 2.0 * np.dot(P, np.log(P / Q)) # Gradient: dC/dY grad = np.ndarray((n_samples, n_components)) PQd = squareform((P - Q) * n) for i in range(n_samples): np.dot(_ravel(PQd[i]), X_embedded[i] - X_embedded, out=grad[i]) grad = grad.ravel() c = 2.0 * (alpha + 1.0) / alpha grad *= c return kl_divergence, grad def _gradient_descent(objective, p0, it, n_iter, n_iter_without_progress=30, momentum=0.5, learning_rate=1000.0, min_gain=0.01, min_grad_norm=1e-7, min_error_diff=1e-7, verbose=0, args=None): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : function or callable Should return a tuple of cost and gradient for a given parameter vector. p0 : array-like, shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). n_iter : int Maximum number of gradient descent iterations. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. momentum : float, within (0.0, 1.0), optional (default: 0.5) The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, optional (default: 1000.0) The learning rate should be extremely high for t-SNE! Values in the range [100.0, 1000.0] are common. min_gain : float, optional (default: 0.01) Minimum individual gain for each parameter. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be aborted. min_error_diff : float, optional (default: 1e-7) If the absolute difference of two successive cost function values is below this threshold, the optimization will be aborted. verbose : int, optional (default: 0) Verbosity level. args : sequence Arguments to pass to objective function. Returns ------- p : array, shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(np.float).max best_error = np.finfo(np.float).max best_iter = 0 for i in range(it, n_iter): new_error, grad = objective(p, *args) error_diff = np.abs(new_error - error) error = new_error grad_norm = linalg.norm(grad) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print("[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress)) break if min_grad_norm >= grad_norm: if verbose >= 2: print("[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm)) break if min_error_diff >= error_diff: if verbose >= 2: print("[t-SNE] Iteration %d: error difference %f. Finished." % (i + 1, error_diff)) break inc = update * grad >= 0.0 dec = np.invert(inc) gains[inc] += 0.05 gains[dec] *= 0.95 np.clip(gains, min_gain, np.inf) grad *= gains update = momentum * update - learning_rate * grad p += update if verbose >= 2 and (i + 1) % 10 == 0: print("[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f" % (i + 1, error, grad_norm)) return p, error, i def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False): """Expresses to what extent the local structure is retained. The trustworthiness is within [0, 1]. It is defined as .. math:: T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1} \sum_{j \in U^{(k)}_i (r(i, j) - k)} where :math:`r(i, j)` is the rank of the embedded datapoint j according to the pairwise distances between the embedded datapoints, :math:`U^{(k)}_i` is the set of points that are in the k nearest neighbors in the embedded space but not in the original space. * "Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study" J. Venna, S. Kaski * "Learning a Parametric Embedding by Preserving Local Structure" L.J.P. van der Maaten Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. X_embedded : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. n_neighbors : int, optional (default: 5) Number of neighbors k that will be considered. precomputed : bool, optional (default: False) Set this flag if X is a precomputed square distance matrix. Returns ------- trustworthiness : float Trustworthiness of the low-dimensional embedding. """ if precomputed: dist_X = X else: dist_X = pairwise_distances(X, squared=True) dist_X_embedded = pairwise_distances(X_embedded, squared=True) ind_X = np.argsort(dist_X, axis=1) ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1] n_samples = X.shape[0] t = 0.0 ranks = np.zeros(n_neighbors) for i in range(n_samples): for j in range(n_neighbors): ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0] ranks -= n_neighbors t += np.sum(ranks[ranks > 0]) t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))) return t class TSNE(BaseEstimator): """t-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selcting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 4.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 1000) The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 200. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string, optional (default: "random") Initialization of embedding. Possible options are 'random' and 'pca'. PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Note that different initializations might result in different local minima of the cost function. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = TSNE(n_components=2, random_state=0) >>> model.fit_transform(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE array([[ 887.28..., 238.61...], [ -714.79..., 3243.34...], [ 957.30..., -2505.78...], [-1130.28..., -974.78...]) References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding http://homepage.tudelft.nl/19j49/t-SNE.html """ def __init__(self, n_components=2, perplexity=30.0, early_exaggeration=4.0, learning_rate=1000.0, n_iter=1000, metric="euclidean", init="random", verbose=0, random_state=None): if init not in ["pca", "random"]: raise ValueError("'init' must be either 'pca' or 'random'") self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model using X as training data. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError("early_exaggeration must be at least 1, but is " "%f" % self.early_exaggeration) if self.n_iter < 200: raise ValueError("n_iter should be at least 200") if self.metric == "precomputed": if self.init == 'pca': raise ValueError("The parameter init=\"pca\" cannot be used " "with metric=\"precomputed\".") if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric) # Degrees of freedom of the Student's t-distribution. The suggestion # alpha = n_components - 1 comes from "Learning a Parametric Embedding # by Preserving Local Structure" Laurens van der Maaten, 2009. alpha = max(self.n_components - 1.0, 1) n_samples = X.shape[0] self.training_data_ = X P = _joint_probabilities(distances, self.perplexity, self.verbose) if self.init == 'pca': pca = RandomizedPCA(n_components=self.n_components, random_state=random_state) X_embedded = pca.fit_transform(X) elif self.init == 'random': X_embedded = None else: raise ValueError("Unsupported initialization scheme: %s" % self.init) self.embedding_ = self._tsne(P, alpha, n_samples, random_state, X_embedded=X_embedded) return self def _tsne(self, P, alpha, n_samples, random_state, X_embedded=None): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with three stages: # * early exaggeration with momentum 0.5 # * early exaggeration with momentum 0.8 # * final optimization with momentum 0.8 # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. if X_embedded is None: # Initialize embedding randomly X_embedded = 1e-4 * random_state.randn(n_samples, self.n_components) params = X_embedded.ravel() # Early exaggeration P *= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=0, n_iter=50, momentum=0.5, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=100, momentum=0.8, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations with early " "exaggeration: %f" % (it + 1, error)) # Final optimization P /= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=self.n_iter, momentum=0.8, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations: %f" % (it + 1, error)) X_embedded = params.reshape(n_samples, self.n_components) return X_embedded def fit_transform(self, X, y=None): """Transform X to the embedded space. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ self.fit(X) return self.embedding_
bsd-3-clause
canast02/csci544_fall2016_project
yelp-sentiment/experiments/sentiment_stochasticGradientDescent.py
1
2641
import numpy as np from nltk import TweetTokenizer, accuracy from nltk.stem.snowball import EnglishStemmer from sklearn import svm, linear_model from sklearn.cross_validation import StratifiedKFold from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.metrics import precision_recall_fscore_support from sentiment_util import load_datasets def main(): # x, y = load_dataset("datasets/sentiment_uci/yelp_labelled.txt") x, y = load_datasets(["../datasets/sentiment_uci/yelp_labelled.txt"]) stopwords = set() with open('../stopwords.txt', 'r') as f: for w in f: stopwords.add(w) tok = TweetTokenizer() stemmer = EnglishStemmer() vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=True, binary=True, preprocessor=stemmer.stem, tokenizer=tok.tokenize, ngram_range=(1, 2)) accu_p = np.zeros(shape=(2,)) accu_r = np.zeros(shape=(2,)) accu_f = np.zeros(shape=(2,)) accu_a = 0.0 folds = 10 for train_idx, test_idx in StratifiedKFold(y=y, n_folds=folds, shuffle=True): train_x, train_y = x[train_idx], y[train_idx] test_x, test_y = x[test_idx], y[test_idx] cls = linear_model.SGDClassifier(loss='hinge', penalty='l2', n_iter=100) # train train_x = vectorizer.fit_transform(train_x).toarray() cls.fit(train_x, train_y) # test test_x = vectorizer.transform(test_x).toarray() pred_y = cls.predict(test_x) # evaluate p, r, f, _ = precision_recall_fscore_support(test_y, pred_y) a = accuracy_score(test_y, pred_y) accu_p += p accu_r += r accu_f += f accu_a += a print("Evaluating classifier:") print("\tAccuracy: {}".format(a)) print("\tPrecision[0]: {}".format(p[0])) print("\tPrecision[1]: {}".format(p[1])) print("\tRecall[0]: {}".format(r[0])) print("\tRecall[1]: {}".format(r[1])) print("\tF1-score[0]: {}".format(f[0])) print("\tF1-score[1]: {}".format(f[1])) print("Average evaluation") print("\tAccuracy: {}".format(accu_a / folds)) print("\tPrecision[0]: {}".format(accu_p[0] / folds)) print("\tPrecision[1]: {}".format(accu_p[1] / folds)) print("\tRecall[0]: {}".format(accu_r[0] / folds)) print("\tRecall[1]: {}".format(accu_r[1] / folds)) print("\tF1-score[0]: {}".format(accu_f[0] / folds)) print("\tF1-score[1]: {}".format(accu_f[1] / folds)) if __name__ == '__main__': main()
gpl-3.0
Lyleo/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/numerix/__init__.py
69
5473
""" numerix imports either Numeric or numarray based on various selectors. 0. If the value "--numpy","--numarray" or "--Numeric" is specified on the command line, then numerix imports the specified array package. 1. The value of numerix in matplotlibrc: either Numeric or numarray 2. If none of the above is done, the default array package is Numeric. Because the matplotlibrc always provides *some* value for numerix (it has it's own system of default values), this default is most likely never used. To summarize: the commandline is examined first, the rc file second, and the default array package is Numeric. """ import sys, os, struct from matplotlib import rcParams, verbose which = None, None use_maskedarray = None # First, see if --numarray or --Numeric was specified on the command # line: for a in sys.argv: if a in ["--Numeric", "--numeric", "--NUMERIC", "--Numarray", "--numarray", "--NUMARRAY", "--NumPy", "--numpy", "--NUMPY", "--Numpy", ]: which = a[2:], "command line" if a == "--maskedarray": use_maskedarray = True if a == "--ma": use_maskedarray = False try: del a except NameError: pass if which[0] is None: try: # In theory, rcParams always has *some* value for numerix. which = rcParams['numerix'], "rc" except KeyError: pass if use_maskedarray is None: try: use_maskedarray = rcParams['maskedarray'] except KeyError: use_maskedarray = False # If all the above fail, default to Numeric. Most likely not used. if which[0] is None: which = "numeric", "defaulted" which = which[0].strip().lower(), which[1] if which[0] not in ["numeric", "numarray", "numpy"]: raise ValueError("numerix selector must be either 'Numeric', 'numarray', or 'numpy' but the value obtained from the %s was '%s'." % (which[1], which[0])) if which[0] == "numarray": import warnings warnings.warn("numarray use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from na_imports import * from numarray import * from _na_imports import nx, inf, infinity, Infinity, Matrix, isnan, all from numarray.numeric import nonzero from numarray.convolve import cross_correlate, convolve import numarray version = 'numarray %s'%numarray.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numeric": import warnings warnings.warn("Numeric use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from nc_imports import * from Numeric import * from _nc_imports import nx, inf, infinity, Infinity, isnan, all, any from Matrix import Matrix import Numeric version = 'Numeric %s'%Numeric.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numpy": try: import numpy.oldnumeric as numpy from numpy.oldnumeric import * except ImportError: import numpy from numpy import * print 'except asarray', asarray from _sp_imports import nx, infinity, rand, randn, isnan, all, any from _sp_imports import UInt8, UInt16, UInt32, Infinity try: from numpy.oldnumeric.matrix import Matrix except ImportError: Matrix = matrix version = 'numpy %s' % numpy.__version__ from numpy import nan else: raise RuntimeError("invalid numerix selector") # Some changes are only applicable to the new numpy: if (which[0] == 'numarray' or which[0] == 'numeric'): from mlab import amin, amax newaxis = NewAxis def typecode(a): return a.typecode() def iscontiguous(a): return a.iscontiguous() def byteswapped(a): return a.byteswapped() def itemsize(a): return a.itemsize() def angle(a): return arctan2(a.imag, a.real) else: # We've already checked for a valid numerix selector, # so assume numpy. from mlab import amin, amax newaxis = NewAxis from numpy import angle def typecode(a): return a.dtype.char def iscontiguous(a): return a.flags.contiguous def byteswapped(a): return a.byteswap() def itemsize(a): return a.itemsize verbose.report('numerix %s'%version) # a bug fix for blas numeric suggested by Fernando Perez matrixmultiply=dot asum = sum def _import_fail_message(module, version): """Prints a message when the array package specific version of an extension fails to import correctly. """ _dict = { "which" : which[0], "module" : module, "specific" : version + module } print """ The import of the %(which)s version of the %(module)s module, %(specific)s, failed. This is is either because %(which)s was unavailable when matplotlib was compiled, because a dependency of %(specific)s could not be satisfied, or because the build flag for this module was turned off in setup.py. If it appears that %(specific)s was not built, make sure you have a working copy of %(which)s and then re-install matplotlib. Otherwise, the following traceback gives more details:\n""" % _dict g = globals() l = locals() __import__('ma', g, l) __import__('fft', g, l) __import__('linear_algebra', g, l) __import__('random_array', g, l) __import__('mlab', g, l) la = linear_algebra ra = random_array
gpl-3.0
sliwhu/UWHousingTeam
model/house_price_model.py
1
6622
""" Contains the house price model. DON'T USE THIS MODEL! Use the HousePriceModel in house_price_model_2.py. """ import os import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import RidgeCV # Constants BASE_DATE = pd.to_datetime('20140101', format='%Y%m%d', errors='ignore') TO_TYPE = 'category' # Note: It is expected that the following environment variables will be set so # that the house price model will be able to locate its training data: # # SALES_DATA_PATH: The path of the sales data training file, e.g.: "~/directory" # SALES_DATA_FILE: The name of the sales data training file, e.g.: "File.csv" # # os.environ["SALES_DATA_PATH"] = '~/UW Data Science/DATA 515A/Project' # os.environ["SALES_DATA_FILE"] = 'Merged_Data_excel.csv' # 'KingCountyHomeSalesData.csv' # Construct the sales data path, and read the sales data. SALES_DATA_PATH = os.path.join(os.environ['SALES_DATA_PATH'], os.environ['SALES_DATA_FILE']) SALES_DATA = pd.read_csv(SALES_DATA_PATH, parse_dates=['date']) # Data cleansing plan: # # id: Discard # date: Convert to integer; make categorical # price: No conversion # bedrooms: No conversion # bathrooms: No conversion # sqft_living: No conversion # sqft_lot: No conversion # floors: Make categorical # waterfront: Make categorical # view: Make categorical # condition: Make categorical # grade: Make categorical # sqft_above: No conversion # sqft_basement: No conversion # yr_built: Make categorical # yr_renovated: Copy over yr_built if missing; make categorical # zipcode: Make categorical # lat: No conversion # long: No conversion # sqft_living15 No conversion # sqft_lot15 No conversion # list_price No conversion def construct_models(): """ Constructs a ridge regression model, and a random forest model for housing price data. :return: A ridge regression model, and a random forest model for housing price data """ return train_models(create_model_data_frame(SALES_DATA)) def create_model_data_frame(source): """ Creates a data frame suitable for constructing a model. :param source: The source data frame :return: A data frame suitable for constructing a model """ # Create an empty data frame. Get the date series from the source. my_model_data = pd.DataFrame() sales_date = source['date'] # Extract the sales date as an integer. my_model_data['sale_day'] =\ (sales_date - get_base_date()).astype('timedelta64[D]').astype(int) + 1 # Extract the sale day-of-week as an integer, and the sale day in month. my_model_data['sale_day_of_week'] = sales_date.dt.dayofweek.astype(TO_TYPE) my_model_data['sale_day_in_month'] = sales_date.dt.day.astype(TO_TYPE) # Extract common features as numeric, or categorical values. # create_model_feature(my_model_data, source, 'price', False) create_model_feature(my_model_data, source, 'price', False) create_model_feature(my_model_data, source, 'bedrooms', False) create_model_feature(my_model_data, source, 'bathrooms', False) create_model_feature(my_model_data, source, 'sqft_living', False) create_model_feature(my_model_data, source, 'sqft_lot', False) create_model_feature(my_model_data, source, 'floors', True) create_model_feature(my_model_data, source, 'waterfront', True) create_model_feature(my_model_data, source, 'view', True) create_model_feature(my_model_data, source, 'condition', True) create_model_feature(my_model_data, source, 'grade', True) create_model_feature(my_model_data, source, 'sqft_above', False) create_model_feature(my_model_data, source, 'sqft_basement', False) create_model_feature(my_model_data, source, 'yr_built', True) # Use 'year built' in place of 'year renovated' if year renovated is zero # in the source. field_name = 'yr_renovated' my_model_data[field_name] = pd.Categorical(np.where( source[field_name] == 0, source['yr_built'].astype(TO_TYPE), source[field_name].astype(TO_TYPE))) # Extract more common features as numeric, or categorical values. create_model_feature(my_model_data, source, 'zipcode', True) create_model_feature(my_model_data, source, 'lat', False) create_model_feature(my_model_data, source, 'long', False) create_model_feature(my_model_data, source, 'sqft_living15', False) create_model_feature(my_model_data, source, 'sqft_lot15', False) my_model_data['list_price'] = source['List price'] # Return the completed model data frame. return my_model_data def create_model_feature(destination, source, name, to_categorical=False): """ Creates a feature in a destination data frame. :param destination: The destination data frame :param source: The source data frame :param name: The name of the feature to copy :param to_categorical: True if the feature should be converted to categorical, false otherwise :return: None """ if to_categorical: destination[name] = source[name].astype(TO_TYPE) else: destination[name] = source[name] return None def get_base_date(): """ Gets the base date as a reference for day of sale. :return: The base date as a reference for day of sale """ return BASE_DATE def train_models(my_model_data): """ Trains a ridge regression model, and a random forest model, and returns them. :param my_model_data: The model data on which to train :return: A ridge regression model, and a random forest model """ # Construct the ridge regression model. my_ridge_model = RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=True, scoring=None, cv=None, gcv_mode=None, store_cv_values=True) # Construct the random forest model. my_forest_model = RandomForestRegressor() # Divide the model data into predictor and response. response_field = 'price' predictors = my_model_data.ix[:, response_field != my_model_data.columns] response = my_model_data[response_field] # Fit the models, and return them. my_ridge_model.fit(X=predictors, y=response) my_forest_model.fit(X=predictors, y=response) return my_ridge_model, my_forest_model
mit
renatopp/liac
liac/dataset/__init__.py
1
3050
# ============================================================================= # Federal University of Rio Grande do Sul (UFRGS) # Connectionist Artificial Intelligence Laboratory (LIAC) # Renato de Pontes Pereira - rppereira@inf.ufrgs.br # ============================================================================= # Copyright (c) 2011 Renato de Pontes Pereira, renato.ppontes at gmail dot com # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================= ''' This module is an interface to pandas and provides some utility functions for handling dataset. ''' import os import pandas as pd from . import arff __all__ = ['load', 'read_csv', 'read_clipboard', 'read_arff'] read_csv = pd.read_csv read_clipboard = pd.read_clipboard def read_arff(set_name): ''' Read ARFF file into pandas DataFrame. :param set_name: the dataset path. ''' f = open(set_name) info = arff.load(f) f.close() attributes = [a[0] for a in info['attributes']] data = info['data'] return pd.DataFrame(data, columns=attributes) def load(set_name, *args, **kwargs): ''' This function loads automatically any dataset in the following formats: arff; csv; excel; hdf; sql; json; html; stata; clipboard; pickle. Moreover, it loads the default datasets such "iris" if the extension in `set_name` is unknown. :param set_name: the dataset path or the default dataset name. :returns: a `pd.DataFrame` object. ''' _, ext = os.path.splitext(set_name) if ext == '.arff': loader = read_arff elif ext in ['.csv', '.txt']: loader = read_csv else: loader = __load_default_set dataset = loader(set_name, *args, **kwargs) return dataset def __load_default_set(set_name): ALIASES = {'linaker':'linaker1v'} name = ''.join([ALIASES.get(set_name, set_name), '.arff']) file_name = os.path.join(os.path.dirname(__file__), 'sets', name) return read_arff(file_name)
mit
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/scipy/signal/spectral.py
4
66089
"""Tools for spectral analysis. """ from __future__ import division, print_function, absolute_import import numpy as np from scipy import fftpack from . import signaltools from .windows import get_window from ._spectral import _lombscargle from ._arraytools import const_ext, even_ext, odd_ext, zero_ext import warnings from scipy._lib.six import string_types __all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence', 'spectrogram', 'stft', 'istft', 'check_COLA'] def lombscargle(x, y, freqs, precenter=False, normalize=False): """ lombscargle(x, y, freqs) Computes the Lomb-Scargle periodogram. The Lomb-Scargle periodogram was developed by Lomb [1]_ and further extended by Scargle [2]_ to find, and test the significance of weak periodic signals with uneven temporal sampling. When *normalize* is False (default) the computed periodogram is unnormalized, it takes the value ``(A**2) * N/4`` for a harmonic signal with amplitude A for sufficiently large N. When *normalize* is True the computed periodogram is is normalized by the residuals of the data around a constant reference model (at zero). Input arrays should be one-dimensional and will be cast to float64. Parameters ---------- x : array_like Sample times. y : array_like Measurement values. freqs : array_like Angular frequencies for output periodogram. precenter : bool, optional Pre-center amplitudes by subtracting the mean. normalize : bool, optional Compute normalized periodogram. Returns ------- pgram : array_like Lomb-Scargle periodogram. Raises ------ ValueError If the input arrays `x` and `y` do not have the same shape. Notes ----- This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend [3]_ which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency. The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies. References ---------- .. [1] N.R. Lomb "Least-squares frequency analysis of unequally spaced data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976 .. [2] J.D. Scargle "Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data", The Astrophysical Journal, vol 263, pp. 835-853, 1982 .. [3] R.H.D. Townsend, "Fast calculation of the Lomb-Scargle periodogram using graphics processing units.", The Astrophysical Journal Supplement Series, vol 191, pp. 247-253, 2010 Examples -------- >>> import scipy.signal >>> import matplotlib.pyplot as plt First define some input parameters for the signal: >>> A = 2. >>> w = 1. >>> phi = 0.5 * np.pi >>> nin = 1000 >>> nout = 100000 >>> frac_points = 0.9 # Fraction of points to select Randomly select a fraction of an array with timesteps: >>> r = np.random.rand(nin) >>> x = np.linspace(0.01, 10*np.pi, nin) >>> x = x[r >= frac_points] Plot a sine wave for the selected times: >>> y = A * np.sin(w*x+phi) Define the array of frequencies for which to compute the periodogram: >>> f = np.linspace(0.01, 10, nout) Calculate Lomb-Scargle periodogram: >>> import scipy.signal as signal >>> pgram = signal.lombscargle(x, y, f, normalize=True) Now make a plot of the input data: >>> plt.subplot(2, 1, 1) >>> plt.plot(x, y, 'b+') Then plot the normalized periodogram: >>> plt.subplot(2, 1, 2) >>> plt.plot(f, pgram) >>> plt.show() """ x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) freqs = np.asarray(freqs, dtype=np.float64) assert x.ndim == 1 assert y.ndim == 1 assert freqs.ndim == 1 if precenter: pgram = _lombscargle(x, y - y.mean(), freqs) else: pgram = _lombscargle(x, y, freqs) if normalize: pgram *= 2 / np.dot(y, y) return pgram def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using a periodogram. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to 'boxcar'. nfft : int, optional Length of the FFT used. If `None` the length of `x` will be used. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of `x`. Notes ----- .. versionadded:: 0.12.0 See Also -------- welch: Estimate power spectral density using Welch's method lombscargle: Lomb-Scargle periodogram for unevenly sampled data Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> np.random.seed(1234) Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.periodogram(x, fs) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([1e-7, 1e2]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[25000:]) 0.00099728892368242854 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.ylim([1e-4, 1e1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if window is None: window = 'boxcar' if nfft is None: nperseg = x.shape[axis] elif nfft == x.shape[axis]: nperseg = nfft elif nfft > x.shape[axis]: nperseg = x.shape[axis] elif nfft < x.shape[axis]: s = [np.s_[:]]*len(x.shape) s[axis] = np.s_[:nfft] x = x[s] nperseg = nfft nfft = None return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided, scaling, axis) def welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): r""" Estimate power spectral density using Welch's method. Welch's method [1]_ computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of x. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_. .. versionadded:: 0.12.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika, vol. 37, pp. 1-16, 1950. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> np.random.seed(1234) Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([0.5e-3, 1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ freqs, Pxx = csd(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis) return freqs, Pxx.real def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): r""" Estimate the cross power spectral density, Pxy, using Welch's method. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap: int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the CSD is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxy : ndarray Cross spectral density or cross power spectrum of x,y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. [Equivalent to csd(x,x)] coherence: Magnitude squared coherence by Welch's method. Notes -------- By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y. If the input series differ in length, the shorter series will be zero-padded to match. An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the magnitude of the cross spectral density. >>> f, Pxy = signal.csd(x, y, fs, nperseg=1024) >>> plt.semilogy(f, np.abs(Pxy)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('CSD [V**2/Hz]') >>> plt.show() """ freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') # Average over windows. if len(Pxy.shape) >= 2 and Pxy.size > 0: if Pxy.shape[-1] > 1: Pxy = Pxy.mean(axis=-1) else: Pxy = np.reshape(Pxy, Pxy.shape[:-1]) return freqs, Pxy def spectrogram(x, fs=1.0, window=('tukey',.25), nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, mode='psd'): """ Compute a spectrogram with consecutive Fourier transforms. Spectrograms can be used as a way of visualizing the change of a nonstationary signal's frequency content over time. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Tukey window with shape parameter of 0.25. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 8``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Sxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Sxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density'. axis : int, optional Axis along which the spectrogram is computed; the default is over the last axis (i.e. ``axis=-1``). mode : str, optional Defines what kind of return values are expected. Options are ['psd', 'complex', 'magnitude', 'angle', 'phase']. 'complex' is equivalent to the output of `stft` with no padding or boundary extension. 'magnitude' returns the absolute magnitude of the STFT. 'angle' and 'phase' return the complex angle of the STFT, with and without unwrapping, respectively. Returns ------- f : ndarray Array of sample frequencies. t : ndarray Array of segment times. Sxx : ndarray Spectrogram of x. By default, the last axis of Sxx corresponds to the segment times. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. In contrast to welch's method, where the entire data stream is averaged over, one may wish to use a smaller overlap (or perhaps none at all) when computing a spectrogram, to maintain some statistical independence between individual segments. It is for this reason that the default window is a Tukey window with 1/8th of a window's length overlap at each end. .. versionadded:: 0.16.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.01 * fs / 2 >>> time = np.arange(N) / float(fs) >>> mod = 500*np.cos(2*np.pi*0.25*time) >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod) >>> noise = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> noise *= np.exp(-time/5) >>> x = carrier + noise Compute and plot the spectrogram. >>> f, t, Sxx = signal.spectrogram(x, fs) >>> plt.pcolormesh(t, f, Sxx) >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.show() """ modelist = ['psd', 'complex', 'magnitude', 'angle', 'phase'] if mode not in modelist: raise ValueError('unknown value for mode {}, must be one of {}' .format(mode, modelist)) # need to set default for nperseg before setting default for noverlap below window, nperseg = _triage_segments(window, nperseg, input_length=x.shape[axis]) # Less overlap than welch, so samples are more statisically independent if noverlap is None: noverlap = nperseg // 8 if mode == 'psd': freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') else: freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='stft') if mode == 'magnitude': Sxx = np.abs(Sxx) elif mode in ['angle', 'phase']: Sxx = np.angle(Sxx) if mode == 'phase': # Sxx has one additional dimension for time strides if axis < 0: axis -= 1 Sxx = np.unwrap(Sxx, axis=axis) # mode =='complex' is same as `stft`, doesn't need modification return freqs, time, Sxx def check_COLA(window, nperseg, noverlap, tol=1e-10): r""" Check whether the Constant OverLap Add (COLA) constraint is met Parameters ---------- window : str or tuple or array_like Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. nperseg : int Length of each segment. noverlap : int Number of points to overlap between segments. tol : float, optional The allowed variance of a bin's weighted sum from the median bin sum. Returns ------- verdict : bool `True` if chosen combination satisfies COLA within `tol`, `False` otherwise See Also -------- stft: Short Time Fourier Transform istft: Inverse Short Time Fourier Transform Notes ----- In order to enable inversion of an STFT via the inverse STFT in `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA). This ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Some examples of windows that satisfy COLA: - Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ... - Bartlett window at overlap of 1/2, 3/4, 5/6, ... - Hann window at 1/2, 2/3, 3/4, ... - Any Blackman family window at 2/3 overlap - Any window with ``noverlap = nperseg-1`` A very comprehensive list of other windows may be found in [2]_, wherein the COLA condition is satisfied when the "Amplitude Flatness" is unity. .. versionadded:: 0.19.0 References ---------- .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K Publishing, 2011,ISBN 978-0-9745607-3-1. .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows", 2002, http://hdl.handle.net/11858/00-001M-0000-0013-557A-5 Examples -------- >>> from scipy import signal Confirm COLA condition for rectangular window of 75% (3/4) overlap: >>> signal.check_COLA(signal.boxcar(100), 100, 75) True COLA is not true for 25% (1/4) overlap, though: >>> signal.check_COLA(signal.boxcar(100), 100, 25) False "Symmetrical" Hann window (for filter design) is not COLA: >>> signal.check_COLA(signal.hann(120, sym=True), 120, 60) False "Periodic" or "DFT-even" Hann window (for FFT analysis) is COLA for overlap of 1/2, 2/3, 3/4, etc.: >>> signal.check_COLA(signal.hann(120, sym=False), 120, 60) True >>> signal.check_COLA(signal.hann(120, sym=False), 120, 80) True >>> signal.check_COLA(signal.hann(120, sym=False), 120, 90) True """ nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') noverlap = int(noverlap) if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] != nperseg: raise ValueError('window must have length of nperseg') step = nperseg - noverlap binsums = sum(win[ii*step:(ii+1)*step] for ii in range(nperseg//step)) if nperseg % step != 0: binsums[:nperseg % step] += win[-(nperseg % step):] deviation = binsums - np.median(binsums) return np.max(np.abs(deviation)) < tol def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-1): r""" Compute the Short Time Fourier Transform (STFT). STFTs can be used as a way of quantifying the change of a nonstationary signal's frequency and phase content over time. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to 256. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. When specified, the COLA constraint must be met (see Notes below). nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to `False`. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. Defaults to `True`. boundary : str or None, optional Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to 'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``. padded : bool, optional Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to `True`. Padding occurs after boundary extension, if `boundary` is not `None`, and `padded` is `True`, as is the default. axis : int, optional Axis along which the STFT is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. t : ndarray Array of segment times. Zxx : ndarray STFT of `x`. By default, the last axis of `Zxx` corresponds to the segment times. See Also -------- istft: Inverse Short Time Fourier Transform check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met welch: Power spectral density by Welch's method. spectrogram: Spectrogram by Welch's method. csd: Cross spectral density by Welch's method. lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- In order to enable inversion of an STFT via the inverse STFT in `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA), and the input signal must have complete windowing coverage (i.e. ``(x.shape[axis] - nperseg) % (nperseg-noverlap) == 0``). The `padded` argument may be used to accomplish this. The COLA constraint ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Whether a choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can be tested with `check_COLA`. .. versionadded:: 0.19.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. .. [2] Daniel W. Griffin, Jae S. Limdt "Signal Estimation from Modified Short Fourier Transform", IEEE 1984, 10.1109/TASSP.1984.1164317 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.01 * fs / 2 >>> time = np.arange(N) / float(fs) >>> mod = 500*np.cos(2*np.pi*0.25*time) >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod) >>> noise = np.random.normal(scale=np.sqrt(noise_power), ... size=time.shape) >>> noise *= np.exp(-time/5) >>> x = carrier + noise Compute and plot the STFT's magnitude. >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000) >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp) >>> plt.title('STFT Magnitude') >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.show() """ freqs, time, Zxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling='spectrum', axis=axis, mode='stft', boundary=boundary, padded=padded) return freqs, time, Zxx def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2): r""" Perform the inverse Short Time Fourier transform (iSTFT). Parameters ---------- Zxx : array_like STFT of the signal to be reconstructed. If a purely real array is passed, it will be cast to a complex data type. fs : float, optional Sampling frequency of the time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. Must match the window used to generate the STFT for faithful inversion. nperseg : int, optional Number of data points corresponding to each STFT segment. This parameter must be specified if the number of data points per segment is odd, or if the STFT was padded via ``nfft > nperseg``. If `None`, the value depends on the shape of `Zxx` and `input_onesided`. If `input_onesided` is True, ``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise, ``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`. noverlap : int, optional Number of points to overlap between segments. If `None`, half of the segment length. Defaults to `None`. When specified, the COLA constraint must be met (see Notes below), and should match the parameter used to generate the STFT. Defaults to `None`. nfft : int, optional Number of FFT points corresponding to each STFT segment. This parameter must be specified if the STFT was padded via ``nfft > nperseg``. If `None`, the default values are the same as for `nperseg`, detailed above, with one exception: if `input_onesided` is True and ``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on that value. This case allows the proper inversion of an odd-length unpadded STFT using ``nfft=None``. Defaults to `None`. input_onesided : bool, optional If `True`, interpret the input array as one-sided FFTs, such as is returned by `stft` with ``return_onesided=True`` and `numpy.fft.rfft`. If `False`, interpret the input as a a two-sided FFT. Defaults to `True`. boundary : bool, optional Specifies whether the input signal was extended at its boundaries by supplying a non-`None` ``boundary`` argument to `stft`. Defaults to `True`. time_axis : int, optional Where the time segments of the STFT is located; the default is the last axis (i.e. ``axis=-1``). freq_axis : int, optional Where the frequency axis of the STFT is located; the default is the penultimate axis (i.e. ``axis=-2``). Returns ------- t : ndarray Array of output data times. x : ndarray iSTFT of `Zxx`. See Also -------- stft: Short Time Fourier Transform check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met Notes ----- In order to enable inversion of an STFT via the inverse STFT with `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA). This ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Whether a choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can be tested with `check_COLA`, by using ``nperseg = Zxx.shape[freq_axis]``. An STFT which has been modified (via masking or otherwise) is not guaranteed to correspond to a exactly realizible signal. This function implements the iSTFT via the least-squares esimation algorithm detailed in [2]_, which produces a signal that minimizes the mean squared error between the STFT of the returned signal and the modified STFT. .. versionadded:: 0.19.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. .. [2] Daniel W. Griffin, Jae S. Limdt "Signal Estimation from Modified Short Fourier Transform", IEEE 1984, 10.1109/TASSP.1984.1164317 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by 0.001 V**2/Hz of white noise sampled at 1024 Hz. >>> fs = 1024 >>> N = 10*fs >>> nperseg = 512 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / float(fs) >>> carrier = amp * np.sin(2*np.pi*50*time) >>> noise = np.random.normal(scale=np.sqrt(noise_power), ... size=time.shape) >>> x = carrier + noise Compute the STFT, and plot its magnitude >>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg) >>> plt.figure() >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp) >>> plt.ylim([f[1], f[-1]]) >>> plt.title('STFT Magnitude') >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.yscale('log') >>> plt.show() Zero the components that are 10% or less of the carrier magnitude, then convert back to a time series via inverse STFT >>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0) >>> _, xrec = signal.istft(Zxx, fs) Compare the cleaned signal with the original and true carrier signals. >>> plt.figure() >>> plt.plot(time, x, time, xrec, time, carrier) >>> plt.xlim([2, 2.1]) >>> plt.xlabel('Time [sec]') >>> plt.ylabel('Signal') >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier']) >>> plt.show() Note that the cleaned signal does not start as abruptly as the original, since some of the coefficients of the transient were also removed: >>> plt.figure() >>> plt.plot(time, x, time, xrec, time, carrier) >>> plt.xlim([0, 0.1]) >>> plt.xlabel('Time [sec]') >>> plt.ylabel('Signal') >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier']) >>> plt.show() """ # Make sure input is an ndarray of appropriate complex dtype Zxx = np.asarray(Zxx) + 0j freq_axis = int(freq_axis) time_axis = int(time_axis) if Zxx.ndim < 2: raise ValueError('Input stft must be at least 2d!') if freq_axis == time_axis: raise ValueError('Must specify differing time and frequency axes!') nseg = Zxx.shape[time_axis] if input_onesided: # Assume even segment length n_default = 2*(Zxx.shape[freq_axis] - 1) else: n_default = Zxx.shape[freq_axis] # Check windowing parameters if nperseg is None: nperseg = n_default else: nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') if nfft is None: if (input_onesided) and (nperseg == n_default + 1): # Odd nperseg, no FFT padding nfft = nperseg else: nfft = n_default elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') else: nfft = int(nfft) if noverlap is None: noverlap = nperseg//2 else: noverlap = int(noverlap) if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') nstep = nperseg - noverlap if not check_COLA(window, nperseg, noverlap): raise ValueError('Window, STFT shape and noverlap do not satisfy the ' 'COLA constraint.') # Rearrange axes if necessary if time_axis != Zxx.ndim-1 or freq_axis != Zxx.ndim-2: # Turn negative indices to positive for the call to transpose if freq_axis < 0: freq_axis = Zxx.ndim + freq_axis if time_axis < 0: time_axis = Zxx.ndim + time_axis zouter = list(range(Zxx.ndim)) for ax in sorted([time_axis, freq_axis], reverse=True): zouter.pop(ax) Zxx = np.transpose(Zxx, zouter+[freq_axis, time_axis]) # Get window as array if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] != nperseg: raise ValueError('window must have length of {0}'.format(nperseg)) if input_onesided: ifunc = np.fft.irfft else: ifunc = fftpack.ifft xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg, :] # Initialize output and normalization arrays outputlength = nperseg + (nseg-1)*nstep x = np.zeros(list(Zxx.shape[:-2])+[outputlength], dtype=xsubs.dtype) norm = np.zeros(outputlength, dtype=xsubs.dtype) if np.result_type(win, xsubs) != xsubs.dtype: win = win.astype(xsubs.dtype) xsubs *= win.sum() # This takes care of the 'spectrum' scaling # Construct the output from the ifft segments # This loop could perhaps be vectorized/strided somehow... for ii in range(nseg): # Window the ifft x[..., ii*nstep:ii*nstep+nperseg] += xsubs[..., ii] * win norm[..., ii*nstep:ii*nstep+nperseg] += win**2 # Divide out normalization where non-tiny x /= np.where(norm > 1e-10, norm, 1.0) # Remove extension points if boundary: x = x[..., nperseg//2:-(nperseg//2)] if input_onesided: x = x.real # Put axes back if x.ndim > 1: if time_axis != Zxx.ndim-1: if freq_axis < time_axis: time_axis -= 1 x = np.rollaxis(x, -1, time_axis) time = np.arange(x.shape[0])/float(fs) return time, x def coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', axis=-1): r""" Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch's method. ``Cxy = abs(Pxy)**2/(Pxx*Pyy)``, where `Pxx` and `Pyy` are power spectral density estimates of X and Y, and `Pxy` is the cross spectral density estimate of X and Y. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap: int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. axis : int, optional Axis along which the coherence is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Cxy : ndarray Magnitude squared coherence of x and y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes -------- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of Signals" Prentice Hall, 2005 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the coherence. >>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024) >>> plt.semilogy(f, Cxy) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Coherence') >>> plt.show() """ freqs, Pxx = welch(x, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pyy = welch(y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pxy = csd(x, y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) Cxy = np.abs(Pxy)**2 / Pxx / Pyy return freqs, Cxy def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='spectrum', axis=-1, mode='psd', boundary=None, padded=False): """ Calculate various forms of windowed FFTs for PSD, CSD, etc. This is a helper function that implements the commonality between the stft, psd, csd, and spectrogram functions. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Parameters --------- x : array_like Array or sequence containing the data to be analyzed. y : array_like Array or sequence containing the data to be analyzed. If this is the same object in memory as `x` (i.e. ``_spectral_helper(x, x, ...)``), the extra computations are spared. fs : float, optional Sampling frequency of the time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the FFTs are computed; the default is over the last axis (i.e. ``axis=-1``). mode: str {'psd', 'stft'}, optional Defines what kind of return values are expected. Defaults to 'psd'. boundary : str or None, optional Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to `None`. padded : bool, optional Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to `False`. Padding occurs after boundary extension, if `boundary` is not `None`, and `padded` is `True`. Returns ------- freqs : ndarray Array of sample frequencies. t : ndarray Array of times corresponding to each data segment result : ndarray Array of output data, contents dependent on *mode* kwarg. Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 """ if mode not in ['psd', 'stft']: raise ValueError("Unknown value for mode %s, must be one of: " "{'psd', 'stft'}" % mode) boundary_funcs = {'even': even_ext, 'odd': odd_ext, 'constant': const_ext, 'zeros': zero_ext, None: None} if boundary not in boundary_funcs: raise ValueError("Unknown boundary option '{0}', must be one of: {1}" .format(boundary, list(boundary_funcs.keys()))) # If x and y are the same object we can save ourselves some computation. same_data = y is x if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is 'stft'") axis = int(axis) # Ensure we have np.arrays, get outdtype x = np.asarray(x) if not same_data: y = np.asarray(y) outdtype = np.result_type(x, y, np.complex64) else: outdtype = np.result_type(x, np.complex64) if not same_data: # Check if we can broadcast the outer axes together xouter = list(x.shape) youter = list(y.shape) xouter.pop(axis) youter.pop(axis) try: outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape except ValueError: raise ValueError('x and y cannot be broadcast together.') if same_data: if x.size == 0: return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape) else: if x.size == 0 or y.size == 0: outshape = outershape + (min([x.shape[axis], y.shape[axis]]),) emptyout = np.rollaxis(np.empty(outshape), -1, axis) return emptyout, emptyout, emptyout if x.ndim > 1: if axis != -1: x = np.rollaxis(x, axis, len(x.shape)) if not same_data and y.ndim > 1: y = np.rollaxis(y, axis, len(y.shape)) # Check if x and y are the same length, zero-pad if necessary if not same_data: if x.shape[-1] != y.shape[-1]: if x.shape[-1] < y.shape[-1]: pad_shape = list(x.shape) pad_shape[-1] = y.shape[-1] - x.shape[-1] x = np.concatenate((x, np.zeros(pad_shape)), -1) else: pad_shape = list(y.shape) pad_shape[-1] = x.shape[-1] - y.shape[-1] y = np.concatenate((y, np.zeros(pad_shape)), -1) if nperseg is not None: # if specified by user nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') # parse window; if array like, then set nperseg = win.shape win, nperseg = _triage_segments(window, nperseg,input_length=x.shape[-1]) if nfft is None: nfft = nperseg elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') else: nfft = int(nfft) if noverlap is None: noverlap = nperseg//2 else: noverlap = int(noverlap) if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') nstep = nperseg - noverlap # Padding occurs after boundary extension, so that the extended signal ends # in zeros, instead of introducing an impulse at the end. # I.e. if x = [..., 3, 2] # extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0] # pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3] if boundary is not None: ext_func = boundary_funcs[boundary] x = ext_func(x, nperseg//2, axis=-1) if not same_data: y = ext_func(y, nperseg//2, axis=-1) if padded: # Pad to integer number of windowed segments # I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg zeros_shape = list(x.shape[:-1]) + [nadd] x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1) if not same_data: zeros_shape = list(y.shape[:-1]) + [nadd] y = np.concatenate((y, np.zeros(zeros_shape)), axis=-1) # Handle detrending and window functions if not detrend: def detrend_func(d): return d elif not hasattr(detrend, '__call__'): def detrend_func(d): return signaltools.detrend(d, type=detrend, axis=-1) elif axis != -1: # Wrap this function so that it receives a shape that it could # reasonably expect to receive. def detrend_func(d): d = np.rollaxis(d, -1, axis) d = detrend(d) return np.rollaxis(d, axis, len(d.shape)) else: detrend_func = detrend if np.result_type(win,np.complex64) != outdtype: win = win.astype(outdtype) if scaling == 'density': scale = 1.0 / (fs * (win*win).sum()) elif scaling == 'spectrum': scale = 1.0 / win.sum()**2 else: raise ValueError('Unknown scaling: %r' % scaling) if mode == 'stft': scale = np.sqrt(scale) if return_onesided: if np.iscomplexobj(x): sides = 'twosided' warnings.warn('Input data is complex, switching to ' 'return_onesided=False') else: sides = 'onesided' if not same_data: if np.iscomplexobj(y): sides = 'twosided' warnings.warn('Input data is complex, switching to ' 'return_onesided=False') else: sides = 'twosided' if sides == 'twosided': freqs = fftpack.fftfreq(nfft, 1/fs) elif sides == 'onesided': freqs = np.fft.rfftfreq(nfft, 1/fs) # Perform the windowed FFTs result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides) if not same_data: # All the same operations on the y data result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft, sides) result = np.conjugate(result) * result_y elif mode == 'psd': result = np.conjugate(result) * result result *= scale if sides == 'onesided' and mode == 'psd': if nfft % 2: result[..., 1:] *= 2 else: # Last point is unpaired Nyquist freq point, don't double result[..., 1:-1] *= 2 time = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1, nperseg - noverlap)/float(fs) if boundary is not None: time -= (nperseg/2) / fs result = result.astype(outdtype) # All imaginary parts are zero anyways if same_data and mode != 'stft': result = result.real # Output is going to have new last axis for time/window index, so a # negative axis index shifts down one if axis < 0: axis -= 1 # Roll frequency axis back to axis where the data came from result = np.rollaxis(result, -1, axis) return freqs, time, result def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides): """ Calculate windowed FFT, for internal use by scipy.signal._spectral_helper This is a helper function that does the main FFT calculation for `_spectral helper`. All input validation is performed there, and the data axis is assumed to be the last axis of x. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Returns ------- result : ndarray Array of FFT data Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 """ # Created strided array of data segments if nperseg == 1 and noverlap == 0: result = x[..., np.newaxis] else: # http://stackoverflow.com/a/5568169 step = nperseg - noverlap shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg) strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1]) result = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) # Detrend each data segment individually result = detrend_func(result) # Apply window by multiplication result = win * result # Perform the fft. Acts on last axis by default. Zero-pads automatically if sides == 'twosided': func = fftpack.fft else: result = result.real func = np.fft.rfft result = func(result, n=nfft) return result def _triage_segments(window, nperseg,input_length): """ Parses window and nperseg arguments for spectrogram and _spectral_helper. This is a helper function, not meant to be called externally. Parameters --------- window : string, tuple, or ndarray If window is specified by a string or tuple and nperseg is not specified, nperseg is set to the default of 256 and returns a window of that length. If instead the window is array_like and nperseg is not specified, then nperseg is set to the length of the window. A ValueError is raised if the user supplies both an array_like window and a value for nperseg but nperseg does not equal the length of the window. nperseg : int Length of each segment input_length: int Length of input signal, i.e. x.shape[-1]. Used to test for errors. Returns ------- win : ndarray window. If function was called with string or tuple than this will hold the actual array used as a window. nperseg : int Length of each segment. If window is str or tuple, nperseg is set to 256. If window is array_like, nperseg is set to the length of the 6 window. """ #parse window; if array like, then set nperseg = win.shape if isinstance(window, string_types) or isinstance(window, tuple): # if nperseg not specified if nperseg is None: nperseg = 256 # then change to default if nperseg > input_length: warnings.warn('nperseg = {0:d} is greater than input length ' ' = {1:d}, using nperseg = {1:d}' .format(nperseg, input_length)) nperseg = input_length win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if input_length < win.shape[-1]: raise ValueError('window is longer than input signal') if nperseg is None: nperseg = win.shape[0] elif nperseg is not None: if nperseg != win.shape[0]: raise ValueError("value specified for nperseg is different from" " length of window") return win, nperseg
gpl-3.0
se4u/pylearn2
pylearn2/sandbox/cuda_convnet/bench.py
44
3589
__authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" from pylearn2.testing.skip import skip_if_no_gpu skip_if_no_gpu() import numpy as np from theano.compat.six.moves import xrange from theano import shared from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs from theano.tensor.nnet.conv import conv2d from theano import function import time import matplotlib.pyplot as plt def make_funcs(batch_size, rows, cols, channels, filter_rows, num_filters): rng = np.random.RandomState([2012,10,9]) filter_cols = filter_rows base_image_value = rng.uniform(-1., 1., (channels, rows, cols, batch_size)).astype('float32') base_filters_value = rng.uniform(-1., 1., (channels, filter_rows, filter_cols, num_filters)).astype('float32') images = shared(base_image_value) filters = shared(base_filters_value, name='filters') # bench.py should always be run in gpu mode so we should not need a gpu_from_host here output = FilterActs()(images, filters) output_shared = shared( output.eval() ) cuda_convnet = function([], updates = { output_shared : output } ) cuda_convnet.name = 'cuda_convnet' images_bc01v = base_image_value.transpose(3,0,1,2) filters_bc01v = base_filters_value.transpose(3,0,1,2) filters_bc01v = filters_bc01v[:,:,::-1,::-1] images_bc01 = shared(images_bc01v) filters_bc01 = shared(filters_bc01v) output_conv2d = conv2d(images_bc01, filters_bc01, border_mode='valid', image_shape = images_bc01v.shape, filter_shape = filters_bc01v.shape) output_conv2d_shared = shared(output_conv2d.eval()) baseline = function([], updates = { output_conv2d_shared : output_conv2d } ) baseline.name = 'baseline' return cuda_convnet, baseline def bench(f): for i in xrange(3): f() trials = 10 t1 = time.time() for i in xrange(trials): f() t2 = time.time() return (t2-t1)/float(trials) def get_speedup( *args, **kwargs): cuda_convnet, baseline = make_funcs(*args, **kwargs) return bench(baseline) / bench(cuda_convnet) def get_time_per_10k_ex( *args, **kwargs): cuda_convnet, baseline = make_funcs(*args, **kwargs) batch_size = kwargs['batch_size'] return 10000 * bench(cuda_convnet) / float(batch_size) def make_batch_size_plot(yfunc, yname, batch_sizes, rows, cols, channels, filter_rows, num_filters): speedups = [] for batch_size in batch_sizes: speedup = yfunc(batch_size = batch_size, rows = rows, cols = cols, channels = channels, filter_rows = filter_rows, num_filters = num_filters) speedups.append(speedup) plt.plot(batch_sizes, speedups) plt.title("cuda-convnet benchmark") plt.xlabel("Batch size") plt.ylabel(yname) plt.show() make_batch_size_plot(get_speedup, "Speedup factor", batch_sizes = [1,2,5,25,32,50,63,64,65,96,100,127,128,129,159,160,161,191,192,193,200,255,256,257], rows = 32, cols = 32, channels = 64, filter_rows = 7, num_filters = 64) """ make_batch_size_plot(get_time_per_10k_ex, "Time per 10k examples", batch_sizes = [1,2,5,25,32,50,63,64,65,96,100,127,128,129,159,160,161,191,192,193,200,255,256,257], rows = 32, cols = 32, channels = 3, filter_rows = 5, num_filters = 64) """
bsd-3-clause
0asa/sparklingpandas
sparklingpandas/test/pandas_groupby_tests.py
2
9480
""" Test our groupby support based on the pandas groupby tests. """ # # This file is licensed under the Pandas 3 clause BSD license. # from tempfile import NamedTemporaryFile from sparklingpandas.test.sparklingpandastestcase import \ SparklingPandasTestCase import sys import pandas as pd from pandas import date_range, bdate_range, Timestamp from pandas.core.index import Index, MultiIndex, Int64Index from pandas.core.common import rands from pandas.core.api import Categorical, DataFrame from pandas.core.series import Series from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_index_equal, assertRaisesRegexp) from pandas.compat import( range, long, lrange, StringIO, lmap, lzip, map, zip, builtins, OrderedDict ) from pandas import compat import pandas.util.testing as tm import unittest2 import numpy as np class PandasGroupby(SparklingPandasTestCase): def setUp(self): """ Setup the dataframes used for the groupby tests derived from pandas """ self.dateRange = bdate_range('1/1/2005', periods=250) self.stringIndex = Index([rands(8).upper() for x in range(250)]) self.groupId = Series([x[0] for x in self.stringIndex], index=self.stringIndex) self.groupDict = dict((k, v) for k, v in compat.iteritems(self.groupId)) self.columnIndex = Index(['A', 'B', 'C', 'D', 'E']) randMat = np.random.randn(250, 5) self.stringMatrix = DataFrame(randMat, columns=self.columnIndex, index=self.stringIndex) self.timeMatrix = DataFrame(randMat, columns=self.columnIndex, index=self.dateRange) self.ts = tm.makeTimeSeries() self.seriesd = tm.getSeriesData() self.tsd = tm.getTimeSeriesData() self.frame = DataFrame(self.seriesd) self.tsframe = DataFrame(self.tsd) self.df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) self.df_mixed_floats = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.array(np.random.randn(8), dtype='float32')}) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.mframe = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self.three_group = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) super(self.__class__, self).setUp() def test_first_last_nth(self): # tests for first / last / nth ddf = self.psc.from_data_frame(self.df) assert_frame_equal(ddf.collect(), self.df) grouped = self.psc.from_data_frame(self.df).groupby('A') first = grouped.first().collect() expected = self.df.ix[[1, 0], ['B', 'C', 'D']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(first, expected) nth = grouped.nth(0).collect() assert_frame_equal(nth, expected) last = grouped.last().collect() expected = self.df.ix[[5, 7], ['B', 'C', 'D']] expected.index = Index(['bar', 'foo'], name='A') assert_frame_equal(last, expected) nth = grouped.nth(-1).collect() assert_frame_equal(nth, expected) nth = grouped.nth(1).collect() expected = self.df.ix[[2, 3], ['B', 'C', 'D']].copy() expected.index = Index(['foo', 'bar'], name='A') expected = expected.sort_index() assert_frame_equal(nth, expected) @unittest2.expectedFailure def test_getitem(self): # it works! grouped['B'].first() grouped['B'].last() grouped['B'].nth(0) self.df.loc[self.df['A'] == 'foo', 'B'] = np.nan self.assertTrue(com.isnull(grouped['B'].first()['foo'])) self.assertTrue(com.isnull(grouped['B'].last()['foo'])) # not sure what this is testing self.assertTrue(com.isnull(grouped['B'].nth(0)[0])) @unittest2.expectedFailure def test_new_in0140(self): """ Test new functionality in 0.14.0. This currently doesn't work. """ # v0.14.0 whatsnew df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) ddf = self.psc.from_data_frame(df) g = ddf.groupby('A') result = g.first().collect() expected = df.iloc[[1, 2]].set_index('A') assert_frame_equal(result, expected) expected = df.iloc[[1, 2]].set_index('A') result = g.nth(0, dropna='any').collect() assert_frame_equal(result, expected) @unittest2.expectedFailure def test_first_last_nth_dtypes(self): """ We do groupby fine on mixed types, but our copy from local dataframe ends up re-running the guess type function, so the dtypes don't match. Issue #25 """ df = self.df_mixed_floats.copy() df['E'] = True df['F'] = 1 # tests for first / last / nth grouped = ddf.groupby('A') first = grouped.first().collect() expected = df.ix[[1, 0], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(first, expected) last = grouped.last().collect() expected = df.ix[[5, 7], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(last, expected) nth = grouped.nth(1).collect() expected = df.ix[[3, 2], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(nth, expected) def test_var_on_multiplegroups(self): df = DataFrame({'data1': np.random.randn(5), 'data2': np.random.randn(5), 'data3': np.random.randn(5), 'key1': ['a', 'a', 'b', 'b', 'a'], 'key2': ['one', 'two', 'one', 'two', 'one']}) ddf = self.psc.from_data_frame(df) dgrouped = ddf.groupby(['key1', 'key2']) grouped = df.groupby(['key1', 'key2']) assert_frame_equal(dgrouped.var().collect(), grouped.var()) def test_agg_api(self): # Note: needs a very recent version of pandas to pass # TODO(holden): Pass this test if local fails # GH 6337 # http://stackoverflow.com/questions/21706030/pandas-groupby-agg-function-column-dtype-error # different api for agg when passed custom function with mixed frame df = DataFrame({'data1': np.random.randn(5), 'data2': np.random.randn(5), 'key1': ['a', 'a', 'b', 'b', 'a'], 'key2': ['one', 'two', 'one', 'two', 'one']}) ddf = self.psc.from_data_frame(df) dgrouped = ddf.groupby('key1') grouped = df.groupby('key1') def peak_to_peak(arr): return arr.max() - arr.min() expected = grouped.agg([peak_to_peak]) expected.columns = ['data1', 'data2'] result = dgrouped.agg(peak_to_peak).collect() assert_frame_equal(result, expected) def test_agg_regression1(self): grouped = self.tsframe.groupby([lambda x: x.year, lambda x: x.month]) dgrouped = self.psc.from_data_frame( self.tsframe).groupby( [lambda x: x.year, lambda x: x.month]) result = dgrouped.agg(np.mean).collect() expected = grouped.agg(np.mean) assert_frame_equal(result, expected)
apache-2.0
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/tests/test_coding_standards.py
7
12216
from __future__ import (absolute_import, division, print_function, unicode_literals) from fnmatch import fnmatch import os from nose.tools import assert_equal from nose.plugins.skip import SkipTest from matplotlib.testing.noseclasses import KnownFailureTest try: import pep8 except ImportError: HAS_PEP8 = False else: HAS_PEP8 = pep8.__version__ > '1.4.5' import matplotlib PEP8_ADDITIONAL_IGNORE = ['E111', 'E114', 'E115', 'E116', 'E121', 'E122', 'E123', 'E124', 'E125', 'E126', 'E127', 'E128', 'E129', 'E131', 'E265', 'E266', 'W503'] EXTRA_EXCLUDE_FILE = os.path.join(os.path.dirname(__file__), '.pep8_test_exclude.txt') if HAS_PEP8: class StandardReportWithExclusions(pep8.StandardReport): #: A class attribute to store the exception exclusion file patterns. expected_bad_files = [] #: A class attribute to store the lines of failing tests. _global_deferred_print = [] #: A class attribute to store patterns which have seen exceptions. matched_exclusions = set() def get_file_results(self): # If the file had no errors, return self.file_errors # (which will be 0). if not self._deferred_print: return self.file_errors # Iterate over all of the patterns, to find a possible exclusion. # If the filename is to be excluded, go ahead and remove the # counts that self.error added. for pattern in self.expected_bad_files: if fnmatch(self.filename, pattern): self.matched_exclusions.add(pattern) # invert the error method's counters. for _, _, code, _, _ in self._deferred_print: self.counters[code] -= 1 if self.counters[code] == 0: self.counters.pop(code) self.messages.pop(code) self.file_errors -= 1 self.total_errors -= 1 return self.file_errors # mirror the content of StandardReport, only storing the output to # file rather than printing. This could be a feature request for # the PEP8 tool. self._deferred_print.sort() for line_number, offset, code, text, _ in self._deferred_print: self._global_deferred_print.append( self._fmt % {'path': self.filename, 'row': self.line_offset + line_number, 'col': offset + 1, 'code': code, 'text': text}) return self.file_errors def assert_pep8_conformance(module=matplotlib, exclude_files=None, extra_exclude_file=EXTRA_EXCLUDE_FILE, pep8_additional_ignore=PEP8_ADDITIONAL_IGNORE, dirname=None, expected_bad_files=None, extra_exclude_directories=None): """ Tests the matplotlib codebase against the "pep8" tool. Users can add their own excluded files (should files exist in the local directory which is not in the repository) by adding a ".pep8_test_exclude.txt" file in the same directory as this test. The file should be a line separated list of filenames/directories as can be passed to the "pep8" tool's exclude list. """ if not HAS_PEP8: raise SkipTest('The pep8 tool is required for this test') # to get a list of bad files, rather than the specific errors, add # "reporter=pep8.FileReport" to the StyleGuide constructor. pep8style = pep8.StyleGuide(quiet=False, reporter=StandardReportWithExclusions) reporter = pep8style.options.reporter if expected_bad_files is not None: reporter.expected_bad_files = expected_bad_files # Extend the number of PEP8 guidelines which are not checked. pep8style.options.ignore = (pep8style.options.ignore + tuple(pep8_additional_ignore)) # Support for egg shared object wrappers, which are not PEP8 compliant, # nor part of the matplotlib repository. # DO NOT ADD FILES *IN* THE REPOSITORY TO THIS LIST. if exclude_files is not None: pep8style.options.exclude.extend(exclude_files) # Allow users to add their own exclude list. if extra_exclude_file is not None and os.path.exists(extra_exclude_file): with open(extra_exclude_file, 'r') as fh: extra_exclude = [line.strip() for line in fh if line.strip()] pep8style.options.exclude.extend(extra_exclude) if extra_exclude_directories: pep8style.options.exclude.extend(extra_exclude_directories) if dirname is None: dirname = os.path.dirname(module.__file__) result = pep8style.check_files([dirname]) if reporter is StandardReportWithExclusions: msg = ("Found code syntax errors (and warnings):\n" "{0}".format('\n'.join(reporter._global_deferred_print))) else: msg = "Found code syntax errors (and warnings)." assert_equal(result.total_errors, 0, msg) # If we've been using the exclusions reporter, check that we didn't # exclude files unnecessarily. if reporter is StandardReportWithExclusions: unexpectedly_good = sorted(set(reporter.expected_bad_files) - reporter.matched_exclusions) if unexpectedly_good: raise ValueError('Some exclude patterns were unnecessary as the ' 'files they pointed to either passed the PEP8 ' 'tests or do not point to a file:\n ' '{0}'.format('\n '.join(unexpectedly_good))) def test_pep8_conformance_installed_files(): exclude_files = ['_delaunay.py', '_image.py', '_tri.py', '_backend_agg.py', '_tkagg.py', 'ft2font.py', '_cntr.py', '_contour.py', '_png.py', '_path.py', 'ttconv.py', '_gtkagg.py', '_backend_gdk.py', 'pyparsing*', '_qhull.py', '_macosx.py'] expected_bad_files = ['_cm.py', '_mathtext_data.py', 'backend_bases.py', 'cbook.py', 'collections.py', 'dviread.py', 'font_manager.py', 'fontconfig_pattern.py', 'gridspec.py', 'legend_handler.py', 'mathtext.py', 'patheffects.py', 'pylab.py', 'pyplot.py', 'rcsetup.py', 'stackplot.py', 'texmanager.py', 'transforms.py', 'type1font.py', 'widgets.py', 'testing/decorators.py', 'testing/jpl_units/Duration.py', 'testing/jpl_units/Epoch.py', 'testing/jpl_units/EpochConverter.py', 'testing/jpl_units/StrConverter.py', 'testing/jpl_units/UnitDbl.py', 'testing/jpl_units/UnitDblConverter.py', 'testing/jpl_units/UnitDblFormatter.py', 'testing/jpl_units/__init__.py', 'tri/triinterpolate.py', 'tests/test_axes.py', 'tests/test_bbox_tight.py', 'tests/test_delaunay.py', 'tests/test_dviread.py', 'tests/test_image.py', 'tests/test_legend.py', 'tests/test_lines.py', 'tests/test_mathtext.py', 'tests/test_rcparams.py', 'tests/test_simplification.py', 'tests/test_streamplot.py', 'tests/test_subplots.py', 'tests/test_tightlayout.py', 'tests/test_triangulation.py', 'compat/subprocess.py', 'backends/__init__.py', 'backends/backend_agg.py', 'backends/backend_cairo.py', 'backends/backend_cocoaagg.py', 'backends/backend_gdk.py', 'backends/backend_gtk.py', 'backends/backend_gtk3.py', 'backends/backend_gtk3cairo.py', 'backends/backend_gtkagg.py', 'backends/backend_gtkcairo.py', 'backends/backend_macosx.py', 'backends/backend_mixed.py', 'backends/backend_pgf.py', 'backends/backend_ps.py', 'backends/backend_svg.py', 'backends/backend_template.py', 'backends/backend_tkagg.py', 'backends/tkagg.py', 'backends/windowing.py', 'backends/qt_editor/formlayout.py', 'sphinxext/mathmpl.py', 'sphinxext/only_directives.py', 'sphinxext/plot_directive.py', 'projections/__init__.py', 'projections/geo.py', 'projections/polar.py', 'externals/six.py'] expected_bad_files = ['*/matplotlib/' + s for s in expected_bad_files] assert_pep8_conformance(module=matplotlib, exclude_files=exclude_files, expected_bad_files=expected_bad_files) def test_pep8_conformance_examples(): mpldir = os.environ.get('MPL_REPO_DIR', None) if mpldir is None: # try and guess! fp = os.getcwd() while len(fp) > 2: if os.path.isdir(os.path.join(fp, 'examples')): mpldir = fp break fp, tail = os.path.split(fp) if mpldir is None: raise KnownFailureTest("can not find the examples, set env " "MPL_REPO_DIR to point to the top-level path " "of the source tree") exdir = os.path.join(mpldir, 'examples') blacklist = () expected_bad_files = ['*/pylab_examples/table_demo.py', '*/pylab_examples/tricontour_demo.py', '*/pylab_examples/tripcolor_demo.py', '*/pylab_examples/triplot_demo.py', '*/shapes_and_collections/artist_reference.py'] assert_pep8_conformance(dirname=exdir, extra_exclude_directories=blacklist, pep8_additional_ignore=PEP8_ADDITIONAL_IGNORE + ['E116', 'E501', 'E402'], expected_bad_files=expected_bad_files) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
tedmeeds/tcga_encoder
tcga_encoder/utils/helpers.py
1
3776
import tensorflow import tcga_encoder import sys, os, yaml import numpy as np import scipy as sp import pylab as pp import pandas as pd from sklearn.metrics import roc_auc_score, roc_curve from sklearn.model_selection import KFold from collections import * import itertools import pdb def xval_folds( n, K, randomize = False, seed = None ): if randomize is True: print("XVAL RANDOMLY PERMUTING") if seed is not None: print( "XVAL SETTING SEED = %d"%(seed) ) np.random.seed(seed) x = np.random.permutation(n) else: print( "XVAL JUST IN ARANGE ORDER") x = np.arange(n,dtype=int) kf = KFold( K ) train = [] test = [] for train_ids, test_ids in kf.split( x ): #train_ids = np.setdiff1d( x, test_ids ) train.append( x[train_ids] ) test.append( x[test_ids] ) #pdb.set_trace() return train, test def chunks(l, n): #Yield successive n-sized chunks from l. for i in xrange(0, len(l), n): yield l[i:i + n] def load_gmt( filename ): with open(filename, 'r') as f: pathway2genes = OrderedDict() gene2pathways = OrderedDict() for line in f.readlines(): splits = line.split("\t") splits[-1] = splits[-1].rstrip("\n") #pdb.set_trace() if splits[0][:9] == "HALLMARK_": pathway = splits[0][9:] link = splits[1] genes = splits[2:] pathway2genes[ pathway ] = genes for g in genes: if gene2pathways.has_key( g ): gene2pathways[g].append( pathway ) else: gene2pathways[g] = [pathway] return pathway2genes, gene2pathways def load_yaml( filename ): with open(filename, 'r') as f: data = yaml.load(f) return data def check_and_mkdir( path_name, verbose = False ): ok = False if os.path.exists( path_name ) == True: ok = True else: if verbose: print "Making directory: ", path_name os.makedirs( path_name ) ok = True return ok def ReadH5( fullpath ): df = pd.read_hdf( fullpath ) return df def OpenHdfStore(location, which_one, mode ): store_name = "%s.h5"%(which_one) check_and_mkdir( location ) full_name = os.path.join( location, store_name ) # I think we can just open in 'a' mode for both if os.path.exists(full_name) is False: print "OpenHdfStore: %s does NOT EXIST, opening in %s mode"%(full_name, mode) return pd.HDFStore( full_name, mode ) else: print "OpenHdfStore: %s does EXISTS, opening in %s mode"%(full_name, mode) return pd.HDFStore( full_name, mode ) def CloseHdfStore(store): return store.close() # a generator for batch ids class batch_ids_maker: def __init__(self, batchsize, n, randomize = True): self.batchsize = min( batchsize, n ) #assert n >= batchsize, "Right now must have batchsize < n" self.randomize = randomize #self.batchsize = batchsize self.n = n self.indices = self.new_indices() self.start_idx = 0 def __iter__(self): return self def new_indices(self): if self.randomize: return np.random.permutation(self.n).astype(int) else: return np.arange(self.n,dtype=int) def next(self, weights = None ): if weights is not None: return self.weighted_next( weights ) if self.start_idx+self.batchsize >= len(self.indices): keep_ids = self.indices[self.start_idx:] self.indices = np.hstack( (keep_ids, self.new_indices() )) self.start_idx = 0 ids = self.indices[self.start_idx:self.start_idx+self.batchsize] self.start_idx += self.batchsize return ids def weighted_next( self, weights ): I = np.argsort( -weights ) ids = self.indices[ I[:self.batchsize] ] return ids
mit
weidel-p/nest-simulator
pynest/nest/tests/test_spatial/test_plotting.py
12
5748
# -*- coding: utf-8 -*- # # test_plotting.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Tests for basic spatial plotting functions. """ import unittest import nest import numpy as np try: import matplotlib.pyplot as plt tmp_fig = plt.figure() # make sure we can open a window; DISPLAY may not be set plt.close(tmp_fig) PLOTTING_POSSIBLE = True except: PLOTTING_POSSIBLE = False @unittest.skipIf(not PLOTTING_POSSIBLE, 'Plotting impossible because matplotlib or display missing') class PlottingTestCase(unittest.TestCase): def test_PlotLayer(self): """Test plotting layer.""" nest.ResetKernel() l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[3, 3], extent=[2., 2.], edge_wrap=True)) nest.PlotLayer(l) plotted_datapoints = plt.gca().collections[-1].get_offsets().data reference_datapoints = nest.GetPosition(l) self.assertTrue(np.allclose(plotted_datapoints, reference_datapoints)) def test_PlotTargets(self): """Test plotting targets.""" delta = 0.05 mask = {'rectangular': {'lower_left': [-delta, -2/3 - delta], 'upper_right': [2/3 + delta, delta]}} cdict = {'rule': 'pairwise_bernoulli', 'p': 1., 'mask': mask} sdict = {'synapse_model': 'stdp_synapse'} nest.ResetKernel() l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[3, 3], extent=[2., 2.], edge_wrap=True)) # connect l -> l nest.Connect(l, l, cdict, sdict) ctr = nest.FindCenterElement(l) fig = nest.PlotTargets(ctr, l) fig.gca().set_title('Plain call') plotted_datapoints = plt.gca().collections[0].get_offsets().data eps = 0.01 pos = np.array(nest.GetPosition(l)) pos_xmask = pos[np.where(pos[:, 0] > -eps)] reference_datapoints = pos_xmask[np.where(pos_xmask[:, 1] < eps)][::-1] self.assertTrue(np.array_equal(np.sort(plotted_datapoints, axis=0), np.sort(reference_datapoints, axis=0))) fig = nest.PlotTargets(ctr, l, mask=mask) ax = fig.gca() ax.set_title('Call with mask') self.assertGreaterEqual(len(ax.patches), 1) def test_plot_probability_kernel(self): """Plot parameter probability""" nest.ResetKernel() plot_shape = [10, 10] plot_edges = [-0.5, 0.5, -0.5, 0.5] def probability_calculation(distance): return 1 - 1.5*distance l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid([10, 10], edge_wrap=False)) source = l[25] source_pos = np.array(nest.GetPosition(source)) source_x, source_y = source_pos # Calculate reference values ref_probability = np.zeros(plot_shape[::-1]) for i, x in enumerate(np.linspace(plot_edges[0], plot_edges[1], plot_shape[0])): positions = np.array([[x, y] for y in np.linspace(plot_edges[2], plot_edges[3], plot_shape[1])]) ref_distances = np.sqrt((positions[:, 0] - source_x)**2 + (positions[:, 1] - source_y)**2) values = probability_calculation(ref_distances) ref_probability[:, i] = np.maximum(np.minimum(np.array(values), 1.0), 0.0) # Create the parameter parameter = probability_calculation(nest.spatial.distance) fig, ax = plt.subplots() nest.PlotProbabilityParameter(source, parameter, ax=ax, shape=plot_shape, edges=plot_edges) self.assertEqual(len(ax.images), 1) img = ax.images[0] img_data = img.get_array().data self.assertTrue(np.array_equal(img_data, ref_probability)) def test_plot_probability_kernel_with_mask(self): """Plot parameter probability with mask""" nest.ResetKernel() plot_shape = [10, 10] plot_edges = [-0.5, 0.5, -0.5, 0.5] l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid([10, 10], edge_wrap=False)) parameter = 1 - 1.5*nest.spatial.distance source = l[25] masks = [{'circular': {'radius': 0.4}}, {'doughnut': {'inner_radius': 0.2, 'outer_radius': 0.45}}, {'rectangular': {'lower_left': [-.3, -.3], 'upper_right': [0.3, 0.3]}}, {'elliptical': {'major_axis': 0.8, 'minor_axis': 0.4}}] fig, axs = plt.subplots(2, 2) for mask, ax in zip(masks, axs.flatten()): nest.PlotProbabilityParameter(source, parameter, mask=mask, ax=ax, shape=plot_shape, edges=plot_edges) self.assertEqual(len(ax.images), 1) self.assertGreaterEqual(len(ax.patches), 1) def suite(): suite = unittest.makeSuite(PlottingTestCase, 'test') return suite if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) runner.run(suite()) plt.show()
gpl-2.0
mattilyra/scikit-learn
sklearn/__init__.py
27
3086
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.18.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'exceptions', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'model_selection', 'multiclass', 'multioutput', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', 'discriminant_analysis', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
samgoodgame/sf_crime
iterations/KK_scripts/transform_test_data.py
2
6405
# -*- coding: utf-8 -*- """ Created on Sun Aug 20 11:25:06 2017 @author: kalvi """ #required imports import pandas as pd import numpy as np import csv import time import calendar def get_test_data(test_transformed_path, test_path, earlyWeatherDataPath, weatherData1, weatherData2): x_data = pd.read_csv(test_transformed_path, header=0) ########## Adding the date back into the data dataCSV = open(test_path, 'rt') csvData = list(csv.reader(dataCSV)) csvFields = csvData[0] #['Dates', 'Category', 'Descript', 'DayOfWeek', 'PdDistrict', 'Resolution', 'Address', 'X', 'Y'] allData = csvData[1:] dataCSV.close() df = pd.DataFrame(allData) df.columns = csvFields dates = df['Dates'] dates = dates.apply(time.strptime, args=("%Y-%m-%d %H:%M:%S",)) dates = dates.apply(calendar.timegm) x_data['secondsFromEpoch'] = dates colnames = x_data.columns.tolist() colnames = colnames[-1:] + colnames[:-1] x_data = x_data[colnames] ########## #functions for processing the sunrise and sunset times of each day def get_hour_and_minute(milTime): hour = int(milTime[:-2]) minute = int(milTime[-2:]) return [hour, minute] def get_date_only(date): return time.struct_time(tuple([date[0], date[1], date[2], 0, 0, 0, date[6], date[7], date[8]])) def structure_sun_time(timeSeries, dateSeries): sunTimes = timeSeries.copy() for index in range(len(dateSeries)): sunTimes[index] = time.struct_time(tuple([dateSeries[index][0], dateSeries[index][1], dateSeries[index][2], timeSeries[index][0], timeSeries[index][1], dateSeries[index][5], dateSeries[index][6], dateSeries[index][7], dateSeries[index][8]])) return sunTimes def get_weather_data(data_path): dataCSV = open(data_path, 'rt') csv_data = list(csv.reader(dataCSV)) csv_fields = csv_data[0] #['Dates', 'Category', 'Descript', 'DayOfWeek', 'PdDistrict', 'Resolution', 'Address', 'X', 'Y'] weather_data = csv_data[1:] dataCSV.close() weather_df = pd.DataFrame(weather_data) weather_df.columns = csv_fields dates = weather_df['DATE'] sunrise = weather_df['DAILYSunrise'] sunset = weather_df['DAILYSunset'] dates = dates.apply(time.strptime, args=("%Y-%m-%d %H:%M",)) sunrise = sunrise.apply(get_hour_and_minute) sunrise = structure_sun_time(sunrise, dates) sunrise = sunrise.apply(calendar.timegm) sunset = sunset.apply(get_hour_and_minute) sunset = structure_sun_time(sunset, dates) sunset = sunset.apply(calendar.timegm) dates = dates.apply(calendar.timegm) weather_df['DATE'] = dates weather_df['DAILYSunrise'] = sunrise weather_df['DAILYSunset'] = sunset return weather_df ########## Adding the weather data into the original crime data earlyWeatherDF = get_weather_data(earlyWeatherDataPath) weatherDF1 = get_weather_data(weatherData1) weatherDF2 = get_weather_data(weatherData2) weatherDF = pd.concat([earlyWeatherDF[450:975],weatherDF1,weatherDF2[32:]],ignore_index=True) # weather feature selection weatherMetrics = weatherDF[['DATE','HOURLYDRYBULBTEMPF','HOURLYRelativeHumidity', 'HOURLYWindSpeed', \ 'HOURLYSeaLevelPressure', 'HOURLYVISIBILITY', 'DAILYSunrise', 'DAILYSunset']] weatherMetrics = weatherMetrics.convert_objects(convert_numeric=True) weatherDates = weatherMetrics['DATE'] #'DATE','HOURLYDRYBULBTEMPF','HOURLYRelativeHumidity', 'HOURLYWindSpeed', #'HOURLYSeaLevelPressure', 'HOURLYVISIBILITY' timeWindow = 10800 #3 hours hourlyDryBulbTemp = [] hourlyRelativeHumidity = [] hourlyWindSpeed = [] hourlySeaLevelPressure = [] hourlyVisibility = [] dailySunrise = [] dailySunset = [] daylight = [] test = 0 for timePoint in dates:#dates is the epoch time from the kaggle data relevantWeather = weatherMetrics[(weatherDates <= timePoint) & (weatherDates > timePoint - timeWindow)] hourlyDryBulbTemp.append(relevantWeather['HOURLYDRYBULBTEMPF'].mean()) hourlyRelativeHumidity.append(relevantWeather['HOURLYRelativeHumidity'].mean()) hourlyWindSpeed.append(relevantWeather['HOURLYWindSpeed'].mean()) hourlySeaLevelPressure.append(relevantWeather['HOURLYSeaLevelPressure'].mean()) hourlyVisibility.append(relevantWeather['HOURLYVISIBILITY'].mean()) dailySunrise.append(relevantWeather['DAILYSunrise'].iloc[-1]) dailySunset.append(relevantWeather['DAILYSunset'].iloc[-1]) daylight.append(1.0*((timePoint >= relevantWeather['DAILYSunrise'].iloc[-1]) and (timePoint < relevantWeather['DAILYSunset'].iloc[-1]))) if test%100000 == 0: print(relevantWeather) test += 1 hourlyDryBulbTemp = pd.Series.from_array(np.array(hourlyDryBulbTemp)) hourlyRelativeHumidity = pd.Series.from_array(np.array(hourlyRelativeHumidity)) hourlyWindSpeed = pd.Series.from_array(np.array(hourlyWindSpeed)) hourlySeaLevelPressure = pd.Series.from_array(np.array(hourlySeaLevelPressure)) hourlyVisibility = pd.Series.from_array(np.array(hourlyVisibility)) dailySunrise = pd.Series.from_array(np.array(dailySunrise)) dailySunset = pd.Series.from_array(np.array(dailySunset)) daylight = pd.Series.from_array(np.array(daylight)) x_data['HOURLYDRYBULBTEMPF'] = hourlyDryBulbTemp x_data['HOURLYRelativeHumidity'] = hourlyRelativeHumidity x_data['HOURLYWindSpeed'] = hourlyWindSpeed x_data['HOURLYSeaLevelPressure'] = hourlySeaLevelPressure x_data['HOURLYVISIBILITY'] = hourlyVisibility #x_data['DAILYSunrise'] = dailySunrise #x_data['DAILYSunset'] = dailySunset x_data['Daylight'] = daylight x_data = x_data.drop('secondsFromEpoch', 1) x_data = x_data.drop('pd_bayview_binary', 1) return x_data test_transformed_path = "./data/test_transformed.csv" test_path = "./data/test.csv" earlyWeatherDataPath = "./data/1049158.csv" weatherData1 = "./data/1027175.csv" weatherData2 = "./data/1027176.csv" write_path = "C:/MIDS/W207 final project/test_data_with_weather.csv" x_data = get_test_data(test_transformed_path, test_path, earlyWeatherDataPath, weatherData1, weatherData2) x_data.to_csv(path_or_buf=write_path,index=0)
mit
NelisVerhoef/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
justinbois/fish-activity
tests/test_parse.py
1
8083
import pytest import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal import fishact def test_sniffer(): n_header, delimiter, line = fishact.parse._sniff_file_info( 'tests/single_gtype.txt') assert n_header == 2 assert delimiter is None assert line == '1\n' n_header, delimiter, line = fishact.parse._sniff_file_info( 'tests/multiple_gtype.txt') assert n_header == 2 assert delimiter == '\t' assert line == '1\t5\t2\n' def test_gtype_loader(): df = fishact.parse.load_gtype('tests/single_gtype.txt', quiet=True, rstrip=True) assert all(df.columns == ['genotype', 'location']) assert all(df['genotype'] == 'all fish') assert all(df['location'] == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96]) def test_resample_array(): x = np.arange(10, dtype=float) assert np.isclose(fishact.parse._resample_array(x, 10), np.array([45.])).all() assert np.isclose(fishact.parse._resample_array(x, 20), np.array([90.])).all() assert np.isclose(fishact.parse._resample_array(x, 5), np.array([10., 35.])).all() assert np.isclose(fishact.parse._resample_array(x, 3), np.array([3., 12., 21., 27.])).all() x[-3] = np.nan assert np.isclose(fishact.parse._resample_array(x, 5)[0], 10.0) \ and np.isnan(fishact.parse._resample_array(x, 5)[1]) def test_resample_segment(): df = pd.DataFrame({'a': np.arange(10), 'b': np.arange(10, 20), 'c': np.arange(10, dtype=float), 'd': np.arange(10, 20, dtype=float)}) re_df = fishact.parse._resample_segment(df, 5, ['c']) re_df = re_df.reindex_axis(sorted(re_df.columns), axis=1) correct_df = pd.DataFrame({'a': [0, 5], 'b': [10, 15], 'c': [10., 35.], 'd': [10., 15.]}) assert_frame_equal(re_df, correct_df) re_df = fishact.parse._resample_segment(df, 5, ['c', 'd']) re_df = re_df.reindex_axis(sorted(re_df.columns), axis=1) correct_df = pd.DataFrame({'a': [0, 5], 'b': [10, 15], 'c': [10., 35.], 'd': [60., 85.]}) assert_frame_equal(re_df, correct_df) re_df = fishact.parse._resample_segment(df, 3, ['c']) re_df = re_df.reindex_axis(sorted(re_df.columns), axis=1) correct_df = pd.DataFrame({'a': [0, 3, 6, 9], 'b': [10, 13, 16, 19], 'c': [3., 12., 21., 27.], 'd': [10., 13., 16., 19.]}) assert_frame_equal(re_df, correct_df) re_df = fishact.parse._resample_segment(df, 3, ['c', 'd']) re_df = re_df.reindex_axis(sorted(re_df.columns), axis=1) correct_df = pd.DataFrame({'a': [0, 3, 6, 9], 'b': [10, 13, 16, 19], 'c': [3., 12., 21., 27.], 'd': [33., 42., 51., 57.]}) assert_frame_equal(re_df, correct_df) def test_resample(): df = pd.DataFrame( {'location': np.concatenate((np.ones(10), 2*np.ones(10))).astype(int), 'exp_time': np.concatenate((np.arange(10), np.arange(10))).astype(float), 'exp_ind': np.concatenate((np.arange(10), np.arange(10))).astype(int), 'zeit': np.concatenate((np.arange(10), np.arange(10))).astype(float), 'zeit_ind': np.concatenate((np.arange(10), np.arange(10))).astype(int), 'activity': np.concatenate((np.arange(10), np.arange(10, 20))).astype(float), 'sleep': np.ones(20, dtype=float), 'light': [True]*5 + [False]*5 + [True]*5 + [False]*5, 'day': [5]*10 + [6]*10, 'genotype': ['wt']*20, 'acquisition': np.ones(20, dtype=int), 'instrument': np.ones(20, dtype=int), 'trial': np.ones(20, dtype=int), 'time': pd.to_datetime(['2017-03-30 14:00:00', '2017-03-30 14:01:00', '2017-03-30 14:02:00', '2017-03-30 14:03:00', '2017-03-30 14:04:00', '2017-03-30 14:05:00', '2017-03-30 14:06:00', '2017-03-30 14:07:00', '2017-03-30 14:08:00', '2017-03-30 14:09:00']*2)}) re_df = fishact.parse.resample(df, 5, signal=['activity', 'sleep'], quiet=True) re_df = re_df.reindex_axis(sorted(re_df.columns), axis=1) correct_df = pd.DataFrame( {'activity': np.array([10., 35., 60., 85.]), 'day': [5, 5, 6, 6], 'location': np.array([1, 1, 2, 2], dtype=int), 'genotype': ['wt']*4, 'light': [True, False, True, False], 'sleep': np.array([5., 5., 5., 5.]), 'time': pd.to_datetime(['2017-03-30 14:00:00', '2017-03-30 14:05:00']*2), 'exp_time': np.array([0., 5., 0., 5.]), 'exp_ind': np.array([0, 5, 0, 5], dtype=int), 'zeit': np.array([0., 5., 0., 5.]), 'zeit_ind': np.array([0, 5, 0, 5], dtype=int), 'acquisition': np.ones(4, dtype=int), 'instrument': np.ones(4, dtype=int), 'trial': np.ones(4, dtype=int)}) assert_frame_equal(re_df, correct_df) re_df = fishact.parse.resample(df, 3, quiet=True) re_df = re_df.reindex_axis(sorted(re_df.columns), axis=1) correct_df = pd.DataFrame( {'activity': np.array([3., 10.5, 18., 25.5, 33., 40.5, 48., 55.5]), 'day': [5, 5, 5, 5, 6, 6, 6, 6], 'location': np.array([1, 1, 1, 1, 2, 2, 2, 2], dtype=int), 'genotype': ['wt']*8, 'light': [True, True, False, False, True, True, False, False], 'sleep': np.array([3., 3., 3., 3., 3., 3., 3., 3.]), 'time': pd.to_datetime(['2017-03-30 14:00:00', '2017-03-30 14:03:00', '2017-03-30 14:05:00', '2017-03-30 14:08:00']*2), 'exp_time': np.array([0., 3., 5., 8., 0., 3., 5., 8.]), 'exp_ind': np.array([0, 3, 5, 8, 0, 3, 5, 8], dtype=int), 'zeit': np.array([0., 3., 5., 8., 0., 3., 5., 8.]), 'zeit_ind': np.array([0, 3, 5, 8, 0, 3, 5, 8], dtype=int), 'acquisition': np.ones(8, dtype=int), 'instrument': np.ones(8, dtype=int), 'trial': np.ones(8, dtype=int)}) assert_frame_equal(re_df, correct_df) def test_tidy_data(): # Test that it will not overwrite existing file with pytest.raises(RuntimeError) as excinfo: fishact.parse.tidy_data('test.csv', 'test_geno.txt', 'test.csv') excinfo.match("Cowardly refusing to overwrite input file.") with pytest.raises(RuntimeError) as excinfo: fishact.parse.tidy_data('test.csv', 'test_geno.txt', 'test_geno.txt') excinfo.match("Cowardly refusing to overwrite input file.") with pytest.raises(RuntimeError) as excinfo: fishact.parse.tidy_data('test.csv', 'test_geno.txt', 'tests/empty_file_for_tests.csv') excinfo.match("tests/empty_file_for_tests.csv already exists, cowardly refusing to overwrite.") ## TO DO: integration test: make sure output CSV is as expected.
mit
CVML/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
227
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
huzq/scikit-learn
examples/cluster/plot_mean_shift.py
23
1775
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets import make_blobs # ############################################################################# # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) # ############################################################################# # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) # ############################################################################# # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
waterponey/scikit-learn
examples/neighbors/plot_lof.py
30
1939
""" ================================================= Anomaly detection with Local Outlier Factor (LOF) ================================================= This example presents the Local Outlier Factor (LOF) estimator. The LOF algorithm is an unsupervised outlier detection method which computes the local density deviation of a given data point with respect to its neighbors. It considers as outlier samples that have a substantially lower density than their neighbors. The number of neighbors considered, (parameter n_neighbors) is typically chosen 1) greater than the minimum number of objects a cluster has to contain, so that other objects can be local outliers relative to this cluster, and 2) smaller than the maximum number of close by objects that can potentially be local outliers. In practice, such informations are generally not available, and taking n_neighbors=20 appears to work well in general. """ import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import LocalOutlierFactor print(__doc__) np.random.seed(42) # Generate train data X = 0.3 * np.random.randn(100, 2) # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) X = np.r_[X + 2, X - 2, X_outliers] # fit the model clf = LocalOutlierFactor(n_neighbors=20) y_pred = clf.fit_predict(X) y_pred_outliers = y_pred[200:] # plot the level sets of the decision function xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50)) Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Local Outlier Factor (LOF)") plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) a = plt.scatter(X[:200, 0], X[:200, 1], c='white') b = plt.scatter(X[200:, 0], X[200:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a, b], ["normal observations", "abnormal observations"], loc="upper left") plt.show()
bsd-3-clause
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/scipy/spatial/tests/test__plotutils.py
15
2140
from __future__ import division, print_function, absolute_import import pytest from numpy.testing import assert_, assert_array_equal from scipy._lib._numpy_compat import suppress_warnings try: import matplotlib matplotlib.rcParams['backend'] = 'Agg' import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib import MatplotlibDeprecationWarning has_matplotlib = True except: has_matplotlib = False from scipy.spatial import \ delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \ Delaunay, Voronoi, ConvexHull @pytest.mark.skipif(not has_matplotlib, reason="Matplotlib not available") class TestPlotting: points = [(0,0), (0,1), (1,0), (1,1)] def test_delaunay(self): # Smoke test fig = plt.figure() obj = Delaunay(self.points) s_before = obj.simplices.copy() with suppress_warnings as sup: # filter can be removed when matplotlib 1.x is dropped sup.filter(message="The ishold function was deprecated in version") r = delaunay_plot_2d(obj, ax=fig.gca()) assert_array_equal(obj.simplices, s_before) # shouldn't modify assert_(r is fig) delaunay_plot_2d(obj, ax=fig.gca()) def test_voronoi(self): # Smoke test fig = plt.figure() obj = Voronoi(self.points) with suppress_warnings as sup: # filter can be removed when matplotlib 1.x is dropped sup.filter(message="The ishold function was deprecated in version") r = voronoi_plot_2d(obj, ax=fig.gca()) assert_(r is fig) voronoi_plot_2d(obj) voronoi_plot_2d(obj, show_vertices=False) def test_convex_hull(self): # Smoke test fig = plt.figure() tri = ConvexHull(self.points) with suppress_warnings as sup: # filter can be removed when matplotlib 1.x is dropped sup.filter(message="The ishold function was deprecated in version") r = convex_hull_plot_2d(tri, ax=fig.gca()) assert_(r is fig) convex_hull_plot_2d(tri)
mit
anntzer/seaborn
seaborn/_core.py
1
44884
import warnings import itertools from copy import copy from functools import partial from collections.abc import Iterable, Sequence, Mapping from numbers import Number from datetime import datetime import numpy as np import pandas as pd import matplotlib as mpl from ._decorators import ( share_init_params_with_map, ) from .palettes import ( QUAL_PALETTES, color_palette, cubehelix_palette, _parse_cubehelix_args, ) from .utils import ( get_color_cycle, remove_na, ) class SemanticMapping: """Base class for mapping data values to plot attributes.""" # -- Default attributes that all SemanticMapping subclasses must set # Whether the mapping is numeric, categorical, or datetime map_type = None # Ordered list of unique values in the input data levels = None # A mapping from the data values to corresponding plot attributes lookup_table = None def __init__(self, plotter): # TODO Putting this here so we can continue to use a lot of the # logic that's built into the library, but the idea of this class # is to move towards semantic mappings that are agnositic about the # kind of plot they're going to be used to draw. # Fully achieving that is going to take some thinking. self.plotter = plotter def map(cls, plotter, *args, **kwargs): # This method is assigned the __init__ docstring method_name = "_{}_map".format(cls.__name__[:-7].lower()) setattr(plotter, method_name, cls(plotter, *args, **kwargs)) return plotter def _lookup_single(self, key): """Apply the mapping to a single data value.""" return self.lookup_table[key] def __call__(self, key, *args, **kwargs): """Get the attribute(s) values for the data key.""" if isinstance(key, (list, np.ndarray, pd.Series)): return [self._lookup_single(k, *args, **kwargs) for k in key] else: return self._lookup_single(key, *args, **kwargs) @share_init_params_with_map class HueMapping(SemanticMapping): """Mapping that sets artist colors according to data values.""" # A specification of the colors that should appear in the plot palette = None # An object that normalizes data values to [0, 1] range for color mapping norm = None # A continuous colormap object for interpolating in a numeric context cmap = None def __init__( self, plotter, palette=None, order=None, norm=None, ): """Map the levels of the `hue` variable to distinct colors. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data["hue"] if data.notna().any(): map_type = self.infer_map_type( palette, norm, plotter.input_format, plotter.var_types["hue"] ) # Our goal is to end up with a dictionary mapping every unique # value in `data` to a color. We will also keep track of the # metadata about this mapping we will need for, e.g., a legend # --- Option 1: numeric mapping with a matplotlib colormap if map_type == "numeric": data = pd.to_numeric(data) levels, lookup_table, norm, cmap = self.numeric_mapping( data, palette, norm, ) # --- Option 2: categorical mapping using seaborn palette elif map_type == "categorical": cmap = norm = None levels, lookup_table = self.categorical_mapping( data, palette, order, ) # --- Option 3: datetime mapping else: # TODO this needs actual implementation cmap = norm = None levels, lookup_table = self.categorical_mapping( # Casting data to list to handle differences in the way # pandas and numpy represent datetime64 data list(data), palette, order, ) self.map_type = map_type self.lookup_table = lookup_table self.palette = palette self.levels = levels self.norm = norm self.cmap = cmap def _lookup_single(self, key): """Get the color for a single value, using colormap to interpolate.""" try: # Use a value that's in the original data vector value = self.lookup_table[key] except KeyError: # Use the colormap to interpolate between existing datapoints # (e.g. in the context of making a continuous legend) normed = self.norm(key) if np.ma.is_masked(normed): normed = np.nan value = self.cmap(normed) return value def infer_map_type(self, palette, norm, input_format, var_type): """Determine how to implement the mapping.""" if palette in QUAL_PALETTES: map_type = "categorical" elif norm is not None: map_type = "numeric" elif isinstance(palette, (dict, list)): map_type = "categorical" elif input_format == "wide": map_type = "categorical" else: map_type = var_type return map_type def categorical_mapping(self, data, palette, order): """Determine colors when the hue mapping is categorical.""" # -- Identify the order and name of the levels levels = categorical_order(data, order) n_colors = len(levels) # -- Identify the set of colors to use if isinstance(palette, dict): missing = set(levels) - set(palette) if any(missing): err = "The palette dictionary is missing keys: {}" raise ValueError(err.format(missing)) lookup_table = palette else: if palette is None: if n_colors <= len(get_color_cycle()): colors = color_palette(None, n_colors) else: colors = color_palette("husl", n_colors) elif isinstance(palette, list): if len(palette) != n_colors: err = "The palette list has the wrong number of colors." raise ValueError(err) colors = palette else: colors = color_palette(palette, n_colors) lookup_table = dict(zip(levels, colors)) return levels, lookup_table def numeric_mapping(self, data, palette, norm): """Determine colors when the hue variable is quantitative.""" if isinstance(palette, dict): # The presence of a norm object overrides a dictionary of hues # in specifying a numeric mapping, so we need to process it here. levels = list(sorted(palette)) colors = [palette[k] for k in sorted(palette)] cmap = mpl.colors.ListedColormap(colors) lookup_table = palette.copy() else: # The levels are the sorted unique values in the data levels = list(np.sort(remove_na(data.unique()))) # --- Sort out the colormap to use from the palette argument # Default numeric palette is our default cubehelix palette # TODO do we want to do something complicated to ensure contrast? palette = "ch:" if palette is None else palette if isinstance(palette, mpl.colors.Colormap): cmap = palette elif str(palette).startswith("ch:"): args, kwargs = _parse_cubehelix_args(palette) cmap = cubehelix_palette(0, *args, as_cmap=True, **kwargs) else: try: cmap = mpl.cm.get_cmap(palette) except (ValueError, TypeError): err = "Palette {} not understood" raise ValueError(err) # Now sort out the data normalization if norm is None: norm = mpl.colors.Normalize() elif isinstance(norm, tuple): norm = mpl.colors.Normalize(*norm) elif not isinstance(norm, mpl.colors.Normalize): err = "``hue_norm`` must be None, tuple, or Normalize object." raise ValueError(err) if not norm.scaled(): norm(np.asarray(data.dropna())) lookup_table = dict(zip(levels, cmap(norm(levels)))) return levels, lookup_table, norm, cmap @share_init_params_with_map class SizeMapping(SemanticMapping): """Mapping that sets artist sizes according to data values.""" # An object that normalizes data values to [0, 1] range norm = None def __init__( self, plotter, sizes=None, order=None, norm=None, ): """Map the levels of the `size` variable to distinct values. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data["size"] if data.notna().any(): map_type = self.infer_map_type( norm, sizes, plotter.var_types["size"] ) # --- Option 1: numeric mapping if map_type == "numeric": levels, lookup_table, norm = self.numeric_mapping( data, sizes, norm, ) # --- Option 2: categorical mapping elif map_type == "categorical": levels, lookup_table = self.categorical_mapping( data, sizes, order, ) # --- Option 3: datetime mapping # TODO this needs an actual implementation else: levels, lookup_table = self.categorical_mapping( # Casting data to list to handle differences in the way # pandas and numpy represent datetime64 data list(data), sizes, order, ) self.map_type = map_type self.levels = levels self.norm = norm self.sizes = sizes self.lookup_table = lookup_table def infer_map_type(self, norm, sizes, var_type): if norm is not None: map_type = "numeric" elif isinstance(sizes, (dict, list)): map_type = "categorical" else: map_type = var_type return map_type def _lookup_single(self, key): try: value = self.lookup_table[key] except KeyError: normed = self.norm(key) if np.ma.is_masked(normed): normed = np.nan size_values = self.lookup_table.values() size_range = min(size_values), max(size_values) value = size_range[0] + normed * np.ptp(size_range) return value def categorical_mapping(self, data, sizes, order): levels = categorical_order(data, order) if isinstance(sizes, dict): # Dict inputs map existing data values to the size attribute missing = set(levels) - set(sizes) if any(missing): err = f"Missing sizes for the following levels: {missing}" raise ValueError(err) lookup_table = sizes.copy() elif isinstance(sizes, list): # List inputs give size values in the same order as the levels if len(sizes) != len(levels): err = "The `sizes` list has the wrong number of values." raise ValueError(err) lookup_table = dict(zip(levels, sizes)) else: if isinstance(sizes, tuple): # Tuple input sets the min, max size values if len(sizes) != 2: err = "A `sizes` tuple must have only 2 values" raise ValueError(err) elif sizes is not None: err = f"Value for `sizes` not understood: {sizes}" raise ValueError(err) else: # Otherwise, we need to get the min, max size values from # the plotter object we are attached to. # TODO this is going to cause us trouble later, because we # want to restructure things so that the plotter is generic # across the visual representation of the data. But at this # point, we don't know the visual representation. Likely we # want to change the logic of this Mapping so that it gives # points on a nornalized range that then gets unnormalized # when we know what we're drawing. But given the way the # package works now, this way is cleanest. sizes = self.plotter._default_size_range # For categorical sizes, use regularly-spaced linear steps # between the minimum and maximum sizes sizes = np.linspace(*sizes, len(levels)) lookup_table = dict(zip(levels, sizes)) return levels, lookup_table def numeric_mapping(self, data, sizes, norm): if isinstance(sizes, dict): # The presence of a norm object overrides a dictionary of sizes # in specifying a numeric mapping, so we need to process it # dictionary here levels = list(np.sort(list(sizes))) size_values = sizes.values() size_range = min(size_values), max(size_values) else: # The levels here will be the unique values in the data levels = list(np.sort(remove_na(data.unique()))) if isinstance(sizes, tuple): # For numeric inputs, the size can be parametrized by # the minimum and maximum artist values to map to. The # norm object that gets set up next specifies how to # do the mapping. if len(sizes) != 2: err = "A `sizes` tuple must have only 2 values" raise ValueError(err) size_range = sizes elif sizes is not None: err = f"Value for `sizes` not understood: {sizes}" raise ValueError(err) else: # When not provided, we get the size range from the plotter # object we are attached to. See the note in the categorical # method about how this is suboptimal for future development.: size_range = self.plotter._default_size_range # Now that we know the minimum and maximum sizes that will get drawn, # we need to map the data values that we have into that range. We will # use a matplotlib Normalize class, which is typically used for numeric # color mapping but works fine here too. It takes data values and maps # them into a [0, 1] interval, potentially nonlinear-ly. if norm is None: # Default is a linear function between the min and max data values norm = mpl.colors.Normalize() elif isinstance(norm, tuple): # It is also possible to give different limits in data space norm = mpl.colors.Normalize(*norm) elif not isinstance(norm, mpl.colors.Normalize): err = f"Value for size `norm` parameter not understood: {norm}" raise ValueError(err) else: # If provided with Normalize object, copy it so we can modify norm = copy(norm) # Set the mapping so all output values are in [0, 1] norm.clip = True # If the input range is not set, use the full range of the data if not norm.scaled(): norm(levels) # Map from data values to [0, 1] range sizes_scaled = norm(levels) # Now map from the scaled range into the artist units if isinstance(sizes, dict): lookup_table = sizes else: lo, hi = size_range sizes = lo + sizes_scaled * (hi - lo) lookup_table = dict(zip(levels, sizes)) return levels, lookup_table, norm @share_init_params_with_map class StyleMapping(SemanticMapping): """Mapping that sets artist style according to data values.""" # Style mapping is always treated as categorical map_type = "categorical" def __init__( self, plotter, markers=None, dashes=None, order=None, ): """Map the levels of the `style` variable to distinct values. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data["style"] if data.notna().any(): # Cast to list to handle numpy/pandas datetime quirks if variable_type(data) == "datetime": data = list(data) # Find ordered unique values levels = categorical_order(data, order) markers = self._map_attributes( markers, levels, unique_markers(len(levels)), "markers", ) dashes = self._map_attributes( dashes, levels, unique_dashes(len(levels)), "dashes", ) # Build the paths matplotlib will use to draw the markers paths = {} filled_markers = [] for k, m in markers.items(): if not isinstance(m, mpl.markers.MarkerStyle): m = mpl.markers.MarkerStyle(m) paths[k] = m.get_path().transformed(m.get_transform()) filled_markers.append(m.is_filled()) # Mixture of filled and unfilled markers will show line art markers # in the edge color, which defaults to white. This can be handled, # but there would be additional complexity with specifying the # weight of the line art markers without overwhelming the filled # ones with the edges. So for now, we will disallow mixtures. if any(filled_markers) and not all(filled_markers): err = "Filled and line art markers cannot be mixed" raise ValueError(err) lookup_table = {} for key in levels: lookup_table[key] = {} if markers: lookup_table[key]["marker"] = markers[key] lookup_table[key]["path"] = paths[key] if dashes: lookup_table[key]["dashes"] = dashes[key] self.levels = levels self.lookup_table = lookup_table def _lookup_single(self, key, attr=None): """Get attribute(s) for a given data point.""" if attr is None: value = self.lookup_table[key] else: value = self.lookup_table[key][attr] return value def _map_attributes(self, arg, levels, defaults, attr): """Handle the specification for a given style attribute.""" if arg is True: lookup_table = dict(zip(levels, defaults)) elif isinstance(arg, dict): missing = set(levels) - set(arg) if missing: err = f"These `{attr}` levels are missing values: {missing}" raise ValueError(err) lookup_table = arg elif isinstance(arg, Sequence): if len(levels) != len(arg): err = f"The `{attr}` argument has the wrong number of values" raise ValueError(err) lookup_table = dict(zip(levels, arg)) elif arg: err = f"This `{attr}` argument was not understood: {arg}" raise ValueError(err) else: lookup_table = {} return lookup_table # =========================================================================== # class VectorPlotter: """Base class for objects underlying *plot functions.""" _semantic_mappings = { "hue": HueMapping, "size": SizeMapping, "style": StyleMapping, } # TODO units is another example of a non-mapping "semantic" # we need a general name for this and separate handling semantics = "x", "y", "hue", "size", "style", "units" wide_structure = { "x": "index", "y": "values", "hue": "columns", "style": "columns", } flat_structure = {"x": "index", "y": "values"} _default_size_range = 1, 2 # Unused but needed in tests, ugh def __init__(self, data=None, variables={}): self.assign_variables(data, variables) for var, cls in self._semantic_mappings.items(): if var in self.semantics: # Create the mapping function map_func = partial(cls.map, plotter=self) setattr(self, f"map_{var}", map_func) # Call the mapping function to initialize with default values getattr(self, f"map_{var}")() @classmethod def get_semantics(cls, kwargs): """Subset a dictionary` arguments with known semantic variables.""" return {k: kwargs[k] for k in cls.semantics} def assign_variables(self, data=None, variables={}): """Define plot variables, optionally using lookup from `data`.""" x = variables.get("x", None) y = variables.get("y", None) if x is None and y is None: self.input_format = "wide" plot_data, variables = self._assign_variables_wideform( data, **variables, ) else: self.input_format = "long" plot_data, variables = self._assign_variables_longform( data, **variables, ) self.plot_data = plot_data self.variables = variables self.var_types = { v: variable_type( plot_data[v], boolean_type="numeric" if v in "xy" else "categorical" ) for v in variables } return self def _assign_variables_wideform(self, data=None, **kwargs): """Define plot variables given wide-form data. Parameters ---------- data : flat vector or collection of vectors Data can be a vector or mapping that is coerceable to a Series or a sequence- or mapping-based collection of such vectors, or a rectangular numpy array, or a Pandas DataFrame. kwargs : variable -> data mappings Behavior with keyword arguments is currently undefined. Returns ------- plot_data : :class:`pandas.DataFrame` Long-form data object mapping seaborn variables (x, y, hue, ...) to data vectors. variables : dict Keys are defined seaborn variables; values are names inferred from the inputs (or None when no name can be determined). """ # TODO raise here if any kwarg values are not None, # # if we decide for "structure-only" wide API # First, determine if the data object actually has any data in it empty = data is None or not len(data) # Then, determine if we have "flat" data (a single vector) if isinstance(data, dict): values = data.values() else: values = np.atleast_1d(data) flat = not any( isinstance(v, Iterable) and not isinstance(v, (str, bytes)) for v in values ) if empty: # Make an object with the structure of plot_data, but empty plot_data = pd.DataFrame(columns=self.semantics) variables = {} elif flat: # Handle flat data by converting to pandas Series and using the # index and/or values to define x and/or y # (Could be accomplished with a more general to_series() interface) flat_data = pd.Series(data).copy() names = { "values": flat_data.name, "index": flat_data.index.name } plot_data = {} variables = {} for var in ["x", "y"]: if var in self.flat_structure: attr = self.flat_structure[var] plot_data[var] = getattr(flat_data, attr) variables[var] = names[self.flat_structure[var]] plot_data = pd.DataFrame(plot_data).reindex(columns=self.semantics) else: # Otherwise assume we have some collection of vectors. # Handle Python sequences such that entries end up in the columns, # not in the rows, of the intermediate wide DataFrame. # One way to accomplish this is to convert to a dict of Series. if isinstance(data, Sequence): data_dict = {} for i, var in enumerate(data): key = getattr(var, "name", i) # TODO is there a safer/more generic way to ensure Series? # sort of like np.asarray, but for pandas? data_dict[key] = pd.Series(var) data = data_dict # Pandas requires that dict values either be Series objects # or all have the same length, but we want to allow "ragged" inputs if isinstance(data, Mapping): data = {key: pd.Series(val) for key, val in data.items()} # Otherwise, delegate to the pandas DataFrame constructor # This is where we'd prefer to use a general interface that says # "give me this data as a pandas DataFrame", so we can accept # DataFrame objects from other libraries wide_data = pd.DataFrame(data, copy=True) # At this point we should reduce the dataframe to numeric cols numeric_cols = wide_data.apply(variable_type) == "numeric" wide_data = wide_data.loc[:, numeric_cols] # Now melt the data to long form melt_kws = {"var_name": "columns", "value_name": "values"} if "index" in self.wide_structure.values(): melt_kws["id_vars"] = "index" wide_data["index"] = wide_data.index.to_series() plot_data = wide_data.melt(**melt_kws) # Assign names corresponding to plot semantics for var, attr in self.wide_structure.items(): plot_data[var] = plot_data[attr] plot_data = plot_data.reindex(columns=self.semantics) # Define the variable names variables = {} for var, attr in self.wide_structure.items(): obj = getattr(wide_data, attr) variables[var] = getattr(obj, "name", None) return plot_data, variables def _assign_variables_longform(self, data=None, **kwargs): """Define plot variables given long-form data and/or vector inputs. Parameters ---------- data : dict-like collection of vectors Input data where variable names map to vector values. kwargs : variable -> data mappings Keys are seaborn variables (x, y, hue, ...) and values are vectors in any format that can construct a :class:`pandas.DataFrame` or names of columns or index levels in ``data``. Returns ------- plot_data : :class:`pandas.DataFrame` Long-form data object mapping seaborn variables (x, y, hue, ...) to data vectors. variables : dict Keys are defined seaborn variables; values are names inferred from the inputs (or None when no name can be determined). Raises ------ ValueError When variables are strings that don't appear in ``data``. """ plot_data = {} variables = {} # Data is optional; all variables can be defined as vectors if data is None: data = {} # TODO should we try a data.to_dict() or similar here to more # generally accept objects with that interface? # Note that dict(df) also works for pandas, and gives us what we # want, whereas DataFrame.to_dict() gives a nested dict instead of # a dict of series. # Variables can also be extraced from the index attribute # TODO is this the most general way to enable it? # There is no index.to_dict on multiindex, unfortunately try: index = data.index.to_frame() except AttributeError: index = {} # The caller will determine the order of variables in plot_data for key, val in kwargs.items(): if isinstance(val, (str, bytes)): # String inputs trigger __getitem__ if val in data: # First try to get an entry in the data object plot_data[key] = data[val] variables[key] = val elif val in index: # Failing that, try to get an entry in the index object plot_data[key] = index[val] variables[key] = val else: # We don't know what this name means err = f"Could not interpret input '{val}'" raise ValueError(err) else: # Otherwise, assume the value is itself a vector of data # TODO check for 1D here or let pd.DataFrame raise? plot_data[key] = val # Try to infer the name of the variable variables[key] = getattr(val, "name", None) # Construct a tidy plot DataFrame. This will convert a number of # types automatically, aligning on index in case of pandas objects plot_data = pd.DataFrame(plot_data, columns=self.semantics) # Reduce the variables dictionary to fields with valid data variables = { var: name for var, name in variables.items() if plot_data[var].notnull().any() } return plot_data, variables def _semantic_subsets( self, grouping_semantics, reverse=False, from_comp_data=False, ): """Generator for getting subsets of data defined by semantic variables. Parameters ---------- grouping_semantics : list of strings Semantic variables that define the subsets of data. reverse : bool, optional If True, reverse the order of iteration. from_comp_data : bool, optional If True, use self.comp_data rather than self.plot_data Yields ------ sub_vars : dict Keys are semantic names, values are the level of that semantic. sub_data : :class:`pandas.DataFrame` Subset of ``plot_data`` for this combination of semantic values. """ if isinstance(grouping_semantics, str): grouping_semantics = [grouping_semantics] # Reduce to the semantics used in this plot grouping_semantics = [ var for var in grouping_semantics if var in self.variables ] if from_comp_data: data = self.comp_data else: data = self.plot_data if grouping_semantics: grouped_data = data.groupby( grouping_semantics, sort=False, as_index=False ) grouping_keys = [] for var in grouping_semantics: # TODO this is messy, add "semantic levels" property? map_obj = getattr(self, f"_{var}_map") grouping_keys.append(map_obj.levels) iter_keys = itertools.product(*grouping_keys) if reverse: iter_keys = reversed(list(iter_keys)) for key in iter_keys: # Pandas fails with singleton tuple inputs pd_key = key[0] if len(key) == 1 else key try: data_subset = grouped_data.get_group(pd_key) except KeyError: continue yield dict(zip(grouping_semantics, key)), data_subset else: yield {}, data @property def comp_data(self): """Dataframe with numeric x and y, after unit conversion and log scaling.""" if not hasattr(self, "ax"): # Probably a good idea, but will need a bunch of tests updated # Most of these tests should just use the external interface # Then this can be reeneabled. # raise AttributeError("No Axes attached to plotter") return self.plot_data if not hasattr(self, "_comp_data"): comp_data = self.plot_data.copy(deep=False) for var in "xy": axis = getattr(self.ax, f"{var}axis") comp_var = axis.convert_units(self.plot_data[var]) if axis.get_scale() == "log": comp_var = np.log10(comp_var) comp_data[var] = comp_var self._comp_data = comp_data return self._comp_data def _attach(self, ax, allowed_types=None, log_scale=None): """Associate the plotter with a matplotlib Axes and initialize its units. Parameters ---------- ax : :class:`matplotlib.axes.Axes` Axes object that we will eventually plot onto. allowed_types : str or list of str If provided, raise when either the x or y variable does not have one of the declared seaborn types. log_scale : bool, number, or pair of bools or numbers If not False, set the axes to use log scaling, with the given base or defaulting to 10. If a tuple, interpreted as separate arguments for the x and y axes. """ if allowed_types is None: # TODO should we define this default somewhere? allowed_types = ["numeric", "datetime", "categorical"] elif isinstance(allowed_types, str): allowed_types = [allowed_types] for var in set("xy").intersection(self.variables): # Check types of x/y variables var_type = self.var_types[var] if var_type not in allowed_types: err = ( f"The {var} variable is {var_type}, but one of " f"{allowed_types} is required" ) raise TypeError(err) # Register with the matplotlib unit conversion machinery # TODO do we want to warn or raise if mixing units? axis = getattr(ax, f"{var}axis") seed_data = self.plot_data[var] if var_type == "categorical": seed_data = categorical_order(seed_data) axis.update_units(seed_data) # Possibly log-scale one or both axes if log_scale is not None: # Allow single value or x, y tuple try: scalex, scaley = log_scale except TypeError: scalex = log_scale if "x" in self.variables else False scaley = log_scale if "y" in self.variables else False for axis, scale in zip("xy", (scalex, scaley)): if scale: set_scale = getattr(ax, f"set_{axis}scale") if scale is True: set_scale("log") else: set_scale("log", **{f"base{axis}": scale}) self.ax = ax def _add_axis_labels(self, ax, default_x="", default_y=""): """Add axis labels from internal variable names if not already existing.""" if not ax.get_xlabel(): ax.set_xlabel(self.variables.get("x", default_x)) if not ax.get_ylabel(): ax.set_ylabel(self.variables.get("y", default_y)) def variable_type(vector, boolean_type="numeric"): """Determine whether a vector contains numeric, categorical, or dateime data. This function differs from the pandas typing API in two ways: - Python sequences or object-typed PyData objects are considered numeric if all of their entries are numeric. - String or mixed-type data are considered categorical even if not explicitly represented as a :class:pandas.api.types.CategoricalDtype`. Parameters ---------- vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence Input data to test. binary_type : 'numeric' or 'categorical' Type to use for vectors containing only 0s and 1s (and NAs). Returns ------- var_type : 'numeric', 'categorical', or 'datetime' Name identifying the type of data in the vector. """ # Special-case all-na data, which is always "numeric" if pd.isna(vector).all(): return "numeric" # Special-case binary/boolean data, allow caller to determine # This triggers a numpy warning when vector has strings/objects # https://github.com/numpy/numpy/issues/6784 # Because we reduce with .all(), we are agnostic about whether the # comparison returns a scalar or vector, so we will ignore the warning. # It triggers a separate DeprecationWarning when the vector has datetimes: # https://github.com/numpy/numpy/issues/13548 # This is considered a bug by numpy and will likely go away. with warnings.catch_warnings(): warnings.simplefilter( action='ignore', category=(FutureWarning, DeprecationWarning) ) if np.isin(vector, [0, 1, np.nan]).all(): return boolean_type # Defer to positive pandas tests if pd.api.types.is_numeric_dtype(vector): return "numeric" if pd.api.types.is_categorical_dtype(vector): return "categorical" if pd.api.types.is_datetime64_dtype(vector): return "datetime" # --- If we get to here, we need to check the entries # Check for a collection where everything is a number def all_numeric(x): for x_i in x: if not isinstance(x_i, Number): return False return True if all_numeric(vector): return "numeric" # Check for a collection where everything is a datetime def all_datetime(x): for x_i in x: if not isinstance(x_i, (datetime, np.datetime64)): return False return True if all_datetime(vector): return "datetime" # Otherwise, our final fallback is to consider things categorical return "categorical" def infer_orient(x=None, y=None, orient=None, require_numeric=True): """Determine how the plot should be oriented based on the data. For historical reasons, the convention is to call a plot "horizontally" or "vertically" oriented based on the axis representing its dependent variable. Practically, this is used when determining the axis for numerical aggregation. Paramters --------- x, y : Vector data or None Positional data vectors for the plot. orient : string or None Specified orientation, which must start with "v" or "h" if not None. require_numeric : bool If set, raise when the implied dependent variable is not numeric. Returns ------- orient : "v" or "h" Raises ------ ValueError: When `orient` is not None and does not start with "h" or "v" TypeError: When dependant variable is not numeric, with `require_numeric` """ x_type = None if x is None else variable_type(x) y_type = None if y is None else variable_type(y) nonnumeric_dv_error = "{} orientation requires numeric `{}` variable." single_var_warning = "{} orientation ignored with only `{}` specified." if x is None: if str(orient).startswith("h"): warnings.warn(single_var_warning.format("Horizontal", "y")) if require_numeric and y_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Vertical", "y")) return "v" elif y is None: if str(orient).startswith("v"): warnings.warn(single_var_warning.format("Vertical", "x")) if require_numeric and x_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Horizontal", "x")) return "h" elif str(orient).startswith("v"): if require_numeric and y_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Vertical", "y")) return "v" elif str(orient).startswith("h"): if require_numeric and x_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Horizontal", "x")) return "h" elif orient is not None: raise ValueError(f"Value for `orient` not understood: {orient}") elif x_type != "numeric" and y_type == "numeric": return "v" elif x_type == "numeric" and y_type != "numeric": return "h" elif require_numeric and "numeric" not in (x_type, y_type): err = "Neither the `x` nor `y` variable appears to be numeric." raise TypeError(err) else: return "v" def unique_dashes(n): """Build an arbitrarily long list of unique dash styles for lines. Parameters ---------- n : int Number of unique dash specs to generate. Returns ------- dashes : list of strings or tuples Valid arguments for the ``dashes`` parameter on :class:`matplotlib.lines.Line2D`. The first spec is a solid line (``""``), the remainder are sequences of long and short dashes. """ # Start with dash specs that are well distinguishable dashes = [ "", (4, 1.5), (1, 1), (3, 1.25, 1.5, 1.25), (5, 1, 1, 1), ] # Now programatically build as many as we need p = 3 while len(dashes) < n: # Take combinations of long and short dashes a = itertools.combinations_with_replacement([3, 1.25], p) b = itertools.combinations_with_replacement([4, 1], p) # Interleave the combinations, reversing one of the streams segment_list = itertools.chain(*zip( list(a)[1:-1][::-1], list(b)[1:-1] )) # Now insert the gaps for segments in segment_list: gap = min(segments) spec = tuple(itertools.chain(*((seg, gap) for seg in segments))) dashes.append(spec) p += 1 return dashes[:n] def unique_markers(n): """Build an arbitrarily long list of unique marker styles for points. Parameters ---------- n : int Number of unique marker specs to generate. Returns ------- markers : list of string or tuples Values for defining :class:`matplotlib.markers.MarkerStyle` objects. All markers will be filled. """ # Start with marker specs that are well distinguishable markers = [ "o", "X", (4, 0, 45), "P", (4, 0, 0), (4, 1, 0), "^", (4, 1, 45), "v", ] # Now generate more from regular polygons of increasing order s = 5 while len(markers) < n: a = 360 / (s + 1) / 2 markers.extend([ (s + 1, 1, a), (s + 1, 0, a), (s, 1, 0), (s, 0, 0), ]) s += 1 # Convert to MarkerStyle object, using only exactly what we need # markers = [mpl.markers.MarkerStyle(m) for m in markers[:n]] return markers[:n] def categorical_order(vector, order=None): """Return a list of unique data values. Determine an ordered list of levels in ``values``. Parameters ---------- vector : list, array, Categorical, or Series Vector of "categorical" values order : list-like, optional Desired order of category levels to override the order determined from the ``values`` object. Returns ------- order : list Ordered list of category levels not including null values. """ if order is None: if hasattr(vector, "categories"): order = vector.categories else: try: order = vector.cat.categories except (TypeError, AttributeError): try: order = vector.unique() except AttributeError: order = pd.unique(vector) if variable_type(vector) == "numeric": order = np.sort(order) order = filter(pd.notnull, order) return list(order)
bsd-3-clause
jeffwdoak/free_energies
free_energies/electronicdos.py
1
14960
#!/usr/bin/python # electronicdos.py v0.5 5-16-2012 Jeff Doak jeff.w.doak@gmail.com import numpy as np from scipy.interpolate import UnivariateSpline from scipy.integrate import quad from scipy.optimize import fsolve import sys, subprocess BOLTZCONST = 8.617e-5 #eV/K class ElectronicDOS: """ Class to calculate equilibrium carrier concentrations, as well as equilibrium thermodynamic properties of an electronic density of states. Class constants of ElectronicDOS: - BOLTZCONST - Boltzmann's Constant (eV/K) Instance attributes of ElectronicDOS: - n_atoms - number of atoms of the unit cell from which the DOS was calculated - energy - numpy array of energies at which DOS is calculated (eV) - dos_tot - numpy array of density of spin up and spin down allowed electron states at each energy in the array energy (# states/eV/atom) - dos_spin - numpy array of the difference in density between spin up and spin down states (# states/eV/atom) - e_min - minimum energy in numpy array energy (eV) - e_max - maximum energy in numpy array energy (eV) - e_fermi - zero Kelvin fermi energy for the electronic DOS (eV) - step_size - energy difference between two consecutive points in the DOSCAR file (eV) - vbm - valence band maximum, set to e_fermi for metals (eV) - cbm - conduction band minimum, set to e_fermi for metals (eV) - band_gap - band gap around the fermi energy, zero for metals (eV) - temp - numpy array of temperatures at which to calculate equilibrium electron chemical potentials, electron concentrations, and hole concentrations (K) - mu_e - numpy array of electron chemical potentials calculated at each temperature in temp (eV) - num_e - numpy array of equilibrium electron concentrations calculated at each temperature in temp (# e's/atom) - num_h - numpy array of equilibrium hole concentrations calculated at each temperature in temp (# h's/atom) - E_el - numpy array of electronic energy calculated at each temperature in temp (eV/atom) - S_el - numpy array of electronic entropy calculated at each temperature in temp (kB/atom) - F_el - numpy array of electronic free energy calculated at each temperature in temp (eV/atom) """ def __init__(self,input_,format=None): if isinstance(input_,str): try: input_ = open(input_,'r') except IOError: print "Error reading input file." print "Program will now exit!" sys.exit(1) if isinstance(input_,file): if format == "ezvasp": self.read_ezvasp_dos(input_) else: self.read_doscar(input_) nelec = subprocess.Popen("grep NELECT OUTCAR", shell=True,stdin=None,stdout=subprocess.PIPE).communicate()[0] self.nelec = int(float(nelec.split()[2])) self.get_bandgap() # Calculate finite temperature properties self.temp = np.linspace(0,2000,21) self.mu_e = np.zeros_like(self.temp) self.num_e = np.zeros_like(self.temp) self.num_h = np.zeros_like(self.temp) self.E_el = np.zeros_like(self.temp) self.S_el = np.zeros_like(self.temp) self.F_el = np.zeros_like(self.temp) # Calculate E_el_0 self.E_el_0 = None tol = 1e-5 for i in range(len(self.temp)): if i < tol: self.mu_e[i] = self.e_fermi self.E_el[i] = 0.0 self.S_el[i] = 0.0 self.num_e[i] = 0.0 self.num_h[i] = 0.0 elif i > 0.0: self.mu_e[i] = self.calc_mu_e(self.temp[i]) if self.E_el_0 == None: self.E_el_0 = self.calc_E_el(self.mu_e[i],self.temp[i]) self.num_e[i] = self.n(self.mu_e[i],self.temp[i]) self.num_h[i] = self.p(self.mu_e[i],self.temp[i]) self.E_el[i] = (self.calc_E_el(self.mu_e[i],self.temp[i])) self.S_el[i] = self.calc_S_el(self.mu_e[i],self.temp[i]) self.E_el[1:] = self.E_el[1:] - self.E_el_0 self.F_el = self.E_el - self.temp*BOLTZCONST*self.S_el def read_doscar(self,input_): """ Reads in a doscar file to grab the density of states as a function of energy. The argument input_ is assumed to be a file object. """ self.n_atoms = int(input_.readline().split()[0]) # Discard header information for i in range(4): input_.readline() # Read in Fermi Energy line = input_.readline().split() self.e_max = float(line[0]) self.e_min = float(line[1]) self.e_fermi = float(line[3]) energy = []; dos_tot = []; dos_spin = [] for line in input_: line = line.split() energy.append(float(line[0])) if len(line) == 3: dos_tot.append(float(line[1])) # DOS includes spin up and down dos_spin.append(0.0) elif len(line) == 5: dos_tot.append(float(line[1])+float(line[2])) dos_spin.append(float(line[1])-float(line[2])) self.energy = np.array(energy) #self.dos_tot = np.array(dos_tot)/float(self.n_atoms) self.dos_tot = np.array(dos_tot) #self.dos_spin = np.array(dos_spin)/float(self.n_atoms) self.dos_spin = np.array(dos_spin) self.dos_spline = UnivariateSpline(self.energy,self.dos_tot) def read_ezvasp_dos(self,input_): """ Reads an ezvasp-formatted dos.out file to get the electronic density of states. The argument input_ is assumned to be a file object. """ nions = subprocess.Popen("grep NIONS OUTCAR", shell=True,stdin=None,stdout=subprocess.PIPE).communicate()[0] self.n_atoms = int(float(nions.split()[-1])) self.e_min = 0.0 line = input_.readline().split() self.nelec = int(float(line[0])) self.step_size = float(line[1]) self.scale = float(line[2]) energy = []; dos_tot = [] i = 0 for line in input_: line = line.split() dos_tot.append(float(line[0])) energy.append(float(i)*self.step_size) i += 1 self.energy = np.array(energy) self.dos_tot = np.array(dos_tot) self.dos_spin = np.zeros_like(self.dos_tot) # Change this for spin-polar self.dos_spline = UnivariateSpline(self.energy,self.dos_tot) self.e_max = self.energy[-1] # Find the 0 Kelvin 'Fermi Energy' using ATAT's method ne = 0.0 for i in range(len(self.dos_tot)): ne += self.dos_tot[i]*self.step_size e_fermi = self.energy[i] if ne >= self.nelec: break self.e_fermi = e_fermi def get_bandgap(self): """ Finds the band gap of a DOS around the fermi energy. """ self.step_size = self.energy[1] - self.energy[0] i = 0 not_found = True while not_found: if self.energy[i] < self.e_fermi and self.dos_tot[i] > 1e-3: bot = self.energy[i] elif self.energy[i] > self.e_fermi and self.dos_tot[i] > 1e-3: top = self.energy[i] not_found = False i += 1 if top - bot < 2*self.step_size: self.vbm = self.cbm = self.e_fermi self.band_gap = 0.0 else: self.vbm = bot; self.cbm = top self.band_gap = top - bot def shift_energy(self,new_ref): """ Change the reference energy for all of the energy attributes. """ self.energy = self.energy - new_ref self.e_min = self.e_min - new_ref self.e_max = self.e_max - new_ref self.e_fermi = self.e_fermi - new_ref self.vbm = self.vbm - new_ref self.cbm = self.cbm - new_ref self.mu_e = self.mu_e - new_ref #def sum_dos(self,weight,start,end,args=None): def sum_dos(self,weight,start,end,args=None): """ Sums the density of states, dos, in the energy range [start,end], weighted by the function weight, which takes as inputs energy and args. """ flag = False sum = 0. for i in range(len(self.energy)): if flag: sum += self.step_size*self.dos_tot[i]*weight( self.energy[i],args) if self.energy[i] > end: break elif self.energy[i] >= start: flag = True return sum #def integrate_dos(self,weight,start,end,args=None,threshold=0.1): def ium_dos(self,weight,start,end,args=None,threshold=0.1): """ Takes numpy arrays containing the energy and dos and integrates them over the range [start,end] with the weighting function weight. Weight should take as an argument the integrated energy and a list of other arguements args. """ def integrand(x,weight,args): return self.dos_spline(x)*weight(x,args) result = quad( integrand,start,end,args=(weight,args),full_output=1,limit=350) integral = result[0] error = result[1] #if error > integral*threshold: # print "Numerical integration error is greater than" # print str(threshold)+" of the integrated value." # sys.exit(1) return integral def n(self,mu_e,T): """ Calculate the intrinsic number of conduction electrons per atom at an electron chemical potential mu_e and temperature T. """ def fermi(x,args): mu = args[0]; T = args[1] return 1./(np.exp((x-mu)/(BOLTZCONST*T))+1.) #n = self.integrate_dos(fermi,self.cbm,self.e_max,args=(mu_e,T)) #n = self.sum_dos(fermi,self.cbm,self.e_max,args=(mu_e,T)) n = self.sum_dos(fermi,mu_e,self.e_max,args=(mu_e,T)) return n def p(self,mu_e,T): """ Calculate the intrinsic number of valence holes per atom at an electron chemical potential of mu_e and temperature T. """ def fermi(x,args): mu = args[0]; T = args[1] return 1./(np.exp((mu-x)/(BOLTZCONST*T))+1.) #p = self.integrate_dos(fermi,self.e_min,self.vbm,args=(mu_e,T)) #p = self.sum_dos(fermi,self.e_min,self.vbm,args=(mu_e,T)) p = self.sum_dos(fermi,self.e_min,mu_e,args=(mu_e,T)) return p def charge_neut2(self,mu_e,args): def fermi(x,args): mu = args[0]; T = args[1] return 1./(np.exp((x-mu)/(BOLTZCONST*T))+1.) T = args n_sum = self.sum_dos(fermi,self.e_min,self.e_max,args=(mu_e,T)) return self.nelec - n_sum def charge_neutrality(self,mu_e,args): """ Condition for charge neutrality for intrinsic doping in a perfect semiconductor. This function should be overwritten for a more complicated case. """ T = args # Args could also include atomic chemical potentials. return self.p(mu_e,T) - self.n(mu_e,T) def calc_mu_e(self,temp): """ Calculate the electron chemical potential at temperature temp using the condition of charge neutrality. """ #mu_e = fsolve(self.charge_neutrality,self.e_fermi,args=(temp)) mu_e = fsolve(self.charge_neut2,self.e_fermi,args=(temp)) return mu_e def calc_E_el(self,mu_e,T): """ Calculate the electronic energy at a temperature T and electron chemical potential mu_e. """ def energy(x,args): return x def fermi_energy(x,args): mu = args[0]; T = args[1] if x-mu < -30.0*BOLTZCONST*T: return x elif x-mu > 30.0*BOLTZCONST*T: return 0.0 else: return x/(np.exp((x-mu)/(BOLTZCONST*T))+1.) #E = self.integrate_dos(fermi_energy,self.e_min,self.e_max,args=(mu_e,T)) #E_0 = self.integrate_dos( # fermi_energy,self.e_min,self.e_max,args=(mu_e,T)) E = self.sum_dos(fermi_energy,self.e_min,self.e_max,args=(mu_e,T)) #E_0 = self.sum_dos(energy,self.e_min,self.e_fermi,args=None) return E def calc_S_el(self,mu_e,T): """ Calculate the electronic entropy at an electron chemical potential mu_e and temperature T. """ def weight(x,args): mu = args[0]; T = args[1] x = (x - mu)/(BOLTZCONST*T) f = 1.0/(np.exp(x)+1) if f > 1e-5 and (1.0 - f) > 1e-5: return -f*np.log(f)-(1.-f)*np.log(1.-f) else: return 0.0 #f = -np.log(np.exp(x)+1)/(np.exp(x)+1) #f += -np.log(np.exp(-x)+1)/(np.exp(-x)+1) #return f #S = self.integrate_dos(weight,self.e_min,self.e_max,args=(mu_e,T)) S = self.sum_dos(weight,self.e_min,self.e_max,args=(mu_e,T)) return S def fermi_dirac_dist(x,args): """ Calculates the Fermi-Dirac distribution for an energy x, temperature args[0], and electron chemical potential args[1]. """ T = args[0]; mu = args[1] return 1./(np.exp((x-mu)/(BOLTZCONST*T))+1.) def test2(argv): doscar = ElectronicDOS(open(str(argv[0]),'r')) T = 500 #n = doscar.integrate_dos( # fermi_dirac_dist,doscar.cbm,doscar.e_max,args=(T,doscar.e_fermi)) p = doscar.p(doscar.e_fermi,T) print p def test3(argv): format = None if len(argv) > 1: format = str(argv[1]) doscar = ElectronicDOS(open(str(argv[0]),'r'),format) print doscar.temp print doscar.num_e print doscar.num_h print doscar.E_el print doscar.S_el print doscar.F_el def atat_test(argv): format = None if len(argv) > 1: format = str(argv[1]) doscar = ElectronicDOS(open(str(argv[0]),'r'),format) print doscar.E_el_0 for i in range(len(doscar.temp)): print doscar.temp[i],doscar.mu_e[i],doscar.E_el[i],doscar.S_el[i],doscar.F_el[i] def test1(argv): import matplotlib.pyplot as plt doscar = ElectronicDOS(open(str(argv[0]),'r')) plt.plot(doscar.energy,doscar.dos_tot) plt.show() def main(argv): import matplotlib.pyplot as plt doscar = open(str(argv[0])) e_fermi,energy,n_tot,n_spin = read_doscar(doscar) plt.plot(energy,n_tot) if len(argv) > 1: doscar2 = open(str(argv[1])) e_fermi2,energy2,n_tot2,n_spin2 = read_doscar(doscar2) plt.plot(energy2,n_tot2) plt.show() if __name__ == "__main__": import sys #test3(sys.argv[1:]) atat_test(sys.argv[1:])
mit
magne-max/zipline-ja
tests/history/generate_csvs.py
8
5432
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np import pandas as pd from zipline.finance.trading import TradingEnvironment from zipline.data.us_equity_minutes import BcolzMinuteBarWriter def generate_daily_test_data(first_day, last_day, starting_open, starting_volume, multipliers_list, path): days = TradingEnvironment.instance().days_in_range(first_day, last_day) days_count = len(days) o = np.zeros(days_count, dtype=np.uint32) h = np.zeros(days_count, dtype=np.uint32) l = np.zeros(days_count, dtype=np.uint32) c = np.zeros(days_count, dtype=np.uint32) v = np.zeros(days_count, dtype=np.uint32) last_open = starting_open * 1000 last_volume = starting_volume for idx in range(days_count): new_open = last_open + round((random.random() * 5), 2) o[idx] = new_open h[idx] = new_open + round((random.random() * 10000), 2) l[idx] = new_open - round((random.random() * 10000), 2) c[idx] = (h[idx] + l[idx]) / 2 v[idx] = int(last_volume + (random.randrange(-10, 10) * 1e4)) last_open = o[idx] last_volume = v[idx] # now deal with multipliers if len(multipliers_list) > 0: range_start = 0 for multiplier_info in multipliers_list: range_end = days.searchsorted(multiplier_info[0]) # dividing by the multiplier because we're going backwards # and generating the original data that will then be adjusted. o[range_start:range_end] /= multiplier_info[1] h[range_start:range_end] /= multiplier_info[1] l[range_start:range_end] /= multiplier_info[1] c[range_start:range_end] /= multiplier_info[1] v[range_start:range_end] *= multiplier_info[1] range_start = range_end df = pd.DataFrame({ "open": o, "high": h, "low": l, "close": c, "volume": v }, columns=[ "open", "high", "low", "close", "volume" ], index=days) df.to_csv(path, index_label="day") def generate_minute_test_data(first_day, last_day, starting_open, starting_volume, multipliers_list, path): """ Utility method to generate fake minute-level CSV data. :param first_day: first trading day :param last_day: last trading day :param starting_open: first open value, raw value. :param starting_volume: first volume value, raw value. :param multipliers_list: ordered list of pd.Timestamp -> float, one per day in the range :param path: path to save the CSV :return: None """ full_minutes = BcolzMinuteBarWriter.full_minutes_for_days( first_day, last_day) minutes_count = len(full_minutes) minutes = TradingEnvironment.instance().minutes_for_days_in_range( first_day, last_day) o = np.zeros(minutes_count, dtype=np.uint32) h = np.zeros(minutes_count, dtype=np.uint32) l = np.zeros(minutes_count, dtype=np.uint32) c = np.zeros(minutes_count, dtype=np.uint32) v = np.zeros(minutes_count, dtype=np.uint32) last_open = starting_open * 1000 last_volume = starting_volume for minute in minutes: # ugly, but works idx = full_minutes.searchsorted(minute) new_open = last_open + round((random.random() * 5), 2) o[idx] = new_open h[idx] = new_open + round((random.random() * 10000), 2) l[idx] = new_open - round((random.random() * 10000), 2) c[idx] = (h[idx] + l[idx]) / 2 v[idx] = int(last_volume + (random.randrange(-10, 10) * 1e4)) last_open = o[idx] last_volume = v[idx] # now deal with multipliers if len(multipliers_list) > 0: for idx, multiplier_info in enumerate(multipliers_list): start_idx = idx * 390 end_idx = start_idx + 390 # dividing by the multipler because we're going backwards # and generating the original data that will then be adjusted. o[start_idx:end_idx] /= multiplier_info[1] h[start_idx:end_idx] /= multiplier_info[1] l[start_idx:end_idx] /= multiplier_info[1] c[start_idx:end_idx] /= multiplier_info[1] v[start_idx:end_idx] *= multiplier_info[1] df = pd.DataFrame({ "open": o, "high": h, "low": l, "close": c, "volume": v }, columns=[ "open", "high", "low", "close", "volume" ], index=minutes) df.to_csv(path, index_label="minute")
apache-2.0
xwolf12/scikit-learn
examples/model_selection/grid_search_digits.py
227
2665
""" ============================================================ Parameter estimation using grid search with cross-validation ============================================================ This examples shows how a classifier is optimized by cross-validation, which is done using the :class:`sklearn.grid_search.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring='%s_weighted' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() for params, mean_score, scores in clf.grid_scores_: print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
DouglasLeeTucker/DECam_PGCM
bin/rawdata_se_objects_split.py
1
5996
#!/usr/bin/env python """ rawdata_se_objects_split.py Example: rawdata_se_objects_split.py --help rawdata_se_objects_split.py --inputFileListFile inputfilelist.csv --outputFileListFile outputfilelist.csv --verbose 2 """ ################################## def main(): import os import argparse import time """Create command line arguments""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--inputFileListFile', help='name of CSV file containing list of input files', default='inputfilelist.csv') parser.add_argument('--outputFileListFile', help='name of CSV file containing list of filter bands and output files', default='outputfilelist.csv') parser.add_argument('--verbose', help='verbosity level of output to screen (0,1,2,...)', default=0, type=int) args = parser.parse_args() if args.verbose > 0: print args # Execute method... status = rawdata_se_objects_split(args) ################################## # rawdata_se_objects_split # # Based on sepBands from y2a1_tertiaries.py # def rawdata_se_objects_split(args): import os import datetime import numpy as np import pandas as pd from astropy.table import Table if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'rawdata_se_objects_split' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # Read in inputFileListFile... inputFileListFile = args.inputFileListFile if os.path.isfile(inputFileListFile)==False: print """Input filelist file %s does not exist...""" % (inputFileListFile) print """Exiting rawdata_se_objects_split method with return code 1""" return 1 inputFileListDF = pd.read_csv(inputFileListFile, header=None, names=['FILENAME'], comment='#') inputFileListDF['FILENAME'] = inputFileListDF['FILENAME'].str.strip() inputFileListSeries = inputFileListDF['FILENAME'] inputFileList = inputFileListSeries.values.tolist() if args.verbose>1: print 'Input file list:' print inputFileList # Read in outputFileListFile and convert it to a python # dictionary, ensuring there are no extraneous white spaces # in the file names listed... outputFileListFile = args.outputFileListFile if os.path.isfile(outputFileListFile)==False: print """Output filelist file %s does not exist...""" % (outputFileListFile) print """Exiting rawdata_se_objects_split method with return code 1""" return 1 outputFileListDF = pd.read_csv(outputFileListFile, header=None, names=['BAND','FILENAME'], index_col='BAND', comment='#') outputFileListDF['FILENAME'] = outputFileListDF['FILENAME'].str.strip() outputFileListSeries = outputFileListDF['FILENAME'] outputFileListDict = outputFileListSeries.to_dict() # Also, grab the band list from the outputFileListFile series... bandList = outputFileListSeries.index.values.tolist() if args.verbose>1: print 'Output file list dictionary:' print outputFileListDict print 'Band list:' print bandList # Loop through inputFileList... firstFile=True for inputFile in inputFileList: if args.verbose > 1: print """Working on input file %s...""" % inputFile print datetime.datetime.now() # Read in file... t = Table.read(inputFile) # Convert astropy Table to pandas dataframe... df = t.to_pandas() # Verify that 'BAND' is a column in the dataframe; # otherwise, skip... if 'BAND' not in df.columns: print """Could not find 'BAND' in header of %s... Skipping""" \ % (inputFile) del df continue # Verify that 'FILENAME' is a column in the dataframe; # otherwise, skip... if 'FILENAME' not in df.columns: print """Could not find 'FILENAME' in header of %s... Skipping""" \ % (inputFile) del df continue # Trim leading and trailing white space from the FILENAME column... df['FILENAME'] = df['FILENAME'].str.strip() # Trim leading and trailing white space from the BAND column... df['BAND'] = df['BAND'].str.strip() # If this is the first (valid) file, create initial # output files (empty except for the CSV header)... if firstFile is True: for band in bandList: outputFile = outputFileListDict[band] # Create a mask with all entries equal to False... mask = pd.Series(np.zeros(df.BAND.size, dtype=bool)) df[mask].to_csv(outputFile,index=False) firstFile = False # Loop through band list, appending the rows from # each band to the appropriate output file... for band in bandList: outputFile = outputFileListDict[band] mask = (df.BAND == band) # Faster if we move the "open" to outside the loop?: with open(outputFile, 'a') as f: df[mask].to_csv(f, index=False, header=False) f.close() # Clean up some space before moving to next file... del df #del t if args.verbose > 1: print datetime.datetime.now() if args.verbose>0: print return 0 ################################## if __name__ == "__main__": main() ##################################
gpl-3.0
arabenjamin/scikit-learn
sklearn/linear_model/tests/test_sgd.py
129
43401
import pickle import unittest import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import raises from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn import linear_model, datasets, metrics from sklearn.base import clone from sklearn.linear_model import SGDClassifier, SGDRegressor from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler class SparseSGDClassifier(SGDClassifier): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).fit(X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).partial_fit(X, y, *args, **kw) def decision_function(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).decision_function(X) def predict_proba(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).predict_proba(X) class SparseSGDRegressor(SGDRegressor): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.fit(self, X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.partial_fit(self, X, y, *args, **kw) def decision_function(self, X, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.decision_function(self, X, *args, **kw) # Test Data # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2; string class labels X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5], [1, 1], [0.75, 0.5], [1.5, 1.5], [-1, -1], [0, -0.5], [1, -1]]) Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3 T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]]) true_result2 = ["one", "two", "three"] # test sample 3 X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]]) Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) # test sample 4 - two more or less redundent feature groups X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0], [1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0], [0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1], [0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]]) Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) iris = datasets.load_iris() # test sample 5 - test sample 1 as binary classification problem X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y5 = [1, 1, 1, 2, 2, 2] true_result5 = [0, 1, 1] # Classification Test Case class CommonTest(object): def factory(self, **kwargs): if "random_state" not in kwargs: kwargs["random_state"] = 42 return self.factory_class(**kwargs) # a simple implementation of ASGD to use for testing # uses squared loss to find the gradient def asgd(self, X, y, eta, alpha, weight_init=None, intercept_init=0.0): if weight_init is None: weights = np.zeros(X.shape[1]) else: weights = weight_init average_weights = np.zeros(X.shape[1]) intercept = intercept_init average_intercept = 0.0 decay = 1.0 # sparse data has a fixed decay of .01 if (isinstance(self, SparseSGDClassifierTestCase) or isinstance(self, SparseSGDRegressorTestCase)): decay = .01 for i, entry in enumerate(X): p = np.dot(entry, weights) p += intercept gradient = p - y[i] weights *= 1.0 - (eta * alpha) weights += -(eta * gradient * entry) intercept += -(eta * gradient) * decay average_weights *= i average_weights += weights average_weights /= i + 1.0 average_intercept *= i average_intercept += intercept average_intercept /= i + 1.0 return average_weights, average_intercept def _test_warm_start(self, X, Y, lr): # Test that explicit warm restart... clf = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf.fit(X, Y) clf2 = self.factory(alpha=0.001, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf2.fit(X, Y, coef_init=clf.coef_.copy(), intercept_init=clf.intercept_.copy()) # ... and implicit warm restart are equivalent. clf3 = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, warm_start=True, learning_rate=lr) clf3.fit(X, Y) assert_equal(clf3.t_, clf.t_) assert_array_almost_equal(clf3.coef_, clf.coef_) clf3.set_params(alpha=0.001) clf3.fit(X, Y) assert_equal(clf3.t_, clf2.t_) assert_array_almost_equal(clf3.coef_, clf2.coef_) def test_warm_start_constant(self): self._test_warm_start(X, Y, "constant") def test_warm_start_invscaling(self): self._test_warm_start(X, Y, "invscaling") def test_warm_start_optimal(self): self._test_warm_start(X, Y, "optimal") def test_input_format(self): # Input format tests. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) Y_ = np.array(Y)[:, np.newaxis] Y_ = np.c_[Y_, Y_] assert_raises(ValueError, clf.fit, X, Y_) def test_clone(self): # Test whether clone works ok. clf = self.factory(alpha=0.01, n_iter=5, penalty='l1') clf = clone(clf) clf.set_params(penalty='l2') clf.fit(X, Y) clf2 = self.factory(alpha=0.01, n_iter=5, penalty='l2') clf2.fit(X, Y) assert_array_equal(clf.coef_, clf2.coef_) def test_plain_has_no_average_attr(self): clf = self.factory(average=True, eta0=.01) clf.fit(X, Y) assert_true(hasattr(clf, 'average_coef_')) assert_true(hasattr(clf, 'average_intercept_')) assert_true(hasattr(clf, 'standard_intercept_')) assert_true(hasattr(clf, 'standard_coef_')) clf = self.factory() clf.fit(X, Y) assert_false(hasattr(clf, 'average_coef_')) assert_false(hasattr(clf, 'average_intercept_')) assert_false(hasattr(clf, 'standard_intercept_')) assert_false(hasattr(clf, 'standard_coef_')) def test_late_onset_averaging_not_reached(self): clf1 = self.factory(average=600) clf2 = self.factory() for _ in range(100): if isinstance(clf1, SGDClassifier): clf1.partial_fit(X, Y, classes=np.unique(Y)) clf2.partial_fit(X, Y, classes=np.unique(Y)) else: clf1.partial_fit(X, Y) clf2.partial_fit(X, Y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16) assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16) def test_late_onset_averaging_reached(self): eta0 = .001 alpha = .0001 Y_encode = np.array(Y) Y_encode[Y_encode == 1] = -1.0 Y_encode[Y_encode == 2] = 1.0 clf1 = self.factory(average=7, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=2, shuffle=False) clf2 = self.factory(average=0, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=1, shuffle=False) clf1.fit(X, Y_encode) clf2.fit(X, Y_encode) average_weights, average_intercept = \ self.asgd(X, Y_encode, eta0, alpha, weight_init=clf2.coef_.ravel(), intercept_init=clf2.intercept_) assert_array_almost_equal(clf1.coef_.ravel(), average_weights.ravel(), decimal=16) assert_almost_equal(clf1.intercept_, average_intercept, decimal=16) class DenseSGDClassifierTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDClassifier def test_sgd(self): # Check that SGD gives any results :-) for loss in ("hinge", "squared_hinge", "log", "modified_huber"): clf = self.factory(penalty='l2', alpha=0.01, fit_intercept=True, loss=loss, n_iter=10, shuffle=True) clf.fit(X, Y) # assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7) assert_array_equal(clf.predict(T), true_result) @raises(ValueError) def test_sgd_bad_l1_ratio(self): # Check whether expected ValueError on bad l1_ratio self.factory(l1_ratio=1.1) @raises(ValueError) def test_sgd_bad_learning_rate_schedule(self): # Check whether expected ValueError on bad learning_rate self.factory(learning_rate="<unknown>") @raises(ValueError) def test_sgd_bad_eta0(self): # Check whether expected ValueError on bad eta0 self.factory(eta0=0, learning_rate="constant") @raises(ValueError) def test_sgd_bad_alpha(self): # Check whether expected ValueError on bad alpha self.factory(alpha=-.1) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") @raises(ValueError) def test_sgd_n_iter_param(self): # Test parameter validity check self.factory(n_iter=-10000) @raises(ValueError) def test_sgd_shuffle_param(self): # Test parameter validity check self.factory(shuffle="false") @raises(TypeError) def test_argument_coef(self): # Checks coef_init not allowed as model argument (only fit) # Provided coef_ does not match dataset. self.factory(coef_init=np.zeros((3,))).fit(X, Y) @raises(ValueError) def test_provide_coef(self): # Checks coef_init shape for the warm starts # Provided coef_ does not match dataset. self.factory().fit(X, Y, coef_init=np.zeros((3,))) @raises(ValueError) def test_set_intercept(self): # Checks intercept_ shape for the warm starts # Provided intercept_ does not match dataset. self.factory().fit(X, Y, intercept_init=np.zeros((3,))) def test_set_intercept_binary(self): # Checks intercept_ shape for the warm starts in binary case self.factory().fit(X5, Y5, intercept_init=0) def test_average_binary_computed_correctly(self): # Checks the SGDClassifier correctly computes the average weights eta = .1 alpha = 2. n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) # simple linear function without noise y = np.dot(X, w) y = np.sign(y) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) average_weights = average_weights.reshape(1, -1) assert_array_almost_equal(clf.coef_, average_weights, decimal=14) assert_almost_equal(clf.intercept_, average_intercept, decimal=14) def test_set_intercept_to_intercept(self): # Checks intercept_ shape consistency for the warm starts # Inconsistent intercept_ shape. clf = self.factory().fit(X5, Y5) self.factory().fit(X5, Y5, intercept_init=clf.intercept_) clf = self.factory().fit(X, Y) self.factory().fit(X, Y, intercept_init=clf.intercept_) @raises(ValueError) def test_sgd_at_least_two_labels(self): # Target must have at least two labels self.factory(alpha=0.01, n_iter=20).fit(X2, np.ones(9)) def test_partial_fit_weight_class_balanced(self): # partial_fit with class_weight='balanced' not supported""" assert_raises_regexp(ValueError, "class_weight 'balanced' is not supported for " "partial_fit. In order to use 'balanced' weights, " "use compute_class_weight\('balanced', classes, y\). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.", self.factory(class_weight='balanced').partial_fit, X, Y, classes=np.unique(Y)) def test_sgd_multiclass(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_average(self): eta = .001 alpha = .01 # Multi-class average test case clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) np_Y2 = np.array(Y2) clf.fit(X2, np_Y2) classes = np.unique(np_Y2) for i, cl in enumerate(classes): y_i = np.ones(np_Y2.shape[0]) y_i[np_Y2 != cl] = -1 average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha) assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16) assert_almost_equal(average_intercept, clf.intercept_[i], decimal=16) def test_sgd_multiclass_with_init_coef(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20) clf.fit(X2, Y2, coef_init=np.zeros((3, 2)), intercept_init=np.zeros(3)) assert_equal(clf.coef_.shape, (3, 2)) assert_true(clf.intercept_.shape, (3,)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_njobs(self): # Multi-class test case with multi-core support clf = self.factory(alpha=0.01, n_iter=20, n_jobs=2).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_set_coef_multiclass(self): # Checks coef_init and intercept_init shape for for multi-class # problems # Provided coef_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, coef_init=np.zeros((2, 2))) # Provided coef_ does match dataset clf = self.factory().fit(X2, Y2, coef_init=np.zeros((3, 2))) # Provided intercept_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, intercept_init=np.zeros((1,))) # Provided intercept_ does match dataset. clf = self.factory().fit(X2, Y2, intercept_init=np.zeros((3,))) def test_sgd_proba(self): # Check SGD.predict_proba # Hinge loss does not allow for conditional prob estimate. # We cannot use the factory here, because it defines predict_proba # anyway. clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=10).fit(X, Y) assert_false(hasattr(clf, "predict_proba")) assert_false(hasattr(clf, "predict_log_proba")) # log and modified_huber losses can output probability estimates # binary case for loss in ["log", "modified_huber"]: clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X, Y) p = clf.predict_proba([3, 2]) assert_true(p[0, 1] > 0.5) p = clf.predict_proba([-1, -1]) assert_true(p[0, 1] < 0.5) p = clf.predict_log_proba([3, 2]) assert_true(p[0, 1] > p[0, 0]) p = clf.predict_log_proba([-1, -1]) assert_true(p[0, 1] < p[0, 0]) # log loss multiclass probability estimates clf = self.factory(loss="log", alpha=0.01, n_iter=10).fit(X2, Y2) d = clf.decision_function([[.1, -.1], [.3, .2]]) p = clf.predict_proba([[.1, -.1], [.3, .2]]) assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1)) assert_almost_equal(p[0].sum(), 1) assert_true(np.all(p[0] >= 0)) p = clf.predict_proba([-1, -1]) d = clf.decision_function([-1, -1]) assert_array_equal(np.argsort(p[0]), np.argsort(d[0])) l = clf.predict_log_proba([3, 2]) p = clf.predict_proba([3, 2]) assert_array_almost_equal(np.log(p), l) l = clf.predict_log_proba([-1, -1]) p = clf.predict_proba([-1, -1]) assert_array_almost_equal(np.log(p), l) # Modified Huber multiclass probability estimates; requires a separate # test because the hard zero/one probabilities may destroy the # ordering present in decision_function output. clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X2, Y2) d = clf.decision_function([3, 2]) p = clf.predict_proba([3, 2]) if not isinstance(self, SparseSGDClassifierTestCase): assert_equal(np.argmax(d, axis=1), np.argmax(p, axis=1)) else: # XXX the sparse test gets a different X2 (?) assert_equal(np.argmin(d, axis=1), np.argmin(p, axis=1)) # the following sample produces decision_function values < -1, # which would cause naive normalization to fail (see comment # in SGDClassifier.predict_proba) x = X.mean(axis=0) d = clf.decision_function(x) if np.all(d < -1): # XXX not true in sparse test case (why?) p = clf.predict_proba(x) assert_array_almost_equal(p[0], [1 / 3.] * 3) def test_sgd_l1(self): # Test L1 regularization n = len(X4) rng = np.random.RandomState(13) idx = np.arange(n) rng.shuffle(idx) X = X4[idx, :] Y = Y4[idx] clf = self.factory(penalty='l1', alpha=.2, fit_intercept=False, n_iter=2000, shuffle=False) clf.fit(X, Y) assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,))) pred = clf.predict(X) assert_array_equal(pred, Y) # test sparsify with dense inputs clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) # pickle and unpickle with sparse coef_ clf = pickle.loads(pickle.dumps(clf)) assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) def test_class_weights(self): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_equal_class_weight(self): # Test if equal class weights approx. equals no class weights. X = [[1, 0], [1, 0], [0, 1], [0, 1]] y = [0, 0, 1, 1] clf = self.factory(alpha=0.1, n_iter=1000, class_weight=None) clf.fit(X, y) X = [[1, 0], [0, 1]] y = [0, 1] clf_weighted = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X, y) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) @raises(ValueError) def test_wrong_class_weight_label(self): # ValueError due to not existing class label. clf = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5}) clf.fit(X, Y) @raises(ValueError) def test_wrong_class_weight_format(self): # ValueError due to wrong class_weight argument type. clf = self.factory(alpha=0.1, n_iter=1000, class_weight=[0.5]) clf.fit(X, Y) def test_weights_multiplied(self): # Tests that class_weight and sample_weight are multiplicative class_weights = {1: .6, 2: .3} sample_weights = np.random.random(Y4.shape[0]) multiplied_together = np.copy(sample_weights) multiplied_together[Y4 == 1] *= class_weights[1] multiplied_together[Y4 == 2] *= class_weights[2] clf1 = self.factory(alpha=0.1, n_iter=20, class_weight=class_weights) clf2 = self.factory(alpha=0.1, n_iter=20) clf1.fit(X4, Y4, sample_weight=sample_weights) clf2.fit(X4, Y4, sample_weight=multiplied_together) assert_almost_equal(clf1.coef_, clf2.coef_) def test_balanced_weight(self): # Test class weights for imbalanced data""" # compute reference metrics on iris dataset that is quite balanced by # default X, y = iris.data, iris.target X = scale(X) idx = np.arange(X.shape[0]) rng = np.random.RandomState(6) rng.shuffle(idx) X = X[idx] y = y[idx] clf = self.factory(alpha=0.0001, n_iter=1000, class_weight=None, shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf.predict(X), average='weighted'), 0.96, decimal=1) # make the same prediction using balanced class_weight clf_balanced = self.factory(alpha=0.0001, n_iter=1000, class_weight="balanced", shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf_balanced.predict(X), average='weighted'), 0.96, decimal=1) # Make sure that in the balanced case it does not change anything # to use "balanced" assert_array_almost_equal(clf.coef_, clf_balanced.coef_, 6) # build an very very imbalanced dataset out of iris data X_0 = X[y == 0, :] y_0 = y[y == 0] X_imbalanced = np.vstack([X] + [X_0] * 10) y_imbalanced = np.concatenate([y] + [y_0] * 10) # fit a model on the imbalanced data without class weight info clf = self.factory(n_iter=1000, class_weight=None, shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_less(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit a model with balanced class_weight enabled clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit another using a fit parameter override clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) def test_sample_weights(self): # Test weights on individual samples X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) @raises(ValueError) def test_wrong_sample_weights(self): # Test if ValueError is raised if sample_weight has wrong shape clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) # provided sample_weight too long clf.fit(X, Y, sample_weight=np.arange(7)) @raises(ValueError) def test_partial_fit_exception(self): clf = self.factory(alpha=0.01) # classes was not specified clf.partial_fit(X3, Y3) def test_partial_fit_binary(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y) clf.partial_fit(X[:third], Y[:third], classes=classes) assert_equal(clf.coef_.shape, (1, X.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) y_pred = clf.predict(T) assert_array_equal(y_pred, true_result) def test_partial_fit_multiclass(self): third = X2.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y2) clf.partial_fit(X2[:third], Y2[:third], classes=classes) assert_equal(clf.coef_.shape, (3, X2.shape[1])) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) id1 = id(clf.coef_.data) clf.partial_fit(X2[third:], Y2[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def test_fit_then_partial_fit(self): # Partial_fit should work after initial fit in the multiclass case. # Non-regression test for #2496; fit would previously produce a # Fortran-ordered coef_ that subsequent partial_fit couldn't handle. clf = self.factory() clf.fit(X2, Y2) clf.partial_fit(X2, Y2) # no exception here def _test_partial_fit_equal_fit(self, lr): for X_, Y_, T_ in ((X, Y, T), (X2, Y2, T2)): clf = self.factory(alpha=0.01, eta0=0.01, n_iter=2, learning_rate=lr, shuffle=False) clf.fit(X_, Y_) y_pred = clf.decision_function(T_) t = clf.t_ classes = np.unique(Y_) clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X_, Y_, classes=classes) y_pred2 = clf.decision_function(T_) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_regression_losses(self): clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="squared_epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, loss="huber") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.01, loss="squared_loss") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) def test_warm_start_multiclass(self): self._test_warm_start(X2, Y2, "optimal") def test_multiple_fit(self): # Test multiple calls of fit w/ different shaped inputs. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) assert_true(hasattr(clf, "coef_")) # Non-regression test: try fitting with a different label set. y = [["ham", "spam"][i] for i in LabelEncoder().fit_transform(Y)] clf.fit(X[:, :-1], y) class SparseSGDClassifierTestCase(DenseSGDClassifierTestCase): """Run exactly the same tests using the sparse representation variant""" factory_class = SparseSGDClassifier ############################################################################### # Regression Test Case class DenseSGDRegressorTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDRegressor def test_sgd(self): # Check that SGD gives any results. clf = self.factory(alpha=0.1, n_iter=2, fit_intercept=False) clf.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) assert_equal(clf.coef_[0], clf.coef_[1]) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") def test_sgd_averaged_computed_correctly(self): # Tests the average regressor matches the naive implementation eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_averaged_partial_fit(self): # Tests whether the partial fit yields the same average as the fit eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.partial_fit(X[:int(n_samples / 2)][:], y[:int(n_samples / 2)]) clf.partial_fit(X[int(n_samples / 2):][:], y[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16) def test_average_sparse(self): # Checks the average weights on data with 0s eta = .001 alpha = .01 clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) n_samples = Y3.shape[0] clf.partial_fit(X3[:int(n_samples / 2)][:], Y3[:int(n_samples / 2)]) clf.partial_fit(X3[int(n_samples / 2):][:], Y3[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X3, Y3, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_least_squares_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_sgd_epsilon_insensitive(self): xmin, xmax = -5, 5 n_samples = 100 X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.99) # simple linear function with noise y = 0.5 * X.ravel() \ + np.random.randn(n_samples, 1).ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.5) def test_sgd_huber_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_elasticnet_convergence(self): # Check that the SGD output is consistent with coordinate descent n_samples, n_features = 1000, 5 rng = np.random.RandomState(0) X = np.random.randn(n_samples, n_features) # ground_truth linear model that generate y from X and to which the # models should converge if the regularizer would be set to 0.0 ground_truth_coef = rng.randn(n_features) y = np.dot(X, ground_truth_coef) # XXX: alpha = 0.1 seems to cause convergence problems for alpha in [0.01, 0.001]: for l1_ratio in [0.5, 0.8, 1.0]: cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) cd.fit(X, y) sgd = self.factory(penalty='elasticnet', n_iter=50, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) sgd.fit(X, y) err_msg = ("cd and sgd did not converge to comparable " "results for alpha=%f and l1_ratio=%f" % (alpha, l1_ratio)) assert_almost_equal(cd.coef_, sgd.coef_, decimal=2, err_msg=err_msg) def test_partial_fit(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) clf.partial_fit(X[:third], Y[:third]) assert_equal(clf.coef_.shape, (X.shape[1], )) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def _test_partial_fit_equal_fit(self, lr): clf = self.factory(alpha=0.01, n_iter=2, eta0=0.01, learning_rate=lr, shuffle=False) clf.fit(X, Y) y_pred = clf.predict(T) t = clf.t_ clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X, Y) y_pred2 = clf.predict(T) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_loss_function_epsilon(self): clf = self.factory(epsilon=0.9) clf.set_params(epsilon=0.1) assert clf.loss_functions['huber'][1] == 0.1 class SparseSGDRegressorTestCase(DenseSGDRegressorTestCase): # Run exactly the same tests using the sparse representation variant factory_class = SparseSGDRegressor def test_l1_ratio(): # Test if l1 ratio extremes match L1 and L2 penalty settings. X, y = datasets.make_classification(n_samples=1000, n_features=100, n_informative=20, random_state=1234) # test if elasticnet with l1_ratio near 1 gives same result as pure l1 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.9999999999, random_state=42).fit(X, y) est_l1 = SGDClassifier(alpha=0.001, penalty='l1', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l1.coef_) # test if elasticnet with l1_ratio near 0 gives same result as pure l2 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.0000000001, random_state=42).fit(X, y) est_l2 = SGDClassifier(alpha=0.001, penalty='l2', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l2.coef_) def test_underflow_or_overlow(): with np.errstate(all='raise'): # Generate some weird data with hugely unscaled features rng = np.random.RandomState(0) n_samples = 100 n_features = 10 X = rng.normal(size=(n_samples, n_features)) X[:, :2] *= 1e300 assert_true(np.isfinite(X).all()) # Use MinMaxScaler to scale the data without introducing a numerical # instability (computing the standard deviation naively is not possible # on this data) X_scaled = MinMaxScaler().fit_transform(X) assert_true(np.isfinite(X_scaled).all()) # Define a ground truth on the scaled data ground_truth = rng.normal(size=n_features) y = (np.dot(X_scaled, ground_truth) > 0.).astype(np.int32) assert_array_equal(np.unique(y), [0, 1]) model = SGDClassifier(alpha=0.1, loss='squared_hinge', n_iter=500) # smoke test: model is stable on scaled data model.fit(X_scaled, y) assert_true(np.isfinite(model.coef_).all()) # model is numerically unstable on unscaled data msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*" " Scaling input data with StandardScaler or MinMaxScaler" " might help.") assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y) def test_numerical_stability_large_gradient(): # Non regression test case for numerical stability on scaled problems # where the gradient can still explode with some losses model = SGDClassifier(loss='squared_hinge', n_iter=10, shuffle=True, penalty='elasticnet', l1_ratio=0.3, alpha=0.01, eta0=0.001, random_state=0) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_true(np.isfinite(model.coef_).all()) def test_large_regularization(): # Non regression tests for numerical stability issues caused by large # regularization parameters for penalty in ['l2', 'l1', 'elasticnet']: model = SGDClassifier(alpha=1e5, learning_rate='constant', eta0=0.1, n_iter=5, penalty=penalty, shuffle=False) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_array_almost_equal(model.coef_, np.zeros_like(model.coef_))
bsd-3-clause
foolcage/fooltrader
fooltrader/spiders/america/sp500_spider.py
1
3418
# -*- coding: utf-8 -*- import pandas as pd import scrapy from scrapy import Request from scrapy import Selector from scrapy import signals from fooltrader.contract.files_contract import get_kdata_path from fooltrader.utils.utils import index_df_with_time, to_time_str, to_float class Sp500Spider(scrapy.Spider): name = "sp500_spider" def __init__(self, name=None, **kwargs): super().__init__(name, **kwargs) self.security_item = {'id': 'index_nasdaq_sp500', 'code': 'SP500', 'name': 'SP500', 'listDate': '1871-01-01', 'timestamp': '1871-01-01', 'exchange': 'nasdaq', 'type': 'index'} self.df_close = pd.DataFrame() self.df_pe = pd.DataFrame() def start_requests(self): pe_url = 'http://www.multpl.com/table?f=m' price_url = 'http://www.multpl.com/s-p-500-historical-prices/table/by-month' yield Request(url=pe_url, callback=self.download_sp500_pe) yield Request(url=price_url, callback=self.download_sp500_price) def download_sp500_price(self, response): trs = response.xpath('//*[@id="datatable"]/tr').extract() price_jsons = [] try: for tr in trs[1:]: tds = Selector(text=tr).xpath('//td//text()').extract() tds = [x.strip() for x in tds if x.strip()] price_jsons.append({"timestamp": to_time_str(tds[0]), "close": to_float(tds[1])}) if price_jsons: self.df_close = self.df_close.append(price_jsons, ignore_index=True) self.df_close = index_df_with_time(self.df_close) except Exception as e: self.logger.exception('error when getting sp500 price url={} error={}'.format(response.url, e)) def download_sp500_pe(self, response): trs = response.xpath('//*[@id="datatable"]/tr').extract() price_jsons = [] try: for tr in trs[1:]: tds = Selector(text=tr).xpath('//td//text()').extract() tds = [x.strip() for x in tds if x.strip()] price_jsons.append({"timestamp": to_time_str(tds[0]), "pe": to_float(tds[1])}) if price_jsons: self.df_pe = self.df_pe.append(price_jsons, ignore_index=True) self.df_pe = index_df_with_time(self.df_pe) except Exception as e: self.logger.exception('error when getting sp500 pe url={} error={}'.format(response.url, e)) @classmethod def from_crawler(cls, crawler, *args, **kwargs): spider = super(Sp500Spider, cls).from_crawler(crawler, *args, **kwargs) crawler.signals.connect(spider.spider_closed, signal=signals.spider_closed) return spider def spider_closed(self, spider, reason): self.df_pe['close'] = self.df_close['close'] self.df_pe['code'] = self.security_item['code'] self.df_pe['securityId'] = self.security_item['id'] self.df_pe['name'] = self.security_item['name'] self.df_pe.to_csv(get_kdata_path(self.security_item), index=False) spider.logger.info('Spider closed: %s,%s\n', spider.name, reason)
mit
flennerhag/mlens
mlens/ensemble/tests/test_a_sklearn.py
1
7958
""" Test Scikit-learn """ import numpy as np from mlens.ensemble import SuperLearner, Subsemble, BlendEnsemble, TemporalEnsemble from mlens.testing.dummy import return_pickled try: from sklearn.utils.estimator_checks import check_estimator from sklearn.linear_model import Lasso, LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.datasets import load_boston has_sklearn = True except ImportError: has_sklearn = False if has_sklearn: X, y = load_boston(True) estimators = [Lasso(), GradientBoostingRegressor(), LinearRegression(), KNeighborsRegressor(), SVR(gamma='scale'), RandomForestRegressor(n_estimators=100), ] est_prep = {'prep1': estimators, 'prep2': estimators, 'prep3': estimators} prep_1 = [PCA()] prep_2 = [PolynomialFeatures(), StandardScaler()] prep = {'prep1': prep_1, 'prep2': prep_2, 'prep3': []} def get_ensemble(cls, backend, preprocessing, **kwargs): """Get ensemble.""" if preprocessing: est = est_prep else: est = estimators ens = cls(backend=backend, **kwargs) ens.add(est, preprocessing) ens.add(LinearRegression(), meta=True) return ens def test_super_learner_s_m(): """[SuperLearner] Test scikit-learn comp - mp | np""" ens = get_ensemble(SuperLearner, 'multiprocessing', None) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_super_learner_f_m(): """[SuperLearner] Test scikit-learn comp - mp | p""" ens = get_ensemble(SuperLearner, 'multiprocessing', prep) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_super_learner_s_t(): """[SuperLearner] Test scikit-learn comp - th | np""" ens = get_ensemble(SuperLearner, 'threading', None) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_super_learner_f_t(): """[SuperLearner] Test scikit-learn comp - th | p""" ens = get_ensemble(SuperLearner, 'threading', prep) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_subsemble_s_m(): """[Subsemble] Test scikit-learn comp - mp | np""" ens = get_ensemble(Subsemble, 'multiprocessing', None) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_subsemble_f_m(): """[Subsemble] Test scikit-learn comp - mp | p""" ens = get_ensemble(Subsemble, 'multiprocessing', prep) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_subsemble_s_t(): """[Subsemble] Test scikit-learn comp - th | np""" ens = get_ensemble(Subsemble, 'threading', None) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_subsemble_f_t(): """[Subsemble] Test scikit-learn comp - th | p""" ens = get_ensemble(Subsemble, 'threading', prep) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_blend_s_m(): """[BlendEnsemble] Test scikit-learn comp - mp | np""" ens = get_ensemble(BlendEnsemble, 'multiprocessing', None) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_blend_f_m(): """[BlendEnsemble] Test scikit-learn comp - mp | p""" ens = get_ensemble(BlendEnsemble, 'multiprocessing', prep) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_blend_s_m(): """[BlendEnsemble] Test scikit-learn comp - th | np""" ens = get_ensemble(BlendEnsemble, 'threading', None) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_blend_f_m(): """[BlendEnsemble] Test scikit-learn comp - th | p""" ens = get_ensemble(BlendEnsemble, 'threading', prep) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_temporal_s_m(): """[TemporalEnsemble] Test scikit-learn comp - mp | np""" ens = get_ensemble(TemporalEnsemble, 'multiprocessing', None, step_size=10) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_temporal_f_m(): """[TemporalEnsemble] Test scikit-learn comp - mp | p""" ens = get_ensemble(TemporalEnsemble, 'multiprocessing', prep, step_size=10) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_temporal_s_m(): """[TemporalEnsemble] Test scikit-learn comp - th | np""" ens = get_ensemble(TemporalEnsemble, 'threading', None, step_size=10) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp) def test_temporal_f_m(): """[TemporalEnsemble] Test scikit-learn comp - th | p""" ens = get_ensemble(TemporalEnsemble, 'threading', prep, step_size=10) ens.fit(X, y) p = ens.predict(X) assert p.shape == y.shape assert p.dtype == ens.layer_1.dtype ens = return_pickled(ens) pp = ens.predict(X) np.testing.assert_array_equal(p, pp)
mit
paveldedik/thesis
models/models.py
1
30072
# -*- coding: utf-8 -*- """ Evaluation Models ================= """ from __future__ import division from copy import copy from itertools import izip from collections import defaultdict import numpy as np import pandas as pd import tools __all__ = ( 'DummyPriorModel', 'EloModel', 'EloResponseTime', 'PFAModel', 'PFAResponseTime', 'PFAExt', 'PFAExtTiming', 'PFAExtStaircase', 'PFAExtSpacing', 'PFAGong', 'PFAGongTiming', 'PFATiming', ) #: Dictionary of the most commonly used time effect functions in this thesis. time_effect_funcs = {} def register_time_effect(name): """Registers new time effect functions.""" def register(time_effect): time_effect_funcs[name] = time_effect return register @register_time_effect('log') def time_effect_log(t, a=1.8, c=0.123): return a - c * np.log(t) @register_time_effect('pow') def time_effect_div(t, a=2, c=0.2): return a / (t+1) ** c @register_time_effect('exp') def time_effect_exp(t, a=1.6, c=0.01): return a * np.exp(-c * np.sqrt(t)) def init_time_effect(obj, name, parameters=('a', 'c')): """Prepares time effect function based on name. Initializes the given object with default parameters `a` and `c`. :param obj: Object to initialize with time effect function. :param name: Name of the time effect function. """ time_effect_fun = time_effect_funcs[name] defaults = time_effect_fun.func_defaults a, c = parameters if getattr(obj, a, None) is None: setattr(obj, a, defaults[0]) if getattr(obj, c, None) is None: setattr(obj, c, defaults[1]) def time_effect(t): a_val, c_val = getattr(obj, a), getattr(obj, c) return time_effect_fun(t, a_val, c_val) return time_effect class Question(object): """Representation of a question.""" def __init__(self, **kwargs): self.id = kwargs.pop('id') self.user_id = kwargs.pop('user_id') self.place_id = kwargs.pop('place_id') self.type = kwargs.pop('type') self.inserted = kwargs.pop('inserted') self.options = kwargs.pop('options') class Answer(Question): """Answer to a question.""" def __init__(self, **kwargs): super(Answer, self).__init__(**kwargs) self.place_answered = kwargs.pop('place_answered') self.response_time = kwargs.pop('response_time') self.is_correct = kwargs.pop('is_correct') class User(object): """Returns a user with given ID. :param user_id: ID of the user. :type user_id: int """ def __init__(self, user_id): self.id = user_id self.skill_increments = [] @property def skill(self): """Skill of the user.""" return sum(self.skill_increments) @property def answers_count(self): """Number of answer of the user (equal to the number of skill increments. """ return len(self.skill_increments) def inc_skill(self, increment): """Increments the skill of the user. :param increment: Increment (or decrement) of the skill. :type increment: int """ self.skill_increments += [increment] class Place(object): """Returns a place with given ID. :param place_id: ID of the place. :type place_id: int """ def __init__(self, place_id): self.id = place_id self.difficulty_increments = [] @property def difficulty(self): """Difficulty of the place.""" return sum(self.difficulty_increments) @property def answers_count(self): """Number of answer for the place (equal to the number of difficulty increments. """ return len(self.difficulty_increments) def inc_difficulty(self, increment): """Increments the difficulty of the place. :param increment: Increment (or decrement) of the difficulty. :type increment: int """ self.difficulty_increments += [increment] class Item(object): """Item representation. :param prior: Prior skills of users and difficulties of places. :type prior: dictionary :param user_id: ID of the user. :type user_id: int :param place_id: ID of the place. :type place_id: int """ def __init__(self, prior, user_id, place_id): self.prior = prior self.user_id = user_id self.place_id = place_id self.practices = [] self.knowledge_increments = [] @property def user(self): """User answering the item.""" return self.prior.users[self.user_id] @property def place(self): """Place of the item being asked.""" return self.prior.places[self.place_id] @property def knowledge(self): """Knowledge of the item by the user.""" return ( (self.user.skill - self.place.difficulty) + sum(self.knowledge_increments) ) @property def correct(self): """List of correct answers.""" return [ans for ans in self.practices if ans.is_correct] @property def incorrect(self): """List of incorrect answers.""" return [ans for ans in self.practices if not ans.is_correct] @property def last_inserted(self): """Returns the time of the last answer for this item or :obj:`None` if the item was never answered before. """ if self.practices: return self.practices[-1].inserted @property def any_incorrect(self): """:obj:`True` if at least one of the practiced item was answered incorrectly, otherwise :obj:`False`. """ return any(not answer.is_correct for answer in self.practices) def get_diffs(self, current): """Returns list of previous practices expresed as the number of seconds that passed between *current* practice and all the *previous* practices. :param current: Datetime of the current practice. :type place: string """ return [ tools.time_diff(current, prior.inserted) for prior in self.practices ] def inc_knowledge(self, increment): """Increments the knowledge of the user of the item. :param increment: Increment (or decrement) of the knowledge. :type increment: int """ self.knowledge_increments += [increment] def add_practice(self, answer): """Registers new practice of the item. :param answer: Information about the answer. :type answer: :class:`pandas.Series` or :class:`Answer` """ if isinstance(answer, pd.Series): self.practices += [Answer(**answer.to_dict())] else: self.practices += [copy(answer)] class Model(object): """Abstract model class.""" ABBR = None def respect_guess(self, prediction, options): """Updates prediction with respect to guessing paramter. :param prediction: Prediction calculated so far. :type prediction: float :param options: Number of options in the multiple-choice question. :type options: int """ if options: val = 1 / len(options) return val + (1 - val) * prediction else: return prediction def predict(self, question): """Returns probability of correct answer for given question. :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ raise NotImplementedError() def update(self, answer): """Performes an update of skills, difficulties or knowledge. :param answer: Asked question. :type answer: :class:`pandas.Series` or :class:`Answer` """ raise NotImplementedError() def train(self, data): """Trains the model on given data set. :param data: Data set on which to train the model. :type data: :class:`pandas.DataFrame` """ raise NotImplementedError() @classmethod def split_data(cls, data, ratio=0.7): """Classmethod that splits data into training set and test set. :param data: The object containing data. :type data: :class:`pandas.DataFrame`. :param ratio: What portion of data to include in the training set and the test set. :obj:`0.5` means that the data will be distributed equaly. :type ratio: float """ raise NotImplementedError() class DummyPriorModel(Model): """Dummy model that sets all skills of users and difficulties of places to zero. """ class _User(object): """Returns a user with given ID.""" def __init__(self, skill): self.skill = skill class _Place(object): """Returns a place with given ID.""" def __init__(self, difficulty): self.difficulty = difficulty def __init__(self, skill=0.0, difficulty=0.0): self.users = defaultdict(lambda: self._User(skill)) self.places = defaultdict(lambda: self._Place(difficulty)) def update(self, answer): pass def train(self, data): pass class EloModel(Model): """Predicts correctness of answers using Elo Rating System. The model is parametrized with `alpha` and `beta`. These parameters affect the uncertainty function. """ ABBR = 'Elo' def __init__(self, alpha=1, beta=0.05): self.alpha = alpha self.beta = beta self.init_model() def init_model(self): """Initializes two attributes of the model. Both attributes are dataframes. The first attribute represents difficulties of countries. The second attribute represents global knowledge of students. """ self.places = tools.keydefaultdict(Place) self.users = tools.keydefaultdict(User) self.predictions = {} def uncertainty(self, n): """Uncertainty function. The purpose is to make each update on the model trained with sequence of `n` answers less and less significant as the number of prior answers is bigger. :param n: Number of user's answers or total answers to a place. :type n: int """ return self.alpha / (1 + self.beta * n) def predict(self, question): """Returns probability of correct answer for given question. :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ user = self.users[question.user_id] place = self.places[question.place_id] prediction = tools.sigmoid(user.skill - place.difficulty) return self.respect_guess(prediction, question.options) def update(self, answer): """Updates skills of users and difficulties of places according to given answer. :param answer: Answer to a question. :type answer: :class:`pandas.Series` """ user = self.users[answer.user_id] place = self.places[answer.place_id] prediction = self.predict(answer) shift = answer.is_correct - prediction user.inc_skill(self.uncertainty(user.answers_count) * shift) place.inc_difficulty(-(self.uncertainty(place.answers_count) * shift)) self.predictions[answer.id] = prediction def train(self, data): """Trains the model on given data set. :param data: Data set on which to train the model. :type data: :class:`pandas.DataFrame` """ self.init_model() data = tools.first_answers(data) data.sort(['inserted']).apply(self.update, axis=1) @classmethod def split_data(cls, data, ratio=0.7): """Classmethod that splits data into training set and test set. :param data: The object containing data. :type data: :class:`pandas.DataFrame`. :param ratio: What portion of data to include in the training set and the test set. :obj:`0.5` means that the data will be distributed equaly. :type ratio: float """ data = tools.first_answers(data) return tools.split_data(data, ratio=ratio) class EloResponseTime(EloModel): """Extension of the Elo model that takes response time of user into account. """ ABBR = 'Elo/RT' def __init__(self, *args, **kwargs): self.zeta = kwargs.pop('zeta', 3) super(EloResponseTime, self).__init__(*args, **kwargs) def update(self, answer): """Updates skills of users and difficulties of places according to given answer. :param answer: Answer to a question. :type answer: :class:`pandas.Series` or :class:`Answer` """ user = self.users[answer.user_id] place = self.places[answer.place_id] prediction = self.predict(answer) level = tools.automaticity_level(answer.response_time) prob = (prediction * self.zeta + level) / (self.zeta + 1) shift = answer.is_correct - prob user.inc_skill(self.uncertainty(user.answers_count) * shift) place.inc_difficulty(-(self.uncertainty(place.answers_count) * shift)) self.predictions[answer.id] = prediction class PFAModel(Model): """Standard Performance Factor Analysis. :param gamma: The significance of the update when the student answered correctly. :type gamma: float :param delta: The significance of the update when the student answered incorrectly. :type delta: float """ ABBR = 'PFA' def __init__(self, prior=None, gamma=3.4, delta=-0.3): super(PFAModel, self).__init__() self.prior = prior or DummyPriorModel() self.gamma = gamma self.delta = delta self.init_model() def init_model(self): """Initializes attribute of the model that stores current knowledge of places for all students. """ self.items = tools.keydefaultdict( lambda *args: Item(self.prior, *args) ) self.predictions = {} def predict(self, question): """Returns probability of correct answer for given question. :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ item = self.items[question.user_id, question.place_id] knowledge = ( item.knowledge + self.gamma * len(item.correct) + self.delta * len(item.incorrect) ) return tools.sigmoid(knowledge) def update(self, answer): """Performes update of current knowledge of a user based on the given answer. :param answer: Answer to a question. :type answer: :class:`pandas.Series` or :class:`Answer` """ item = self.items[answer.user_id, answer.place_id] if not item.practices: self.prior.update(answer) prediction = self.predict(answer) self.predictions[answer.id] = prediction item.add_practice(answer) def train(self, data): """Trains the model on given data set. :param data: Data set on which to train the model. :type data: :class:`pandas.DataFrame` """ self.init_model() data.sort(['inserted']).apply(self.update, axis=1) @classmethod def split_data(self, data): """Classmethod that splits data into training set and test set. :param data: The object containing data. :type data: :class:`pandas.DataFrame`. """ test_set = tools.last_answers(data) train_set = data[~data['id'].isin(test_set['id'])] return train_set, test_set class PFAExt(PFAModel): """PFA model for estimation of current knowledge. :param gamma: The significance of the update when the student answered correctly. :type gamma: float :param delta: The significance of the update when the student answered incorrectly. :type delta: float """ ABBR = 'PFA/E' def predict(self, question): """Returns probability of correct answer for given question. :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ item = self.items[question.user_id, question.place_id] prediction = tools.sigmoid(item.knowledge) return self.respect_guess(prediction, question.options) def update(self, answer): """Performes update of current knowledge of a user based on the given answer. :param answer: Answer to a question. :type answer: :class:`pandas.Series` or :class:`Answer` """ item = self.items[answer.user_id, answer.place_id] if not item.practices: self.prior.update(answer) prediction = self.predict(answer) self.predictions[answer.id] = prediction item.add_practice(answer) if answer.is_correct: item.inc_knowledge(self.gamma * (1 - prediction)) else: item.inc_knowledge(self.delta * prediction) class PFAResponseTime(PFAExt): """An extended version of the PFAExt model which alters student's knowledge by respecting past response times. :param gamma: The significance of the update when the student answered correctly. :type gamma: float :param delta: The significance of the update when the student answered incorrectly. :type delta: float :param zeta: The significance of response times. :type zeta: float """ ABBR = 'PFA/E/RT' def __init__(self, *args, **kwargs): kwargs.setdefault('gamma', 1.5) kwargs.setdefault('delta', -1.4) self.zeta = kwargs.pop('zeta', 1.9) super(PFAResponseTime, self).__init__(*args, **kwargs) def update(self, answer): """Performes update of current knowledge of a user based on the given answer. :param answer: Answer to a question. :type answer: :class:`pandas.Series` or :class:`Answer` """ item = self.items[answer.user_id, answer.place_id] if not item.practices: self.prior.update(answer) prediction = self.predict(answer) self.predictions[answer.id] = prediction item.add_practice(answer) level = tools.automaticity_level(answer.response_time) / self.zeta if answer.is_correct: item.inc_knowledge(self.gamma * (1 - prediction) + level) else: item.inc_knowledge(self.delta * prediction + level) class PFAExtTiming(PFAExt): """Alternative version of :class:`PFAExtSpacing` which ignores spacing effect. Only forgetting is considered. :param gamma: The significance of the update when the student answered correctly. :type gamma: float :param delta: The significance of the update when the student answered incorrectly. :type delta: float :param time_effect_fun: Time effect function. :type time_effect_fun: callable or string """ ABBR = 'PFA/E/T' def __init__(self, *args, **kwargs): kwargs.setdefault('gamma', 2.3) kwargs.setdefault('delta', -0.9) time_effect = kwargs.pop('time_effect_fun', 'poly') if isinstance(time_effect, basestring): self.a, self.c = kwargs.pop('a', None), kwargs.pop('c', None) self.time_effect = init_time_effect(self, time_effect) else: self.time_effect = time_effect super(PFAExtTiming, self).__init__(*args, **kwargs) def predict(self, question): """Returns probability of correct answer for given question. :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ item = self.items[question.user_id, question.place_id] if item.practices: seconds = tools.time_diff(question.inserted, item.last_inserted) time_effect = self.time_effect(seconds) else: time_effect = 0 prediction = tools.sigmoid(item.knowledge + time_effect) return self.respect_guess(prediction, question.options) class PFAExtStaircase(PFAExtTiming): """Alternative version of :class:`PFAESpacing` which ignores spacing effect. Only forgetting is considered given by staircase fucntion. :param gamma: The significance of the update when the student answered correctly. :type gamma: float :param delta: The significance of the update when the student answered incorrectly. :type delta: float :param time_effect_fun: Values for staircase function. :type time_effect_fun: dict (tuples as keys) """ ABBR = 'PFA/E/T staircase' def __init__(self, *args, **kwargs): kwargs.setdefault('gamma', 2.5) kwargs.setdefault('delta', -0.8) self.staircase = tools.intervaldict(kwargs.pop('staircase')) self.time_effect = lambda k: self.staircase[k] super(PFAExtTiming, self).__init__(*args, **kwargs) class PFAExtSpacing(PFAExtTiming): """Extended version of PFA that takes into account the effect of forgetting and spacing. :param gamma: The significance of the update when the student answers correctly. :type gamma: float :param delta: The significance of the update when the student answers incorrectly. :type delta: float :param spacing_rate: The significance of the spacing effect. Lower values make the effect less significant. If the spacing rate is set to zero, the model is unaware of the spacing effect. :type spacing_rate: float :param decay_rate: The significance of the forgetting effect. Higher values of decay rate make the students forget the item faster and vice versa. :type decay_rate: float """ ABBR = 'PFA/E/S' def __init__(self, *args, **kwargs): kwargs.setdefault('gamma', 2.8) kwargs.setdefault('delta', -0.7) self.spacing_rate = kwargs.pop('spacing_rate', 0) self.decay_rate = kwargs.pop('decay_rate', 0.18) self.iota = kwargs.pop('iota', 1.5) super(PFAExtSpacing, self).__init__(*args, **kwargs) def memory_strength(self, question): """Estimates memory strength of an item. :param question: Asked question. :type question: :class:`pandas.Series` """ item = self.items[question.user_id, question.place_id] practices = item.get_diffs(question.inserted) if len(practices) > 0: return self.iota + tools.memory_strength( filter(lambda x: x > 0, practices), spacing_rate=self.spacing_rate, decay_rate=self.decay_rate, ) def predict(self, question): """Returns probability of correct answer for given question. :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ item = self.items[question.user_id, question.place_id] if item.any_incorrect: strength = self.memory_strength(question) else: strength = 0 prediction = tools.sigmoid(item.knowledge + strength) return self.respect_guess(prediction, question.options) class PFAGong(PFAModel): """Yue Gong's extended Performance Factor Analysis. :param gamma: The significance of the update when the student answers correctly. :type gamma: float :param delta: The significance of the update when the student answers incorrectly. :type delta: float :param decay: Decay rate of answers. :type decay: float """ ABBR = 'PFA/G' def __init__(self, *args, **kwargs): kwargs.setdefault('gamma', 2.1) kwargs.setdefault('delta', -0.8) self.decay = kwargs.pop('decay', 0.8) super(PFAGong, self).__init__(*args, **kwargs) def get_weights(self, item, question): """Returns weights of previous answers to the given item. :param item: *Item* (i.e. practiced place by a user). :type item: :class:`Item` :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ correct_weights = [ ans.is_correct * self.decay ** k for k, ans in tools.reverse_enumerate(item.practices) ] incorrect_weights = [ (1 - ans.is_correct) * self.decay ** k for k, ans in tools.reverse_enumerate(item.practices) ] return sum(correct_weights), sum(incorrect_weights) def predict(self, question): """Returns probability of correct answer for given question. :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ item = self.items[question.user_id, question.place_id] correct_weight, incorrect_weight = self.get_weights(item, question) knowledge = ( item.knowledge + self.gamma * correct_weight + self.delta * incorrect_weight ) prediction = tools.sigmoid(knowledge) return self.respect_guess(prediction, question.options) def update(self, answer): """Performes update of current knowledge of a user based on the given answer. :param answer: Answer to a question. :type answer: :class:`pandas.Series` or :class:`Answer` """ item = self.items[answer.user_id, answer.place_id] if not item.practices: self.prior.update(answer) prediction = self.predict(answer) self.predictions[answer.id] = prediction item.add_practice(answer) class PFAGongTiming(PFAGong): """Performance Factor Analysis combining some aspects of both the Yue Gong's PFA and the ACT-R model. :param gamma: The significance of the update when the student answers correctly. :type gamma: float :param delta: The significance of the update when the student answers incorrectly. :type delta: float :param time_effect_fun: Time effect function. :type time_effect_fun: callable or string """ ABBR = 'PFA/G/T old' def __init__(self, *args, **kwargs): kwargs.setdefault('gamma', 1.7) kwargs.setdefault('delta', 0.5) time_effect = kwargs.pop('time_effect_fun', 'pow') if isinstance(time_effect, basestring): self.a, self.c = kwargs.pop('a', None), kwargs.pop('c', None) self.time_effect = init_time_effect(self, time_effect) else: self.time_effect = time_effect super(PFAGong, self).__init__(*args, **kwargs) def get_weights(self, item, question): """Returns weights of previous answers to the given item. :param item: *Item* (i.e. practiced place by a user). :type item: :class:`Item` :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ correct_weights = [ max(ans.is_correct * self.time_effect(diff), 0) for ans, diff in izip(item.practices, item.get_diffs(question.inserted)) ] incorrect_weights = [ (1 - ans.is_correct) * self.time_effect(diff) for ans, diff in izip(item.practices, item.get_diffs(question.inserted)) ] return sum(correct_weights), sum(incorrect_weights) class PFATiming(PFAGong): """Performance Factor Analysis combining some aspects of both the Yue Gong's PFA and the ACT-R model. :param gamma: The significance of the update when the student answers correctly. :type gamma: float :param delta: The significance of the update when the student answers incorrectly. :type delta: float :param time_effect_good: Time effect function for correct answers. :type time_effect_good: callable or string :param time_effect_bad: Time effect function for wrong answers. :type time_effect_bad: callable or string """ ABBR = 'PFA/G/T' def __init__(self, *args, **kwargs): kwargs.setdefault('gamma', 1) # these parameters should not be kwargs.setdefault('delta', 1) # modified, i.e. kept equal to 1 time_effect_good = kwargs.pop('time_effect_good', 'pow') time_effect_bad = kwargs.pop('time_effect_bad', 'pow') if isinstance(time_effect_good, basestring): self.a, self.c = kwargs.pop('a', None), kwargs.pop('c', None) self.time_effect_good = init_time_effect( self, time_effect_good, parameters=('a', 'c')) else: self.time_effect_good = time_effect_good if isinstance(time_effect_bad, basestring): self.b, self.d = kwargs.pop('b', None), kwargs.pop('d', None) self.time_effect_bad = init_time_effect( self, time_effect_bad, parameters=('b', 'd')) else: self.time_effect_bad = time_effect_bad super(PFAGong, self).__init__(*args, **kwargs) def get_weights(self, item, question): """Returns weights of previous answers to the given item. :param item: *Item* (i.e. practiced place by a user). :type item: :class:`Item` :param question: Asked question. :type question: :class:`pandas.Series` or :class:`Question` """ correct_weights = [ ans.is_correct * self.time_effect_good(diff) for ans, diff in izip(item.practices, item.get_diffs(question.inserted)) ] incorrect_weights = [ (1 - ans.is_correct) * self.time_effect_bad(diff) for ans, diff in izip(item.practices, item.get_diffs(question.inserted)) ] return sum(correct_weights), sum(incorrect_weights)
mit
gotomypc/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
giruenf/GRIPy
app/app_utils.py
1
29345
import re import os import json import importlib import timeit import inspect import collections from enum import Enum from pathlib import Path import numpy as np from matplotlib.cm import cmap_d import wx import app import fileio from classes.om.base.manager import ObjectManager from app import log class GripyBitmap(wx.Bitmap): def __init__(self, path_to_bitmap=None): if path_to_bitmap is None: super().__init__() return if os.path.exists(path_to_bitmap): full_file_name = path_to_bitmap elif os.path.exists(os.path.join(app.ICONS_PATH, \ path_to_bitmap)): full_file_name = os.path.join(app.ICONS_PATH, path_to_bitmap) else: raise Exception('ERROR: Wrong bitmap path [{}, {}].'.format( \ app.ICONS_PATH, path_to_bitmap) ) super().__init__(full_file_name) class GripyIcon(wx.Icon): def __init__(self, path_to_bitmap=None, type_=wx.BITMAP_TYPE_ANY): # print(PurePath(app.ICONS_PATH, path_to_bitmap), 'r') if path_to_bitmap is not None: if Path(path_to_bitmap).exists(): pass elif Path(app.ICONS_PATH, path_to_bitmap).exists(): path_to_bitmap = Path(app.ICONS_PATH, path_to_bitmap) else: raise Exception('ERROR: Wrong bitmap path.') super().__init__(path_to_bitmap, type_) def calc_well_time_from_depth(event, well_uid): OM = ObjectManager() well = OM.get(well_uid) vp = None for log_obj in OM.list('log', well.uid): if log_obj.datatype == 'Velocity': vp = log_obj break if vp is None: raise Exception('ERROR [calc_prof_tempo]: Vp log not found.') index_set = OM.get(vp.index_set_uid) md = index_set.get_z_axis_indexes_by_type('MD')[0] # if md.data[0] != 0.0: return owt = [0.0] # for idx in range(1, len(md.data)): if vp.data[idx - 1] == np.nan: raise Exception('ERROR [calc_prof_tempo]: Found np.nan on Vp[{}] '.format(idx - 1)) diff_prof = md.data[idx] - md.data[idx - 1] value = (float(diff_prof) / vp.data[idx - 1]) * 1000.0 # To milliseconds value = owt[idx - 1] + value owt.append(value) # owt = np.array(owt) twt = owt * 2.0 # print('\nOWT:', owt) # owt_index = OM.new('data_index', 0, 'One Way Time', 'TIME', 'ms', data=owt) OM.add(owt_index, index_set.uid) # twt_index = OM.new('data_index', 0, 'Two Way Time', 'TWT', 'ms', data=twt) OM.add(twt_index, index_set.uid) # def load_segy(event, filename, new_obj_name='', comparators_list=None, iline_byte=9, xline_byte=21, offset_byte=37, tid='seismic', datatype='amplitude', parentuid=None): OM = ObjectManager() disableAll = wx.WindowDisabler() wait = wx.BusyInfo("Loading SEG-Y file...") # try: print("\nLoading SEG-Y file...") segy_file = fileio.segy.SEGYFile(filename) # segy_file.print_dump() # """ segy_file.read(comparators_list) segy_file.organize_3D_data(iline_byte, xline_byte, offset_byte) # print('segy_file.traces.shape:', segy_file.traces.shape) # # seis_like_obj = OM.new(tid, segy_file.traces, name=new_obj_name, datatype=datatype ) if not OM.add(seis_like_obj, parentuid): raise Exception('Object was not added. tid={}'.format(tid)) # # z_index = OM.new('data_index', name='Time', datatype='TWT', unit='ms', start=0.0, step=(segy_file.sample_rate * 1000), samples=segy_file.number_of_samples ) OM.add(z_index, seis_like_obj.uid) # try: offset_index = OM.new('data_index', segy_file.dimensions[2], name='Offset', datatype='OFFSET', unit='m' ) OM.add(offset_index, seis_like_obj.uid) next_dim = 2 except Exception as e: next_dim = 1 # xline_index = OM.new('data_index', segy_file.dimensions[1], name='X Line', datatype='X_LINE' ) if OM.add(xline_index, seis_like_obj.uid): next_dim += 1 # iline_index = OM.new('data_index', segy_file.dimensions[0], name='I Line', datatype='I_LINE' ) OM.add(iline_index, seis_like_obj.uid) # seis_like_obj._create_data_index_map( [iline_index.uid], [xline_index.uid], [offset_index.uid], [z_index.uid] ) print('seis_like_obj.traces.shape:', seis_like_obj.data.shape) # """ except Exception as e: raise e finally: del wait del disableAll # # TODO: Verificar melhor opcao no Python 3.6 # CallerInfo = collections.namedtuple('CallerInfo', ['object_', 'class_', 'module', 'function_name', 'filename', 'line_number', 'line_code' ] ) def get_callers_stack(): """ Based on: https://gist.github.com/techtonik/2151727 with some changes. Get a list with caller modules, objects and functions in the stack with list index 0 being the latest call. Returns: list(collections.namedtuple('CallerInfo', ['object_', 'class_', 'module', 'function_name', 'filename', 'line_number', 'line_code'])) """ ret_list = [] print('app_utils.get_callers_stack') try: stack = inspect.stack() for i in range(1, len(stack)): fi = stack[i] module_ = None obj = fi.frame.f_locals.get('self', None) class_ = fi.frame.f_locals.get('__class__', None) if obj: module_ = inspect.getmodule(obj) if not class_ and obj: class_ = obj.__class__ ret_list.append( CallerInfo(object_=obj, class_=class_, module=module_, function_name=fi.function, filename=fi.filename, line_number=fi.lineno, line_code=fi.code_context, # index=fi.index, # traceback=traceback, f_locals=fi.frame.f_locals ) ) if fi.frame.f_locals.get('__name__') == '__main__': break except Exception as e: print(e) raise return ret_list def get_class_full_name(obj): try: full_name = obj.__class__.__module__ + "." + obj.__class__.__name__ except Exception as e: msg = 'ERROR in function app.app_utils.get_class_full_name().' log.exception(msg) raise e return full_name def get_string_from_function(function_): if not callable(function_): msg = 'ERROR: Given input is not a function: {}.'.format(str(function_)) log.error(msg) raise Exception(msg) return function_.__module__ + '.' + function_.__name__ def get_function_from_filename(full_filename, function_name): try: # print ('\nget_function_from_filename', full_filename, function_name) if function_name == '<module>': return None rel_path = os.path.relpath(full_filename, app.BASE_PATH) module_rel_path = os.path.splitext(rel_path)[0] # print (module_rel_path) module_str = '.'.join(module_rel_path.split(os.path.sep)) # print (module_str) module_ = importlib.import_module(module_str) # print (module_, function_name) function_ = getattr(module_, function_name) return function_ except: raise def get_function_from_string(fullpath_function): try: # print ('\nget_function_from_string:', fullpath_function) module_str = '.'.join(fullpath_function.split('.')[:-1]) function_str = fullpath_function.split('.')[-1] # print ('importing module:', module_str) module_ = importlib.import_module(module_str) # print ('getting function:', function_str, '\n') function_ = getattr(module_, function_str) return function_ except Exception as e: msg = 'ERROR in function app.app_utils.get_function_from_string({}).'.format(fullpath_function) log.exception(msg) print(msg) raise e class Chronometer(object): def __init__(self): self.start_time = timeit.default_timer() def end(self): self.total = timeit.default_timer() - self.start_time return 'Execution in {:0.3f}s'.format(self.total) # Phoenix DropTarget code class DropTarget(wx.DropTarget): def __init__(self, _test_func, callback=None): wx.DropTarget.__init__(self) self.data = wx.CustomDataObject('obj_uid') self.SetDataObject(self.data) self._test_func = _test_func self._callback = callback def OnDrop(self, x, y): return True def OnData(self, x, y, defResult): obj_uid = self._get_object_uid() if self._callback: wx.CallAfter(self._callback, obj_uid) return defResult def OnDragOver(self, x, y, defResult): obj_uid = self._get_object_uid() if obj_uid: if self._test_func(obj_uid): return defResult return wx.DragNone def _get_object_uid(self): if self.GetData(): obj_uid_bytes = self.data.GetData().tobytes() obj_uid_str = obj_uid_bytes.decode() if obj_uid_str: obj_uid = parse_string_to_uid(obj_uid_str) return obj_uid return None class GripyEnum(Enum): def __repr__(self): # return '{} object, name: {}, value: {}'.format(self.__class__, self.name, self.value) return str(self.value) def __eq__(self, other): if type(other) is self.__class__: return self.value is other.value return self.value is other def __lt__(self, other): if type(other) is self.__class__: return self.value < other.value return self.value < other def __le__(self, other): return self.__eq__(other) or self.__lt__(other) def __gt__(self, other): if type(other) is self.__class__: return self.value > other.value return self.value > other def __ge__(self, other): return self.__eq__(other) or self.__gt__(other) class GripyEnumBitwise(GripyEnum): def __or__(self, other): if type(other) is self.__class__: return self.value | other.value return self.value | other def __ror__(self, other): return self.__or__(other) class WellPlotState(GripyEnum): NORMAL_TOOL = 0 SELECTION_TOOL = 1 FLAGS = re.VERBOSE | re.MULTILINE | re.DOTALL WHITESPACE = re.compile(r'[ \t\n\r]*', FLAGS) WHITESPACE_STR = ' \t\n\r' NUMBER_RE = re.compile( r'(-?(?:0|[1-9]\d*))(\.\d+)?([eE][-+]?\d+)?', (re.VERBOSE | re.MULTILINE | re.DOTALL) ) class GripyJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, wx.Point): return 'wx.Point' + str(obj) elif isinstance(obj, wx.Size): return 'wx.Size' + str(obj) elif isinstance(obj, GripyEnum): return str(obj.value) elif callable(obj): return get_string_from_function(obj) try: return str(obj) except: return super(GripyJSONDecoder, self).default(self, obj) def clean_path_str(path): # path = path.replace('\\' ,'/') path = path.encode('ascii', 'ignore') # in order to save unicode characters path = path.encode('string-escape') return path def write_json_file(py_object, fullfilename): fullfilename = clean_path_str(fullfilename) fullfilename = os.path.normpath(fullfilename) directory = os.path.dirname(fullfilename) if not os.path.exists(directory): os.makedirs(directory) msg = 'App.app_utils.write_json_file has created directory: {}'.format(directory) # log.debug(msg) print(msg) f = open(fullfilename, 'w') f.write(json.dumps(py_object, indent=4, cls=GripyJSONEncoder)) f.close() class GripyJSONDecoder(json.JSONDecoder): def decode(self, s, _w=WHITESPACE.match): self.scan_once = gripy_make_scanner(self) return super(GripyJSONDecoder, self).decode(s, _w) def gripy_make_scanner(context): parse_object = context.parse_object parse_array = context.parse_array parse_string = context.parse_string match_number = NUMBER_RE.match # encoding = context.encoding strict = context.strict parse_float = context.parse_float parse_int = context.parse_int parse_constant = context.parse_constant object_hook = context.object_hook object_pairs_hook = context.object_pairs_hook def _scan_once(string, idx): try: nextchar = string[idx] except IndexError: raise StopIteration if nextchar == '"': if string[idx:idx + 10] == '"wx.Point(': return GripyJSONParser((string, idx + 10), _scan_once, wx.Point) elif string[idx:idx + 9] == '"wx.Size(': return GripyJSONParser((string, idx + 9), _scan_once, wx.Size) return parse_string(string, idx + 1, strict) elif nextchar == '{': return parse_object((string, idx + 1), strict, _scan_once, object_hook, object_pairs_hook) elif nextchar == '[': return parse_array((string, idx + 1), _scan_once) elif nextchar == 'n' and string[idx:idx + 4] == 'null': return None, idx + 4 elif nextchar == 't' and string[idx:idx + 4] == 'true': return True, idx + 4 elif nextchar == 'f' and string[idx:idx + 5] == 'false': return False, idx + 5 m = match_number(string, idx) if m is not None: integer, frac, exp = m.groups() if frac or exp: res = parse_float(integer + (frac or '') + (exp or '')) else: res = parse_int(integer) return res, m.end() elif nextchar == 'N' and string[idx:idx + 3] == 'NaN': return parse_constant('NaN'), idx + 3 elif nextchar == 'I' and string[idx:idx + 8] == 'Infinity': return parse_constant('Infinity'), idx + 8 elif nextchar == '-' and string[idx:idx + 9] == '-Infinity': return parse_constant('-Infinity'), idx + 9 else: raise StopIteration return _scan_once def GripyJSONParser(s_and_end, scan_once, _class, _w=WHITESPACE.match, _ws=WHITESPACE_STR): s, end = s_and_end values = [] nextchar = s[end:end + 1] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end:end + 1] # Look-ahead for trivial empty array if nextchar == ']': return values, end + 1 _append = values.append while True: try: value, end = scan_once(s, end) except StopIteration: raise ValueError("Expecting object {}, {}".format(s, end)) _append(value) nextchar = s[end:end + 1] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end:end + 1] end += 1 if nextchar == ')' and s[end:end + 1] == '"': end += 1 break elif nextchar != ',': raise ValueError("Expecting ',' delimiter {}, {}".format(s, end)) try: if s[end] in _ws: end += 1 if s[end] in _ws: end = _w(s, end + 1).end() except IndexError: pass return _class(int(values[0]), int(values[1])), end def read_json_file(full_filename): # print ('\nread_json_file:', fullfilename, type(fullfilename)) # fullfilename = fullfilename.replace('\\' ,'/') # fullfilename = fullfilename.encode('ascii', 'ignore') # in order to save unicode characters # fullfilename = fullfilename.encode('string-escape') json_file = open(full_filename, 'r') state = json.load(json_file, cls=GripyJSONDecoder) json_file.close() return state def parse_string_to_uid(obj_uid_string): """ Parse a uid String (which may contains non uid characters like " and \) to a uid tuple in a format (tid, oid). Parameters ---------- obj_uid_string : str The uid String. Returns ------- tuple A pair (tid, oid) which can be a Gripy object identifier. """ try: # print ('parse_string_to_uid:', obj_uid_string) left_index = obj_uid_string.find('(') right_index = obj_uid_string.rfind(')') if left_index == -1 or right_index == -1: return None elif right_index < left_index: return None obj_uid_string = obj_uid_string[left_index + 1:right_index] tid, oid = obj_uid_string.split(',') tid = tid.strip('\'\" ') oid = int(oid.strip('\'\" ')) return tid, oid except: raise def get_wx_colour_from_seq_string(seq_str): # tuple or list if seq_str.startswith('(') or seq_str.startswith('['): seq_str = seq_str[1:-1] val = tuple([int(c.strip()) for c in seq_str.split(',')]) color = wx.Colour(val) print('_get_wx_colour:', color, color.GetAsString(wx.C2S_HTML_SYNTAX)) return color return None # Have colormaps separated into categories: # http://matplotlib.org/examples/color/colormaps_reference.html """ # MPL 1.4/1.5 COLORS MPL_CATS_CMAPS = [('Perceptually Uniform Sequential', [ 'viridis', 'plasma', 'inferno', 'magma']), ('Sequential', [ 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']), ('Sequential (2)', [ 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper']), ('Diverging', [ 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']), ('Qualitative', [ 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c']), ('Miscellaneous', [ 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])] """ # MPL 2.0 COLORS MPL_CATS_CMAPS = [ ('Perceptually Uniform Sequential', ['viridis', 'inferno', 'plasma', 'magma'] ), ('Sequential', ['Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd' ] ), ('Sequential (2)', ['afmhot', 'autumn', 'bone', 'cool', 'copper', 'gist_heat', 'gray', 'hot', 'pink', 'spring', 'summer', 'winter' ] ), ('Diverging', ['BrBG', 'bwr', 'coolwarm', 'PiYG', 'PRGn', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'Spectral', 'seismic' ] ), ('Qualitative', ['Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'Vega10', 'Vega20', 'Vega20b', 'Vega20c' ] ), ('Miscellaneous', ['gist_earth', 'terrain', 'ocean', 'gist_stern', 'brg', 'CMRmap', 'cubehelix', 'gnuplot', 'gnuplot2', 'gist_ncar', 'nipy_spectral', 'jet', 'rainbow', 'gist_rainbow', 'hsv', 'flag', 'prism' ] ) ] # MPL_COLORMAPS = [value for (key, values) in MPL_CATS_CMAPS for value in values] MPL_COLORMAPS = sorted(cmap_d) """ MPL_COLORMAPS = ['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBu_r', 'PuBuGn', 'PuBuGn_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGn_r', 'YlGnBu', 'YlGnBu_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'winter', 'winter_r'] """ ############################################################################### ############################################################################### MPL_COLORS = collections.OrderedDict() MPL_COLORS['Black'] = None MPL_COLORS['Maroon'] = None MPL_COLORS['Green'] = wx.Colour(0, 100, 0) # Dark Green MPL_COLORS['Olive'] = wx.Colour(128, 128, 0) MPL_COLORS['Navy'] = None MPL_COLORS['Purple'] = None MPL_COLORS['Teal'] = wx.Colour(0, 128, 128) MPL_COLORS['Gray'] = None MPL_COLORS['Silver'] = wx.Colour(192, 192, 192) MPL_COLORS['Red'] = None MPL_COLORS['Lime'] = wx.Colour(0, 255, 0) # Green MPL_COLORS['Yellow'] = None MPL_COLORS['Blue'] = None MPL_COLORS['Fuchsia'] = wx.Colour(255, 0, 255) MPL_COLORS['Aqua'] = wx.Colour(0, 255, 255) MPL_COLORS['White'] = None MPL_COLORS['SkyBlue'] = wx.Colour(135, 206, 235) MPL_COLORS['LightGray'] = wx.Colour(211, 211, 211) MPL_COLORS['DarkGray'] = wx.Colour(169, 169, 169) MPL_COLORS['SlateGray'] = wx.Colour(112, 128, 144) MPL_COLORS['DimGray'] = wx.Colour(105, 105, 105) MPL_COLORS['BlueViolet'] = wx.Colour(138, 43, 226) MPL_COLORS['DarkViolet'] = wx.Colour(148, 0, 211) MPL_COLORS['Magenta'] = None MPL_COLORS['DeepPink'] = wx.Colour(148, 0, 211) MPL_COLORS['Brown'] = None MPL_COLORS['Crimson'] = wx.Colour(220, 20, 60) MPL_COLORS['Firebrick'] = None MPL_COLORS['DarkRed'] = wx.Colour(139, 0, 0) MPL_COLORS['DarkSlateGray'] = wx.Colour(47, 79, 79) MPL_COLORS['DarkSlateBlue'] = wx.Colour(72, 61, 139) MPL_COLORS['Wheat'] = None MPL_COLORS['BurlyWood'] = wx.Colour(222, 184, 135) MPL_COLORS['Tan'] = None MPL_COLORS['Gold'] = None MPL_COLORS['Orange'] = None MPL_COLORS['DarkOrange'] = wx.Colour(255, 140, 0) MPL_COLORS['Coral'] = None MPL_COLORS['DarkKhaki'] = wx.Colour(189, 183, 107) MPL_COLORS['GoldenRod'] = None MPL_COLORS['DarkGoldenrod'] = wx.Colour(184, 134, 11) MPL_COLORS['Chocolate'] = wx.Colour(210, 105, 30) MPL_COLORS['Sienna'] = None MPL_COLORS['SaddleBrown'] = wx.Colour(139, 69, 19) MPL_COLORS['GreenYellow'] = wx.Colour(173, 255, 47) MPL_COLORS['Chartreuse'] = wx.Colour(127, 255, 0) MPL_COLORS['SpringGreen'] = wx.Colour(0, 255, 127) MPL_COLORS['MediumSpringGreen'] = wx.Colour(0, 250, 154) MPL_COLORS['MediumAquamarine'] = wx.Colour(102, 205, 170) MPL_COLORS['LimeGreen'] = wx.Colour(50, 205, 50) MPL_COLORS['LightSeaGreen'] = wx.Colour(32, 178, 170) MPL_COLORS['MediumSeaGreen'] = wx.Colour(60, 179, 113) MPL_COLORS['DarkSeaGreen'] = wx.Colour(143, 188, 143) MPL_COLORS['SeaGreen'] = wx.Colour(46, 139, 87) MPL_COLORS['ForestGreen'] = wx.Colour(34, 139, 34) MPL_COLORS['DarkOliveGreen'] = wx.Colour(85, 107, 47) MPL_COLORS['DarkGreen'] = wx.Colour(1, 50, 32) MPL_COLORS['LightCyan'] = wx.Colour(224, 255, 255) MPL_COLORS['Thistle'] = None MPL_COLORS['PowderBlue'] = wx.Colour(176, 224, 230) MPL_COLORS['LightSteelBlue'] = wx.Colour(176, 196, 222) MPL_COLORS['LightSkyBlue'] = wx.Colour(135, 206, 250) MPL_COLORS['MediumTurquoise'] = wx.Colour(72, 209, 204) MPL_COLORS['Turquoise'] = None MPL_COLORS['DarkTurquoise'] = wx.Colour(0, 206, 209) MPL_COLORS['DeepSkyBlue'] = wx.Colour(0, 191, 255) MPL_COLORS['DodgerBlue'] = wx.Colour(30, 144, 255) MPL_COLORS['CornflowerBlue'] = wx.Colour(100, 149, 237) MPL_COLORS['CadetBlue'] = wx.Colour(95, 158, 160) MPL_COLORS['DarkCyan'] = wx.Colour(0, 139, 139) MPL_COLORS['SteelBlue'] = wx.Colour(70, 130, 180) MPL_COLORS['RoyalBlue'] = wx.Colour(65, 105, 225) MPL_COLORS['SlateBlue'] = wx.Colour(106, 90, 205) MPL_COLORS['DarkBlue'] = wx.Colour(0, 0, 139) MPL_COLORS['MediumBlue'] = wx.Colour(0, 0, 205) MPL_COLORS['SandyBrown'] = wx.Colour(244, 164, 96) MPL_COLORS['DarkSalmon'] = wx.Colour(233, 150, 122) MPL_COLORS['Salmon'] = None MPL_COLORS['Tomato'] = wx.Colour(255, 99, 71) MPL_COLORS['Violet'] = wx.Colour(238, 130, 238) MPL_COLORS['HotPink'] = wx.Colour(255, 105, 180) MPL_COLORS['RosyBrown'] = wx.Colour(188, 143, 143) MPL_COLORS['MediumVioletRed'] = wx.Colour(199, 21, 133) MPL_COLORS['DarkMagenta'] = wx.Colour(139, 0, 139) MPL_COLORS['DarkOrchid'] = wx.Colour(153, 50, 204) MPL_COLORS['Indigo'] = wx.Colour(75, 0, 130) MPL_COLORS['MidnightBlue'] = wx.Colour(25, 25, 112) MPL_COLORS['MediumSlateBlue'] = wx.Colour(123, 104, 238) MPL_COLORS['MediumPurple'] = wx.Colour(147, 112, 219) MPL_COLORS['MediumOrchid'] = wx.Colour(186, 85, 211) MPL_COLORS = collections.OrderedDict(sorted(MPL_COLORS.items())) ############################################################################### ############################################################################### # Based on https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html # 10/September/2019 - Adriano Santana MPL_LINESTYLES = collections.OrderedDict() MPL_LINESTYLES['Solid'] = (0, ()) MPL_LINESTYLES['Dotted'] = (0, (1, 1)) MPL_LINESTYLES['Loosely dotted'] = (0, (1, 10)) MPL_LINESTYLES['Densely dotted'] = (0, (1, 1)) MPL_LINESTYLES['Dashed'] = (0, (5, 5)) MPL_LINESTYLES['Loosely dashed'] = (0, (5, 10)) MPL_LINESTYLES['Densely dashed'] = (0, (5, 1)) MPL_LINESTYLES['Dashdotted'] = (0, (3, 5, 1, 5)) MPL_LINESTYLES['Loosely dashdotted'] = (0, (3, 10, 1, 10)) MPL_LINESTYLES['Densely dashdotted'] = (0, (3, 1, 1, 1)) MPL_LINESTYLES['Dashdotdotted'] = (0, (3, 5, 1, 5, 1, 5)) MPL_LINESTYLES['Loosely dashdotdotted'] = (0, (3, 10, 1, 10, 1, 10)) MPL_LINESTYLES['Densely dashdotdotted'] = (0, (3, 1, 1, 1, 1, 1))
apache-2.0
DEVELByte/incubator-airflow
airflow/www/views.py
2
91943
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from past.utils import old_div from past.builtins import basestring, unicode import os import pkg_resources import socket import importlib from functools import wraps from datetime import datetime, timedelta import dateutil.parser import copy from itertools import chain, product import json from lxml import html import inspect from textwrap import dedent import traceback import sqlalchemy as sqla from sqlalchemy import or_, desc, and_, union_all from flask import ( redirect, url_for, request, Markup, Response, current_app, render_template, make_response) from flask_admin import BaseView, expose, AdminIndexView from flask_admin.contrib.sqla import ModelView from flask_admin.actions import action from flask_admin.babel import lazy_gettext from flask_admin.tools import iterdecode from flask_login import flash from flask._compat import PY2 import jinja2 import markdown import nvd3 from wtforms import ( Form, SelectField, TextAreaField, PasswordField, StringField, validators) from pygments import highlight, lexers from pygments.formatters import HtmlFormatter import airflow from airflow import configuration as conf from airflow import models from airflow import settings from airflow.exceptions import AirflowException from airflow.settings import Session from airflow.models import XCom from airflow.ti_deps.dep_context import DepContext, QUEUE_DEPS, SCHEDULER_DEPS from airflow.models import BaseOperator from airflow.operators.subdag_operator import SubDagOperator from airflow.utils.logging import LoggingMixin from airflow.utils.json import json_ser from airflow.utils.state import State from airflow.utils.db import provide_session from airflow.utils.helpers import alchemy_to_dict from airflow.utils import logging as log_utils from airflow.www import utils as wwwutils from airflow.www.forms import DateTimeForm, DateTimeWithNumRunsForm from airflow.configuration import AirflowConfigException QUERY_LIMIT = 100000 CHART_LIMIT = 200000 dagbag = models.DagBag(os.path.expanduser(conf.get('core', 'DAGS_FOLDER'))) login_required = airflow.login.login_required current_user = airflow.login.current_user logout_user = airflow.login.logout_user FILTER_BY_OWNER = False DEFAULT_SENSITIVE_VARIABLE_FIELDS = ( 'password', 'secret', 'passwd', 'authorization', 'api_key', 'apikey', 'access_token', ) if conf.getboolean('webserver', 'FILTER_BY_OWNER'): # filter_by_owner if authentication is enabled and filter_by_owner is true FILTER_BY_OWNER = not current_app.config['LOGIN_DISABLED'] def dag_link(v, c, m, p): url = url_for( 'airflow.graph', dag_id=m.dag_id) return Markup( '<a href="{url}">{m.dag_id}</a>'.format(**locals())) def log_url_formatter(v, c, m, p): return Markup( '<a href="{m.log_url}">' ' <span class="glyphicon glyphicon-book" aria-hidden="true">' '</span></a>').format(**locals()) def task_instance_link(v, c, m, p): url = url_for( 'airflow.task', dag_id=m.dag_id, task_id=m.task_id, execution_date=m.execution_date.isoformat()) url_root = url_for( 'airflow.graph', dag_id=m.dag_id, root=m.task_id, execution_date=m.execution_date.isoformat()) return Markup( """ <span style="white-space: nowrap;"> <a href="{url}">{m.task_id}</a> <a href="{url_root}" title="Filter on this task and upstream"> <span class="glyphicon glyphicon-filter" style="margin-left: 0px;" aria-hidden="true"></span> </a> </span> """.format(**locals())) def state_token(state): color = State.color(state) return Markup( '<span class="label" style="background-color:{color};">' '{state}</span>'.format(**locals())) def state_f(v, c, m, p): return state_token(m.state) def duration_f(v, c, m, p): if m.end_date and m.duration: return timedelta(seconds=m.duration) def datetime_f(v, c, m, p): attr = getattr(m, p) dttm = attr.isoformat() if attr else '' if datetime.now().isoformat()[:4] == dttm[:4]: dttm = dttm[5:] return Markup("<nobr>{}</nobr>".format(dttm)) def nobr_f(v, c, m, p): return Markup("<nobr>{}</nobr>".format(getattr(m, p))) def label_link(v, c, m, p): try: default_params = eval(m.default_params) except: default_params = {} url = url_for( 'airflow.chart', chart_id=m.id, iteration_no=m.iteration_no, **default_params) return Markup("<a href='{url}'>{m.label}</a>".format(**locals())) def pool_link(v, c, m, p): url = '/admin/taskinstance/?flt1_pool_equals=' + m.pool return Markup("<a href='{url}'>{m.pool}</a>".format(**locals())) def pygment_html_render(s, lexer=lexers.TextLexer): return highlight( s, lexer(), HtmlFormatter(linenos=True), ) def render(obj, lexer): out = "" if isinstance(obj, basestring): out += pygment_html_render(obj, lexer) elif isinstance(obj, (tuple, list)): for i, s in enumerate(obj): out += "<div>List item #{}</div>".format(i) out += "<div>" + pygment_html_render(s, lexer) + "</div>" elif isinstance(obj, dict): for k, v in obj.items(): out += '<div>Dict item "{}"</div>'.format(k) out += "<div>" + pygment_html_render(v, lexer) + "</div>" return out def wrapped_markdown(s): return '<div class="rich_doc">' + markdown.markdown(s) + "</div>" attr_renderer = { 'bash_command': lambda x: render(x, lexers.BashLexer), 'hql': lambda x: render(x, lexers.SqlLexer), 'sql': lambda x: render(x, lexers.SqlLexer), 'doc': lambda x: render(x, lexers.TextLexer), 'doc_json': lambda x: render(x, lexers.JsonLexer), 'doc_rst': lambda x: render(x, lexers.RstLexer), 'doc_yaml': lambda x: render(x, lexers.YamlLexer), 'doc_md': wrapped_markdown, 'python_callable': lambda x: render( inspect.getsource(x), lexers.PythonLexer), } def data_profiling_required(f): ''' Decorator for views requiring data profiling access ''' @wraps(f) def decorated_function(*args, **kwargs): if ( current_app.config['LOGIN_DISABLED'] or (not current_user.is_anonymous() and current_user.data_profiling()) ): return f(*args, **kwargs) else: flash("This page requires data profiling privileges", "error") return redirect(url_for('admin.index')) return decorated_function def fused_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=running') return Markup("<a href='{0}'>{1}</a>".format(url, m.used_slots())) def fqueued_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=queued&sort=10&desc=1') return Markup("<a href='{0}'>{1}</a>".format(url, m.queued_slots())) def recurse_tasks(tasks, task_ids, dag_ids, task_id_to_dag): if isinstance(tasks, list): for task in tasks: recurse_tasks(task, task_ids, dag_ids, task_id_to_dag) return if isinstance(tasks, SubDagOperator): subtasks = tasks.subdag.tasks dag_ids.append(tasks.subdag.dag_id) for subtask in subtasks: if subtask.task_id not in task_ids: task_ids.append(subtask.task_id) task_id_to_dag[subtask.task_id] = tasks.subdag recurse_tasks(subtasks, task_ids, dag_ids, task_id_to_dag) if isinstance(tasks, BaseOperator): task_id_to_dag[tasks.task_id] = tasks.dag def should_hide_value_for_key(key_name): return any(s in key_name for s in DEFAULT_SENSITIVE_VARIABLE_FIELDS) \ and conf.getboolean('admin', 'hide_sensitive_variable_fields') class Airflow(BaseView): def is_visible(self): return False @expose('/') @login_required def index(self): return self.render('airflow/dags.html') @expose('/chart_data') @data_profiling_required @wwwutils.gzipped # @cache.cached(timeout=3600, key_prefix=wwwutils.make_cache_key) def chart_data(self): from airflow import macros import pandas as pd session = settings.Session() chart_id = request.args.get('chart_id') csv = request.args.get('csv') == "true" chart = session.query(models.Chart).filter_by(id=chart_id).first() db = session.query( models.Connection).filter_by(conn_id=chart.conn_id).first() session.expunge_all() session.commit() session.close() payload = {} payload['state'] = 'ERROR' payload['error'] = '' # Processing templated fields try: args = eval(chart.default_params) if type(args) is not type(dict()): raise AirflowException('Not a dict') except: args = {} payload['error'] += ( "Default params is not valid, string has to evaluate as " "a Python dictionary. ") request_dict = {k: request.args.get(k) for k in request.args} args.update(request_dict) args['macros'] = macros sql = jinja2.Template(chart.sql).render(**args) label = jinja2.Template(chart.label).render(**args) payload['sql_html'] = Markup(highlight( sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) payload['label'] = label pd.set_option('display.max_colwidth', 100) hook = db.get_hook() try: df = hook.get_pandas_df( wwwutils.limit_sql(sql, CHART_LIMIT, conn_type=db.conn_type)) df = df.fillna(0) except Exception as e: payload['error'] += "SQL execution failed. Details: " + str(e) if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") if not payload['error'] and len(df) == CHART_LIMIT: payload['warning'] = ( "Data has been truncated to {0}" " rows. Expect incomplete results.").format(CHART_LIMIT) if not payload['error'] and len(df) == 0: payload['error'] += "Empty result set. " elif ( not payload['error'] and chart.sql_layout == 'series' and chart.chart_type != "datatable" and len(df.columns) < 3): payload['error'] += "SQL needs to return at least 3 columns. " elif ( not payload['error'] and chart.sql_layout == 'columns'and len(df.columns) < 2): payload['error'] += "SQL needs to return at least 2 columns. " elif not payload['error']: import numpy as np chart_type = chart.chart_type data = None if chart.show_datatable or chart_type == "datatable": data = df.to_dict(orient="split") data['columns'] = [{'title': c} for c in data['columns']] payload['data'] = data # Trying to convert time to something Highcharts likes x_col = 1 if chart.sql_layout == 'series' else 0 if chart.x_is_date: try: # From string to datetime df[df.columns[x_col]] = pd.to_datetime( df[df.columns[x_col]]) df[df.columns[x_col]] = df[df.columns[x_col]].apply( lambda x: int(x.strftime("%s")) * 1000) except Exception as e: payload['error'] = "Time conversion failed" if chart_type == 'datatable': payload['state'] = 'SUCCESS' return wwwutils.json_response(payload) else: if chart.sql_layout == 'series': # User provides columns (series, x, y) xaxis_label = df.columns[1] yaxis_label = df.columns[2] df[df.columns[2]] = df[df.columns[2]].astype(np.float) df = df.pivot_table( index=df.columns[1], columns=df.columns[0], values=df.columns[2], aggfunc=np.sum) else: # User provides columns (x, y, metric1, metric2, ...) xaxis_label = df.columns[0] yaxis_label = 'y' df.index = df[df.columns[0]] df = df.sort(df.columns[0]) del df[df.columns[0]] for col in df.columns: df[col] = df[col].astype(np.float) df = df.fillna(0) NVd3ChartClass = chart_mapping.get(chart.chart_type) NVd3ChartClass = getattr(nvd3, NVd3ChartClass) nvd3_chart = NVd3ChartClass(x_is_date=chart.x_is_date) for col in df.columns: nvd3_chart.add_serie(name=col, y=df[col].tolist(), x=df[col].index.tolist()) try: nvd3_chart.buildcontent() payload['chart_type'] = nvd3_chart.__class__.__name__ payload['htmlcontent'] = nvd3_chart.htmlcontent except Exception as e: payload['error'] = str(e) payload['state'] = 'SUCCESS' payload['request_dict'] = request_dict return wwwutils.json_response(payload) @expose('/chart') @data_profiling_required def chart(self): session = settings.Session() chart_id = request.args.get('chart_id') embed = request.args.get('embed') chart = session.query(models.Chart).filter_by(id=chart_id).first() session.expunge_all() session.commit() session.close() NVd3ChartClass = chart_mapping.get(chart.chart_type) if not NVd3ChartClass: flash( "Not supported anymore as the license was incompatible, " "sorry", "danger") redirect('/admin/chart/') sql = "" if chart.show_sql: sql = Markup(highlight( chart.sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/nvd3.html', chart=chart, title="Airflow - Chart", sql=sql, label=chart.label, embed=embed) @expose('/dag_stats') def dag_stats(self): ds = models.DagStat session = Session() qry = ( session.query(ds.dag_id, ds.state, ds.count) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count payload = {} for dag in dagbag.dags.values(): payload[dag.safe_dag_id] = [] for state in State.dag_states: try: count = data[dag.dag_id][state] except Exception: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.safe_dag_id].append(d) return wwwutils.json_response(payload) @expose('/task_stats') def task_stats(self): task_ids = [] dag_ids = [] for dag in dagbag.dags.values(): task_ids += dag.task_ids if not dag.is_subdag: dag_ids.append(dag.dag_id) TI = models.TaskInstance DagRun = models.DagRun session = Session() LastDagRun = ( session.query(DagRun.dag_id, sqla.func.max(DagRun.execution_date).label('execution_date')) .filter(DagRun.state != State.RUNNING) .group_by(DagRun.dag_id) .subquery('last_dag_run') ) RunningDagRun = ( session.query(DagRun.dag_id, DagRun.execution_date) .filter(DagRun.state == State.RUNNING) .subquery('running_dag_run') ) # Select all task_instances from active dag_runs. # If no dag_run is active, return task instances from most recent dag_run. LastTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(LastDagRun, and_( LastDagRun.c.dag_id == TI.dag_id, LastDagRun.c.execution_date == TI.execution_date)) .filter(TI.task_id.in_(task_ids)) .filter(TI.dag_id.in_(dag_ids)) ) RunningTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(RunningDagRun, and_( RunningDagRun.c.dag_id == TI.dag_id, RunningDagRun.c.execution_date == TI.execution_date)) .filter(TI.task_id.in_(task_ids)) .filter(TI.dag_id.in_(dag_ids)) ) UnionTI = union_all(LastTI, RunningTI).alias('union_ti') qry = ( session.query(UnionTI.c.dag_id, UnionTI.c.state, sqla.func.count()) .group_by(UnionTI.c.dag_id, UnionTI.c.state) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count session.commit() session.close() payload = {} for dag in dagbag.dags.values(): payload[dag.safe_dag_id] = [] for state in State.task_states: try: count = data[dag.dag_id][state] except: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.safe_dag_id].append(d) return wwwutils.json_response(payload) @expose('/code') @login_required def code(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = dag_id try: m = importlib.import_module(dag.module_name) code = inspect.getsource(m) html_code = highlight( code, lexers.PythonLexer(), HtmlFormatter(linenos=True)) except IOError as e: html_code = str(e) return self.render( 'airflow/dag_code.html', html_code=html_code, dag=dag, title=title, root=request.args.get('root'), demo_mode=conf.getboolean('webserver', 'demo_mode')) @expose('/dag_details') @login_required def dag_details(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = "DAG details" session = settings.Session() TI = models.TaskInstance states = ( session.query(TI.state, sqla.func.count(TI.dag_id)) .filter(TI.dag_id == dag_id) .group_by(TI.state) .all() ) return self.render( 'airflow/dag_details.html', dag=dag, title=title, states=states, State=State) @current_app.errorhandler(404) def circles(self): return render_template( 'airflow/circles.html', hostname=socket.getfqdn()), 404 @current_app.errorhandler(500) def show_traceback(self): from airflow.utils import asciiart as ascii_ return render_template( 'airflow/traceback.html', hostname=socket.getfqdn(), nukular=ascii_.nukular, info=traceback.format_exc()), 500 @expose('/sandbox') @login_required def sandbox(self): title = "Sandbox Suggested Configuration" cfg_loc = conf.AIRFLOW_CONFIG + '.sandbox' f = open(cfg_loc, 'r') config = f.read() f.close() code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/code.html', code_html=code_html, title=title, subtitle=cfg_loc) @expose('/noaccess') def noaccess(self): return self.render('airflow/noaccess.html') @expose('/headers') def headers(self): d = { 'headers': {k: v for k, v in request.headers}, } if hasattr(current_user, 'is_superuser'): d['is_superuser'] = current_user.is_superuser() d['data_profiling'] = current_user.data_profiling() d['is_anonymous'] = current_user.is_anonymous() d['is_authenticated'] = current_user.is_authenticated() if hasattr(current_user, 'username'): d['username'] = current_user.username return wwwutils.json_response(d) @expose('/pickle_info') def pickle_info(self): d = {} dag_id = request.args.get('dag_id') dags = [dagbag.dags.get(dag_id)] if dag_id else dagbag.dags.values() for dag in dags: if not dag.is_subdag: d[dag.dag_id] = dag.pickle_info() return wwwutils.json_response(d) @expose('/login', methods=['GET', 'POST']) def login(self): return airflow.login.login(self, request) @expose('/logout') def logout(self): logout_user() flash('You have been logged out.') return redirect(url_for('admin.index')) @expose('/rendered') @login_required @wwwutils.action_logging def rendered(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) task = copy.copy(dag.get_task(task_id)) ti = models.TaskInstance(task=task, execution_date=dttm) try: ti.render_templates() except Exception as e: flash("Error rendering template: " + str(e), "error") title = "Rendered Template" html_dict = {} for template_field in task.__class__.template_fields: content = getattr(task, template_field) if template_field in attr_renderer: html_dict[template_field] = attr_renderer[template_field](content) else: html_dict[template_field] = ( "<pre><code>" + str(content) + "</pre></code>") return self.render( 'airflow/ti_code.html', html_dict=html_dict, dag=dag, task_id=task_id, execution_date=execution_date, form=form, title=title,) @expose('/log') @login_required @wwwutils.action_logging def log(self): BASE_LOG_FOLDER = os.path.expanduser( conf.get('core', 'BASE_LOG_FOLDER')) dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dag = dagbag.get_dag(dag_id) log_relative = "{dag_id}/{task_id}/{execution_date}".format( **locals()) loc = os.path.join(BASE_LOG_FOLDER, log_relative) loc = loc.format(**locals()) log = "" TI = models.TaskInstance session = Session() dttm = dateutil.parser.parse(execution_date) ti = session.query(TI).filter( TI.dag_id == dag_id, TI.task_id == task_id, TI.execution_date == dttm).first() dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) if ti: host = ti.hostname log_loaded = False if os.path.exists(loc): try: f = open(loc) log += "".join(f.readlines()) f.close() log_loaded = True except: log = "*** Failed to load local log file: {0}.\n".format(loc) else: WORKER_LOG_SERVER_PORT = \ conf.get('celery', 'WORKER_LOG_SERVER_PORT') url = os.path.join( "http://{host}:{WORKER_LOG_SERVER_PORT}/log", log_relative ).format(**locals()) log += "*** Log file isn't local.\n" log += "*** Fetching here: {url}\n".format(**locals()) try: import requests timeout = None # No timeout try: timeout = conf.getint('webserver', 'log_fetch_timeout_sec') except (AirflowConfigException, ValueError): pass response = requests.get(url, timeout=timeout) response.raise_for_status() log += '\n' + response.text log_loaded = True except: log += "*** Failed to fetch log file from worker.\n".format( **locals()) if not log_loaded: # load remote logs remote_log_base = conf.get('core', 'REMOTE_BASE_LOG_FOLDER') remote_log = os.path.join(remote_log_base, log_relative) log += '\n*** Reading remote logs...\n' # S3 if remote_log.startswith('s3:/'): log += log_utils.S3Log().read(remote_log, return_error=True) # GCS elif remote_log.startswith('gs:/'): log += log_utils.GCSLog().read(remote_log, return_error=True) # unsupported elif remote_log: log += '*** Unsupported remote log location.' session.commit() session.close() if PY2 and not isinstance(log, unicode): log = log.decode('utf-8') title = "Log" return self.render( 'airflow/ti_code.html', code=log, dag=dag, title=title, task_id=task_id, execution_date=execution_date, form=form) @expose('/task') @login_required @wwwutils.action_logging def task(self): TI = models.TaskInstance dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') task = copy.copy(dag.get_task(task_id)) task.resolve_template_files() ti = TI(task=task, execution_date=dttm) ti.refresh_from_db() ti_attrs = [] for attr_name in dir(ti): if not attr_name.startswith('_'): attr = getattr(ti, attr_name) if type(attr) != type(self.task): ti_attrs.append((attr_name, str(attr))) task_attrs = [] for attr_name in dir(task): if not attr_name.startswith('_'): attr = getattr(task, attr_name) if type(attr) != type(self.task) and \ attr_name not in attr_renderer: task_attrs.append((attr_name, str(attr))) # Color coding the special attributes that are code special_attrs_rendered = {} for attr_name in attr_renderer: if hasattr(task, attr_name): source = getattr(task, attr_name) special_attrs_rendered[attr_name] = attr_renderer[attr_name](source) no_failed_deps_result = [( "Unknown", dedent("""\ All dependencies are met but the task instance is not running. In most cases this just means that the task will probably be scheduled soon unless:<br/> - The scheduler is down or under heavy load<br/> {} <br/> If this task instance does not start soon please contact your Airflow administrator for assistance.""" .format( "- This task instance already ran and had it's state changed manually (e.g. cleared in the UI)<br/>" if ti.state == State.NONE else "")))] # Use the scheduler's context to figure out which dependencies are not met dep_context = DepContext(SCHEDULER_DEPS) failed_dep_reasons = [(dep.dep_name, dep.reason) for dep in ti.get_failed_dep_statuses( dep_context=dep_context)] title = "Task Instance Details" return self.render( 'airflow/task.html', task_attrs=task_attrs, ti_attrs=ti_attrs, failed_dep_reasons=failed_dep_reasons or no_failed_deps_result, task_id=task_id, execution_date=execution_date, special_attrs_rendered=special_attrs_rendered, form=form, dag=dag, title=title) @expose('/xcom') @login_required @wwwutils.action_logging def xcom(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') session = Session() xcomlist = session.query(XCom).filter( XCom.dag_id == dag_id, XCom.task_id == task_id, XCom.execution_date == dttm).all() attributes = [] for xcom in xcomlist: if not xcom.key.startswith('_'): attributes.append((xcom.key, xcom.value)) title = "XCom" return self.render( 'airflow/xcom.html', attributes=attributes, task_id=task_id, execution_date=execution_date, form=form, dag=dag, title=title) @expose('/run') @login_required @wwwutils.action_logging @wwwutils.notify_owner def run(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) ignore_all_deps = request.args.get('ignore_all_deps') == "true" ignore_task_deps = request.args.get('ignore_task_deps') == "true" ignore_ti_state = request.args.get('ignore_ti_state') == "true" try: from airflow.executors import DEFAULT_EXECUTOR as executor from airflow.executors import CeleryExecutor if not isinstance(executor, CeleryExecutor): flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) except ImportError: # in case CeleryExecutor cannot be imported it is not active either flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) ti = models.TaskInstance(task=task, execution_date=execution_date) ti.refresh_from_db() # Make sure the task instance can be queued dep_context = DepContext( deps=QUEUE_DEPS, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) failed_deps = list(ti.get_failed_dep_statuses(dep_context=dep_context)) if failed_deps: failed_deps_str = ", ".join( ["{}: {}".format(dep.dep_name, dep.reason) for dep in failed_deps]) flash("Could not queue task instance for execution, dependencies not met: " "{}".format(failed_deps_str), "error") return redirect(origin) executor.start() executor.queue_task_instance( ti, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) executor.heartbeat() flash( "Sent {} to the message queue, " "it should start any moment now.".format(ti)) return redirect(origin) @expose('/clear') @login_required @wwwutils.action_logging @wwwutils.notify_owner def clear(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" recursive = request.args.get('recursive') == "true" dag = dag.sub_dag( task_regex=r"^{0}$".format(task_id), include_downstream=downstream, include_upstream=upstream) end_date = execution_date if not future else None start_date = execution_date if not past else None if confirmed: count = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive) flash("{0} task instances have been cleared".format(count)) return redirect(origin) else: tis = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive, dry_run=True) if not tis: flash("No task instances to clear", 'error') response = redirect(origin) else: details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=( "Here's the list of task instances you are about " "to clear:"), details=details,) return response @expose('/blocked') @login_required def blocked(self): session = settings.Session() DR = models.DagRun dags = ( session.query(DR.dag_id, sqla.func.count(DR.id)) .filter(DR.state == State.RUNNING) .group_by(DR.dag_id) .all() ) payload = [] for dag_id, active_dag_runs in dags: max_active_runs = 0 if dag_id in dagbag.dags: max_active_runs = dagbag.dags[dag_id].max_active_runs payload.append({ 'dag_id': dag_id, 'active_dag_run': active_dag_runs, 'max_active_runs': max_active_runs, }) return wwwutils.json_response(payload) @expose('/success') @login_required @wwwutils.action_logging @wwwutils.notify_owner def success(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" recursive = request.args.get('recursive') == "true" MAX_PERIODS = 1000 # Flagging tasks as successful session = settings.Session() task_ids = [task_id] dag_ids = [dag_id] task_id_to_dag = { task_id: dag } end_date = ((dag.latest_execution_date or datetime.now()) if future else execution_date) if 'start_date' in dag.default_args: start_date = dag.default_args['start_date'] elif dag.start_date: start_date = dag.start_date else: start_date = execution_date start_date = execution_date if not past else start_date if recursive: recurse_tasks(task, task_ids, dag_ids, task_id_to_dag) if downstream: relatives = task.get_flat_relatives(upstream=False) task_ids += [t.task_id for t in relatives] if recursive: recurse_tasks(relatives, task_ids, dag_ids, task_id_to_dag) if upstream: relatives = task.get_flat_relatives(upstream=False) task_ids += [t.task_id for t in relatives] if recursive: recurse_tasks(relatives, task_ids, dag_ids, task_id_to_dag) TI = models.TaskInstance if dag.schedule_interval == '@once': dates = [start_date] else: dates = dag.date_range(start_date, end_date=end_date) tis = session.query(TI).filter( TI.dag_id.in_(dag_ids), TI.execution_date.in_(dates), TI.task_id.in_(task_ids)).all() tis_to_change = session.query(TI).filter( TI.dag_id.in_(dag_ids), TI.execution_date.in_(dates), TI.task_id.in_(task_ids), TI.state != State.SUCCESS).all() tasks = list(product(task_ids, dates)) tis_to_create = list( set(tasks) - set([(ti.task_id, ti.execution_date) for ti in tis])) tis_all_altered = list(chain( [(ti.task_id, ti.execution_date) for ti in tis_to_change], tis_to_create)) if len(tis_all_altered) > MAX_PERIODS: flash("Too many tasks at once (>{0})".format( MAX_PERIODS), 'error') return redirect(origin) if confirmed: for ti in tis_to_change: ti.state = State.SUCCESS session.commit() for task_id, task_execution_date in tis_to_create: ti = TI( task=task_id_to_dag[task_id].get_task(task_id), execution_date=task_execution_date, state=State.SUCCESS) session.add(ti) session.commit() session.commit() session.close() flash("Marked success on {} task instances".format( len(tis_all_altered))) return redirect(origin) else: if not tis_all_altered: flash("No task instances to mark as successful", 'error') response = redirect(origin) else: tis = [] for task_id, task_execution_date in tis_all_altered: tis.append(TI( task=task_id_to_dag[task_id].get_task(task_id), execution_date=task_execution_date, state=State.SUCCESS)) details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=( "Here's the list of task instances you are about " "to mark as successful:"), details=details,) return response @expose('/tree') @login_required @wwwutils.gzipped @wwwutils.action_logging def tree(self): dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_downstream=False, include_upstream=True) session = settings.Session() base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) DR = models.DagRun dag_runs = ( session.query(DR) .filter( DR.dag_id==dag.dag_id, DR.execution_date<=base_date, DR.execution_date>=min_date) .all() ) dag_runs = { dr.execution_date: alchemy_to_dict(dr) for dr in dag_runs} tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None task_instances = {} for ti in tis: tid = alchemy_to_dict(ti) dr = dag_runs.get(ti.execution_date) tid['external_trigger'] = dr['external_trigger'] if dr else False task_instances[(ti.task_id, ti.execution_date)] = tid expanded = [] # The default recursion traces every path so that tree view has full # expand/collapse functionality. After 5,000 nodes we stop and fall # back on a quick DFS search for performance. See PR #320. node_count = [0] node_limit = 5000 / max(1, len(dag.roots)) def recurse_nodes(task, visited): visited.add(task) node_count[0] += 1 children = [ recurse_nodes(t, visited) for t in task.upstream_list if node_count[0] < node_limit or t not in visited] # D3 tree uses children vs _children to define what is # expanded or not. The following block makes it such that # repeated nodes are collapsed by default. children_key = 'children' if task.task_id not in expanded: expanded.append(task.task_id) elif children: children_key = "_children" def set_duration(tid): if isinstance(tid, dict) and tid.get("state") == State.RUNNING: d = datetime.now() - dateutil.parser.parse(tid["start_date"]) tid["duration"] = d.total_seconds() return tid return { 'name': task.task_id, 'instances': [ set_duration(task_instances.get((task.task_id, d))) or { 'execution_date': d.isoformat(), 'task_id': task.task_id } for d in dates], children_key: children, 'num_dep': len(task.upstream_list), 'operator': task.task_type, 'retries': task.retries, 'owner': task.owner, 'start_date': task.start_date, 'end_date': task.end_date, 'depends_on_past': task.depends_on_past, 'ui_color': task.ui_color, } data = { 'name': '[DAG]', 'children': [recurse_nodes(t, set()) for t in dag.roots], 'instances': [ dag_runs.get(d) or {'execution_date': d.isoformat()} for d in dates], } data = json.dumps(data, indent=4, default=json_ser) session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) return self.render( 'airflow/tree.html', operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), root=root, form=form, dag=dag, data=data, blur=blur) @expose('/graph') @login_required @wwwutils.gzipped @wwwutils.action_logging def graph(self): session = settings.Session() dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) if dag_id not in dagbag.dags: flash('DAG "{0}" seems to be missing.'.format(dag_id), "error") return redirect('/admin/') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) arrange = request.args.get('arrange', dag.orientation) nodes = [] edges = [] for task in dag.tasks: nodes.append({ 'id': task.task_id, 'value': { 'label': task.task_id, 'labelStyle': "fill:{0};".format(task.ui_fgcolor), 'style': "fill:{0};".format(task.ui_color), } }) def get_upstream(task): for t in task.upstream_list: edge = { 'u': t.task_id, 'v': task.task_id, } if edge not in edges: edges.append(edge) get_upstream(t) for t in dag.roots: get_upstream(t) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() DR = models.DagRun drs = ( session.query(DR) .filter_by(dag_id=dag_id) .order_by(desc(DR.execution_date)).all() ) dr_choices = [] dr_state = None for dr in drs: dr_choices.append((dr.execution_date.isoformat(), dr.run_id)) if dttm == dr.execution_date: dr_state = dr.state class GraphForm(Form): execution_date = SelectField("DAG run", choices=dr_choices) arrange = SelectField("Layout", choices=( ('LR', "Left->Right"), ('RL', "Right->Left"), ('TB', "Top->Bottom"), ('BT', "Bottom->Top"), )) form = GraphForm( data={'execution_date': dttm.isoformat(), 'arrange': arrange}) task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} tasks = { t.task_id: { 'dag_id': t.dag_id, 'task_type': t.task_type, } for t in dag.tasks} if not tasks: flash("No tasks found", "error") session.commit() session.close() doc_md = markdown.markdown(dag.doc_md) if hasattr(dag, 'doc_md') else '' return self.render( 'airflow/graph.html', dag=dag, form=form, width=request.args.get('width', "100%"), height=request.args.get('height', "800"), execution_date=dttm.isoformat(), state_token=state_token(dr_state), doc_md=doc_md, arrange=arrange, operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), blur=blur, root=root or '', task_instances=json.dumps(task_instances, indent=2), tasks=json.dumps(tasks, indent=2), nodes=json.dumps(nodes, indent=2), edges=json.dumps(edges, indent=2),) @expose('/duration') @login_required @wwwutils.action_logging def duration(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=600, width="1200") cum_chart = nvd3.lineChart( name="cumLineChart", x_is_date=True, height=600, width="1200") for task in dag.tasks: y = [] x = [] cum_y = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): if ti.duration: dttm = wwwutils.epoch(ti.execution_date) x.append(dttm) y.append(float(ti.duration) / (60*60)) fails = session.query(models.TaskFail).filter_by( task_id=ti.task_id, dag_id=ti.dag_id, execution_date=ti.execution_date).all() fails_total = sum([f.duration for f in fails]) cum_y.append(float(ti.duration + fails_total) / (60*60)) if x: chart.add_serie(name=task.task_id, x=x, y=y) cum_chart.add_serie(name=task.task_id, x=x, y=cum_y) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildhtml() cum_chart.buildhtml() cum_chart_body = html.document_fromstring(str(cum_chart)).find('body') cum_chart_script = cum_chart_body.find('script') s_index = cum_chart_script.text.rfind('});') cum_chart_script.text = cum_chart_script.text[:s_index]\ + "$( document ).trigger('chartload')"\ + cum_chart_script.text[s_index:] return self.render( 'airflow/duration_chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart, cum_chart=html.tostring(cum_chart_body) ) @expose('/tries') @login_required @wwwutils.action_logging def tries(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart = nvd3.lineChart( name="lineChart", x_is_date=True, y_axis_format='d', height=600, width="1200") for task in dag.tasks: y = [] x = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): dttm = wwwutils.epoch(ti.execution_date) x.append(dttm) y.append(ti.try_number) if x: chart.add_serie(name=task.task_id, x=x, y=y) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) tries = sorted(list({ti.try_number for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if tries else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildhtml() return self.render( 'airflow/chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart ) @expose('/landing_times') @login_required @wwwutils.action_logging def landing_times(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=600, width="1200") for task in dag.tasks: y = [] x = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): ts = ti.execution_date if dag.schedule_interval: ts = dag.following_schedule(ts) if ti.end_date: dttm = wwwutils.epoch(ti.execution_date) secs = old_div((ti.end_date - ts).total_seconds(), 60*60) x.append(dttm) y.append(secs) if x: chart.add_serie(name=task.task_id, x=x, y=y) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) return self.render( 'airflow/chart.html', dag=dag, chart=chart, height="700px", demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, ) @expose('/paused') @login_required @wwwutils.action_logging def paused(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if request.args.get('is_paused') == 'false': orm_dag.is_paused = True else: orm_dag.is_paused = False session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) return "OK" @expose('/refresh') @login_required @wwwutils.action_logging def refresh(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if orm_dag: orm_dag.last_expired = datetime.now() session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) flash("DAG [{}] is now fresh as a daisy".format(dag_id)) return redirect(request.referrer) @expose('/refresh_all') @login_required @wwwutils.action_logging def refresh_all(self): dagbag.collect_dags(only_if_updated=False) flash("All DAGs are now up to date") return redirect('/') @expose('/gantt') @login_required @wwwutils.action_logging def gantt(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) demo_mode = conf.getboolean('webserver', 'demo_mode') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() form = DateTimeForm(data={'execution_date': dttm}) tis = [ ti for ti in dag.get_task_instances(session, dttm, dttm) if ti.start_date] tis = sorted(tis, key=lambda ti: ti.start_date) tasks = [] for ti in tis: end_date = ti.end_date if ti.end_date else datetime.now() tasks.append({ 'startDate': wwwutils.epoch(ti.start_date), 'endDate': wwwutils.epoch(end_date), 'isoStart': ti.start_date.isoformat()[:-4], 'isoEnd': end_date.isoformat()[:-4], 'taskName': ti.task_id, 'duration': "{}".format(end_date - ti.start_date)[:-4], 'status': ti.state, 'executionDate': ti.execution_date.isoformat(), }) states = {ti.state:ti.state for ti in tis} data = { 'taskNames': [ti.task_id for ti in tis], 'tasks': tasks, 'taskStatus': states, 'height': len(tis) * 25, } session.commit() session.close() return self.render( 'airflow/gantt.html', dag=dag, execution_date=dttm.isoformat(), form=form, data=json.dumps(data, indent=2), base_date='', demo_mode=demo_mode, root=root, ) @expose('/object/task_instances') @login_required @wwwutils.action_logging def task_instances(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: return ("Error: Invalid execution_date") task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} return json.dumps(task_instances) @expose('/variables/<form>', methods=["GET", "POST"]) @login_required @wwwutils.action_logging def variables(self, form): try: if request.method == 'POST': data = request.json if data: session = settings.Session() var = models.Variable(key=form, val=json.dumps(data)) session.add(var) session.commit() return "" else: return self.render( 'airflow/variables/{}.html'.format(form) ) except: return ("Error: form airflow/variables/{}.html " "not found.").format(form), 404 @expose('/varimport', methods=["GET", "POST"]) @login_required @wwwutils.action_logging def varimport(self): try: out = str(request.files['file'].read()) d = json.loads(out) except Exception: flash("Missing file or syntax error.") else: for k, v in d.items(): models.Variable.set(k, v, serialize_json=isinstance(v, dict)) flash("{} variable(s) successfully updated.".format(len(d))) return redirect('/admin/variable') class HomeView(AdminIndexView): @expose("/") @login_required def index(self): session = Session() DM = models.DagModel qry = None # restrict the dags shown if filter_by_owner and current user is not superuser do_filter = FILTER_BY_OWNER and (not current_user.is_superuser()) owner_mode = conf.get('webserver', 'OWNER_MODE').strip().lower() # read orm_dags from the db qry = session.query(DM) qry_fltr = [] if do_filter and owner_mode == 'ldapgroup': qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active, DM.owners.in_(current_user.ldap_groups) ).all() elif do_filter and owner_mode == 'user': qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active, DM.owners == current_user.user.username ).all() else: qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active ).all() orm_dags = {dag.dag_id: dag for dag in qry_fltr} import_errors = session.query(models.ImportError).all() for ie in import_errors: flash( "Broken DAG: [{ie.filename}] {ie.stacktrace}".format(ie=ie), "error") session.expunge_all() session.commit() session.close() # get a list of all non-subdag dags visible to everyone unfiltered_webserver_dags = [dag for dag in dagbag.dags.values() if not dag.parent_dag] # optionally filter to get only dags that the user should see if do_filter and owner_mode == 'ldapgroup': # only show dags owned by someone in @current_user.ldap_groups webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags if dag.owner in current_user.ldap_groups } elif do_filter and owner_mode == 'user': # only show dags owned by @current_user.user.username webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags if dag.owner == current_user.user.username } else: webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags } all_dag_ids = sorted(set(orm_dags.keys()) | set(webserver_dags.keys())) return self.render( 'airflow/dags.html', webserver_dags=webserver_dags, orm_dags=orm_dags, all_dag_ids=all_dag_ids) class QueryView(wwwutils.DataProfilingMixin, BaseView): @expose('/') @wwwutils.gzipped def query(self): session = settings.Session() dbs = session.query(models.Connection).order_by( models.Connection.conn_id).all() session.expunge_all() db_choices = list( ((db.conn_id, db.conn_id) for db in dbs if db.get_hook())) conn_id_str = request.args.get('conn_id') csv = request.args.get('csv') == "true" sql = request.args.get('sql') class QueryForm(Form): conn_id = SelectField("Layout", choices=db_choices) sql = TextAreaField("SQL", widget=wwwutils.AceEditorWidget()) data = { 'conn_id': conn_id_str, 'sql': sql, } results = None has_data = False error = False if conn_id_str: db = [db for db in dbs if db.conn_id == conn_id_str][0] hook = db.get_hook() try: df = hook.get_pandas_df(wwwutils.limit_sql(sql, QUERY_LIMIT, conn_type=db.conn_type)) # df = hook.get_pandas_df(sql) has_data = len(df) > 0 df = df.fillna('') results = df.to_html( classes=[ 'table', 'table-bordered', 'table-striped', 'no-wrap'], index=False, na_rep='', ) if has_data else '' except Exception as e: flash(str(e), 'error') error = True if has_data and len(df) == QUERY_LIMIT: flash( "Query output truncated at " + str(QUERY_LIMIT) + " rows", 'info') if not has_data and error: flash('No data', 'error') if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") form = QueryForm(request.form, data=data) session.commit() session.close() return self.render( 'airflow/query.html', form=form, title="Ad Hoc Query", results=results or '', has_data=has_data) class AirflowModelView(ModelView): list_template = 'airflow/model_list.html' edit_template = 'airflow/model_edit.html' create_template = 'airflow/model_create.html' column_display_actions = True page_size = 500 class ModelViewOnly(wwwutils.LoginMixin, AirflowModelView): """ Modifying the base ModelView class for non edit, browse only operations """ named_filter_urls = True can_create = False can_edit = False can_delete = False column_display_pk = True class PoolModelView(wwwutils.SuperUserMixin, AirflowModelView): column_list = ('pool', 'slots', 'used_slots', 'queued_slots') column_formatters = dict( pool=pool_link, used_slots=fused_slots, queued_slots=fqueued_slots) named_filter_urls = True class SlaMissModelView(wwwutils.SuperUserMixin, ModelViewOnly): verbose_name_plural = "SLA misses" verbose_name = "SLA miss" column_list = ( 'dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp') column_formatters = dict( task_id=task_instance_link, execution_date=datetime_f, timestamp=datetime_f, dag_id=dag_link) named_filter_urls = True column_searchable_list = ('dag_id', 'task_id',) column_filters = ( 'dag_id', 'task_id', 'email_sent', 'timestamp', 'execution_date') form_widget_args = { 'email_sent': {'disabled': True}, 'timestamp': {'disabled': True}, } class ChartModelView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "chart" verbose_name_plural = "charts" form_columns = ( 'label', 'owner', 'conn_id', 'chart_type', 'show_datatable', 'x_is_date', 'y_log_scale', 'show_sql', 'height', 'sql_layout', 'sql', 'default_params',) column_list = ( 'label', 'conn_id', 'chart_type', 'owner', 'last_modified',) column_formatters = dict(label=label_link, last_modified=datetime_f) column_default_sort = ('last_modified', True) create_template = 'airflow/chart/create.html' edit_template = 'airflow/chart/edit.html' column_filters = ('label', 'owner.username', 'conn_id') column_searchable_list = ('owner.username', 'label', 'sql') column_descriptions = { 'label': "Can include {{ templated_fields }} and {{ macros }}", 'chart_type': "The type of chart to be displayed", 'sql': "Can include {{ templated_fields }} and {{ macros }}.", 'height': "Height of the chart, in pixels.", 'conn_id': "Source database to run the query against", 'x_is_date': ( "Whether the X axis should be casted as a date field. Expect most " "intelligible date formats to get casted properly." ), 'owner': ( "The chart's owner, mostly used for reference and filtering in " "the list view." ), 'show_datatable': "Whether to display an interactive data table under the chart.", 'default_params': ( 'A dictionary of {"key": "values",} that define what the ' 'templated fields (parameters) values should be by default. ' 'To be valid, it needs to "eval" as a Python dict. ' 'The key values will show up in the url\'s querystring ' 'and can be altered there.' ), 'show_sql': "Whether to display the SQL statement as a collapsible " "section in the chart page.", 'y_log_scale': "Whether to use a log scale for the Y axis.", 'sql_layout': ( "Defines the layout of the SQL that the application should " "expect. Depending on the tables you are sourcing from, it may " "make more sense to pivot / unpivot the metrics." ), } column_labels = { 'sql': "SQL", 'height': "Chart Height", 'sql_layout': "SQL Layout", 'show_sql': "Display the SQL Statement", 'default_params': "Default Parameters", } form_choices = { 'chart_type': [ ('line', 'Line Chart'), ('spline', 'Spline Chart'), ('bar', 'Bar Chart'), ('column', 'Column Chart'), ('area', 'Overlapping Area Chart'), ('stacked_area', 'Stacked Area Chart'), ('percent_area', 'Percent Area Chart'), ('datatable', 'No chart, data table only'), ], 'sql_layout': [ ('series', 'SELECT series, x, y FROM ...'), ('columns', 'SELECT x, y (series 1), y (series 2), ... FROM ...'), ], 'conn_id': [ (c.conn_id, c.conn_id) for c in ( Session().query(models.Connection.conn_id) .group_by(models.Connection.conn_id) ) ] } def on_model_change(self, form, model, is_created=True): if model.iteration_no is None: model.iteration_no = 0 else: model.iteration_no += 1 if not model.user_id and current_user and hasattr(current_user, 'id'): model.user_id = current_user.id model.last_modified = datetime.now() chart_mapping = ( ('line', 'lineChart'), ('spline', 'lineChart'), ('bar', 'multiBarChart'), ('column', 'multiBarChart'), ('area', 'stackedAreaChart'), ('stacked_area', 'stackedAreaChart'), ('percent_area', 'stackedAreaChart'), ('datatable', 'datatable'), ) chart_mapping = dict(chart_mapping) class KnowEventView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "known event" verbose_name_plural = "known events" form_columns = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by', 'description') column_list = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by') column_default_sort = ("start_date", True) class KnowEventTypeView(wwwutils.DataProfilingMixin, AirflowModelView): pass # NOTE: For debugging / troubleshooting # mv = KnowEventTypeView( # models.KnownEventType, # Session, name="Known Event Types", category="Manage") # admin.add_view(mv) # class DagPickleView(SuperUserMixin, ModelView): # pass # mv = DagPickleView( # models.DagPickle, # Session, name="Pickles", category="Manage") # admin.add_view(mv) class VariableView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "Variable" verbose_name_plural = "Variables" list_template = 'airflow/variable_list.html' def hidden_field_formatter(view, context, model, name): if should_hide_value_for_key(model.key): return Markup('*' * 8) return getattr(model, name) form_columns = ( 'key', 'val', ) column_list = ('key', 'val', 'is_encrypted',) column_filters = ('key', 'val') column_searchable_list = ('key', 'val') form_widget_args = { 'is_encrypted': {'disabled': True}, 'val': { 'rows': 20, } } column_sortable_list = ( 'key', 'val', 'is_encrypted', ) column_formatters = { 'val': hidden_field_formatter } # Default flask-admin export functionality doesn't handle serialized json @action('varexport', 'Export', None) def action_varexport(self, ids): V = models.Variable session = settings.Session() qry = session.query(V).filter(V.id.in_(ids)).all() session.close() var_dict = {} d = json.JSONDecoder() for var in qry: val = None try: val = d.decode(var.val) except: val = var.val var_dict[var.key] = val response = make_response(json.dumps(var_dict, sort_keys=True, indent=4)) response.headers["Content-Disposition"] = "attachment; filename=variables.json" return response def on_form_prefill(self, form, id): if should_hide_value_for_key(form.key.data): form.val.data = '*' * 8 class XComView(wwwutils.LoginMixin, AirflowModelView): verbose_name = "XCom" verbose_name_plural = "XComs" page_size = 20 form_columns = ( 'key', 'value', 'execution_date', 'task_id', 'dag_id', ) form_extra_fields = { 'value': StringField('Value'), } column_filters = ('key', 'timestamp', 'execution_date', 'task_id', 'dag_id') column_searchable_list = ('key', 'timestamp', 'execution_date', 'task_id', 'dag_id') class JobModelView(ModelViewOnly): verbose_name_plural = "jobs" verbose_name = "job" column_default_sort = ('start_date', True) column_filters = ( 'job_type', 'dag_id', 'state', 'unixname', 'hostname', 'start_date', 'end_date', 'latest_heartbeat') column_formatters = dict( start_date=datetime_f, end_date=datetime_f, hostname=nobr_f, state=state_f, latest_heartbeat=datetime_f) class DagRunModelView(ModelViewOnly): verbose_name_plural = "DAG Runs" can_edit = True can_create = True column_editable_list = ('state',) verbose_name = "dag run" column_default_sort = ('execution_date', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } form_args = dict( dag_id=dict(validators=[validators.DataRequired()]) ) column_list = ( 'state', 'dag_id', 'execution_date', 'run_id', 'external_trigger') column_filters = column_list column_searchable_list = ('dag_id', 'state', 'run_id') column_formatters = dict( execution_date=datetime_f, state=state_f, start_date=datetime_f, dag_id=dag_link) @action('new_delete', "Delete", "Are you sure you want to delete selected records?") def action_new_delete(self, ids): session = settings.Session() deleted = set(session.query(models.DagRun) .filter(models.DagRun.id.in_(ids)) .all()) session.query(models.DagRun)\ .filter(models.DagRun.id.in_(ids))\ .delete(synchronize_session='fetch') session.commit() dirty_ids = [] for row in deleted: models.DagStat.set_dirty(row.dag_id, session=session) dirty_ids.append(row.dag_id) models.DagStat.clean_dirty(dirty_ids, session=session) session.close() @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_dagrun_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_dagrun_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_dagrun_state(ids, State.SUCCESS) @provide_session def set_dagrun_state(self, ids, target_state, session=None): try: DR = models.DagRun count = 0 dirty_ids = [] for dr in session.query(DR).filter(DR.id.in_(ids)).all(): dirty_ids.append(dr.dag_id) count += 1 dr.state = target_state if target_state == State.RUNNING: dr.start_date = datetime.now() else: dr.end_date = datetime.now() session.commit() models.DagStat.clean_dirty(dirty_ids, session=session) flash( "{count} dag runs were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') class LogModelView(ModelViewOnly): verbose_name_plural = "logs" verbose_name = "log" column_default_sort = ('dttm', True) column_filters = ('dag_id', 'task_id', 'execution_date') column_formatters = dict( dttm=datetime_f, execution_date=datetime_f, dag_id=dag_link) class TaskInstanceModelView(ModelViewOnly): verbose_name_plural = "task instances" verbose_name = "task instance" column_filters = ( 'state', 'dag_id', 'task_id', 'execution_date', 'hostname', 'queue', 'pool', 'operator', 'start_date', 'end_date') named_filter_urls = True column_formatters = dict( log_url=log_url_formatter, task_id=task_instance_link, hostname=nobr_f, state=state_f, execution_date=datetime_f, start_date=datetime_f, end_date=datetime_f, queued_dttm=datetime_f, dag_id=dag_link, duration=duration_f) column_searchable_list = ('dag_id', 'task_id', 'state') column_default_sort = ('start_date', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } column_list = ( 'state', 'dag_id', 'task_id', 'execution_date', 'operator', 'start_date', 'end_date', 'duration', 'job_id', 'hostname', 'unixname', 'priority_weight', 'queue', 'queued_dttm', 'try_number', 'pool', 'log_url') can_delete = True page_size = 500 @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_task_instance_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_task_instance_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_task_instance_state(ids, State.SUCCESS) @action('set_retry', "Set state to 'up_for_retry'", None) def action_set_retry(self, ids): self.set_task_instance_state(ids, State.UP_FOR_RETRY) @action('delete', lazy_gettext('Delete'), lazy_gettext('Are you sure you want to delete selected records?')) def action_delete(self, ids): """ As a workaround for AIRFLOW-277, this method overrides Flask-Admin's ModelView.action_delete(). TODO: this method should be removed once the below bug is fixed on Flask-Admin side. https://github.com/flask-admin/flask-admin/issues/1226 """ if 'sqlite' in conf.get('core', 'sql_alchemy_conn'): self.delete_task_instances(ids) else: super(TaskInstanceModelView, self).action_delete(ids) @provide_session def set_task_instance_state(self, ids, target_state, session=None): try: TI = models.TaskInstance count = len(ids) for id in ids: task_id, dag_id, execution_date = id.split(',') execution_date = datetime.strptime(execution_date, '%Y-%m-%d %H:%M:%S') ti = session.query(TI).filter(TI.task_id == task_id, TI.dag_id == dag_id, TI.execution_date == execution_date).one() ti.state = target_state session.commit() flash( "{count} task instances were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') @provide_session def delete_task_instances(self, ids, session=None): try: TI = models.TaskInstance count = 0 for id in ids: task_id, dag_id, execution_date = id.split(',') execution_date = datetime.strptime(execution_date, '%Y-%m-%d %H:%M:%S') count += session.query(TI).filter(TI.task_id == task_id, TI.dag_id == dag_id, TI.execution_date == execution_date).delete() session.commit() flash("{count} task instances were deleted".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to delete', 'error') def get_one(self, id): """ As a workaround for AIRFLOW-252, this method overrides Flask-Admin's ModelView.get_one(). TODO: this method should be removed once the below bug is fixed on Flask-Admin side. https://github.com/flask-admin/flask-admin/issues/1226 """ task_id, dag_id, execution_date = iterdecode(id) execution_date = dateutil.parser.parse(execution_date) return self.session.query(self.model).get((task_id, dag_id, execution_date)) class ConnectionModelView(wwwutils.SuperUserMixin, AirflowModelView): create_template = 'airflow/conn_create.html' edit_template = 'airflow/conn_edit.html' list_template = 'airflow/conn_list.html' form_columns = ( 'conn_id', 'conn_type', 'host', 'schema', 'login', 'password', 'port', 'extra', 'extra__jdbc__drv_path', 'extra__jdbc__drv_clsname', 'extra__google_cloud_platform__project', 'extra__google_cloud_platform__key_path', 'extra__google_cloud_platform__scope', ) verbose_name = "Connection" verbose_name_plural = "Connections" column_default_sort = ('conn_id', False) column_list = ('conn_id', 'conn_type', 'host', 'port', 'is_encrypted', 'is_extra_encrypted',) form_overrides = dict(_password=PasswordField) form_widget_args = { 'is_extra_encrypted': {'disabled': True}, 'is_encrypted': {'disabled': True}, } # Used to customized the form, the forms elements get rendered # and results are stored in the extra field as json. All of these # need to be prefixed with extra__ and then the conn_type ___ as in # extra__{conn_type}__name. You can also hide form elements and rename # others from the connection_form.js file form_extra_fields = { 'extra__jdbc__drv_path': StringField('Driver Path'), 'extra__jdbc__drv_clsname': StringField('Driver Class'), 'extra__google_cloud_platform__project': StringField('Project Id'), 'extra__google_cloud_platform__key_path': StringField('Keyfile Path'), 'extra__google_cloud_platform__scope': StringField('Scopes (comma seperated)'), } form_choices = { 'conn_type': models.Connection._types } def on_model_change(self, form, model, is_created): formdata = form.data if formdata['conn_type'] in ['jdbc', 'google_cloud_platform']: extra = { key:formdata[key] for key in self.form_extra_fields.keys() if key in formdata} model.extra = json.dumps(extra) @classmethod def alert_fernet_key(cls): fk = None try: fk = conf.get('core', 'fernet_key') except: pass return fk is None @classmethod def is_secure(cls): """ Used to display a message in the Connection list view making it clear that the passwords and `extra` field can't be encrypted. """ is_secure = False try: import cryptography conf.get('core', 'fernet_key') is_secure = True except: pass return is_secure def on_form_prefill(self, form, id): try: d = json.loads(form.data.get('extra', '{}')) except Exception as e: d = {} for field in list(self.form_extra_fields.keys()): value = d.get(field, '') if value: field = getattr(form, field) field.data = value class UserModelView(wwwutils.SuperUserMixin, AirflowModelView): verbose_name = "User" verbose_name_plural = "Users" column_default_sort = 'username' class VersionView(wwwutils.SuperUserMixin, LoggingMixin, BaseView): @expose('/') def version(self): # Look at the version from setup.py try: airflow_version = pkg_resources.require("airflow")[0].version except Exception as e: airflow_version = None self.logger.error(e) # Get the Git repo and git hash git_version = None try: with open(os.path.join(*[settings.AIRFLOW_HOME, 'airflow', 'git_version'])) as f: git_version = f.readline() except Exception as e: self.logger.error(e) # Render information title = "Version Info" return self.render('airflow/version.html', title=title, airflow_version=airflow_version, git_version=git_version) class ConfigurationView(wwwutils.SuperUserMixin, BaseView): @expose('/') def conf(self): raw = request.args.get('raw') == "true" title = "Airflow Configuration" subtitle = conf.AIRFLOW_CONFIG if conf.getboolean("webserver", "expose_config"): with open(conf.AIRFLOW_CONFIG, 'r') as f: config = f.read() table = [(section, key, value, source) for section, parameters in conf.as_dict(True, True).items() for key, (value, source) in parameters.items()] else: config = ( "# You Airflow administrator chose not to expose the " "configuration, most likely for security reasons.") table = None if raw: return Response( response=config, status=200, mimetype="application/text") else: code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/config.html', pre_subtitle=settings.HEADER + " v" + airflow.__version__, code_html=code_html, title=title, subtitle=subtitle, table=table) class DagModelView(wwwutils.SuperUserMixin, ModelView): column_list = ('dag_id', 'owners') column_editable_list = ('is_paused',) form_excluded_columns = ('is_subdag', 'is_active') column_searchable_list = ('dag_id',) column_filters = ( 'dag_id', 'owners', 'is_paused', 'is_active', 'is_subdag', 'last_scheduler_run', 'last_expired') form_widget_args = { 'last_scheduler_run': {'disabled': True}, 'fileloc': {'disabled': True}, 'is_paused': {'disabled': True}, 'last_pickled': {'disabled': True}, 'pickle_id': {'disabled': True}, 'last_loaded': {'disabled': True}, 'last_expired': {'disabled': True}, 'pickle_size': {'disabled': True}, 'scheduler_lock': {'disabled': True}, 'owners': {'disabled': True}, } column_formatters = dict( dag_id=dag_link, ) can_delete = False can_create = False page_size = 50 list_template = 'airflow/list_dags.html' named_filter_urls = True def get_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) ) def get_count_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_count_query() .filter(models.DagModel.is_active) .filter(~models.DagModel.is_subdag) )
apache-2.0
woutdenolf/spectrocrunch
spectrocrunch/visualization/tests/test_scene.py
1
2667
# -*- coding: utf-8 -*- import unittest import matplotlib.pyplot as plt import numpy as np from .. import scene from ...patch.pint import ureg class test_scene(unittest.TestCase): def test_images(self): n0, n1 = 5, 10 img = np.arange(n0 * n1).reshape(n0, n1) unit0 = ureg.mm unit1 = ureg.micrometer s1 = scene.Scene(unit0=unit0, unit1=unit1) s2 = scene.Scene(unit0=unit0, unit1=unit1) s2.transpose(True) # s2.flipx(increasing=True) s2.axlabels = ["dim0", "dim1"] s2.cmap = plt.get_cmap("gray") o1 = scene.Image( img, lim0=s1.q0([8, 8 + n0 - 1]), lim1=s1.q1([10 + n1 - 1, 10]) ) s1.register(o1) s2.register(o1) p0 = sorted(o1.datarange(0, border=False)) p1 = sorted(o1.datarange(1, border=False)) o = scene.Polyline([p0[0], p0[1], p0[1], p0[0]], [p1[0], p1[0], p1[1], p1[1]]) s1.register(o) s2.register(o) o.set_setting("scatter", True) o2 = scene.Image( img, lim0=s1.q0([-2, -2 + n0 - 1]), lim1=s1.q1([-1, -1 + n1 - 1]) ) s1.register(o2) s2.register(o2) o.set_setting("scatter", True) p0 = sorted(o2.datarange(0, border=False)) p1 = sorted(o2.datarange(1, border=False)) o = scene.Text( [p0[0], p0[1], p0[1], p0[0]], [p1[0], p1[0], p1[1], p1[1]], labels=[1, 2, 3, 4], ) s1.register(o) s2.register(o) f, ax = plt.subplots() s1.setaxes(ax) f, ax = plt.subplots() s2.setaxes(ax) # Update scene 1 s1.updateview() # Shift image, axes scaling and update scene 2 o1.lim[0] = s1.q0([9, 9 + n0 - 1]) s2.setdatarange(0, s1.q0([0, 1])) s2.setdatarange(1, s1.q1([0, 1])) s2.updateview() # plt.pause(0.01) # Update scene 1 s1.updateview() # Reset axes of scene 1 f, ax = plt.subplots() s1.setaxes(ax) # Shift image, axes offset, different normalization and update scene 1 o1.lim[0] = s1.q0([9, 9 + n0 - 1]) s1.set_settings({"cnorm": "power", "cnormargs": (0.1,)}) s1.updateview() # plt.pause(0.01) # plt.show() def test_suite(): """Test suite including all test suites""" testSuite = unittest.TestSuite() testSuite.addTest(test_scene("test_images")) return testSuite if __name__ == "__main__": import sys mysuite = test_suite() runner = unittest.TextTestRunner() if not runner.run(mysuite).wasSuccessful(): sys.exit(1)
mit
dato-code/SFrame
oss_src/unity/python/sframe/test/test_sarray.py
5
120681
# -*- coding: utf-8 -*- ''' Copyright (C) 2016 Turi All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. ''' from ..data_structures.sarray import SArray from ..util.timezone import GMT from . import util import binascii import pandas as pd import numpy as np import unittest import random import datetime as dt import copy import os import math import shutil import array import time import itertools import warnings import functools import tempfile import sys import six from nose.tools import nottest ####################################################### # Metrics tracking tests are in test_usage_metrics.py # ####################################################### class SArrayTest(unittest.TestCase): def setUp(self): self.int_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.bool_data = [x % 2 == 0 for x in range(10)] self.datetime_data = [dt.datetime(2013, 5, 7, 10, 4, 10), dt.datetime(1902, 10, 21, 10, 34, 10).replace(tzinfo=GMT(0.0)),None] self.datetime_data2 = [dt.datetime(2013, 5, 7, 10, 4, 10, 109321), dt.datetime(1902, 10, 21, 10, 34, 10, 991111).replace(tzinfo=GMT(0.0)),None] self.float_data = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.] self.string_data = ["abc", "def", "hello", "world", "pika", "chu", "hello", "world"] self.vec_data = [array.array('d', [i, i+1]) for i in self.int_data] self.list_data = [[i, str(i), i * 1.0] for i in self.int_data] self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] self.url = "http://s3-us-west-2.amazonaws.com/testdatasets/a_to_z.txt.gz" def __test_equal(self, _sarray, _data, _type): self.assertEqual(_sarray.dtype(), _type) self.assertEqual(len(_sarray), len(_data)) self.assertSequenceEqual(list(_sarray.head(_sarray.size())), _data) def __test_almost_equal(self, _sarray, _data, _type): self.assertEqual(_sarray.dtype(), _type) self.assertEqual(len(_sarray), len(_data)) l = list(_sarray) for i in range(len(l)): if type(l[i]) in (list, array.array): for j in range(len(l[i])): self.assertAlmostEqual(l[i][j], _data[i][j]) else: self.assertAlmostEqual(l[i], _data[i]) def __test_creation(self, data, dtype, expected): """ Create sarray from data with dtype, and test it equals to expected. """ s = SArray(data, dtype) self.__test_equal(s, expected, dtype) s = SArray(pd.Series(data), dtype) self.__test_equal(s, expected, dtype) def __test_creation_type_inference(self, data, expected_dtype, expected): """ Create sarray from data with dtype, and test it equals to expected. """ s = SArray(data) self.__test_equal(s, expected, expected_dtype) s = SArray(pd.Series(data)) self.__test_equal(s, expected, expected_dtype) def test_creation(self): self.__test_creation(self.int_data, int, self.int_data) self.__test_creation(self.int_data, float, [float(x) for x in self.int_data]) self.__test_creation(self.int_data, str, [str(x) for x in self.int_data]) self.__test_creation(self.float_data, float, self.float_data) self.assertRaises(TypeError, self.__test_creation, [self.float_data, int]) self.__test_creation(self.string_data, str, self.string_data) self.assertRaises(TypeError, self.__test_creation, [self.string_data, int]) self.assertRaises(TypeError, self.__test_creation, [self.string_data, float]) expected_output = [chr(x) for x in range(ord('a'), ord('a') + 26)] self.__test_equal(SArray(self.url, str), expected_output, str) self.__test_creation(self.vec_data, array.array, self.vec_data) self.__test_creation(self.list_data, list, self.list_data) self.__test_creation(self.dict_data, dict, self.dict_data) # test with type inference self.__test_creation_type_inference(self.int_data, int, self.int_data) self.__test_creation_type_inference(self.float_data, float, self.float_data) self.__test_creation_type_inference(self.bool_data, int, [int(x) for x in self.bool_data]) self.__test_creation_type_inference(self.string_data, str, self.string_data) self.__test_creation_type_inference(self.vec_data, array.array, self.vec_data) self.__test_creation_type_inference([np.bool_(True),np.bool_(False)],int,[1,0]) self.__test_creation((1,2,3,4), int, [1,2,3,4]) def test_list_with_none_creation(self): tlist=[[2,3,4],[5,6],[4,5,10,None]] g=SArray(tlist) self.assertEqual(len(g), len(tlist)) for i in range(len(tlist)): self.assertEqual(g[i], tlist[i]) def test_list_with_array_creation(self): import array t = array.array('d',[1.1,2,3,4,5.5]) g=SArray(t) self.assertEqual(len(g), len(t)) self.assertEqual(g.dtype(), float) glist = list(g) for i in range(len(glist)): self.assertAlmostEqual(glist[i], t[i]) t = array.array('i',[1,2,3,4,5]) g=SArray(t) self.assertEqual(len(g), len(t)) self.assertEqual(g.dtype(), int) glist = list(g) for i in range(len(glist)): self.assertEqual(glist[i], t[i]) def test_in(self): sint = SArray(self.int_data, int) self.assertTrue(5 in sint) self.assertFalse(20 in sint) sstr = SArray(self.string_data, str) self.assertTrue("abc" in sstr) self.assertFalse("zzzzzz" in sstr) self.assertFalse("" in sstr) self.__test_equal(sstr.contains("ll"), ["ll" in i for i in self.string_data], int) self.__test_equal(sstr.contains("a"), ["a" in i for i in self.string_data], int) svec = SArray([[1.0,2.0],[2.0,3.0],[3.0,4.0],[4.0,5.0]], array.array) self.__test_equal(svec.contains(1.0), [1,0,0,0], int) self.__test_equal(svec.contains(0.0), [0,0,0,0], int) self.__test_equal(svec.contains(2), [1,1,0,0], int) slist = SArray([[1,"22"],[2,"33"],[3,"44"],[4,None]], list) self.__test_equal(slist.contains(1.0), [1,0,0,0], int) self.__test_equal(slist.contains(3), [0,0,1,0], int) self.__test_equal(slist.contains("33"), [0,1,0,0], int) self.__test_equal(slist.contains("3"), [0,0,0,0], int) self.__test_equal(slist.contains(None), [0,0,0,1], int) sdict = SArray([{1:"2"},{2:"3"},{3:"4"},{"4":"5"}], dict) self.__test_equal(sdict.contains(1.0), [1,0,0,0], int) self.__test_equal(sdict.contains(3), [0,0,1,0], int) self.__test_equal(sdict.contains("4"), [0,0,0,1], int) self.__test_equal(sdict.contains("3"), [0,0,0,0], int) self.__test_equal(SArray(['ab','bc','cd']).is_in('abc'), [1,1,0], int) self.__test_equal(SArray(['a','b','c']).is_in(['a','b']), [1,1,0], int) self.__test_equal(SArray([1,2,3]).is_in(array.array('d',[1.0,2.0])), [1,1,0], int) self.__test_equal(SArray([1,2,None]).is_in([1, None]), [1,0,1], int) self.__test_equal(SArray([1,2,None]).is_in([1]), [1,0,0], int) def test_save_load(self): # Make sure these files don't exist before testing self._remove_sarray_files("intarr") self._remove_sarray_files("fltarr") self._remove_sarray_files("strarr") self._remove_sarray_files("vecarr") self._remove_sarray_files("listarr") self._remove_sarray_files("dictarr") sint = SArray(self.int_data, int) sflt = SArray([float(x) for x in self.int_data], float) sstr = SArray([str(x) for x in self.int_data], str) svec = SArray(self.vec_data, array.array) slist = SArray(self.list_data, list) sdict = SArray(self.dict_data, dict) sint.save('intarr.sidx') sflt.save('fltarr.sidx') sstr.save('strarr.sidx') svec.save('vecarr.sidx') slist.save('listarr.sidx') sdict.save('dictarr.sidx') sint2 = SArray('intarr.sidx') sflt2 = SArray('fltarr.sidx') sstr2 = SArray('strarr.sidx') svec2 = SArray('vecarr.sidx') slist2 = SArray('listarr.sidx') sdict2 = SArray('dictarr.sidx') self.assertRaises(IOError, lambda: SArray('__no_such_file__.sidx')) self.__test_equal(sint2, self.int_data, int) self.__test_equal(sflt2, [float(x) for x in self.int_data], float) self.__test_equal(sstr2, [str(x) for x in self.int_data], str) self.__test_equal(svec2, self.vec_data, array.array) self.__test_equal(slist2, self.list_data, list) self.__test_equal(sdict2, self.dict_data, dict) # Bad permission # Windows has a way more ridiculous way of setting permissions. I'm # sure windows will stop us from writing if we don't have # permission...probably no reason to test if sys.platform != 'win32': test_dir = 'test_dir' if os.path.exists(test_dir): os.removedirs(test_dir) os.makedirs(test_dir, mode=0000) with self.assertRaises(IOError): sint.save(os.path.join(test_dir, 'bad.sidx')) # Permissions will affect this test first, so no need # to write something here with self.assertRaises(IOError): sint3 = SArray(os.path.join(test_dir, 'bad.sidx')) os.removedirs(test_dir) #cleanup del sint2 del sflt2 del sstr2 del svec2 del slist2 del sdict2 self._remove_sarray_files("intarr") self._remove_sarray_files("fltarr") self._remove_sarray_files("strarr") self._remove_sarray_files("vecarr") self._remove_sarray_files("listarr") self._remove_sarray_files("dictarr") def test_save_load_text(self): self._remove_single_file('txt_int_arr.txt') sint = SArray(self.int_data, int) sint.save('txt_int_arr.txt') self.assertTrue(os.path.exists('txt_int_arr.txt')) f = open('txt_int_arr.txt') lines = f.readlines() for i in range(len(sint)): self.assertEquals(int(lines[i]), sint[i]) self._remove_single_file('txt_int_arr.txt') self._remove_single_file('txt_int_arr') sint.save('txt_int_arr', format='text') self.assertTrue(os.path.exists('txt_int_arr')) f = open('txt_int_arr') lines = f.readlines() for i in range(len(sint)): self.assertEquals(int(lines[i]), sint[i]) self._remove_single_file('txt_int_arr') def _remove_single_file(self, filename): try: os.remove(filename) except: pass def _remove_sarray_files(self, prefix): filelist = [ f for f in os.listdir(".") if f.startswith(prefix) ] for f in filelist: shutil.rmtree(f) def test_transform(self): sa_char = SArray(self.url, str) sa_int = sa_char.apply(lambda char: ord(char), int) expected_output = [x for x in range(ord('a'), ord('a') + 26)] self.__test_equal(sa_int, expected_output, int) # Test randomness across segments, randomized sarray should have different elemetns. sa_random = SArray(range(0, 16), int).apply(lambda x: random.randint(0, 1000), int) vec = list(sa_random.head(sa_random.size())) self.assertFalse(all([x == vec[0] for x in vec])) # test transform with missing values sa = SArray([1,2,3,None,4,5]) sa1 = sa.apply(lambda x : x + 1) self.__test_equal(sa1, [2,3,4,None,5,6], int) def test_transform_with_multiple_lambda(self): sa_char = SArray(self.url, str) sa_int = sa_char.apply(lambda char: ord(char), int) sa2_int = sa_int.apply(lambda val: val + 1, int) expected_output = [x for x in range(ord('a') + 1, ord('a') + 26 + 1)] self.__test_equal(sa2_int, expected_output, int) def test_transform_with_exception(self): sa_char = SArray(['a' for i in range(10000)], str) # # type mismatch exception self.assertRaises(TypeError, lambda: sa_char.apply(lambda char: char, int).head(1)) # # divide by 0 exception self.assertRaises(ZeroDivisionError, lambda: sa_char.apply(lambda char: ord(char) / 0, float)) def test_transform_with_type_inference(self): sa_char = SArray(self.url, str) sa_int = sa_char.apply(lambda char: ord(char)) expected_output = [x for x in range(ord('a'), ord('a') + 26)] self.__test_equal(sa_int, expected_output, int) sa_bool = sa_char.apply(lambda char: ord(char) > ord('c')) expected_output = [int(x > ord('c')) for x in range(ord('a'), ord('a') + 26)] self.__test_equal(sa_bool, expected_output, int) # # divide by 0 exception self.assertRaises(ZeroDivisionError, lambda: sa_char.apply(lambda char: ord(char) / 0)) # Test randomness across segments, randomized sarray should have different elemetns. sa_random = SArray(range(0, 16), int).apply(lambda x: random.randint(0, 1000)) vec = list(sa_random.head(sa_random.size())) self.assertFalse(all([x == vec[0] for x in vec])) def test_transform_on_lists(self): sa_int = SArray(self.int_data, int) sa_vec2 = sa_int.apply(lambda x: [x, x+1, str(x)]) expected = [[i, i + 1, str(i)] for i in self.int_data] self.__test_equal(sa_vec2, expected, list) sa_int_again = sa_vec2.apply(lambda x: int(x[0])) self.__test_equal(sa_int_again, self.int_data, int) # transform from vector to vector sa_vec = SArray(self.vec_data, array.array) sa_vec2 = sa_vec.apply(lambda x: x) self.__test_equal(sa_vec2, self.vec_data, array.array) # transform on list sa_list = SArray(self.list_data, list) sa_list2 = sa_list.apply(lambda x: x) self.__test_equal(sa_list2, self.list_data, list) # transform dict to list sa_dict = SArray(self.dict_data, dict) # Python 3 doesn't return keys in same order from identical dictionaries. sort_by_type = lambda x : str(type(x)) sa_list = sa_dict.apply(lambda x: sorted(list(x), key = sort_by_type)) self.__test_equal(sa_list, [sorted(list(x), key = sort_by_type) for x in self.dict_data], list) def test_transform_dict(self): # lambda accesses dict sa_dict = SArray([{'a':1}, {1:2}, {'c': 'a'}, None], dict) sa_bool_r = sa_dict.apply(lambda x: 'a' in x if x != None else None, skip_undefined=False) expected_output = [1, 0, 0, None] self.__test_equal(sa_bool_r, expected_output, int) # lambda returns dict expected_output = [{'a':1}, {1:2}, None, {'c': 'a'}] sa_dict = SArray(expected_output, dict) lambda_out = sa_dict.apply(lambda x: x) self.__test_equal(lambda_out, expected_output, dict) def test_filter_dict(self): expected_output = [{'a':1}] sa_dict = SArray(expected_output, dict) ret = sa_dict.filter(lambda x: 'a' in x) self.__test_equal(ret, expected_output, dict) # try second time to make sure the lambda system still works expected_output = [{1:2}] sa_dict = SArray(expected_output, dict) lambda_out = sa_dict.filter(lambda x: 1 in x) self.__test_equal(lambda_out, expected_output, dict) def test_filter(self): # test empty s = SArray([], float) no_change = s.filter(lambda x : x == 0) self.assertEqual(no_change.size(), 0) # test normal case s = SArray(self.int_data, int) middle_of_array = s.filter(lambda x: x > 3 and x < 8) self.assertEqual(list(middle_of_array.head(10)), [x for x in range(4,8)]) # test normal string case s = SArray(self.string_data, str) exp_val_list = [x for x in self.string_data if x != 'world'] # Remove all words whose second letter is not in the first half of the alphabet second_letter = s.filter(lambda x: len(x) > 1 and (ord(x[1]) > ord('a')) and (ord(x[1]) < ord('n'))) self.assertEqual(list(second_letter.head(10)), exp_val_list) # test not-a-lambda def a_filter_func(x): return ((x > 4.4) and (x < 6.8)) s = SArray(self.int_data, float) another = s.filter(a_filter_func) self.assertEqual(list(another.head(10)), [5.,6.]) sa = SArray(self.float_data) # filter by self sa2 = sa[sa] self.assertEquals(list(sa.head(10)), list(sa2.head(10))) # filter by zeros sa_filter = SArray([0,0,0,0,0,0,0,0,0,0]) sa2 = sa[sa_filter] self.assertEquals(len(sa2), 0) # filter by wrong size sa_filter = SArray([0,2,5]) with self.assertRaises(IndexError): sa2 = sa[sa_filter] def test_any_all(self): s = SArray([0,1,2,3,4,5,6,7,8,9], int) self.assertEqual(s.any(), True) self.assertEqual(s.all(), False) s = SArray([0,0,0,0,0], int) self.assertEqual(s.any(), False) self.assertEqual(s.all(), False) s = SArray(self.string_data, str) self.assertEqual(s.any(), True) self.assertEqual(s.all(), True) s = SArray(self.int_data, int) self.assertEqual(s.any(), True) self.assertEqual(s.all(), True) # test empty s = SArray([], int) self.assertEqual(s.any(), False) self.assertEqual(s.all(), True) s = SArray([[], []], array.array) self.assertEqual(s.any(), False) self.assertEqual(s.all(), False) s = SArray([[],[1.0]], array.array) self.assertEqual(s.any(), True) self.assertEqual(s.all(), False) def test_astype(self): # test empty s = SArray([], int) as_out = s.astype(float) self.assertEqual(as_out.dtype(), float) # test float -> int s = SArray(list(map(lambda x: x+0.2, self.float_data)), float) as_out = s.astype(int) self.assertEqual(list(as_out.head(10)), self.int_data) # test int->string s = SArray(self.int_data, int) as_out = s.astype(str) self.assertEqual(list(as_out.head(10)), list(map(lambda x: str(x), self.int_data))) i_out = as_out.astype(int) self.assertEqual(list(i_out.head(10)), list(s.head(10))) s = SArray(self.vec_data, array.array) with self.assertRaises(RuntimeError): s.astype(int) with self.assertRaises(RuntimeError): s.astype(float) s = SArray(["a","1","2","3"]) with self.assertRaises(RuntimeError): s.astype(int) self.assertEqual(list(s.astype(int,True).head(4)), [None,1,2,3]) s = SArray(["[1 2 3]","[4;5]"]) ret = list(s.astype(array.array).head(2)) self.assertEqual(ret, [array.array('d',[1,2,3]),array.array('d',[4,5])]) s = SArray(["[1,\"b\",3]","[4,5]"]) ret = list(s.astype(list).head(2)) self.assertEqual(ret, [[1,"b",3],[4,5]]) s = SArray(["{\"a\":2,\"b\":3}","{}"]) ret = list(s.astype(dict).head(2)) self.assertEqual(ret, [{"a":2,"b":3},{}]) s = SArray(["[1abc]"]) ret = list(s.astype(list).head(1)) self.assertEqual(ret, [["1abc"]]) s = SArray(["{1xyz:1a,2b:2}"]) ret = list(s.astype(dict).head(1)) self.assertEqual(ret, [{"1xyz":"1a","2b":2}]) # astype between list and array s = SArray([array.array('d',[1.0,2.0]), array.array('d',[2.0,3.0])]) ret = list(s.astype(list)) self.assertEqual(ret, [[1.0, 2.0], [2.0,3.0]]) ret = list(s.astype(list).astype(array.array)) self.assertEqual(list(s), list(ret)) with self.assertRaises(RuntimeError): ret = list(SArray([["a",1.0],["b",2.0]]).astype(array.array)) badcast = list(SArray([["a",1.0],["b",2.0]]).astype(array.array, undefined_on_failure=True)) self.assertEqual(badcast, [None, None]) def test_clip(self): # invalid types s = SArray(self.string_data, str) with self.assertRaises(RuntimeError): s.clip(25,26) with self.assertRaises(RuntimeError): s.clip_lower(25) with self.assertRaises(RuntimeError): s.clip_upper(26) # int w/ int, test lower and upper functions too # int w/float, no change s = SArray(self.int_data, int) clip_out = s.clip(3,7).head(10) # test that our list isn't cast to float if nothing happened clip_out_nc = s.clip(0.2, 10.2).head(10) lclip_out = s.clip_lower(3).head(10) rclip_out = s.clip_upper(7).head(10) self.assertEqual(len(clip_out), len(self.int_data)) self.assertEqual(len(lclip_out), len(self.int_data)) self.assertEqual(len(rclip_out), len(self.int_data)) for i in range(0,len(clip_out)): if i < 2: self.assertEqual(clip_out[i], 3) self.assertEqual(lclip_out[i], 3) self.assertEqual(rclip_out[i], self.int_data[i]) self.assertEqual(clip_out_nc[i], self.int_data[i]) elif i > 6: self.assertEqual(clip_out[i], 7) self.assertEqual(lclip_out[i], self.int_data[i]) self.assertEqual(rclip_out[i], 7) self.assertEqual(clip_out_nc[i], self.int_data[i]) else: self.assertEqual(clip_out[i], self.int_data[i]) self.assertEqual(clip_out_nc[i], self.int_data[i]) # int w/float, change # float w/int # float w/float clip_out = s.clip(2.8, 7.2).head(10) fs = SArray(self.float_data, float) ficlip_out = fs.clip(3, 7).head(10) ffclip_out = fs.clip(2.8, 7.2).head(10) for i in range(0,len(clip_out)): if i < 2: self.assertAlmostEqual(clip_out[i], 2.8) self.assertAlmostEqual(ffclip_out[i], 2.8) self.assertAlmostEqual(ficlip_out[i], 3.) elif i > 6: self.assertAlmostEqual(clip_out[i], 7.2) self.assertAlmostEqual(ffclip_out[i], 7.2) self.assertAlmostEqual(ficlip_out[i], 7.) else: self.assertAlmostEqual(clip_out[i], self.float_data[i]) self.assertAlmostEqual(ffclip_out[i], self.float_data[i]) self.assertAlmostEqual(ficlip_out[i], self.float_data[i]) vs = SArray(self.vec_data, array.array); clipvs = vs.clip(3, 7).head(100) self.assertEqual(len(clipvs), len(self.vec_data)); for i in range(0, len(clipvs)): a = clipvs[i] b = self.vec_data[i] self.assertEqual(len(a), len(b)) for j in range(0, len(b)): if b[j] < 3: b[j] = 3 elif b[j] > 7: b[j] = 7 self.assertEqual(a, b) def test_missing(self): s=SArray(self.int_data, int) self.assertEqual(s.num_missing(), 0) s=SArray(self.int_data + [None], int) self.assertEqual(s.num_missing(), 1) s=SArray(self.float_data, float) self.assertEqual(s.num_missing(), 0) s=SArray(self.float_data + [None], float) self.assertEqual(s.num_missing(), 1) s=SArray(self.string_data, str) self.assertEqual(s.num_missing(), 0) s=SArray(self.string_data + [None], str) self.assertEqual(s.num_missing(), 1) s=SArray(self.vec_data, array.array) self.assertEqual(s.num_missing(), 0) s=SArray(self.vec_data + [None], array.array) self.assertEqual(s.num_missing(), 1) def test_nonzero(self): # test empty s = SArray([],int) nz_out = s.nnz() self.assertEqual(nz_out, 0) # test all nonzero s = SArray(self.float_data, float) nz_out = s.nnz() self.assertEqual(nz_out, len(self.float_data)) # test all zero s = SArray([0 for x in range(0,10)], int) nz_out = s.nnz() self.assertEqual(nz_out, 0) # test strings str_list = copy.deepcopy(self.string_data) str_list.append("") s = SArray(str_list, str) nz_out = s.nnz() self.assertEqual(nz_out, len(self.string_data)) def test_std_var(self): # test empty s = SArray([], int) self.assertTrue(s.std() is None) self.assertTrue(s.var() is None) # increasing ints s = SArray(self.int_data, int) self.assertAlmostEqual(s.var(), 8.25) self.assertAlmostEqual(s.std(), 2.8722813) # increasing floats s = SArray(self.float_data, float) self.assertAlmostEqual(s.var(), 8.25) self.assertAlmostEqual(s.std(), 2.8722813) # vary ddof self.assertAlmostEqual(s.var(ddof=3), 11.7857143) self.assertAlmostEqual(s.var(ddof=6), 20.625) self.assertAlmostEqual(s.var(ddof=9), 82.5) self.assertAlmostEqual(s.std(ddof=3), 3.4330328) self.assertAlmostEqual(s.std(ddof=6), 4.5414755) self.assertAlmostEqual(s.std(ddof=9), 9.08295106) # bad ddof with self.assertRaises(RuntimeError): s.var(ddof=11) with self.assertRaises(RuntimeError): s.std(ddof=11) # bad type s = SArray(self.string_data, str) with self.assertRaises(RuntimeError): s.std() with self.assertRaises(RuntimeError): s.var() # overflow test huge_int = 9223372036854775807 s = SArray([1, huge_int], int) self.assertAlmostEqual(s.var(), 21267647932558653957237540927630737409.0) self.assertAlmostEqual(s.std(), 4611686018427387900.0) def test_tail(self): # test empty s = SArray([], int) self.assertEqual(len(s.tail()), 0) # test standard tail s = SArray([x for x in range(0,40)], int) self.assertEqual(list(s.tail()), [x for x in range(30,40)]) # smaller amount self.assertEqual(list(s.tail(3)), [x for x in range(37,40)]) # larger amount self.assertEqual(list(s.tail(40)), [x for x in range(0,40)]) # too large self.assertEqual(list(s.tail(81)), [x for x in range(0,40)]) def test_max_min_sum_mean(self): # negative and positive s = SArray([-2,-1,0,1,2], int) self.assertEqual(s.max(), 2) self.assertEqual(s.min(), -2) self.assertEqual(s.sum(), 0) self.assertAlmostEqual(s.mean(), 0.) # test valid and invalid types s = SArray(self.string_data, str) with self.assertRaises(RuntimeError): s.max() with self.assertRaises(RuntimeError): s.min() with self.assertRaises(RuntimeError): s.sum() with self.assertRaises(RuntimeError): s.mean() s = SArray(self.int_data, int) self.assertEqual(s.max(), 10) self.assertEqual(s.min(), 1) self.assertEqual(s.sum(), 55) self.assertAlmostEqual(s.mean(), 5.5) s = SArray(self.float_data, float) self.assertEqual(s.max(), 10.) self.assertEqual(s.min(), 1.) self.assertEqual(s.sum(), 55.) self.assertAlmostEqual(s.mean(), 5.5) # test all negative s = SArray(list(map(lambda x: x*-1, self.int_data)), int) self.assertEqual(s.max(), -1) self.assertEqual(s.min(), -10) self.assertEqual(s.sum(), -55) self.assertAlmostEqual(s.mean(), -5.5) # test empty s = SArray([], float) self.assertTrue(s.max() is None) self.assertTrue(s.min() is None) self.assertTrue(s.mean() is None) # test sum t = SArray([], float).sum() self.assertTrue(type(t) == float) self.assertTrue(t == 0.0) t = SArray([], int).sum() self.assertTrue(type(t) == int or type(t) == long) self.assertTrue(t == 0) self.assertTrue(SArray([], array.array).sum() == array.array('d',[])) # test big ints huge_int = 9223372036854775807 s = SArray([1, huge_int], int) self.assertEqual(s.max(), huge_int) self.assertEqual(s.min(), 1) # yes, we overflow self.assertEqual(s.sum(), (huge_int+1)*-1) # ...but not here self.assertAlmostEqual(s.mean(), 4611686018427387904.) a = SArray([[1,2],[1,2],[1,2]], array.array) self.assertEqual(a.sum(), array.array('d', [3,6])) self.assertEqual(a.mean(), array.array('d', [1,2])) with self.assertRaises(RuntimeError): a.max() with self.assertRaises(RuntimeError): a.min() a = SArray([[1,2],[1,2],[1,2,3]], array.array) with self.assertRaises(RuntimeError): a.sum() with self.assertRaises(RuntimeError): a.mean() def test_max_min_sum_mean_missing(self): # negative and positive s = SArray([-2,0,None,None,None], int) self.assertEqual(s.max(), 0) self.assertEqual(s.min(), -2) self.assertEqual(s.sum(), -2) self.assertAlmostEqual(s.mean(), -1) s = SArray([None,None,None], int) self.assertEqual(s.max(), None) self.assertEqual(s.min(), None) self.assertEqual(s.sum(), 0) self.assertEqual(s.mean(), None) def test_python_special_functions(self): s = SArray([], int) self.assertEqual(len(s), 0) self.assertEqual(str(s), '[]') self.assertRaises(ValueError, lambda: bool(s)) # increasing ints s = SArray(self.int_data, int) self.assertEqual(len(s), len(self.int_data)) self.assertEqual(list(s), self.int_data) self.assertRaises(ValueError, lambda: bool(s)) realsum = sum(self.int_data) sum1 = sum([x for x in s]) sum2 = s.sum() sum3 = s.apply(lambda x:x, int).sum() self.assertEquals(sum1, realsum) self.assertEquals(sum2, realsum) self.assertEquals(sum3, realsum) # abs s=np.array(range(-10, 10)) t = SArray(s, int) self.__test_equal(abs(t), list(abs(s)), int) t = SArray(s, float) self.__test_equal(abs(t), list(abs(s)), float) t = SArray([s], array.array) self.__test_equal(SArray(abs(t)[0]), list(abs(s)), float) def test_scalar_operators(self): s=np.array([1,2,3,4,5,6,7,8,9,10]); t = SArray(s, int) self.__test_equal(t + 1, list(s + 1), int) self.__test_equal(t - 1, list(s - 1), int) # we handle division differently. All divisions cast to float self.__test_equal(t / 2, list(s / 2.0), float) self.__test_equal(t * 2, list(s * 2), int) self.__test_equal(t ** 2, list(s ** 2), float) self.__test_almost_equal(t ** 0.5, list(s ** 0.5), float) self.__test_equal(((t ** 2) ** 0.5 + 1e-8).astype(int), list(s), int) self.__test_equal(t < 5, list(s < 5), int) self.__test_equal(t > 5, list(s > 5), int) self.__test_equal(t <= 5, list(s <= 5), int) self.__test_equal(t >= 5, list(s >= 5), int) self.__test_equal(t == 5, list(s == 5), int) self.__test_equal(t != 5, list(s != 5), int) self.__test_equal(t % 5, list(s % 5), int) self.__test_equal(t // 5, list(s // 5), int) self.__test_equal(t + 1, list(s + 1), int) self.__test_equal(+t, list(+s), int) self.__test_equal(-t, list(-s), int) self.__test_equal(1.5 - t, list(1.5 - s), float) self.__test_equal(2.0 / t, list(2.0 / s), float) self.__test_equal(2 / t, list(2.0 / s), float) self.__test_equal(2.5 * t, list(2.5 * s), float) self.__test_equal(2**t, list(2**s), float) s_neg = np.array([-1,-2,-3,5,6,7,8,9,10]); t_neg = SArray(s_neg, int) self.__test_equal(t_neg // 5, list(s_neg // 5), int) self.__test_equal(t_neg % 5, list(s_neg % 5), int) s=["a","b","c"] t = SArray(s, str) self.__test_equal(t + "x", [i + "x" for i in s], str) with self.assertRaises(RuntimeError): t - 'x' with self.assertRaises(RuntimeError): t * 'x' with self.assertRaises(RuntimeError): t / 'x' s = SArray(self.vec_data, array.array) self.__test_equal(s + 1, [array.array('d', [float(j) + 1 for j in i]) for i in self.vec_data], array.array) self.__test_equal(s - 1, [array.array('d', [float(j) - 1 for j in i]) for i in self.vec_data], array.array) self.__test_equal(s * 2, [array.array('d', [float(j) * 2 for j in i]) for i in self.vec_data], array.array) self.__test_equal(s / 2, [array.array('d', [float(j) / 2 for j in i]) for i in self.vec_data], array.array) s = SArray([1,2,3,4,None]) self.__test_equal(s == None, [0,0,0,0,1], int) self.__test_equal(s != None, [1,1,1,1,0], int) def test_modulus_operator(self): l = [-5,-4,-3,-2,-1,0,1,2,3,4,5] t = SArray(l, int) self.__test_equal(t % 2, [i % 2 for i in l], int) self.__test_equal(t % -2, [i % -2 for i in l], int) def test_vector_operators(self): s=np.array([1,2,3,4,5,6,7,8,9,10]); s2=np.array([5,4,3,2,1,10,9,8,7,6]); t = SArray(s, int) t2 = SArray(s2, int) self.__test_equal(t + t2, list(s + s2), int) self.__test_equal(t - t2, list(s - s2), int) # we handle division differently. All divisions cast to float self.__test_equal(t / t2, list(s.astype(float) / s2), float) self.__test_equal(t * t2, list(s * s2), int) self.__test_equal(t ** t2, list(s ** s2), float) self.__test_almost_equal(t ** (1.0 / t2), list(s ** (1.0 / s2)), float) self.__test_equal(t > t2, list(s > s2), int) self.__test_equal(t <= t2, list(s <= s2), int) self.__test_equal(t >= t2, list(s >= s2), int) self.__test_equal(t == t2, list(s == s2), int) self.__test_equal(t != t2, list(s != s2), int) s = SArray(self.vec_data, array.array) self.__test_almost_equal(s + s, [array.array('d', [float(j) + float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s - s, [array.array('d', [float(j) - float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s * s, [array.array('d', [float(j) * float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s / s, [array.array('d', [float(j) / float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s ** s, [array.array('d', [float(j) ** float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s // s, [array.array('d', [float(j) // float(j) for j in i]) for i in self.vec_data], array.array) t = SArray(self.float_data, float) self.__test_almost_equal(s + t, [array.array('d', [float(j) + i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s - t, [array.array('d', [float(j) - i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s * t, [array.array('d', [float(j) * i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s / t, [array.array('d', [float(j) / i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s ** t, [array.array('d', [float(j) ** i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s // t, [array.array('d', [float(j) // i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(+s, [array.array('d', [float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(-s, [array.array('d', [-float(j) for j in i]) for i in self.vec_data], array.array) neg_float_data = [-v for v in self.float_data] t = SArray(neg_float_data, float) self.__test_almost_equal(s + t, [array.array('d', [float(j) + i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s - t, [array.array('d', [float(j) - i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s * t, [array.array('d', [float(j) * i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s / t, [array.array('d', [float(j) / i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s ** t, [array.array('d', [float(j) ** i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s // t, [array.array('d', [float(j) // i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(t // s, [array.array('d', [i[1] // float(j) for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) s = SArray([1,2,3,4,None]) self.assertTrue((s==s).all()) s = SArray([1,2,3,4,None]) self.assertFalse((s!=s).any()) def test_div_corner(self): def try_eq_sa_val(left_val, right_val): if type(left_val) is list: left_val = array.array('d', left_val) if type(right_val) is list: right_val = array.array('d', right_val) left_type = type(left_val) v1 = (SArray([left_val], left_type) // right_val)[0] if type(right_val) is array.array: if type(left_val) is array.array: v2 = array.array('d', [lv // rv for lv, rv in zip(left_val, right_val)]) else: v2 = array.array('d', [left_val // rv for rv in right_val]) else: if type(left_val) is array.array: v2 = array.array('d', [lv // right_val for lv in left_val]) else: v2 = left_val // right_val if type(v1) in six.integer_types: self.assertTrue(type(v2) in six.integer_types) else: self.assertEqual(type(v1), type(v2)) self.assertEqual(v1, v2) try_eq_sa_val(1, 2) try_eq_sa_val(1.0, 2) try_eq_sa_val(1, 2.0) try_eq_sa_val(1.0, 2.0) try_eq_sa_val(-1, 2) try_eq_sa_val(-1.0, 2) try_eq_sa_val(-1, 2.0) try_eq_sa_val(-1.0, 2.0) try_eq_sa_val([1, -1], 2) try_eq_sa_val([1, -1], 2.0) try_eq_sa_val(2,[3, -3]) try_eq_sa_val(2.0,[3, -3]) def test_floodiv_corner(self): def try_eq_sa_val(left_val, right_val): if type(left_val) is list: left_val = array.array('d', left_val) if type(right_val) is list: right_val = array.array('d', right_val) left_type = type(left_val) v1 = (SArray([left_val], left_type) // right_val)[0] if type(right_val) is array.array: if type(left_val) is array.array: v2 = array.array('d', [lv // rv for lv, rv in zip(left_val, right_val)]) else: v2 = array.array('d', [left_val // rv for rv in right_val]) else: if type(left_val) is array.array: v2 = array.array('d', [lv // right_val for lv in left_val]) else: v2 = left_val // right_val if type(v1) in six.integer_types: self.assertTrue(type(v2) in six.integer_types) else: self.assertEqual(type(v1), type(v2)) self.assertEqual(v1, v2) try_eq_sa_val(1, 2) try_eq_sa_val(1.0, 2) try_eq_sa_val(1, 2.0) try_eq_sa_val(1.0, 2.0) try_eq_sa_val(-1, 2) try_eq_sa_val(-1.0, 2) try_eq_sa_val(-1, 2.0) try_eq_sa_val(-1.0, 2.0) try_eq_sa_val([1, -1], 2) try_eq_sa_val([1, -1], 2.0) try_eq_sa_val(2,[3, -3]) try_eq_sa_val(2.0,[3, -3]) from math import isnan def try_eq_sa_correct(left_val, right_val, correct): if type(left_val) is list: left_val = array.array('d', left_val) if type(right_val) is list: right_val = array.array('d', right_val) left_type = type(left_val) v1 = (SArray([left_val], left_type) // right_val)[0] if type(correct) is not list: v1 = [v1] correct = [correct] for v, c in zip(v1, correct): if type(v) is float and isnan(v): assert isnan(c) else: self.assertEqual(type(v), type(c)) self.assertEqual(v, c) try_eq_sa_correct(1, 0, None) try_eq_sa_correct(0, 0, None) try_eq_sa_correct(-1, 0, None) try_eq_sa_correct(1.0, 0, float('inf')) try_eq_sa_correct(0.0, 0, float('nan')) try_eq_sa_correct(-1.0, 0, float('-inf')) try_eq_sa_correct([1.0,0,-1], 0, [float('inf'), float('nan'), float('-inf')]) try_eq_sa_correct(1, [1.0, 0], [1., float('inf')]) try_eq_sa_correct(-1, [1.0, 0], [-1., float('-inf')]) try_eq_sa_correct(0, [1.0, 0], [0., float('nan')]) def test_logical_ops(self): s=np.array([0,0,0,0,1,1,1,1]); s2=np.array([0,1,0,1,0,1,0,1]); t = SArray(s, int) t2 = SArray(s2, int) self.__test_equal(t & t2, list(((s & s2) > 0).astype(int)), int) self.__test_equal(t | t2, list(((s | s2) > 0).astype(int)), int) def test_string_operators(self): s=["a","b","c","d","e","f","g","h","i","j"]; s2=["e","d","c","b","a","j","i","h","g","f"]; t = SArray(s, str) t2 = SArray(s2, str) self.__test_equal(t + t2, ["".join(x) for x in zip(s,s2)], str) self.__test_equal(t + "x", [x + "x" for x in s], str) self.__test_equal(t < t2, [x < y for (x,y) in zip(s,s2)], int) self.__test_equal(t > t2, [x > y for (x,y) in zip(s,s2)], int) self.__test_equal(t == t2, [x == y for (x,y) in zip(s,s2)], int) self.__test_equal(t != t2, [x != y for (x,y) in zip(s,s2)], int) self.__test_equal(t <= t2, [x <= y for (x,y) in zip(s,s2)], int) self.__test_equal(t >= t2, [x >= y for (x,y) in zip(s,s2)], int) def test_vector_operator_missing_propagation(self): t = SArray([1,2,3,4,None,6,7,8,9,None], float) # missing 4th and 9th t2 = SArray([None,4,3,2,np.nan,10,9,8,7,6], float) # missing 0th and 4th self.assertEquals(len((t + t2).dropna()), 7); self.assertEquals(len((t - t2).dropna()), 7); self.assertEquals(len((t * t2).dropna()), 7); def test_dropna(self): no_nas = ['strings', 'yeah', 'nan', 'NaN', 'NA', 'None'] t = SArray(no_nas) self.assertEquals(len(t.dropna()), 6) self.assertEquals(list(t.dropna()), no_nas) t2 = SArray([None,np.nan]) self.assertEquals(len(t2.dropna()), 0) self.assertEquals(list(SArray(self.int_data).dropna()), self.int_data) self.assertEquals(list(SArray(self.float_data).dropna()), self.float_data) def test_fillna(self): # fillna shouldn't fill anything no_nas = ['strings', 'yeah', 'nan', 'NaN', 'NA', 'None'] t = SArray(no_nas) out = t.fillna('hello') self.assertEquals(list(out), no_nas) # Normal integer case (float auto casted to int) t = SArray([53,23,None,np.nan,5]) self.assertEquals(list(t.fillna(-1.0)), [53,23,-1,-1,5]) # dict type t = SArray(self.dict_data+[None]) self.assertEquals(list(t.fillna({1:'1'})), self.dict_data+[{1:'1'}]) # list type t = SArray(self.list_data+[None]) self.assertEquals(list(t.fillna([0,0,0])), self.list_data+[[0,0,0]]) # vec type t = SArray(self.vec_data+[None]) self.assertEquals(list(t.fillna(array.array('f',[0.0,0.0]))), self.vec_data+[array.array('f',[0.0,0.0])]) # empty sarray t = SArray() self.assertEquals(len(t.fillna(0)), 0) def test_sample(self): sa = SArray(data=self.int_data) sa_sample = sa.sample(.5, 9) sa_sample2 = sa.sample(.5, 9) self.assertEqual(list(sa_sample.head()), list(sa_sample2.head())) for i in sa_sample: self.assertTrue(i in self.int_data) with self.assertRaises(ValueError): sa.sample(3) sa_sample = SArray().sample(.5, 9) self.assertEqual(len(sa_sample), 0) def test_hash(self): a = SArray([0,1,0,1,0,1,0,1], int) b = a.hash() zero_hash = b[0] one_hash = b[1] self.assertTrue((b[a] == one_hash).all()) self.assertTrue((b[1-a] == zero_hash).all()) # I can hash other stuff too # does not throw a.astype(str).hash().__materialize__() a.apply(lambda x: [x], list).hash().__materialize__() # Nones hash too! a = SArray([None, None, None], int).hash() self.assertTrue(a[0] is not None) self.assertTrue((a == a[0]).all()) # different seeds give different hash values self.assertTrue((a.hash(seed=0) != a.hash(seed=1)).all()) def test_random_integers(self): a = SArray.random_integers(0) self.assertEqual(len(a), 0) a = SArray.random_integers(1000) self.assertEqual(len(a), 1000) def test_vector_slice(self): d=[[1],[1,2],[1,2,3]] g=SArray(d, array.array) self.assertEqual(list(g.vector_slice(0).head()), [1,1,1]) self.assertEqual(list(g.vector_slice(0,2).head()), [None,array.array('d', [1,2]),array.array('d', [1,2])]) self.assertEqual(list(g.vector_slice(0,3).head()), [None,None,array.array('d', [1,2,3])]) g=SArray(self.vec_data, array.array); self.__test_equal(g.vector_slice(0), self.float_data, float) self.__test_equal(g.vector_slice(0, 2), self.vec_data, array.array) def _my_subslice(self, arr, start=None, stop=None, step=1): return arr.apply(lambda x: x[slice(start, stop, step)], arr.dtype()) def _slice_equality_test(self, arr, start=None, stop=None, step=1): self.assertEqual( list(arr.subslice(start, stop, step)), list(self._my_subslice(arr,start,stop,step))) def test_subslice(self): #string slicing g=SArray(range(1,1000, 10)).astype(str) self._slice_equality_test(g, 0, 2); self._slice_equality_test(g, 0, -1, 2); self._slice_equality_test(g, -1, -3); self._slice_equality_test(g, -1, -2, -1); self._slice_equality_test(g, None, None, -1); self._slice_equality_test(g, -100, -1); #list slicing g=SArray(range(1,10)).apply(lambda x: list(range(x)), list) self._slice_equality_test(g, 0, 2); self._slice_equality_test(g, 0, -1, 2); self._slice_equality_test(g, -1, -3); self._slice_equality_test(g, -1, -2, -1); self._slice_equality_test(g, None, None, -1); self._slice_equality_test(g, -100, -1); #array slicing import array g=SArray(range(1,10)).apply(lambda x: array.array('d', range(x))) self._slice_equality_test(g, 0, 2); self._slice_equality_test(g, 0, -1, 2); self._slice_equality_test(g, -1, -3); self._slice_equality_test(g, -1, -2, -1); self._slice_equality_test(g, None, None, -1); self._slice_equality_test(g, -100, -1); #this should fail with self.assertRaises(TypeError): g=SArray(range(1,1000)).subslice(1) with self.assertRaises(TypeError): g=SArray(range(1,1000)).astype(float).subslice(1) def test_lazy_eval(self): sa = SArray(range(-10, 10)) sa = sa + 1 sa1 = sa >= 0 sa2 = sa <= 0 sa3 = sa[sa1 & sa2] item_count = sa3.size() self.assertEqual(item_count, 1) def __test_append(self, data1, data2, dtype): sa1 = SArray(data1, dtype) sa2 = SArray(data2, dtype) sa3 = sa1.append(sa2) self.__test_equal(sa3, data1 + data2, dtype) sa3 = sa2.append(sa1) self.__test_equal(sa3, data2 + data1, dtype) def test_append(self): n = len(self.int_data) m = n // 2 self.__test_append(self.int_data[0:m], self.int_data[m:n], int) self.__test_append(self.bool_data[0:m], self.bool_data[m:n], int) self.__test_append(self.string_data[0:m], self.string_data[m:n], str) self.__test_append(self.float_data[0:m], self.float_data[m:n], float) self.__test_append(self.vec_data[0:m], self.vec_data[m:n], array.array) self.__test_append(self.dict_data[0:m], self.dict_data[m:n], dict) def test_append_exception(self): val1 = [i for i in range(1, 1000)] val2 = [str(i) for i in range(-10, 1)] sa1 = SArray(val1, int) sa2 = SArray(val2, str) with self.assertRaises(RuntimeError): sa3 = sa1.append(sa2) def test_word_count(self): sa = SArray(["This is someurl http://someurl!!", "中文 应该也 行", 'Сблъсъкът между']) expected = [{"this": 1, "http://someurl!!": 1, "someurl": 1, "is": 1}, {"中文": 1, "应该也": 1, "行": 1}, {"Сблъсъкът": 1, "между": 1}] expected2 = [{"This": 1, "http://someurl!!": 1, "someurl": 1, "is": 1}, {"中文": 1, "应该也": 1, "行": 1}, {"Сблъсъкът": 1, "между": 1}] sa1 = sa._count_words() self.assertEquals(sa1.dtype(), dict) self.__test_equal(sa1, expected, dict) sa1 = sa._count_words(to_lower=False) self.assertEquals(sa1.dtype(), dict) self.__test_equal(sa1, expected2, dict) #should fail if the input type is not string sa = SArray([1, 2, 3]) with self.assertRaises(TypeError): sa._count_words() def test_word_count2(self): sa = SArray(["This is some url http://www.someurl.com!!", "Should we? Yes, we should."]) #TODO: Get some weird unicode whitespace in the Chinese and Russian tests expected1 = [{"this": 1, "is": 1, "some": 1, "url": 1, "http://www.someurl.com!!": 1}, {"should": 1, "we?": 1, "we": 1, "yes,": 1, "should.": 1}] expected2 = [{"this is some url http://www.someurl.com": 1}, {"should we": 1, " yes": 1, " we should.": 1}] word_counts1 = sa._count_words() word_counts2 = sa._count_words(delimiters=["?", "!", ","]) self.assertEquals(word_counts1.dtype(), dict) self.__test_equal(word_counts1, expected1, dict) self.assertEquals(word_counts2.dtype(), dict) self.__test_equal(word_counts2, expected2, dict) def test_ngram_count(self): sa_word = SArray(["I like big dogs. They are fun. I LIKE BIG DOGS", "I like.", "I like big"]) sa_character = SArray(["Fun. is. fun","Fun is fun.","fu", "fun"]) # Testing word n-gram functionality result = sa_word._count_ngrams(3) result2 = sa_word._count_ngrams(2) result3 = sa_word._count_ngrams(3,"word", to_lower=False) result4 = sa_word._count_ngrams(2,"word", to_lower=False) expected = [{'fun i like': 1, 'i like big': 2, 'they are fun': 1, 'big dogs they': 1, 'like big dogs': 2, 'are fun i': 1, 'dogs they are': 1}, {}, {'i like big': 1}] expected2 = [{'i like': 2, 'dogs they': 1, 'big dogs': 2, 'are fun': 1, 'like big': 2, 'they are': 1, 'fun i': 1}, {'i like': 1}, {'i like': 1, 'like big': 1}] expected3 = [{'I like big': 1, 'fun I LIKE': 1, 'I LIKE BIG': 1, 'LIKE BIG DOGS': 1, 'They are fun': 1, 'big dogs They': 1, 'like big dogs': 1, 'are fun I': 1, 'dogs They are': 1}, {}, {'I like big': 1}] expected4 = [{'I like': 1, 'like big': 1, 'I LIKE': 1, 'BIG DOGS': 1, 'are fun': 1, 'LIKE BIG': 1, 'big dogs': 1, 'They are': 1, 'dogs They': 1, 'fun I': 1}, {'I like': 1}, {'I like': 1, 'like big': 1}] self.assertEquals(result.dtype(), dict) self.__test_equal(result, expected, dict) self.assertEquals(result2.dtype(), dict) self.__test_equal(result2, expected2, dict) self.assertEquals(result3.dtype(), dict) self.__test_equal(result3, expected3, dict) self.assertEquals(result4.dtype(), dict) self.__test_equal(result4, expected4, dict) #Testing character n-gram functionality result5 = sa_character._count_ngrams(3, "character") result6 = sa_character._count_ngrams(2, "character") result7 = sa_character._count_ngrams(3, "character", to_lower=False) result8 = sa_character._count_ngrams(2, "character", to_lower=False) result9 = sa_character._count_ngrams(3, "character", to_lower=False, ignore_space=False) result10 = sa_character._count_ngrams(2, "character", to_lower=False, ignore_space=False) result11 = sa_character._count_ngrams(3, "character", to_lower=True, ignore_space=False) result12 = sa_character._count_ngrams(2, "character", to_lower=True, ignore_space=False) expected5 = [{'fun': 2, 'nis': 1, 'sfu': 1, 'isf': 1, 'uni': 1}, {'fun': 2, 'nis': 1, 'sfu': 1, 'isf': 1, 'uni': 1}, {}, {'fun': 1}] expected6 = [{'ni': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 2}, {'ni': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 2}, {'fu': 1}, {'un': 1, 'fu': 1}] expected7 = [{'sfu': 1, 'Fun': 1, 'uni': 1, 'fun': 1, 'nis': 1, 'isf': 1}, {'sfu': 1, 'Fun': 1, 'uni': 1, 'fun': 1, 'nis': 1, 'isf': 1}, {}, {'fun': 1}] expected8 = [{'ni': 1, 'Fu': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 1}, {'ni': 1, 'Fu': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 1}, {'fu': 1}, {'un': 1, 'fu': 1}] expected9 = [{' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'Fun': 1, 'n i': 1, 'fun': 1, 'is ': 1}, {' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'Fun': 1, 'n i': 1, 'fun': 1, 'is ': 1}, {}, {'fun': 1}] expected10 = [{' f': 1, 'fu': 1, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1, 'Fu': 1}, {' f': 1, 'fu': 1, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1, 'Fu': 1}, {'fu': 1}, {'un': 1, 'fu': 1}] expected11 = [{' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'n i': 1, 'fun': 2, 'is ': 1}, {' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'n i': 1, 'fun': 2, 'is ': 1}, {}, {'fun': 1}] expected12 = [{' f': 1, 'fu': 2, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1}, {' f': 1, 'fu': 2, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1}, {'fu': 1}, {'un': 1, 'fu': 1}] self.assertEquals(result5.dtype(), dict) self.__test_equal(result5, expected5, dict) self.assertEquals(result6.dtype(), dict) self.__test_equal(result6, expected6, dict) self.assertEquals(result7.dtype(), dict) self.__test_equal(result7, expected7, dict) self.assertEquals(result8.dtype(), dict) self.__test_equal(result8, expected8, dict) self.assertEquals(result9.dtype(), dict) self.__test_equal(result9, expected9, dict) self.assertEquals(result10.dtype(), dict) self.__test_equal(result10, expected10, dict) self.assertEquals(result11.dtype(), dict) self.__test_equal(result11, expected11, dict) self.assertEquals(result12.dtype(), dict) self.__test_equal(result12, expected12, dict) sa = SArray([1, 2, 3]) with self.assertRaises(TypeError): #should fail if the input type is not string sa._count_ngrams() with self.assertRaises(TypeError): #should fail if n is not of type 'int' sa_word._count_ngrams(1.01) with self.assertRaises(ValueError): #should fail with invalid method sa_word._count_ngrams(3,"bla") with self.assertRaises(ValueError): #should fail with n <0 sa_word._count_ngrams(0) with warnings.catch_warnings(record=True) as context: sa_word._count_ngrams(10) assert len(context) == 1 def test_dict_keys(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] sa = SArray(self.dict_data) sa_keys = sa.dict_keys() self.assertEquals([set(i) for i in sa_keys], [{str(i), i} for i in self.int_data]) # na value d = [{'a': 1}, {None: 2}, {"b": None}, None] sa = SArray(d) sa_keys = sa.dict_keys() self.assertEquals(list(sa_keys), [['a'], [None], ['b'], None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_keys() # empty SArray with type sa = SArray([], dict) self.assertEquals(list(sa.dict_keys().head(10)), [], list) def test_dict_values(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] sa = SArray(self.dict_data) sa_values = sa.dict_values() self.assertEquals(list(sa_values), [[i, float(i)] for i in self.int_data]) # na value d = [{'a': 1}, {None: 'str'}, {"b": None}, None] sa = SArray(d) sa_values = sa.dict_values() self.assertEquals(list(sa_values), [[1], ['str'], [None], None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_values() # empty SArray with type sa = SArray([], dict) self.assertEquals(list(sa.dict_values().head(10)), [], list) def test_dict_trim_by_keys(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] d = [{'a':1, 'b': [1,2]}, {None: 'str'}, {"b": None, "c": 1}, None] sa = SArray(d) sa_values = sa.dict_trim_by_keys(['a', 'b']) self.assertEquals(list(sa_values), [{}, {None: 'str'}, {"c": 1}, None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_trim_by_keys([]) sa = SArray([], dict) self.assertEquals(list(sa.dict_trim_by_keys([]).head(10)), [], list) def test_dict_trim_by_values(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] d = [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None] sa = SArray(d) sa_values = sa.dict_trim_by_values(5,10) self.assertEquals(list(sa_values), [{'c':None}, {None:5}, None]) # no upper key sa_values = sa.dict_trim_by_values(2) self.assertEquals(list(sa_values), [{'b': 20, 'c':None}, {"b": 4, None:5}, None]) # no param sa_values = sa.dict_trim_by_values() self.assertEquals(list(sa_values), [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None]) # no lower key sa_values = sa.dict_trim_by_values(upper=7) self.assertEquals(list(sa_values), [{'a':1, 'c':None}, {"b": 4, None: 5}, None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_trim_by_values() sa = SArray([], dict) self.assertEquals(list(sa.dict_trim_by_values().head(10)), [], list) def test_dict_has_any_keys(self): d = [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None, {'a':0}] sa = SArray(d) sa_values = sa.dict_has_any_keys([]) self.assertEquals(list(sa_values), [0,0,None,0]) sa_values = sa.dict_has_any_keys(['a']) self.assertEquals(list(sa_values), [1,0,None,1]) # one value is auto convert to list sa_values = sa.dict_has_any_keys("a") self.assertEquals(list(sa_values), [1,0,None,1]) sa_values = sa.dict_has_any_keys(['a', 'b']) self.assertEquals(list(sa_values), [1,1,None,1]) with self.assertRaises(TypeError): sa.dict_has_any_keys() #empty SArray sa = SArray() with self.assertRaises(TypeError): sa.dict_has_any_keys() sa = SArray([], dict) self.assertEquals(list(sa.dict_has_any_keys([]).head(10)), [], list) def test_dict_has_all_keys(self): d = [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None, {'a':0}] sa = SArray(d) sa_values = sa.dict_has_all_keys([]) self.assertEquals(list(sa_values), [1,1,None,1]) sa_values = sa.dict_has_all_keys(['a']) self.assertEquals(list(sa_values), [1,0,None,1]) # one value is auto convert to list sa_values = sa.dict_has_all_keys("a") self.assertEquals(list(sa_values), [1,0,None,1]) sa_values = sa.dict_has_all_keys(['a', 'b']) self.assertEquals(list(sa_values), [1,0,None,0]) sa_values = sa.dict_has_all_keys([None, "b"]) self.assertEquals(list(sa_values), [0,1,None,0]) with self.assertRaises(TypeError): sa.dict_has_all_keys() #empty SArray sa = SArray() with self.assertRaises(TypeError): sa.dict_has_all_keys() sa = SArray([], dict) self.assertEquals(list(sa.dict_has_all_keys([]).head(10)), [], list) def test_save_load_cleanup_file(self): # simlarly for SArray with util.TempDirectory() as f: sa = SArray(range(1,1000000)) sa.save(f) # 17 for each sarray, 1 object.bin, 1 ini file_count = len(os.listdir(f)) self.assertTrue(file_count > 2) # sf1 now references the on disk file sa1 = SArray(f); # create another SFrame and save to the same location sa2 = SArray([str(i) for i in range(1,100000)]) sa2.save(f) file_count = len(os.listdir(f)) self.assertTrue(file_count > 2) # now sf1 should still be accessible self.__test_equal(sa1, list(sa), int) # and sf2 is correct too sa3 = SArray(f) self.__test_equal(sa3, list(sa2), str) # when sf1 goes out of scope, the tmp files should be gone sa1 = 1 time.sleep(1) # give time for the files being deleted file_count = len(os.listdir(f)) self.assertTrue(file_count > 2) # list_to_compare must have all unique values for this to work def __generic_unique_test(self, list_to_compare): test = SArray(list_to_compare + list_to_compare) self.assertEquals(sorted(list(test.unique())), sorted(list_to_compare)) def test_unique(self): # Test empty SArray test = SArray([]) self.assertEquals(list(test.unique()), []) # Test one value test = SArray([1]) self.assertEquals(list(test.unique()), [1]) # Test many of one value test = SArray([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) self.assertEquals(list(test.unique()), [1]) # Test all unique values test = SArray(self.int_data) self.assertEquals(sorted(list(test.unique())), self.int_data) # Test an interesting sequence interesting_ints = [4654,4352436,5453,7556,45435,4654,5453,4654,5453,1,1,1,5,5,5,8,66,7,7,77,90,-34] test = SArray(interesting_ints) u = test.unique() self.assertEquals(len(u), 13) # We do not preserve order self.assertEquals(sorted(list(u)), sorted(np.unique(interesting_ints))) # Test other types self.__generic_unique_test(self.string_data[0:6]) # only works reliably because these are values that floats can perform # reliable equality tests self.__generic_unique_test(self.float_data) self.__generic_unique_test(self.list_data) self.__generic_unique_test(self.vec_data) with self.assertRaises(TypeError): SArray(self.dict_data).unique() def test_item_len(self): # empty SArray test = SArray([]) with self.assertRaises(TypeError): self.assertEquals(test.item_length()) # wrong type test = SArray([1,2,3]) with self.assertRaises(TypeError): self.assertEquals(test.item_length()) test = SArray(['1','2','3']) with self.assertRaises(TypeError): self.assertEquals(test.item_length()) # vector type test = SArray([[], [1], [1,2], [1,2,3], None]) item_length = test.item_length(); self.assertEquals(list(item_length), list([0, 1,2,3,None])) # dict type test = SArray([{}, {'key1': 1}, {'key2':1, 'key1':2}, None]) self.assertEquals(list(test.item_length()), list([0, 1,2,None])) # list type test = SArray([[], [1,2], ['str', 'str2'], None]) self.assertEquals(list(test.item_length()), list([0, 2,2,None])) def test_random_access(self): t = list(range(0,100000)) s = SArray(t) # simple slices self.__test_equal(s[1:10000], t[1:10000], int) self.__test_equal(s[0:10000:3], t[0:10000:3], int) self.__test_equal(s[1:10000:3], t[1:10000:3], int) self.__test_equal(s[2:10000:3], t[2:10000:3], int) self.__test_equal(s[3:10000:101], t[3:10000:101], int) # negative slices self.__test_equal(s[-5:], t[-5:], int) self.__test_equal(s[-1:], t[-1:], int) self.__test_equal(s[-100:-10], t[-100:-10], int) self.__test_equal(s[-100:-10:2], t[-100:-10:2], int) # single element reads self.assertEquals(s[511], t[511]) self.assertEquals(s[1912], t[1912]) self.assertEquals(s[-1], t[-1]) self.assertEquals(s[-10], t[-10]) # A cache boundary self.assertEquals(s[32*1024-1], t[32*1024-1]) self.assertEquals(s[32*1024], t[32*1024]) # totally different self.assertEquals(s[19312], t[19312]) # edge case odities self.__test_equal(s[10:100:100], t[10:100:100], int) self.__test_equal(s[-100:len(s):10], t[-100:len(t):10], int) self.__test_equal(s[-1:-2], t[-1:-2], int) self.__test_equal(s[-1:-1000:2], t[-1:-1000:2], int) with self.assertRaises(IndexError): s[len(s)] # with caching abilities; these should be fast, as 32K # elements are cached. for i in range(0, 100000, 100): self.assertEquals(s[i], t[i]) for i in range(0, 100000, 100): self.assertEquals(s[-i], t[-i]) def test_sort(self): test = SArray([1,2,3,5,1,4]) ascending = SArray([1,1,2,3,4,5]) descending = SArray([5,4,3,2,1,1]) result = test.sort() self.assertEqual(list(result), list(ascending)) result = test.sort(ascending = False) self.assertEqual(list(result), list(descending)) with self.assertRaises(TypeError): SArray([[1,2], [2,3]]).sort() def test_unicode_encode_should_not_fail(self): g=SArray([{'a':u'\u2019'}]) g=SArray([u'123',u'\u2019']) g=SArray(['123',u'\u2019']) def test_read_from_avro(self): encoded_data = 'T2JqAQQWYXZyby5zY2hlbWHsBXsiZmllbGRzIjogW3sidHlwZSI6ICJzdHJpbmciLCAibmFtZSI6ICJidXNpbmVzc19pZCJ9LCB7InR5cGUiOiAic3RyaW5nIiwgIm5hbWUiOiAiZGF0ZSJ9LCB7InR5cGUiOiAic3RyaW5nIiwgIm5hbWUiOiAicmV2aWV3X2lkIn0sIHsidHlwZSI6ICJpbnQiLCAibmFtZSI6ICJzdGFycyJ9LCB7InR5cGUiOiAic3RyaW5nIiwgIm5hbWUiOiAidGV4dCJ9LCB7InR5cGUiOiAic3RyaW5nIiwgIm5hbWUiOiAidHlwZSJ9LCB7InR5cGUiOiAic3RyaW5nIiwgIm5hbWUiOiAidXNlcl9pZCJ9LCB7InR5cGUiOiB7InR5cGUiOiAibWFwIiwgInZhbHVlcyI6ICJpbnQifSwgIm5hbWUiOiAidm90ZXMifV0sICJ0eXBlIjogInJlY29yZCIsICJuYW1lIjogInJldmlldyJ9FGF2cm8uY29kZWMIbnVsbAAON5ELIy6PokglPEeciZP7BOggLHNnQmwzVURFY05ZS3d1VWI5MkNZZEEUMjAwOS0wMS0yNSxaai1SMFpacUlLRng1NkxZMnN1MWlRCIAZVGhlIG93bmVyIG9mIENoaW5hIEtpbmcgaGFkIG5ldmVyIGhlYXJkIG9mIFllbHAuLi51bnRpbCBKaW0gVyByb2xsZWQgdXAgb24gQ2hpbmEgS2luZyEKClRoZSBvd25lciBvZiBDaGluYSBLaW5nLCBNaWNoYWVsLCBpcyB2ZXJ5IGZyaWVuZGx5IGFuZCBjaGF0dHkuICBCZSBQcmVwYXJlZCB0byBjaGF0IGZvciBhIGZldyBtaW51dGVzIGlmIHlvdSBzdHJpa2UgdXAgYSBjb252ZXJzYXRpb24uCgpUaGUgc2VydmljZSBoZXJlIHdhcyB0ZXJyaWZpYy4gIFdlIGhhZCBzZXZlcmFsIHBlb3BsZSBmdXNzaW5nIG92ZXIgdXMgYnV0IHRoZSBwcmltYXJ5IHNlcnZlciwgTWFnZ2llIHdhcyBhIGdlbS4gIAoKTXkgd2lmZSBhbmQgdGhlIGtpZHMgb3B0ZWQgZm9yIHRoZSBBbWVyaWNhbml6ZWQgbWVudSBhbmQgd2VudCB3aXRoIHNwZWNpYWxzIGxpa2Ugc3dlZXQgYW5kIHNvdXIgY2hpY2tlbiwgc2hyaW1wIGluIHdoaXRlIHNhdWNlIGFuZCBnYXJsaWMgYmVlZi4gIEVhY2ggY2FtZSBjYW1lIHdpdGggc291cCwgZWdnIHJvbGwgYW5kIHJpY2UuICBJIHNhbXBsZWQgdGhlIGdhcmxpYyBiZWVmIHdoaWNoIHRoZXkgcHJlcGFyZWQgd2l0aCBhIGt1bmcgcGFvIGJyb3duIHNhdWNlIChhIGRlY2lzaW9uIE1hZ2dpZSBhbmQgbXkgd2lmZSBhcnJpdmVkIGF0IGFmdGVyIHNldmVyYWwgbWludXRlcyBvZiBkaXNjdXNzaW9uKSBpdCBoYWQgYSBuaWNlIHJvYnVzdCBmbGF2b3IgYW5kIHRoZSB2ZWdnaWVzIHdlcmUgZnJlc2ggYW5kIGZsYXZvcmZ1bC4gIEkgIGFsc28gc2FtcGxlZCB0aGUgc2hyaW1wIHdoaWNoIHdlcmUgc3VjY3VsZW50IGFuZCB0aGUgd2hpdGUgc2F1Y2UgaGFkIGEgbGl0dGxlIG1vcmUgZGlzdGluY3RpdmVuZXNzIHRvIGl0IHRoYW4gdGhlIHNhbWUgc2F1Y2UgYXQgbWFueSBDaGluZXNlIHJlc3RhdXJhbnRzLgoKSSBvcmRlcmVkIGZyb20gdGhlIHRyYWRpdGlvbmFsIG1lbnUgYnV0IHdlbnQgbm90IHRvbyBhZHZlbnR1cm91cyB3aXRoIHNpenpsaW5nIHBsYXRlIHdpdGggc2NhbGxvcHMgYW5kIHNocmltcCBpbiBibGFjayBwZXBwZXIgc2F1Y2UuICBWZXJ5IGVuam95YWJsZS4gIEFnYWluLCBzdWNjdWxlbnQgc2hyaW1wLiAgVGhlIHNjYWxsb3BzIHdlcmUgdGFzdHkgYXMgd2VsbC4gIFJlYWxpemluZyB0aGF0IEkgbW92ZWQgaGVyZSBmcm9tIEJvc3RvbiBhbmQgSSBnbyBpbnRvIGFueSBzZWFmb29kIGV4cGVyaWVuY2Ugd2l0aCBkaW1pbmlzaGVkIGV4cGVjdGF0aW9ucyBub3cgdGhhdCBJIGxpdmUgaW4gdGhlIHdlc3QsIEkgaGF2ZSB0byBzYXkgdGhlIHNjYWxsb3BzIGFyZSBhbW9uZyB0aGUgZnJlc2hlciBhbmQganVkaWNpb3VzbHkgcHJlcGFyZWQgdGhhdCBJIGhhdmUgaGFkIGluIFBob2VuaXguCgpPdmVyYWxsIENoaW5hIEtpbmcgZGVsaXZlcmVkIGEgdmVyeSB0YXN0eSBhbmQgdmVyeSBmcmVzaCBtZWFsLiAgVGhleSBoYXZlIGEgZmFpcmx5IGV4dGVuc2l2ZSB0cmFkaXRpb25hbCBtZW51IHdoaWNoIEkgbG9vayBmb3J3YXJkIHRvIGV4cGxvcmluZyBmdXJ0aGVyLgoKVGhhbmtzIHRvIENocmlzdGluZSBPIGZvciBoZXIgcmV2aWV3Li4uYWZ0ZXIgcmVhZGluZyB0aGF0IEkga25ldyBDaGluYSBLaW5nIHdhcyBBLU9LLgxyZXZpZXcsUDJrVms0Y0lXeUs0ZTRoMTRSaEstUQYKZnVubnkIDHVzZWZ1bBIIY29vbA4ALGFyS2NrTWY3bEdOWWpYaktvNkRYY0EUMjAxMi0wNS0wNSxFeVZmaFJEbHlpcDJFcktNT0hFQS1BCKQEV2UndmUgYmVlbiBoZXJlIGEgZmV3IHRpbWVzIGFuZCB3ZSBsb3ZlIGFsbCB0aGUgZnJlc2ggaW5ncmVkaWVudHMuIFRoZSBwaXp6YSBpcyBnb29kIHdoZW4geW91IGVhdCBpdCBmcmVzaCBidXQgaWYgeW91IGxpa2UgdG8gZWF0IHlvdXIgcGl6emEgY29sZCB0aGVuIHlvdSdsbCBiZSBiaXRpbmcgaW50byBoYXJkIGRvdWdoLiBUaGVpciBOdXRlbGxhIHBpenphIGlzIGdvb2QuIFRha2UgYSBtZW51IGFuZCBjaGVjayBvdXQgdGhlaXIgbWVudSBhbmQgaG91cnMgZm9yIHNwZWNpYWxzLgxyZXZpZXcseDFZbDFkcE5jV0NDRWRwTUU5ZGcwZwYKZnVubnkCDHVzZWZ1bAIIY29vbAAADjeRCyMuj6JIJTxHnImT+w==' test_avro_file = open("test.avro", "wb") test_avro_file.write(binascii.a2b_base64(encoded_data)) test_avro_file.close() sa = SArray.from_avro("test.avro") self.assertEqual(sa.dtype(), dict) self.assertEqual(len(sa), 2) def test_from_const(self): g = SArray.from_const('a', 100) self.assertEqual(len(g), 100) self.assertEqual(list(g), ['a']*100) g = SArray.from_const(dt.datetime(2013, 5, 7, 10, 4, 10),10) self.assertEqual(len(g), 10) self.assertEqual(list(g), [dt.datetime(2013, 5, 7, 10, 4, 10)]*10) g = SArray.from_const(0, 0) self.assertEqual(len(g), 0) g = SArray.from_const(None, 100) self.assertEquals(list(g), [None] * 100) self.assertEqual(g.dtype(), float) g = SArray.from_const(None, 100, str) self.assertEquals(list(g), [None] * 100) self.assertEqual(g.dtype(), str) g = SArray.from_const(0, 100, float) self.assertEquals(list(g), [0.0] * 100) self.assertEqual(g.dtype(), float) g = SArray.from_const(0.0, 100, int) self.assertEquals(list(g), [0] * 100) self.assertEqual(g.dtype(), int) g = SArray.from_const(None, 100, float) self.assertEquals(list(g), [None] * 100) self.assertEqual(g.dtype(), float) g = SArray.from_const(None, 100, int) self.assertEquals(list(g), [None] * 100) self.assertEqual(g.dtype(), int) g = SArray.from_const(None, 100, list) self.assertEquals(list(g), [None] * 100) self.assertEqual(g.dtype(), list) g = SArray.from_const([1], 100, list) self.assertEquals(list(g), [[1]] * 100) self.assertEqual(g.dtype(), list) def test_from_sequence(self): with self.assertRaises(TypeError): g = SArray.from_sequence() g = SArray.from_sequence(100) self.assertEqual(list(g), list(range(100))) g = SArray.from_sequence(10, 100) self.assertEqual(list(g), list(range(10, 100))) g = SArray.from_sequence(100, 10) self.assertEqual(list(g), list(range(100, 10))) def test_datetime(self): sa = SArray(self.datetime_data) self.__test_equal(sa ,self.datetime_data,dt.datetime) sa = SArray(self.datetime_data2) self.__test_equal(sa ,self.datetime_data2,dt.datetime) ret = sa.split_datetime(limit=['year','month','day','hour','minute', 'second','us','weekday', 'isoweekday','tmweekday']) self.assertEqual(ret.num_cols(), 10) self.__test_equal(ret['X.year'] , [2013, 1902, None], int) self.__test_equal(ret['X.month'] , [5, 10, None], int) self.__test_equal(ret['X.day'] , [7, 21, None], int) self.__test_equal(ret['X.hour'] , [10, 10, None], int) self.__test_equal(ret['X.minute'] , [4, 34, None], int) self.__test_equal(ret['X.second'] , [10, 10, None], int) self.__test_equal(ret['X.us'] , [109321, 991111, None], int) self.__test_equal(ret['X.weekday'] , [1, 1, None], int) self.__test_equal(ret['X.isoweekday'] , [2, 2, None], int) self.__test_equal(ret['X.tmweekday'] , [2, 2, None], int) def test_datetime_difference(self): sa = SArray(self.datetime_data) sa2 = SArray(self.datetime_data2) res = sa2 - sa expected = [float(x.microsecond) / 1000000.0 if x is not None else x for x in self.datetime_data2] self.assertEqual(len(res), len(expected)) for i in range(len(res)): if res[i] == None: self.assertEqual(res[i], expected[i]) else: self.assertAlmostEqual(res[i], expected[i], places=6) def test_datetime_lambda(self): data = [dt.datetime(2013, 5, 7, 10, 4, 10, 109321), dt.datetime(1902, 10, 21, 10, 34, 10, 991111, tzinfo=GMT(1))] g=SArray(data) gstr=g.apply(lambda x:str(x)) self.__test_equal(gstr, [str(x) for x in g], str) gident=g.apply(lambda x:x) self.__test_equal(gident, list(g), dt.datetime) def test_datetime_to_str(self): sa = SArray(self.datetime_data) sa_string_back = sa.datetime_to_str() self.__test_equal(sa_string_back,['2013-05-07T10:04:10', '1902-10-21T10:34:10GMT+00', None],str) sa = SArray([None,None,None],dtype=dt.datetime) sa_string_back = sa.datetime_to_str() self.__test_equal(sa_string_back,[None,None,None],str) sa = SArray(dtype=dt.datetime) sa_string_back = sa.datetime_to_str() self.__test_equal(sa_string_back,[],str) sa = SArray([None,None,None]) self.assertRaises(TypeError,sa.datetime_to_str) sa = SArray() self.assertRaises(TypeError,sa.datetime_to_str) def test_str_to_datetime(self): sa_string = SArray(['2013-05-07T10:04:10', '1902-10-21T10:34:10GMT+00', None]) sa_datetime_back = sa_string.str_to_datetime() expected = self.datetime_data self.__test_equal(sa_datetime_back,expected,dt.datetime) sa_string = SArray([None,None,None],str) sa_datetime_back = sa_string.str_to_datetime() self.__test_equal(sa_datetime_back,[None,None,None],dt.datetime) sa_string = SArray(dtype=str) sa_datetime_back = sa_string.str_to_datetime() self.__test_equal(sa_datetime_back,[],dt.datetime) sa = SArray([None,None,None]) self.assertRaises(TypeError,sa.str_to_datetime) sa = SArray() self.assertRaises(TypeError,sa.str_to_datetime) # hour without leading zero sa = SArray(['10/30/2014 9:01']) sa = sa.str_to_datetime('%m/%d/%Y %H:%M') expected = [dt.datetime(2014, 10, 30, 9, 1)] self.__test_equal(sa,expected,dt.datetime) # without delimiters sa = SArray(['10302014 0901', '10302014 2001']) sa = sa.str_to_datetime('%m%d%Y %H%M') expected = [dt.datetime(2014, 10, 30, 9, 1), dt.datetime(2014, 10, 30, 20, 1)] self.__test_equal(sa,expected,dt.datetime) # another without delimiter test sa = SArray(['20110623T191001']) sa = sa.str_to_datetime("%Y%m%dT%H%M%S%F%q") expected = [dt.datetime(2011, 6, 23, 19, 10, 1)] self.__test_equal(sa,expected,dt.datetime) # am pm sa = SArray(['10/30/2014 9:01am', '10/30/2014 9:01pm']) sa = sa.str_to_datetime('%m/%d/%Y %H:%M%p') expected = [dt.datetime(2014, 10, 30, 9, 1), dt.datetime(2014, 10, 30, 21, 1)] self.__test_equal(sa,expected,dt.datetime) sa = SArray(['10/30/2014 9:01AM', '10/30/2014 9:01PM']) sa = sa.str_to_datetime('%m/%d/%Y %H:%M%P') expected = [dt.datetime(2014, 10, 30, 9, 1), dt.datetime(2014, 10, 30, 21, 1)] self.__test_equal(sa,expected,dt.datetime) # failure 13pm sa = SArray(['10/30/2014 13:01pm']) with self.assertRaises(RuntimeError): sa.str_to_datetime('%m/%d/%Y %H:%M%p') # failure hour 13 when %l should only have up to hour 12 sa = SArray(['10/30/2014 13:01']) with self.assertRaises(RuntimeError): sa.str_to_datetime('%m/%d/%Y %l:%M') with self.assertRaises(RuntimeError): sa.str_to_datetime('%m/%d/%Y %L:%M') sa = SArray(['2013-05-07T10:04:10', '1902-10-21T10:34:10UTC+05:45']) expected = [dt.datetime(2013, 5, 7, 10, 4, 10), dt.datetime(1902, 10, 21, 10, 34, 10).replace(tzinfo=GMT(5.75))] self.__test_equal(sa.str_to_datetime() ,expected,dt.datetime) def test_apply_with_partial(self): sa = SArray([1, 2, 3, 4, 5]) def concat_fn(character, number): return '%s%d' % (character, number) my_partial_fn = functools.partial(concat_fn, 'x') sa_transformed = sa.apply(my_partial_fn) self.assertEqual(list(sa_transformed), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_apply_with_functor(self): sa = SArray([1, 2, 3, 4, 5]) class Concatenator(object): def __init__(self, character): self.character = character def __call__(self, number): return '%s%d' % (self.character, number) concatenator = Concatenator('x') sa_transformed = sa.apply(concatenator) self.assertEqual(list(sa_transformed), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_argmax_argmin(self): sa = SArray([1,4,-1,10,3,5,8]) index = [sa.argmax(),sa.argmin()] expected = [3,2] self.assertEqual(index,expected) sa = SArray([1,4.3,-1.4,0,3,5.6,8.9]) index = [sa.argmax(),sa.argmin()] expected = [6,2] self.assertEqual(index,expected) #empty case sa = SArray([]) index = [sa.argmax(),sa.argmin()] expected = [None,None] self.assertEqual(index,expected) # non-numeric type sa = SArray(["434","43"]) with self.assertRaises(TypeError): sa.argmax() with self.assertRaises(TypeError): sa.argmin() def test_apply_with_recursion(self): sa = SArray(range(1000)) sastr = sa.astype(str) rets = sa.apply(lambda x:sastr[x]) self.assertEqual(list(rets), list(sastr)) def test_save_sarray(self): '''save lazily evaluated SArray should not matrialize to target folder ''' data = SArray(range(1000)) data = data[data > 50] #lazy and good tmp_dir = tempfile.mkdtemp() data.save(tmp_dir) shutil.rmtree(tmp_dir) print(data) def test_to_numpy(self): X = SArray(range(100)) import numpy as np import numpy.testing as nptest Y = np.array(range(100)) nptest.assert_array_equal(X.to_numpy(), Y) X = X.astype(str) Y = np.array([str(i) for i in range(100)]) nptest.assert_array_equal(X.to_numpy(), Y) def test_rolling_mean(self): data = SArray(range(1000)) neg_data = SArray(range(-100,100,2)) ### Small backward window including current res = data.rolling_mean(-3,0) expected = [None for i in range(3)] + [i + .5 for i in range(1,998)] self.__test_equal(res,expected,float) # Test float inputs as well res = data.astype(float).rolling_mean(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_mean(-3, 0, min_observations=5) self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=4) self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=3) expected[2] = 1.0 self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=2) expected[1] = 0.5 self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=1) expected[0] = 0.0 self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=0) self.__test_equal(res,expected,float) with self.assertRaises(ValueError): res = data.rolling_mean(-3,0,min_observations=-1) res = neg_data.rolling_mean(-3,0) expected = [None for i in range(3)] + [float(i) for i in range(-97,96,2)] self.__test_equal(res,expected,float) # Test float inputs as well res = neg_data.astype(float).rolling_mean(-3,0) self.__test_equal(res,expected,float) # Test vector input res = SArray(self.vec_data).rolling_mean(-3,0) expected = [None for i in range(3)] + [array.array('d',[i+.5, i+1.5]) for i in range(2,9)] self.__test_equal(res,expected,array.array) ### Small forward window including current res = data.rolling_mean(0,4) expected = [float(i) for i in range(2,998)] + [None for i in range(4)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(0,4) expected = [float(i) for i in range(-96,95,2)] + [None for i in range(4)] self.__test_equal(res,expected,float) ### Small backward window not including current res = data.rolling_mean(-5,-1) expected = [None for i in range(5)] + [float(i) for i in range(2,997)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-5,-1) expected = [None for i in range(5)] + [float(i) for i in range(-96,94,2)] self.__test_equal(res,expected,float) ### Small forward window not including current res = data.rolling_mean(1,5) expected = [float(i) for i in range(3,998)] + [None for i in range(5)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(1,5) expected = [float(i) for i in range(-94,96,2)] + [None for i in range(5)] self.__test_equal(res,expected,float) ### "Centered" rolling aggregate res = data.rolling_mean(-2,2) expected = [None for i in range(2)] + [float(i) for i in range(2,998)] + [None for i in range(2)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-2,2) expected = [None for i in range(2)] + [float(i) for i in range(-96,96,2)] + [None for i in range(2)] self.__test_equal(res,expected,float) ### Lopsided rolling aggregate res = data.rolling_mean(-2,1) expected = [None for i in range(2)] + [i + .5 for i in range(1,998)] + [None for i in range(1)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-2,1) expected = [None for i in range(2)] + [float(i) for i in range(-97,97,2)] + [None for i in range(1)] self.__test_equal(res,expected,float) ### A very forward window res = data.rolling_mean(500,502) expected = [float(i) for i in range(501,999)] + [None for i in range(502)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(50,52) expected = [float(i) for i in range(2,98,2)] + [None for i in range(52)] self.__test_equal(res,expected,float) ### A very backward window res = data.rolling_mean(-502,-500) expected = [None for i in range(502)] + [float(i) for i in range(1,499)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-52,-50) expected = [None for i in range(52)] + [float(i) for i in range(-98,-2,2)] self.__test_equal(res,expected,float) ### A window size much larger than anticipated segment size res = data.rolling_mean(0,749) expected = [i + .5 for i in range(374,625)] + [None for i in range(749)] self.__test_equal(res,expected,float) ### A window size larger than the array res = data.rolling_mean(0,1000) expected = [None for i in range(1000)] self.__test_equal(res,expected,type(None)) ### A window size of 1 res = data.rolling_mean(0,0) self.__test_equal(res, list(data), float) res = data.rolling_mean(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, float) res = data.rolling_mean(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, float) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_mean(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_mean(0,1) ### Empty SArray sa = SArray() res = sa.rolling_mean(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_mean(0,1) self.__test_equal(res, [1.5,2.5,None], float) def test_rolling_sum(self): data = SArray(range(1000)) neg_data = SArray(range(-100,100,2)) ### Small backward window including current res = data.rolling_sum(-3,0) expected = [None for i in range(3)] + [i for i in range(6,3994,4)] self.__test_equal(res,expected,int) # Test float inputs as well res = data.astype(float).rolling_sum(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_sum(-3, 0, min_observations=5) self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=4) self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=3) expected[2] = 3 self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=2) expected[1] = 1 self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=1) expected[0] = 0 self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=0) self.__test_equal(res,expected,int) with self.assertRaises(ValueError): res = data.rolling_sum(-3,0,min_observations=-1) res = neg_data.rolling_sum(-3,0) expected = [None for i in range(3)] + [i for i in range(-388,388,8)] self.__test_equal(res,expected,int) # Test float inputs as well res = neg_data.astype(float).rolling_sum(-3,0) self.__test_equal(res,expected,float) # Test vector input res = SArray(self.vec_data).rolling_sum(-3,0) expected = [None for i in range(3)] + [array.array('d',[i, i+4]) for i in range(10,38,4)] self.__test_equal(res,expected,array.array) ### Small forward window including current res = data.rolling_sum(0,4) expected = [i for i in range(10,4990,5)] + [None for i in range(4)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(0,4) expected = [i for i in range(-480,480,10)] + [None for i in range(4)] self.__test_equal(res,expected,int) ### Small backward window not including current res = data.rolling_sum(-5,-1) expected = [None for i in range(5)] + [i for i in range(10,4985,5)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-5,-1) expected = [None for i in range(5)] + [i for i in range(-480,470,10)] self.__test_equal(res,expected,int) ### Small forward window not including current res = data.rolling_sum(1,5) expected = [i for i in range(15,4990,5)] + [None for i in range(5)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(1,5) expected = [i for i in range(-470,480,10)] + [None for i in range(5)] self.__test_equal(res,expected,int) ### "Centered" rolling aggregate res = data.rolling_sum(-2,2) expected = [None for i in range(2)] + [i for i in range(10,4990,5)] + [None for i in range(2)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-2,2) expected = [None for i in range(2)] + [i for i in range(-480,480,10)] + [None for i in range(2)] self.__test_equal(res,expected,int) ### Lopsided rolling aggregate res = data.rolling_sum(-2,1) expected = [None for i in range(2)] + [i for i in range(6,3994,4)] + [None for i in range(1)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-2,1) expected = [None for i in range(2)] + [i for i in range(-388,388,8)] + [None for i in range(1)] self.__test_equal(res,expected,int) ### A very forward window res = data.rolling_sum(500,502) expected = [i for i in range(1503,2997,3)] + [None for i in range(502)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(50,52) expected = [i for i in range(6,294,6)] + [None for i in range(52)] self.__test_equal(res,expected,int) ### A very backward window res = data.rolling_sum(-502,-500) expected = [None for i in range(502)] + [i for i in range(3,1497,3)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-52,-50) expected = [None for i in range(52)] + [i for i in range(-294,-6,6)] self.__test_equal(res,expected,int) ### A window size much larger than anticipated segment size res = data.rolling_sum(0,749) expected = [i for i in range(280875,469125,750)] + [None for i in range(749)] self.__test_equal(res,expected,int) ### A window size larger than the array res = data.rolling_sum(0,1000) expected = [None for i in range(1000)] self.__test_equal(res,expected,type(None)) ### A window size of 1 res = data.rolling_sum(0,0) self.__test_equal(res, list(data), int) res = data.rolling_sum(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, int) res = data.rolling_sum(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_sum(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_sum(0,1) ### Empty SArray sa = SArray() res = sa.rolling_sum(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_sum(0,1) self.__test_equal(res, [3,5,None], int) def test_rolling_max(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_max(-3,0) expected = [None for i in range(3)] + [i for i in range(3,1000)] self.__test_equal(res,expected,int) # Test float inputs as well res = data.astype(float).rolling_max(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_max(-3, 0, min_observations=5) self.__test_equal(res,expected,int) res = data.rolling_max(-3, 0, min_observations=4) self.__test_equal(res,expected,int) res = data.rolling_max(-3, 0, min_observations=3) expected[2] = 2 self.__test_equal(res,expected,int) with self.assertRaises(ValueError): res = data.rolling_max(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_max(-3,0) ### Small forward window including current res = data.rolling_max(0,4) expected = [float(i) for i in range(4,1000)] + [None for i in range(4)] self.__test_equal(res,expected,int) ### A window size of 1 res = data.rolling_max(0,0) self.__test_equal(res, list(data), int) res = data.rolling_max(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, int) res = data.rolling_max(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_max(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_max(0,1) ### Empty SArray sa = SArray() res = sa.rolling_max(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_max(0,1) self.__test_equal(res, [2,3,None], int) def test_rolling_min(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_min(-3,0) expected = [None for i in range(3)] + [i for i in range(0,997)] self.__test_equal(res,expected,int) # Test float inputs as well res = data.astype(float).rolling_min(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_min(-3, 0, min_observations=5) self.__test_equal(res,expected,int) res = data.rolling_min(-3, 0, min_observations=4) self.__test_equal(res,expected,int) res = data.rolling_min(-3, 0, min_observations=3) expected[2] = 0 self.__test_equal(res,expected,int) with self.assertRaises(ValueError): res = data.rolling_min(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_min(-3,0) ### Small forward window including current res = data.rolling_min(0,4) expected = [float(i) for i in range(0,996)] + [None for i in range(4)] self.__test_equal(res,expected,int) ### A window size of 1 res = data.rolling_min(0,0) self.__test_equal(res, list(data), int) res = data.rolling_min(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, int) res = data.rolling_min(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_min(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_min(0,1) ### Empty SArray sa = SArray() res = sa.rolling_min(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_min(0,1) self.__test_equal(res, [1,2,None], int) def test_rolling_var(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_var(-3,0) expected = [None for i in range(3)] + [1.25 for i in range(997)] self.__test_equal(res,expected,float) # Test float inputs as well res = data.astype(float).rolling_var(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_var(-3, 0, min_observations=5) self.__test_equal(res,expected,float) res = data.rolling_var(-3, 0, min_observations=4) self.__test_equal(res,expected,float) res = data.rolling_var(-3, 0, min_observations=3) expected[2] = (2.0/3.0) self.__test_equal(res,expected,float) with self.assertRaises(ValueError): res = data.rolling_var(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_var(-3,0) ### Small forward window including current res = data.rolling_var(0,4) expected = [2 for i in range(996)] + [None for i in range(4)] self.__test_equal(res,expected,float) ### A window size of 1 res = data.rolling_var(0,0) self.__test_equal(res, [0 for i in range(1000)], float) res = data.rolling_var(-2,-2) self.__test_equal(res, [None,None] + [0 for i in range(998)], float) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_var(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_var(0,1) ### Empty SArray sa = SArray() res = sa.rolling_var(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_var(0,1) self.__test_equal(res, [.25,.25,None], float) def test_rolling_stdv(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_stdv(-3,0) expected = [None for i in range(3)] + [1.118033988749895 for i in range(997)] self.__test_equal(res,expected,float) # Test float inputs as well res = data.astype(float).rolling_stdv(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_stdv(-3, 0, min_observations=5) self.__test_equal(res,expected,float) res = data.rolling_stdv(-3, 0, min_observations=4) self.__test_equal(res,expected,float) res = data.rolling_stdv(-3, 0, min_observations=3) expected[2] = math.sqrt(2.0/3.0) self.__test_equal(res,expected,float) with self.assertRaises(ValueError): res = data.rolling_stdv(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_stdv(-3,0) ### Small forward window including current res = data.rolling_stdv(0,4) expected = [math.sqrt(2) for i in range(996)] + [None for i in range(4)] self.__test_equal(res,expected,float) ### A window size of 1 res = data.rolling_stdv(0,0) self.__test_equal(res, [0 for i in range(1000)], float) res = data.rolling_stdv(-2,-2) self.__test_equal(res, [None,None] + [0 for i in range(998)], float) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_stdv(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_stdv(0,1) ### Empty SArray sa = SArray() res = sa.rolling_stdv(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_stdv(0,1) self.__test_equal(res, [.5,.5,None], float) def test_rolling_count(self): data = SArray(range(100)) ### Small backward window including current res = data.rolling_count(-3,0) expected = [1,2,3] + [4 for i in range(97)] self.__test_equal(res,expected,int) # Test float inputs res = data.astype(float).rolling_count(-3,0) self.__test_equal(res,expected,int) # Test vector input res = SArray(self.vec_data).rolling_count(-3,0) expected = [1,2,3] + [4 for i in range(7)] self.__test_equal(res,expected,int) ### Test string input res = SArray(self.string_data).rolling_count(-3,0) self.__test_equal(res,expected[0:8],int) ### Small forward window including current res = data.rolling_count(0,4) expected = [5 for i in range(0,96)] + [4,3,2,1] self.__test_equal(res,expected,int) ### A window size of 1 res = data.rolling_count(0,0) self.__test_equal(res, [1 for i in range(100)], int) res = data.rolling_count(-2,-2) self.__test_equal(res, [0,0] + [1 for i in range(98)], int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_count(4,2) ### Empty SArray sa = SArray() res = sa.rolling_count(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_count(0,1) self.__test_equal(res, [2,2,1], int) sa = SArray([1,2,None]) res = sa.rolling_count(0,1) self.__test_equal(res, [2,1,0], int) @nottest def cumulative_aggregate_comparison(self, out, ans): import array self.assertEqual(out.dtype(), ans.dtype()) self.assertEqual(out.size(), ans.size()) for i in range(len(out)): if out[i] is None: self.assertTrue(ans[i] is None) if ans[i] is None: self.assertTrue(out[i] is None) if type(out[i]) != array.array: self.assertAlmostEqual(out[i], ans[i]) else: self.assertEqual(len(out[i]), len(ans[i])) oi = out[i] ansi = ans[i] for j in range(len(oi)): self.assertAlmostEqual(oi, ansi) def test_cumulative_sum(self): def single_test(src, ans): out = src.cumulative_sum(); self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_sum() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_sum() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_sum() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_sum() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray([0.1, 1.2, 3.3, 6.4, 10.5, 15.6, 21.7, 28.8]) ) single_test( SArray([[11.0, 2.0], [22.0, 1.0], [3.0, 4.0], [4.0, 4.0]]), SArray([[11.0, 2.0], [33.0, 3.0], [36.0, 7.0], [40.0, 11.0]]) ) single_test( SArray([None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 1, 1, 4, 4, 9]) ) single_test( SArray([None, [33.0, 3.0], [3.0, 4.0], [4.0, 4.0]]), SArray([None, [33.0, 3.0], [36.0, 7.0], [40.0, 11.0]]) ) single_test( SArray([None, [33.0, 3.0], None, [4.0, 4.0]]), SArray([None, [33.0, 3.0], [33.0, 3.0], [37.0, 7.0]]) ) def test_cumulative_mean(self): def single_test(src, ans): out = src.cumulative_mean(); self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_mean() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_mean() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_mean() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_mean() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray([0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3.1, 3.6]) ) single_test( SArray([[11.0, 22.0], [33.0, 66.0], [4.0, 2.0], [4.0, 2.0]]), SArray([[11.0, 22.0], [22.0, 44.0], [16.0, 30.0], [13.0, 23.0]]) ) single_test( SArray([None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 1, 1.0, 2.0, 2.0, 3.0]) ) single_test( SArray([None, [11.0, 22.0], [33.0, 66.0], [4.0, 2.0]]), SArray([None, [11.0, 22.0], [22.0, 44.0], [16.0, 30.0]]) ) single_test( SArray([None, [11.0, 22.0], None, [33.0, 66.0], [4.0, 2.0]]), SArray([None, [11.0, 22.0], [11.0, 22.0], [22.0, 44.0], [16.0, 30.0]]) ) def test_cumulative_min(self): def single_test(src, ans): out = src.cumulative_min(); self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_min() single_test( SArray([0, 1, 2, 3, 4, 5, -1, 7, 8, -2, 10]), SArray([0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2]) ) single_test( SArray([7.1, 6.1, 3.1, 3.9, 4.1, 2.1, 2.9, 0.1]), SArray([7.1, 6.1, 3.1, 3.1, 3.1, 2.1, 2.1, 0.1]) ) single_test( SArray([None, 8, 6, 3, 4, None, 6, 2, 8, 9, 1]), SArray([None, 8, 6, 3, 3, 3, 3, 2, 2, 2, 1]) ) single_test( SArray([None, 5, None, 3, None, 10]), SArray([None, 5, 5, 3, 3, 3]) ) def test_cumulative_max(self): def single_test(src, ans): out = src.cumulative_max(); self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_max() single_test( SArray([0, 1, 0, 3, 5, 4, 1, 7, 6, 2, 10]), SArray([0, 1, 1, 3, 5, 5, 5, 7, 7, 7, 10]) ) single_test( SArray([2.1, 6.1, 3.1, 3.9, 2.1, 8.1, 8.9, 10.1]), SArray([2.1, 6.1, 6.1, 6.1, 6.1, 8.1, 8.9, 10.1]) ) single_test( SArray([None, 1, 6, 3, 4, None, 4, 2, 8, 9, 1]), SArray([None, 1, 6, 6, 6, 6, 6, 6, 8, 9, 9]) ) single_test( SArray([None, 2, None, 3, None, 10]), SArray([None, 2, 2, 3, 3, 10]) ) def test_cumulative_std(self): def single_test(src, ans): out = src.cumulative_std(); self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_std() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0.0, 0.5, 0.816496580927726, 1.118033988749895, 1.4142135623730951, 1.707825127659933, 2.0, 2.29128784747792, 2.581988897471611, 2.8722813232690143, 3.1622776601683795]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray([0.0, 0.5, 0.81649658092772603, 1.1180339887498949, 1.4142135623730949, 1.707825127659933, 1.9999999999999998, 2.2912878474779195]) ) single_test( SArray([None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 0.0, 0.5, 0.816496580927726, 1.118033988749895, 1.4142135623730951, 1.707825127659933, 2.0, 2.29128784747792, 2.581988897471611, 2.8722813232690143, 3.1622776601683795]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 0.0, 0.0, 1.0, 1.0, 1.6329931618554521]) ) def test_cumulative_var(self): def single_test(src, ans): out = src.cumulative_var(); self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_var() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0.0, 0.25, 0.6666666666666666, 1.25, 2.0, 2.9166666666666665, 4.0, 5.25, 6.666666666666667, 8.25, 10.0]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray( [0.0, 0.25000000000000006, 0.6666666666666666, 1.25, 1.9999999999999996, 2.916666666666666, 3.999999999999999, 5.249999999999998]) ) single_test( SArray([None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 0.0, 0.25, 0.6666666666666666, 1.25, 2.0, 2.9166666666666665, 4.0, 5.25, 6.666666666666667, 8.25, 10.0]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 0.0, 0.0, 1.0, 1.0, 2.6666666666666665]) ) def test_numpy_datetime64(self): # Make all datetimes naive expected = [i.replace(tzinfo=GMT(0.0)) \ if i is not None and i.tzinfo is None else i for i in self.datetime_data] # A regular list iso_str_list = [np.datetime64('2013-05-07T10:04:10Z'), np.datetime64('1902-10-21T10:34:10Z'), None] sa = SArray(iso_str_list) self.__test_equal(sa,expected,dt.datetime) iso_str_list[2] = np.datetime64('NaT') sa = SArray(iso_str_list) self.__test_equal(sa,expected,dt.datetime) # A numpy array np_ary = np.array(iso_str_list) sa = SArray(np_ary) self.__test_equal(sa,expected,dt.datetime) ### Every possible type of datetime64 test_str = '1969-12-31T23:59:56Z' available_time_units = ['h','m','s','ms','us','ns','ps','fs','as'] expected = [dt.datetime(1969,12,31,23,59,56,tzinfo=GMT(0.0)) for i in range(7)] expected.insert(0,dt.datetime(1969,12,31,23,59,0,tzinfo=GMT(0.0))) expected.insert(0,dt.datetime(1969,12,31,23,0,0,tzinfo=GMT(0.0))) for i in range(len(available_time_units)): sa = SArray([np.datetime64(test_str,available_time_units[i])]) self.__test_equal(sa,[expected[i]],dt.datetime) test_str = '1908-06-01' available_date_units = ['Y','M','W','D'] expected = [dt.datetime(1908,6,1,0,0,0,tzinfo=GMT(0.0)) for i in range(4)] expected[2] = dt.datetime(1908,5,28,0,0,0,tzinfo=GMT(0.0)) # weeks start on Thursday? expected[0] = dt.datetime(1908,1,1,0,0,0,tzinfo=GMT(0.0)) for i in range(len(available_date_units)): sa = SArray([np.datetime64(test_str,available_date_units[i])]) self.__test_equal(sa,[expected[i]],dt.datetime) # Daylight savings time (Just to be safe. datetime64 deals in UTC, and # we store times in UTC by default, so this shouldn't affect anything) sa = SArray([np.datetime64('2015-03-08T02:38:00-08')]) expected = [dt.datetime(2015,3,8,10,38,tzinfo=GMT(0.0))] self.__test_equal(sa, expected, dt.datetime) # timezone considerations sa = SArray([np.datetime64('2016-01-01T05:45:00+0545')]) expected = [dt.datetime(2016,1,1,0,0,0,tzinfo=GMT(0.0))] self.__test_equal(sa, expected, dt.datetime) ### Out of our datetime range with self.assertRaises(TypeError): sa = SArray([np.datetime64('1066-10-14T09:00:00Z')]) def test_pandas_timestamp(self): iso_str_list = [pd.Timestamp('2013-05-07T10:04:10'), pd.Timestamp('1902-10-21T10:34:10Z'), None] sa = SArray(iso_str_list) self.__test_equal(sa,self.datetime_data,dt.datetime) iso_str_list[2] = pd.tslib.NaT sa = SArray(iso_str_list) self.__test_equal(sa,self.datetime_data,dt.datetime) sa = SArray([pd.Timestamp('2015-03-08T02:38:00-08')]) expected = [dt.datetime(2015,3,8,2,38,tzinfo=GMT(-8.0))] self.__test_equal(sa, expected, dt.datetime) sa = SArray([pd.Timestamp('2016-01-01 05:45:00', tz=GMT(5.75))]) expected = [dt.datetime(2016,1,1,5,45,0,tzinfo=GMT(5.75))] self.__test_equal(sa, expected, dt.datetime) def test_decimal(self): import decimal test_val = decimal.Decimal(3.0) sa = SArray([test_val]) expected = [3.0] self.__test_equal(sa, expected, float) def test_timedelta(self): test_val = dt.timedelta(1,1) sa = SArray([test_val]) expected = [86401.0] self.__test_equal(sa, expected, float) def test_materialize(self): sa= SArray(range(100)) sa = sa[sa > 10] self.assertFalse(sa.is_materialized()) sa.materialize() self.assertTrue(sa.is_materialized()) def test_ternary(self): lista = range(1000) a = SArray(lista) # identity self.__test_equal(SArray.where(a > 10, a, a), lista, int) # clip lower self.__test_equal(SArray.where(a > 10, a, 10), [i if i > 10 else 10 for i in lista], int) # clip upper self.__test_equal(SArray.where(a > 10, 10, a), [10 if i > 10 else i for i in lista], int) # constants self.__test_equal(SArray.where(a > 10, 10, 9), [10 if i > 10 else 9 for i in lista], int) # constant float self.__test_equal(SArray.where(a > 10, 10.0, 9.0), [10.0 if i > 10 else 9.0 for i in lista], float) # constant str self.__test_equal(SArray.where(a > 10, "10", "9"), ["10" if i > 10 else "9" for i in lista], str) #inconsistent types with self.assertRaises(TypeError): SArray.where(a > 10, 10, "9") # 10 and "9" different types #inconsistent types with self.assertRaises(TypeError): SArray.where(a > 10, a, "9") # expecting an integer for "a" # technically different types but type coercion happened self.__test_equal(SArray.where(a > 10, a, 10.0), [i if i > 10 else 10 for i in lista], int) # list types self.__test_equal(SArray.where(a > 10, [], [1], list), [[] if i > 10 else [1] for i in lista], list) # really the same as the above, but using an SArray in place # of a constant in istrue. And hoping the type coercion # will take care of [1] b = SArray([[] for i in range(1000)]) self.__test_equal(SArray.where(a > 10, b, [1]), [[] if i > 10 else [1] for i in lista], list) def test_shape(self): sa = SArray() self.assertEqual(sa.shape, (0,)) for i in [0,1,2,10,345]: sa = SArray(range(i)) self.assertEqual(sa.shape, (i,)) def test_random_split(self): sa = SArray(range(10)) (train, test) = sa.random_split(0.8, seed=12423) self.assertEqual(list(train), [0, 1, 2, 3, 5, 7, 8, 9]) self.assertEqual(list(test), [4,6]) def test_copy(self): from copy import copy sa = SArray(range(1000)) sa_copy = copy(sa) assert sa is not sa_copy assert (sa == sa_copy).all() def test_deepcopy(self): from copy import deepcopy sa = SArray(range(1000)) sa_copy = deepcopy(sa) assert sa is not sa_copy assert (sa == sa_copy).all()
bsd-3-clause
paultopia/auto-sklearn
autosklearn/data/competition_data_manager.py
5
16248
# Functions performing various input/output operations for the ChaLearn AutoML challenge # Main contributor: Arthur Pesah, August 2014 # Edits: Isabelle Guyon, October 2014 # ALL INFORMATION, SOFTWARE, DOCUMENTATION, AND DATA ARE PROVIDED "AS-IS". # ISABELLE GUYON, CHALEARN, AND/OR OTHER ORGANIZERS OR CODE AUTHORS DISCLAIM # ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE, AND THE # WARRANTY OF NON-INFRIGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY RIGHTS. # IN NO EVENT SHALL ISABELLE GUYON AND/OR OTHER ORGANIZERS BE LIABLE FOR ANY SPECIAL, # INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF SOFTWARE, DOCUMENTS, MATERIALS, # PUBLICATIONS, OR INFORMATION MADE AVAILABLE FOR THE CHALLENGE. import numpy as np import os import re import time import scipy.sparse try: import autosklearn.data.competition_c_functions as competition_c_functions competition_c_functions_is_there = True except: competition_c_functions_is_there = False pass from autosklearn.data import util as data_util from autosklearn.data.data_manager import DataManager from autosklearn.constants import * def data_dense(filename, feat_type=None, verbose=False): # The 2nd parameter makes possible a using of the 3 functions of data # reading (data, data_sparse, data_binary_sparse) without changing # parameters # This code is based on scipy.io.arff.arff_load r_comment = re.compile(r'^%') # Match an empty line r_empty = re.compile(r'^\s+$') descr = [(str(i), np.float32) for i in range(len(feat_type))] def generator(row_iter, delim=','): # Copied from scipy.io.arff.arffread raw = next(row_iter) while r_empty.match(raw) or r_comment.match(raw): raw = next(row_iter) # 'compiling' the range since it does not change # Note, I have already tried zipping the converters and # row elements and got slightly worse performance. elems = list(range(len(feat_type))) row = raw.split(delim) # yield tuple([np.float64(row[i]) for i in elems]) yield tuple([row[i] for i in elems]) for raw in row_iter: while r_comment.match(raw) or r_empty.match(raw): raw = next(row_iter) row = raw.split(delim) # yield tuple([np.float64(row[i]) for i in elems]) yield tuple([row[i] for i in elems]) with open(filename) as fh: a = generator(fh, delim=" ") # No error should happen here: it is a bug otherwise data = np.fromiter(a, descr) data = data.view(np.float32).reshape((len(data), -1)) return data def data_sparse(filename, feat_type): # This function takes as argument a file representing a sparse matrix # sparse_matrix[i][j] = "a:b" means matrix[i][a] = b # It converts it into a numpy array, using sparse_list_to_array function, # and returns this array sparse_list = sparse_file_to_sparse_list(filename) return sparse_list_to_csr_sparse(sparse_list, len(feat_type)) def data_binary_sparse(filename, feat_type): # This function takes as an argument a file representing a binary sparse # matrix # binary_sparse_matrix[i][j] = a means matrix[i][j] = 1 # It converts it into a numpy array an returns this array. inner_data = file_to_array(filename) nbr_samples = len(inner_data) # the construction is easier w/ dok_sparse dok_sparse = scipy.sparse.dok_matrix((nbr_samples, len(feat_type))) print ("Converting {} to dok sparse matrix".format(filename)) for row in range(nbr_samples): for feature in inner_data[row]: dok_sparse[row, int(feature) - 1] = 1 print ("Converting {} to csr sparse matrix".format(filename)) return dok_sparse.tocsr() def file_to_array(filename, verbose=False): # Converts a file to a list of list of STRING; It differs from # np.genfromtxt in that the number of columns doesn't need to be constant data = [] with open(filename, "r") as data_file: if verbose: print ("Reading {}...".format(filename)) lines = data_file.readlines() if verbose: print ("Converting {} to correct array...".format(filename)) data = [lines[i].strip().split() for i in range(len(lines))] return data def read_first_line(filename): # Read fist line of file data = [] with open(filename, "r") as data_file: line = data_file.readline() data = line.strip().split() return data def sparse_file_to_sparse_list(filename, verbose=True): # Converts a sparse data file to a sparse list, so that: # sparse_list[i][j] = (a,b) means matrix[i][a]=b data_file = open(filename, "r") if verbose: print ("Reading {}...".format(filename)) lines = data_file.readlines() if verbose: print ("Converting {} to correct array") data = [lines[i].split(' ') for i in range(len(lines))] if verbose: print ("Converting {} to sparse list".format(filename)) _converter = lambda a_: (int(a_[0]), np.float32(float(a_[1]))) return [[_converter(data[i][j].rstrip().split(':')) for j in range(len(data[i])) if data[i][j] != '\n'] for i in range(len(data))] def sparse_list_to_csr_sparse(sparse_list, nbr_features, verbose=True): # This function takes as argument a matrix of tuple representing a sparse # matrix and the number of features. # sparse_list[i][j] = (a,b) means matrix[i][a]=b # It converts it into a scipy csr sparse matrix nbr_samples = len(sparse_list) # construction easier w/ dok_sparse... dok_sparse = scipy.sparse.dok_matrix((nbr_samples, nbr_features), dtype=np.float32) if verbose: print ("\tConverting sparse list to dok sparse matrix") for row in range(nbr_samples): for column in range(len(sparse_list[row])): (feature, value) = sparse_list[row][column] dok_sparse[row, feature - 1] = value if verbose: print ("\tConverting dok sparse matrix to csr sparse matrix") # but csr better for shuffling data or other tricks return dok_sparse.tocsr() class CompetitionDataManager(DataManager): ''' This class aims at loading and saving data easily with a cache and at generating a dictionary (self.info) in which each key is a feature (e.g. : name, format, feat_num,...). Methods defined here are : __init__ (...) x.__init__([(feature, value)]) -> void Initialize the info dictionary with the tuples (feature, value) given as argument. It recognizes the type of value (int, string) and assign value to info[feature]. An unlimited number of tuple can be sent. getInfo (...) x.getInfo (filename) -> void Fill the dictionary with an info file. Each line of the info file must have this format 'feature' : value The information is obtained from the public.info file if it exists, or inferred from the data files getInfoFromFile (...) x.getInfoFromFile (filename) -> void Fill the dictionary with an info file. Each line of the info file must have this format 'feature' : value ''' def __init__(self, basename, input_dir, verbose=False, encode_labels=True): super(CompetitionDataManager, self).__init__() self.basename = basename if basename in input_dir: self.input_dir = input_dir else: self.input_dir = input_dir + "/" + basename + "/" info_file = os.path.join(self.input_dir, basename + '_public.info') self.getInfo(info_file) self.feat_type = self.loadType(os.path.join(self.input_dir, basename + '_feat.type'), verbose=verbose) Xtr = self.loadData(os.path.join(self.input_dir, basename + '_train.data'), self.info['train_num'], verbose=verbose) Ytr = self.loadLabel(os.path.join(self.input_dir, basename + '_train.solution'), self.info['train_num'], verbose=verbose) Xva = self.loadData(os.path.join(self.input_dir, basename + '_valid.data'), self.info['valid_num'], verbose=verbose) Xte = self.loadData(os.path.join(self.input_dir, basename + '_test.data'), self.info['test_num'], verbose=verbose) self._data['X_train'] = Xtr self._data['Y_train'] = Ytr self._data['X_valid'] = Xva self._data['X_test'] = Xte p = os.path.join(self.input_dir, basename + '_valid.solution') if os.path.exists(p): try: self._data['Y_valid'] = self.loadLabel(p, self.info['valid_num'], verbose=verbose) except (IOError, OSError): pass p = os.path.join(self.input_dir, basename + '_test.solution') if os.path.exists(p): try: self.data['Y_test'] = self.loadLabel(p, self.info['test_num'], verbose=verbose) except (IOError, OSError) as e: pass if encode_labels: self.perform1HotEncoding() def loadData (self, filename, num_points, verbose=True): ''' Get the data from a text file in one of 3 formats: matrix, sparse, binary_sparse''' if verbose: print("========= Reading " + filename) start = time.time() if 'format' not in self.info: self.getFormatData(filename) if competition_c_functions_is_there: data_func = {'dense': competition_c_functions.read_dense_file, 'sparse': competition_c_functions.read_sparse_file, 'sparse_binary': competition_c_functions.read_sparse_binary_file} data = data_func[self.info['format']](filename, num_points, self.info['feat_num']) if scipy.sparse.issparse(data): if not np.all(data.indices >= 0): raise ValueError("Sparse data must be 1-indexed, " "not 0-indexed.") else: data_func = {'dense': data_dense, 'sparse': data_sparse, 'sparse_binary': data_binary_sparse} data = data_func[self.info['format']](filename, self.feat_type) end = time.time() if verbose: print( "[+] Success in %5.2f sec" % (end - start)) return data def loadLabel (self, filename, num_points, verbose=True): ''' Get the solution/truth values''' if verbose: print("========= Reading " + filename) start = time.time() # IG: Here change to accommodate the new multiclass label format if competition_c_functions_is_there: if self.info['task'] == MULTILABEL_CLASSIFICATION: # cast into ints label = (competition_c_functions.read_dense_file_unknown_width( filename, num_points)).astype(np.int) elif self.info['task'] == MULTICLASS_CLASSIFICATION: label = competition_c_functions.read_dense_file_unknown_width( filename, num_points) # read the class from the only non zero entry in each line! # should be ints right away label = np.where(label != 0)[1]; else: label = competition_c_functions.read_dense_file_unknown_width( filename, num_points) else: if self.info['task'] == MULTILABEL_CLASSIFICATION: label = self._data(filename) elif self.info['task'] == MULTICLASS_CLASSIFICATION: label = data_util.convert_to_num(self._data(filename)) else: label = np.ravel(data_util.data(filename)) # get a column vector end = time.time() if verbose: print( "[+] Success in %5.2f sec" % (end - start)) return label def loadType (self, filename, verbose=True): ''' Get the variable types''' if verbose: print("========= Reading " + filename) start = time.time() type_list = [] if os.path.isfile(filename): if competition_c_functions_is_there: type_list = competition_c_functions.file_to_array(filename, verbose=False) else: type_list = file_to_array(filename, verbose=False) else: n=self.info['feat_num'] type_list = [self.info['feat_type']]*n type_list = np.array(type_list).ravel() end = time.time() if verbose: print( "[+] Success in %5.2f sec" % (end - start)) return type_list def getInfo (self, filename, verbose=True): ''' Get all information {attribute = value} pairs from the filename (public.info file), if it exists, otherwise, output default values''' if filename==None: basename = self.basename input_dir = self.input_dir else: # Split away the _public.info (anyway, I don't know why its # there... the dataset name is known from the call) basename = "_".join(os.path.basename(filename).split('_')[:-1]) input_dir = os.path.dirname(filename) if os.path.exists(filename): self.getInfoFromFile (filename) print "Info file found : " + os.path.abspath(filename) # Finds the data format ('dense', 'sparse', or 'sparse_binary') self.getFormatData(os.path.join(input_dir, basename + '_train.data')) else: raise NotImplementedError("The user must always provide an info " "file.") self.info['task'] = STRING_TO_TASK_TYPES[self.info['task']] return self.info def getInfoFromFile (self, filename): ''' Get all information {attribute = value} pairs from the public.info file''' with open (filename, "r") as info_file: lines = info_file.readlines() features_list = list(map(lambda x: tuple(x.strip("\'").split(" = ")), lines)) for (key, value) in features_list: self.info[key] = value.rstrip().strip("'").strip(' ') if self.info[key].isdigit(): # if we have a number, we want it to be an integer self.info[key] = int(self.info[key]) return self.info def getFormatData(self,filename): ''' Get the data format directly from the data file (in case we do not have an info file)''' if 'format' in self.info.keys(): return self.info['format'] if 'is_sparse' in self.info.keys(): if self.info['is_sparse'] == 0: self.info['format'] = 'dense' else: if competition_c_functions_is_there: data = competition_c_functions.read_first_line(filename) else: data = data_util.read_first_line(filename) if ':' in data[0]: self.info['format'] = 'sparse' else: self.info['format'] = 'sparse_binary' else: if competition_c_functions_is_there: data = competition_c_functions.file_to_array(filename) else: data = data_util.file_to_array(filename) if ':' in data[0][0]: self.info['is_sparse'] = 1 self.info['format'] = 'sparse' else: nbr_columns = len(data[0]) for row in range (len(data)): if len(data[row]) != nbr_columns: self.info['format'] = 'sparse_binary' if 'format' not in self.info.keys(): self.info['format'] = 'dense' self.info['is_sparse'] = 0 return self.info['format']
bsd-3-clause
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/tests/api/test_types.py
15
3674
# -*- coding: utf-8 -*- import pytest from warnings import catch_warnings import numpy as np import pandas from pandas.core import common as com from pandas.api import types from pandas.util import testing as tm from .test_api import Base class TestTypes(Base): allowed = ['is_bool', 'is_bool_dtype', 'is_categorical', 'is_categorical_dtype', 'is_complex', 'is_complex_dtype', 'is_datetime64_any_dtype', 'is_datetime64_dtype', 'is_datetime64_ns_dtype', 'is_datetime64tz_dtype', 'is_datetimetz', 'is_dtype_equal', 'is_extension_type', 'is_float', 'is_float_dtype', 'is_int64_dtype', 'is_integer', 'is_integer_dtype', 'is_number', 'is_numeric_dtype', 'is_object_dtype', 'is_scalar', 'is_sparse', 'is_string_dtype', 'is_signed_integer_dtype', 'is_timedelta64_dtype', 'is_timedelta64_ns_dtype', 'is_unsigned_integer_dtype', 'is_period', 'is_period_dtype', 'is_interval', 'is_interval_dtype', 'is_re', 'is_re_compilable', 'is_dict_like', 'is_iterator', 'is_file_like', 'is_list_like', 'is_hashable', 'is_named_tuple', 'pandas_dtype', 'union_categoricals', 'infer_dtype'] deprecated = ['is_any_int_dtype', 'is_floating_dtype', 'is_sequence'] dtypes = ['CategoricalDtype', 'DatetimeTZDtype', 'PeriodDtype', 'IntervalDtype'] def test_types(self): self.check(types, self.allowed + self.dtypes + self.deprecated) def check_deprecation(self, fold, fnew): with tm.assert_produces_warning(DeprecationWarning): try: result = fold('foo') expected = fnew('foo') assert result == expected except TypeError: pytest.raises(TypeError, lambda: fnew('foo')) except AttributeError: pytest.raises(AttributeError, lambda: fnew('foo')) def test_deprecation_core_common(self): # test that we are in fact deprecating # the pandas.core.common introspectors for t in self.allowed: self.check_deprecation(getattr(com, t), getattr(types, t)) def test_deprecation_core_common_array_equivalent(self): with tm.assert_produces_warning(DeprecationWarning): com.array_equivalent(np.array([1, 2]), np.array([1, 2])) def test_deprecation_core_common_moved(self): # these are in pandas.core.dtypes.common l = ['is_datetime_arraylike', 'is_datetime_or_timedelta_dtype', 'is_datetimelike', 'is_datetimelike_v_numeric', 'is_datetimelike_v_object', 'is_datetimetz', 'is_int_or_datetime_dtype', 'is_period_arraylike', 'is_string_like', 'is_string_like_dtype'] from pandas.core.dtypes import common as c for t in l: self.check_deprecation(getattr(com, t), getattr(c, t)) def test_removed_from_core_common(self): for t in ['is_null_datelike_scalar', 'ensure_float']: pytest.raises(AttributeError, lambda: getattr(com, t)) def test_deprecated_from_api_types(self): for t in self.deprecated: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): getattr(types, t)(1) def test_moved_infer_dtype(): with catch_warnings(record=True): e = pandas.lib.infer_dtype('foo') assert e is not None
mit
lmallin/coverage_test
python_venv/lib/python2.7/site-packages/pandas/tests/test_common.py
3
4870
# -*- coding: utf-8 -*- import pytest import numpy as np from pandas import Series, Timestamp from pandas.compat import range, lmap import pandas.core.common as com import pandas.util.testing as tm def test_mut_exclusive(): msg = "mutually exclusive arguments: '[ab]' and '[ab]'" with tm.assert_raises_regex(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_get_callable_name(): from functools import partial getname = com._get_callable_name def fn(x): return x lambda_ = lambda x: x part1 = partial(fn) part2 = partial(part1) class somecall(object): def __call__(self): return x # noqa assert getname(fn) == 'fn' assert getname(lambda_) assert getname(part1) == 'fn' assert getname(part2) == 'fn' assert getname(somecall()) == 'somecall' assert getname(1) is None def test_any_none(): assert (com._any_none(1, 2, 3, None)) assert (not com._any_none(1, 2, 3, 4)) def test_all_not_none(): assert (com._all_not_none(1, 2, 3, 4)) assert (not com._all_not_none(1, 2, 3, None)) assert (not com._all_not_none(None, None, None, None)) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(com.iterpairs(data)) assert (result == expected) def test_split_ranges(): def _bin(x, width): "return int(x) as a base2 string of given width" return ''.join(str((x >> i) & 1) for i in range(width - 1, -1, -1)) def test_locs(mask): nfalse = sum(np.array(mask) == 0) remaining = 0 for s, e in com.split_ranges(mask): remaining += e - s assert 0 not in mask[s:e] # make sure the total items covered by the ranges are a complete cover assert remaining + nfalse == len(mask) # exhaustively test all possible mask sequences of length 8 ncols = 8 for i in range(2 ** ncols): cols = lmap(int, list(_bin(i, ncols))) # count up in base2 mask = [cols[i] == 1 for i in range(len(cols))] test_locs(mask) # base cases test_locs([]) test_locs([0]) test_locs([1]) def test_map_indices_py(): data = [4, 3, 2, 1] expected = {4: 0, 3: 1, 2: 2, 1: 3} result = com.map_indices_py(data) assert (result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(com.union(a, b)) assert ((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.difference(b, a)) assert ([4, 5, 6] == inter) def test_intersection(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.intersection(a, b)) assert (a == inter) def test_groupby(): values = ['foo', 'bar', 'baz', 'baz2', 'qux', 'foo3'] expected = {'f': ['foo', 'foo3'], 'b': ['bar', 'baz', 'baz2'], 'q': ['qux']} grouped = com.groupby(values, lambda x: x[0]) for k, v in grouped: assert v == expected[k] def test_random_state(): import numpy.random as npr # Check with seed state = com._random_state(5) assert state.uniform() == npr.RandomState(5).uniform() # Check with random state object state2 = npr.RandomState(10) assert (com._random_state(state2).uniform() == npr.RandomState(10).uniform()) # check with no arg random state assert com._random_state() is np.random # Error for floats or strings with pytest.raises(ValueError): com._random_state('test') with pytest.raises(ValueError): com._random_state(5.5) def test_maybe_match_name(): matched = com._maybe_match_name( Series([1], name='x'), Series( [2], name='x')) assert (matched == 'x') matched = com._maybe_match_name( Series([1], name='x'), Series( [2], name='y')) assert (matched is None) matched = com._maybe_match_name(Series([1]), Series([2], name='x')) assert (matched is None) matched = com._maybe_match_name(Series([1], name='x'), Series([2])) assert (matched is None) matched = com._maybe_match_name(Series([1], name='x'), [2]) assert (matched == 'x') matched = com._maybe_match_name([1], Series([2], name='y')) assert (matched == 'y') def test_dict_compat(): data_datetime64 = {np.datetime64('1990-03-15'): 1, np.datetime64('2015-03-15'): 2} data_unchanged = {1: 2, 3: 4, 5: 6} expected = {Timestamp('1990-3-15'): 1, Timestamp('2015-03-15'): 2} assert (com._dict_compat(data_datetime64) == expected) assert (com._dict_compat(expected) == expected) assert (com._dict_compat(data_unchanged) == data_unchanged)
mit
adybbroe/atrain_match
atrain_match/reshaped_files_scr/plot_ctth_boxplots_mlvl2_temperature_pressure_height.py
1
16002
"""Read all matched data and make some plotting """ import os import re from glob import glob import numpy as np from matchobject_io import (readCaliopImagerMatchObj, CalipsoImagerTrackObject) from plot_kuipers_on_area_util import (PerformancePlottingObject, ppsMatch_Imager_CalipsoObject) import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams.update({'font.size': 16}) from utils.get_flag_info import get_calipso_clouds_of_type_i from utils.get_flag_info import (get_semi_opaque_info_pps2014, get_calipso_high_clouds, get_calipso_medium_clouds, get_calipso_low_clouds) from my_dir import ADIR def make_boxplot(caObj, name, month="xx", modis_lvl2=False, use_m2_pix=True): low_clouds = get_calipso_low_clouds(caObj) high_clouds = get_calipso_high_clouds(caObj) medium_clouds = get_calipso_medium_clouds(caObj) height_c = 1000*caObj.calipso.all_arrays['layer_top_altitude'][:,0] cloud_elevation = 1000*caObj.calipso.all_arrays['layer_top_altitude'][:,0]-caObj.calipso.all_arrays['elevation'] if modis_lvl2: height_imager = caObj.modis.all_arrays['height'] else: height_imager = caObj.imager.all_arrays['imager_ctth_m_above_seasurface'] if height_imager is None: height_imager = caObj.imager.all_arrays['ctth_height']+caObj.calipso.all_arrays['elevation'] use = np.logical_and(height_imager >-1, height_c>=0) use = np.logical_and(height_imager <45000,use) USE_ONLY_PIXELS_WHERE_PPS_AND_MODIS_C6_HAVE_VALUES=use_m2_pix if USE_ONLY_PIXELS_WHERE_PPS_AND_MODIS_C6_HAVE_VALUES: height_mlvl2 = caObj.modis.all_arrays['height'] height_pps = caObj.imager.all_arrays['imager_ctth_m_above_seasurface'] use = np.logical_and(use, height_mlvl2>-1) use = np.logical_and(use, height_mlvl2<45000) use = np.logical_and(use, height_pps>-1) use = np.logical_and(use, height_pps<45000) thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.30, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) very_thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.10, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) thin_top = np.logical_and(caObj.calipso.all_arrays['number_layers_found']>1, thin) thin_1_lay = np.logical_and(caObj.calipso.all_arrays['number_layers_found']==1, thin) low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) c_all = np.logical_or(high,np.logical_or(low,medium)) high_very_thin = np.logical_and(high, very_thin) high_thin = np.logical_and(high, np.logical_and(~very_thin,thin)) high_thick = np.logical_and(high, ~thin) #print "thin, thick high", np.sum(high_thin), np.sum(high_thick) bias = height_imager - height_c abias = np.abs(bias) #abias[abias>2000]=2000 print name.ljust(30, " "), "%3.1f"%(np.mean(abias[c_all])), "%3.1f"%(np.mean(abias[low])),"%3.1f"%(np.mean(abias[medium])),"%3.1f"%(np.mean(abias[high])) c_all = np.logical_or(np.logical_and(~very_thin,high),np.logical_or(low,medium)) number_of = np.sum(c_all) MAE = np.mean(abias[c_all]) #print name.ljust(30, " "), "%3.1f"%(np.sum(abias[c_all]<250)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<2000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<3000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<4000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<5000)*100.0/number_of) from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=70) ax.fill_between(np.arange(0,8),-500,500, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-1000,1000, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-1500,1500, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),2000,15000, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-2000,-15000, facecolor='red', alpha=0.2) for y_val in [-5,-4,-3,-2,2,3,4,5]: plt.plot(np.arange(0,8), y_val*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), -10*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high],bias[high_thick],bias[high_thin],bias[high_very_thin]],whis=[5, 95],sym='', labels=["low","medium","high-all","high-thick\n od>0.4","high-thin \n 0.1<od<0.4","high-vthin\n od<0.1"],showmeans=True, patch_artist=True) ax.set_ylim(-14000,8000) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title("%s MAE = %3.0f"%(name,MAE)) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_%s_5_95_filt.png"%(name)) elevation_zero = np.logical_and(use,caObj.calipso.all_arrays['elevation']>5000) low_clouds = height_c<2500 medium_clouds = np.logical_and(height_c>=2500, height_c<=5000) high_clouds = height_c>5000 low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=50) ax.fill_between(np.arange(0,8),-500,500, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-1000,1000, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-1500,1500, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),2000,15000, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-2000,-15000, facecolor='red', alpha=0.2) for y_val in [-5,-4,-3,-2,2,3,4,5]: plt.plot(np.arange(0,8), y_val*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), -10*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high], bias[elevation_zero]],whis=[5, 95],sym='', labels=["low <2.5km","medium","high>5km", "ground>5km"], showmeans=True, patch_artist=True) ax.set_ylim(-8000,8000) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title("Calipso %s \nHeight bias comparison MAE= %3.0f"%(name, MAE)) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_hkm_%s_5_95_filt.png"%(name)) def make_boxplot_temperature(caObj, name, modis_lvl2=False): low_clouds = get_calipso_low_clouds(caObj) high_clouds = get_calipso_high_clouds(caObj) medium_clouds = get_calipso_medium_clouds(caObj) temp_c = caObj.calipso.all_arrays['layer_top_temperature'][:,0] +273.15 if modis_lvl2: temp_pps = caObj.modis.all_arrays['temperature'] else: temp_pps = caObj.imager.all_arrays['ctth_temperature'] if modis_lvl2: height_pps = caObj.modis.all_arrays['height'] else: height_pps = caObj.imager.all_arrays['ctth_height'] thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.30, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) very_thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.10, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) thin_top = np.logical_and(caObj.calipso.all_arrays['number_layers_found']>1, thin) thin_1_lay = np.logical_and(caObj.calipso.all_arrays['number_layers_found']==1, thin) use = np.logical_and(temp_pps >100, caObj.calipso.all_arrays['layer_top_altitude'][:,0]>=0) use = np.logical_and(height_pps <45000,use) low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) c_all = np.logical_or(high,np.logical_or(low,medium)) high_very_thin = np.logical_and(high, very_thin) high_thin = np.logical_and(high, np.logical_and(~very_thin,thin)) high_thick = np.logical_and(high, ~thin) #print "thin, thick high", np.sum(high_thin), np.sum(high_thick) bias = temp_pps - temp_c abias = np.abs(bias) #abias[abias>2000]=2000 print name.ljust(30, " "), "%3.1f"%(np.mean(abias[c_all])), "%3.1f"%(np.mean(abias[low])),"%3.1f"%(np.mean(abias[medium])),"%3.1f"%(np.mean(abias[high])) c_all = np.logical_or(np.logical_and(~very_thin,high),np.logical_or(low,medium)) number_of = np.sum(c_all) #print name.ljust(30, " "), "%3.1f"%(np.sum(abias[c_all]<250)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<2000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<3000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<4000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<5000)*100.0/number_of) from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=70) ax.fill_between(np.arange(0,8),-2.5,2.5, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-5,5, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-7.5,7.5, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),10,150, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-20,-10, facecolor='red', alpha=0.2) for y_val in [-5,-4,-3,-2,-1,1,2,3,4,5]: plt.plot(np.arange(0,8), y_val*20 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high],bias[high_thick],bias[high_thin],bias[high_very_thin]],whis=[5, 95],sym='', labels=["low","medium","high-all","high-thick\n od>0.4","high-thin \n 0.1<od<0.4","high-vthin\n od<0.1"],showmeans=True, patch_artist=True) ax.set_ylim(-20,100) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title(name) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_temperature_%s_5_95_filt.png"%(name)) def make_boxplot_pressure(caObj, name, modis_lvl2=False): low_clouds = get_calipso_low_clouds(caObj) high_clouds = get_calipso_high_clouds(caObj) medium_clouds = get_calipso_medium_clouds(caObj) pressure_c = caObj.calipso.all_arrays['layer_top_pressure'][:,0] if modis_lvl2: pressure_pps = caObj.modis.all_arrays['pressure'] else: pressure_pps = 0.01*caObj.imager.all_arrays['ctth_pressure'] if modis_lvl2: height_pps = caObj.modis.all_arrays['height'] else: height_pps = caObj.imager.all_arrays['ctth_height'] thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.30, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) very_thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.10, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) thin_top = np.logical_and(caObj.calipso.all_arrays['number_layers_found']>1, thin) thin_1_lay = np.logical_and(caObj.calipso.all_arrays['number_layers_found']==1, thin) use = np.logical_and(pressure_pps >0, caObj.calipso.all_arrays['layer_top_altitude'][:,0]>=0) low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) c_all = np.logical_or(high,np.logical_or(low,medium)) high_very_thin = np.logical_and(high, very_thin) high_thin = np.logical_and(high, np.logical_and(~very_thin,thin)) high_thick = np.logical_and(high, ~thin) #print "thin, thick high", np.sum(high_thin), np.sum(high_thick) bias = pressure_pps - pressure_c abias = np.abs(bias) #abias[abias>2000]=2000 print name.ljust(30, " "), "%3.1f"%(np.mean(abias[c_all])), "%3.1f"%(np.mean(abias[low])),"%3.1f"%(np.mean(abias[medium])),"%3.1f"%(np.mean(abias[high])) c_all = np.logical_or(np.logical_and(~very_thin,high),np.logical_or(low,medium)) number_of = np.sum(c_all) #print name.ljust(30, " "), "%3.1f"%(np.sum(abias[c_all]<250)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<2000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<3000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<4000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<5000)*100.0/number_of) from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=70) ax.fill_between(np.arange(0,8),-50,50, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-100,100, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-150,150, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),200,2000, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-2000,-200, facecolor='red', alpha=0.2) for y_val in [-6,-4,-2,2,4,6,8,-8]: plt.plot(np.arange(0,8), y_val*100 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high],bias[high_thick],bias[high_thin],bias[high_very_thin]],whis=[5, 95],sym='', labels=["low","medium","high-all","high-thick\n od>0.4","high-thin \n 0.1<od<0.4","high-vthin\n od<0.1"],showmeans=True, patch_artist=True) ax.set_ylim(-1000,800) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title(name) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_pressure_%s_5_95_filt.png"%(name)) def investigate_nn_ctth_modis_lvl2(): #november ROOT_DIR_MODIS_nn_imager = ( ADIR + "/DATA_MISC/reshaped_files/" "global_modis_14th_created20170324/Reshaped_Files_merged/eos2/1km/2010/%s/*h5") ROOT_DIR_MODIS_old = ( ADIR + "/DATA_MISC/reshaped_files/" "global_modis_14th_created20161108/Reshaped_Files/merged/*%s*h5") for month in [ "06", "09", "01"]: for ROOT_DIR, name in zip( [ROOT_DIR_MODIS_nn_imager, ROOT_DIR_MODIS_nn_imager, ROOT_DIR_MODIS_old], ["modis_nnIMAGER", "modis_lvl2_C6", "modis_CTTHold"]): name = "%s_%s"%(name, month) print ROOT_DIR files = glob(ROOT_DIR%(month)) caObj = CalipsoImagerTrackObject() for filename in files: #print filename caObj += readCaliopImagerMatchObj(filename) modis_lvl2 = False if "modis_lvl2" in name: modis_lvl2 = True use_m2_pix=True if "old" in name: use_m2_pix=False make_boxplot(caObj, name, month = month, modis_lvl2=modis_lvl2, use_m2_pix=use_m2_pix) make_boxplot_pressure(caObj, name, modis_lvl2=modis_lvl2) make_boxplot_temperature(caObj, name, modis_lvl2=modis_lvl2) if __name__ == "__main__": investigate_nn_ctth_modis_lvl2()
gpl-3.0
afruizc/microsoft_malware_challenge
src/models/first_model/get_conf_matrix.py
2
2842
""" This is a script that is used to generate a confussion matrix for a classification method. This uses 10-k cross_validation with in order to provide sensible resutls and not overfit. """ __author__ = "Andres Ruiz" __license__ = "Apache" __email__ = "afruizc __thingy__ cs unm edu" import numpy as np from sklearn.cross_validation import KFold from sklearn.metrics import confusion_matrix, accuracy_score, log_loss import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import svm_bow def plot_confusion_matrix(cm, title='Confusion matrix', normalized=True, cmap=plt.cm.Oranges, save_file=""): """ Displays the confussion matrix indicated by `cm`. If argument `normalized` is Ture, then the matrix is normalized. Optionally the image can be saved to a file Arguments: ---------- `cm`: The confusion matrix to be displayed. `title`: The title for the window. `normalized`: If True, normalizes the matrix before showing it. `cmap`: Colormap to use. `save_file`: If string different than empty, the resulting image is stored in such file. """ if normalized: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') if save_file: plt.savefig(save_file) def get_indices(data, indices): result = [] for i in indices: result.append(data[i]) return result def main(): e = svm_bow.Executor() e.load_data() e.config_model() fold = KFold(len(e.train['data']), n_folds=10) conf_mat_avg = np.zeros((9, 9)) c = 0 for train, test in fold: X_train = get_indices(e.train['data'], train) X_test = get_indices(e.train['data'], test) y_train = get_indices(e.train['target'], train) y_test = get_indices(e.train['target'], test) c += 1 print("Fitting run {}.".format(c)) model = e.param_tunning.fit(X_train, y_train) print("Predicting...") y_pred = model.predict(X_test) y_pred_prob = model.predict_proba(X_test) conf_matrix = confusion_matrix(y_test, y_pred) accruacy = accuracy_score(y_test, y_pred) loss = log_loss(y_test, y_pred_prob) plot_confusion_matrix(conf_matrix, save_file='fold_{}.png'.format(c)) np.savetxt('conf_matrix_fold{}'.format(c), conf_matrix) print("Fold %d. Accuracy: %lf Loss: %lf" % (c, accruacy, loss)) conf_mat_avg += conf_matrix np.savetxt('conf_matrix.txt', conf_mat_avg) conf_mat_avg /= 10.0 plot_confusion_matrix(conf_mat_avg, save_file='final_cm.png') if __name__ == '__main__': main()
apache-2.0
carrillo/scikit-learn
sklearn/utils/tests/test_testing.py
107
4210
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message) from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LinearDiscriminantAnalysis() tree = DecisionTreeClassifier() # Linear Discriminant Analysis doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) def _no_raise(): pass assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) # multiple exceptions in a tuple assert_raises(AssertionError, assert_raise_message, (ValueError, AttributeError), "test", _no_raise) # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
hmtai6/universe_NeonRace-v0
DQN_breakout/DQN.py
1
9601
import argparse import logging import sys import gc import cv2 import matplotlib.pyplot as plt import gym import universe # register the universe environments from universe import wrappers from collections import deque from skimage.color import rgb2gray from skimage.transform import resize import numpy as np import tensorflow as tf import time import gym, time, random, threading from keras.models import * from keras.layers import * from keras import backend as K from keras.models import load_model LEARNING_RATE = 0.005 MOMENTUM = 0.2 MIN_GRAD = 0.0001 ENV_NAME = 'break_out' SAVE_SUMMARY_PATH = './logs' SAVE_NETWORK_PATH = './network' LOAD_NETWOROK = False INITIAL_REPLAY_SIZE = 200000 # Nb steps for memory, before training NUM_REPLAY_MEMORY = 400000 # Number of replay memory the agent uses for training TRAIN_INTERVAL = 1000 GAMMA = 0.99 # Discount factor STATE_LENGTH = 4 # Number of most recent frames to produce the input to the network FRAME_WIDTH = 84 FRAME_HEIGHT = 84 class DQN: def __init__(self, input_shape, nb_actions, init_epsilon=1.0, final_epsilon=0.1, exploration_steps=1000000): self.input_shape = input_shape self.nb_actions = nb_actions self.final_epsilon = final_epsilon self.epsilon = init_epsilon self.epsilon_step = (init_epsilon - final_epsilon) / exploration_steps self.t = 0 # Parameters used for summary self.total_reward = 0 self.total_q_max = 0 self.total_loss = 0 self.duration = 0 self.episode = 0 # create replay memory self.replay_memory = deque() # create network self.state, self.q_vals, self.network = self._build_network() q_network_weights = self.network.trainable_weights # create target network self.state_t, self.q_vals_t, self.network_t = self._build_network() q_network_weights_t = self.network_t.trainable_weights # define copy operation self.update_target_network = [q_network_weights_t[i].assign(q_network_weights[i]) for i in range(len(q_network_weights_t))] # Define loss and gradient update operation self.a, self.y, self.loss, self.grads_update = self._build_train_op(q_network_weights) self.sess = tf.InteractiveSession() self.saver = tf.train.Saver(q_network_weights) self.summary_placeholders, self.update_ops, self.summary_op = self._build_summary() self.summary_writer = tf.summary.FileWriter(SAVE_SUMMARY_PATH, self.sess.graph) if not os.path.exists(SAVE_NETWORK_PATH): os.makedirs(SAVE_NETWORK_PATH) self.sess.run(tf.global_variables_initializer()) if LOAD_NETWOROK: self._load_netowrk() self.sess.run(self.update_target_network) def _build_network(self): model = Sequential() model.add(Conv2D(32, 8, strides=(4, 4), activation='relu', input_shape=[self.input_shape[0], self.input_shape[1], self.input_shape[2]])) model.add(Conv2D(64, 4, strides=(2, 2), activation='relu')) model.add(Conv2D(64, 3, strides=(1, 1), activation='relu')) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(self.nb_actions)) state = tf.placeholder(tf.float32, [None, self.input_shape[0], self.input_shape[1], self.input_shape[2]]) q_vals = model(state) return state, q_vals, model def _build_train_op(self, network_weights): a = tf.placeholder(tf.int64, [None]) y = tf.placeholder(tf.float32, [None]) # convert into to one hot a_one_hot = tf.one_hot(a, self.nb_actions, 1.0, 0.) q_value = tf.reduce_sum(tf.multiply(self.q_vals, a_one_hot), reduction_indices=1) # clip the error error = tf.abs(y - q_value) clipped = tf.clip_by_value(error, 0.0, 1.0) linear = error - clipped loss = tf.reduce_mean(0.5 * tf.square(clipped) + linear) rms_optimizer = tf.train.RMSPropOptimizer(LEARNING_RATE, momentum=MOMENTUM, epsilon=MIN_GRAD) grads_update = rms_optimizer.minimize(loss, var_list=network_weights) return a, y, loss, grads_update def get_initial_state(self, observation, last_observation): processed_observation = np.maximum(observation, last_observation) processed_observation = np.uint8(resize(rgb2gray(processed_observation), (FRAME_WIDTH, FRAME_HEIGHT)) * 255) state = [processed_observation for _ in range(STATE_LENGTH)] return np.stack(state, axis=0) def _build_summary(self): # Parameters used for summary self.total_reward = 0 self.total_q_max = 0 self.total_loss = 0 self.duration = 0 self.episode = 0 episode_total_reward = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Total Reward/Episode', episode_total_reward) episode_avg_max_q = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Average Max Q/Episode', episode_avg_max_q) episode_duration = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Duration/Episode', episode_duration) episode_avg_loss = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Average Loss/Episode', episode_avg_loss) summary_vars = [episode_total_reward, episode_avg_max_q, episode_duration, episode_avg_loss] summary_placeholders = [tf.placeholder(tf.float32) for _ in range(len(summary_vars))] update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))] summary_op = tf.summary.merge_all() return summary_placeholders, update_ops, summary_op def load_network(self): checkpoint = tf.train.get_checkpoint_state(SAVE_NETWORK_PATH) if checkpoint and checkpoint.model_checkpoint_path: self.saver.restore(self.sess, checkpoint.model_checkpoint_path) print('Successfully loaded: ' + checkpoint.model_checkpoint_path) else: print('Training new network...') def get_action_test(self, state): return np.argmax(self.q_values.eval(feed_dict={self.s: [np.float32(state / 255.0)]})) def get_action(self, state): if self.epsilon >= random.random() or self.t < INITIAL_REPLAY_SIZE: action = random.randrange(self.nb_actions) else: action = np.argmax(self.q_values.eval(feed_dict={self.s: [np.float32(state / 255.0)]})) # Anneal epsilon linearly over time if self.epsilon > self.final_epsilon and self.t >= INITIAL_REPLAY_SIZE: self.epsilon -= self.epsilon_step return action def _train(self): s_batch = [] a_batch = [] r_batch = [] s__batch = [] t_batch = [] y_batch = [] # sample from memory minibatch = random.sample(self.replay_memory, BATCH_SIZE) for data in minibatch: s_batch.append(data[0]) a_batch.append(data[1]) r_batch.append(data[2]) s__batch.append(data[3]) t_batch.append(data[4]) # bool to int t_batch = np.array(t_batch) + 0 next_actions_batch = np.argmax(self.q_vals.eval(feed_dict={self.s: s__batch}), axis=1) target_q_values_batch = self.q_vals_t.eval(feed_dict={self.s_t: s__batch}) for i in range(len(minibatch)): y_batch.append(r_batch[i] + (1 - t_batch[i]) * GAMMA * target_q_values_batch[i][next_actions_batch[i]]) loss, _ = self.sess.run([self.loss, self.grads_update], feed_dict={ self.s: np.float32(np.array(s_batch) / 255.0), self.a: a_batch, self.y: y_batch }) self.total_loss += loss def add_memory(self, s, a, r, t, s_): next_state = np.append(s[1:, :, :], s_, axis=0) # clip reward into -1,1 reward = np.clip(r, -1, 1) # add into replay memory self.replay_memory.append((s, a, next_state, t)) if len(self.replay_memory) > NUM_REPLAY_MEMORY : self.replay_memory.popleft() if self.t > INITIAL_REPLAY_SIZE: # train network if self.t % TRAIN_INTERVAL == 0: self._train() # update target network if self.t % TARGET_UPDATE_INTERVAL == 0: self.sess.run(self.update_target_network) # save network if self.t % SAVE_INTERVAL == 0: s_path = self.saver.save(self.sess, SAVE_NETWORK_PATH, global_step=self.t) print('saved network') self.total_reward += reward self.total_q_max += np.max(self.q_vals.eval(feed_dict={self.s: [np.float32(s / 255.0)]})) self.duration += 1 if t: # write summary if self.t >= INITIAL_REPLAY_SIZE: stats = [self.total_reward, self.total_q_max/float(self.duration), self.duration, self.total_loss/ (float(self.duration)/ float(TRAIN_INTERVAL))] for i in range(len(stats)): self.sess.run(self.update_ops[i], feed_dict={self.summary_placeholders[i]: float(stats[i])}) summary_str = self.sess.run(self.summary_op) self.summary_writer.add_summary(summary_str, self.episode + 1) self.total_reward = 0 self.total_q_max = 0 self.total_loss = 0 self.duration = 0 self.episode += 1 self.t += 1 return next_state
mit
trungnt13/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
IamJeffG/geopandas
geopandas/io/tests/test_io.py
1
1794
from __future__ import absolute_import import fiona from geopandas import read_postgis, read_file from geopandas.tests.util import download_nybb, connect, create_db, \ PANDAS_NEW_SQL_API, unittest, validate_boro_df class TestIO(unittest.TestCase): def setUp(self): nybb_filename, nybb_zip_path = download_nybb() vfs = 'zip://' + nybb_filename self.df = read_file(nybb_zip_path, vfs=vfs) with fiona.open(nybb_zip_path, vfs=vfs) as f: self.crs = f.crs def test_read_postgis_default(self): con = connect('test_geopandas') if con is None or not create_db(self.df): raise unittest.case.SkipTest() try: sql = "SELECT * FROM nybb;" df = read_postgis(sql, con) finally: if PANDAS_NEW_SQL_API: # It's not really a connection, it's an engine con = con.connect() con.close() validate_boro_df(self, df) def test_read_postgis_custom_geom_col(self): con = connect('test_geopandas') if con is None or not create_db(self.df): raise unittest.case.SkipTest() try: sql = """SELECT borocode, boroname, shape_leng, shape_area, geom AS __geometry__ FROM nybb;""" df = read_postgis(sql, con, geom_col='__geometry__') finally: if PANDAS_NEW_SQL_API: # It's not really a connection, it's an engine con = con.connect() con.close() validate_boro_df(self, df) def test_read_file(self): df = self.df.rename(columns=lambda x: x.lower()) validate_boro_df(self, df) self.assert_(df.crs == self.crs)
bsd-3-clause
libAtoms/matscipy
examples/electrochemistry/pnp_batch/cell_1d/stern_layer_sweep/pnp_plot.py
2
6741
# positional args # datadir, figfile, param, param_label import os.path, re, sys import numpy as np from glob import glob from cycler import cycler from itertools import cycle from itertools import groupby import matplotlib.pyplot as plt # Ensure variable is defined try: datadir except NameError: try: datadir = sys.argv[1] except: datadir = 'data' try: figfile except NameError: try: figfile = sys.argv[2] except: figfile = 'fig.png' try: param except NameError: try: param = sys.argv[3] except: param = 'c' try: param_unit except NameError: try: param_label = sys.argv[4] except: param_label = 'c (\mathrm{mM})' try: glob_pattern except NameError: glob_pattern = os.path.join(datadir, 'NaCl*.txt') def right_align_legend(leg): hp = leg._legend_box.get_children()[1] for vp in hp.get_children(): for row in vp.get_children(): row.set_width(100) # need to adapt this manually row.mode= "expand" row.align="right" # sort file names as normal humans expect # https://stackoverflow.com/questions/2669059/how-to-sort-alpha-numeric-set-in-python scientific_number_regex = '([-+]?[\d]+\.?[\d]*(?:[Ee][-+]?[\d]+)?)' def alpha_num_order(x): """Sort the given iterable in the way that humans expect.""" def convert(text): try: ret = float(text) # if text.isdigit() else text except: ret = text return ret return [ convert(c) for c in re.split(scientific_number_regex, x) ] dat_files = sorted(glob(glob_pattern),key=alpha_num_order) N = len(dat_files) # number of data sets M = 2 # number of species # matplotlib settings SMALL_SIZE = 8 MEDIUM_SIZE = 12 BIGGER_SIZE = 16 # plt.rc('axes', prop_cycle=default_cycler) plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure titlex plt.rcParams["figure.figsize"] = (16,10) # the standard figure size plt.rcParams["lines.linewidth"] = 3 plt.rcParams["lines.markersize"] = 14 plt.rcParams["lines.markeredgewidth"]=1 # line styles # https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html # linestyle_str = [ # ('solid', 'solid'), # Same as (0, ()) or '-' # ('dotted', 'dotted'), # Same as (0, (1, 1)) or '.' # ('dashed', 'dashed'), # Same as '--' # ('dashdot', 'dashdot')] # Same as '-.' linestyle_tuple = [ ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] # color maps for potential and concentration plots cmap_u = plt.get_cmap('Reds') cmap_c = [plt.get_cmap('Oranges'), plt.get_cmap('Blues')] # general line style cycler line_cycler = cycler( linestyle = [ s for _,s in linestyle_tuple ] ) # potential anc concentration cyclers u_cycler = cycler( color = cmap_u( np.linspace(0.4,0.8,N) ) ) u_cycler = len(line_cycler)*u_cycler + len(u_cycler)*line_cycler c_cyclers = [ cycler( color = cmap( np.linspace(0.4,0.8,N) ) ) for cmap in cmap_c ] c_cyclers = [ len(line_cycler)*c_cycler + len(c_cycler)*line_cycler for c_cycler in c_cyclers ] # https://matplotlib.org/3.1.1/tutorials/intermediate/constrainedlayout_guide.html fig, (ax1,ax2,ax3) = plt.subplots( nrows=1, ncols=3, figsize=[24,7], constrained_layout=True) ax1.set_xlabel('z (nm)') ax1.set_ylabel('potential (V)') ax2.set_xlabel('z (nm)') ax2.set_ylabel('concentration (mM)') ax3.set_xlabel('z (nm)') ax3.set_ylabel('concentration (mM)') # ax1.axvline(x=pnp.lambda_D()*1e9, label='Debye Length', color='grey', linestyle=':') species_label = [ '$[\mathrm{Na}^+], ' + param_label + '$', '$[\mathrm{Cl}^-], ' + param_label + '$'] c_regex = re.compile(r'{}_{}'.format(param,scientific_number_regex)) c_graph_handles = [ [] for _ in range(M) ] for f, u_style, c_styles in zip(dat_files,u_cycler,zip(*c_cyclers)): print("Processing {:s}".format(f)) # extract nominal concentration from file name nominal_c = float( c_regex.search(f).group(1) ) dat = np.loadtxt(f,unpack=True) x = dat[0,:] u = dat[1,:] c = dat[2:,:] c_label = '{:> 4.2g}'.format(nominal_c) # potential ax1.plot(x*1e9, u, marker=None, label=c_label, linewidth=1, **u_style) for i in range(c.shape[0]): # concentration ax2.plot(x*1e9, c[i], marker='', label=c_label, linewidth=2, **c_styles[i]) # semilog concentration c_graph_handles[i].extend( ax3.semilogy(x*1e9, c[i], marker='', label=c_label, linewidth=2, **c_styles[i]) ) # legend placement # https://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot u_legend = ax1.legend(loc='center right', title='potential, ${}$'.format(param_label), bbox_to_anchor=(-0.2,0.5) ) first_c_legend = ax3.legend(handles=c_graph_handles[0], title=species_label[0], loc='upper left', bbox_to_anchor=(1.00, 1.02) ) second_c_legend = ax3.legend(handles=c_graph_handles[1], title=species_label[1], loc='lower left', bbox_to_anchor=(1.00,-0.02) ) ax3.add_artist(first_c_legend) # add automatically removed first legend again c_legends = [ first_c_legend, second_c_legend ] legends = [ u_legend, *c_legends ] for l in legends: right_align_legend(l) # https://matplotlib.org/3.1.1/tutorials/intermediate/constrainedlayout_guide.html for l in legends: l.set_in_layout(False) # trigger a draw so that constrained_layout is executed once # before we turn it off when printing.... fig.canvas.draw() # we want the legend included in the bbox_inches='tight' calcs. for l in legends: l.set_in_layout(True) # we don't want the layout to change at this point. fig.set_constrained_layout(False) # fig.tight_layout(pad=3.0, w_pad=2.0, h_pad=1.0) # plt.show() fig.savefig(figfile, bbox_inches='tight', dpi=100)
gpl-2.0
jakobworldpeace/scikit-learn
sklearn/metrics/tests/test_score_objects.py
33
17877
import pickle import tempfile import shutil import os import numbers import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics import cluster as cluster_module from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.externals import joblib REGRESSION_SCORERS = ['r2', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_mean_squared_log_error', 'neg_median_absolute_error', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'neg_log_loss', 'log_loss'] # All supervised cluster scorers (They behave like classification metric) CLUSTER_SCORERS = ["adjusted_rand_score", "homogeneity_score", "completeness_score", "v_measure_score", "mutual_info_score", "adjusted_mutual_info_score", "normalized_mutual_info_score", "fowlkes_mallows_score"] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] def _make_estimators(X_train, y_train, y_ml_train): # Make estimators that make sense to test various scoring methods sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) return dict( [(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_clf) for name in CLUSTER_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS] ) X_mm, y_mm, y_ml_mm = None, None, None ESTIMATORS = None TEMP_FOLDER = None def setup_module(): # Create some memory mapped data global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS TEMP_FOLDER = tempfile.mkdtemp(prefix='sklearn_test_score_objects_') X, y = make_classification(n_samples=30, n_features=5, random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) filename = os.path.join(TEMP_FOLDER, 'test_data.pkl') joblib.dump((X, y, y_ml), filename) X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode='r') ESTIMATORS = _make_estimators(X_mm, y_mm, y_ml_mm) def teardown_module(): global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS # GC closes the mmap file descriptors X_mm, y_mm, y_ml_mm, ESTIMATORS = None, None, None, None shutil.rmtree(TEMP_FOLDER) class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_all_scorers_repr(): # Test that all scorers have a working repr for name, scorer in SCORERS.items(): repr(scorer) def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('neg_log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_supervised_cluster_scorers(): # Test clustering scorers against gold standard labeling. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) for name in CLUSTER_SCORERS: score1 = get_scorer(name)(km, X_test, y_test) score2 = getattr(cluster_module, name)(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric estimator = _make_estimators(X_train, y_train, y_ml_train) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e))) @ignore_warnings # UndefinedMetricWarning for P / R scores def check_scorer_memmap(scorer_name): scorer, estimator = SCORERS[scorer_name], ESTIMATORS[scorer_name] if scorer_name in MULTILABEL_ONLY_SCORERS: score = scorer(estimator, X_mm, y_ml_mm) else: score = scorer(estimator, X_mm, y_mm) assert isinstance(score, numbers.Number), scorer_name def test_scorer_memmap_input(): # Non-regression test for #6147: some score functions would # return singleton memmap when computed on memmap data instead of scalar # float values. for name in SCORERS.keys(): yield check_scorer_memmap, name def test_deprecated_names(): X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) for name in ('mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'log_loss'): warning_msg = "Scoring method %s was renamed to" % name for scorer in (get_scorer(name), SCORERS[name]): assert_warns_message(DeprecationWarning, warning_msg, scorer, clf, X, y) assert_warns_message(DeprecationWarning, warning_msg, cross_val_score, clf, X, y, scoring=name) def test_scoring_is_not_metric(): assert_raises_regexp(ValueError, 'make_scorer', check_scoring, LogisticRegression(), f1_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, LogisticRegression(), roc_auc_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, Ridge(), r2_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, KMeans(), cluster_module.adjusted_rand_score)
bsd-3-clause
vortex-ape/scikit-learn
sklearn/kernel_approximation.py
4
23032
""" The :mod:`sklearn.kernel_approximation` module implements several approximate kernel feature maps base on Fourier transforms. """ # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import svd from .base import BaseEstimator from .base import TransformerMixin from .utils import check_array, check_random_state, as_float_array from .utils.extmath import safe_sparse_dot from .utils.validation import check_is_fitted from .metrics.pairwise import pairwise_kernels, KERNEL_PARAMS class RBFSampler(BaseEstimator, TransformerMixin): """Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform. It implements a variant of Random Kitchen Sinks.[1] Read more in the :ref:`User Guide <rbf_kernel_approx>`. Parameters ---------- gamma : float Parameter of RBF kernel: exp(-gamma * x^2) n_components : int Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Examples -------- >>> from sklearn.kernel_approximation import RBFSampler >>> from sklearn.linear_model import SGDClassifier >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] >>> y = [0, 0, 1, 1] >>> rbf_feature = RBFSampler(gamma=1, random_state=1) >>> X_features = rbf_feature.fit_transform(X) >>> clf = SGDClassifier(max_iter=5) >>> clf.fit(X_features, y) ... # doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=5, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='l2', power_t=0.5, random_state=None, shuffle=True, tol=None, validation_fraction=0.1, verbose=0, warm_start=False) >>> clf.score(X_features, y) 1.0 Notes ----- See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and Benjamin Recht. [1] "Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning" by A. Rahimi and Benjamin Recht. (http://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf) """ def __init__(self, gamma=1., n_components=100, random_state=None): self.gamma = gamma self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X, accept_sparse='csr') random_state = check_random_state(self.random_state) n_features = X.shape[1] self.random_weights_ = (np.sqrt(2 * self.gamma) * random_state.normal( size=(n_features, self.n_components))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X): """Apply the approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = check_array(X, accept_sparse='csr') projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class SkewedChi2Sampler(BaseEstimator, TransformerMixin): """Approximates feature map of the "skewed chi-squared" kernel by Monte Carlo approximation of its Fourier transform. Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`. Parameters ---------- skewedness : float "skewedness" parameter of the kernel. Needs to be cross-validated. n_components : int number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Examples -------- >>> from sklearn.kernel_approximation import SkewedChi2Sampler >>> from sklearn.linear_model import SGDClassifier >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] >>> y = [0, 0, 1, 1] >>> chi2_feature = SkewedChi2Sampler(skewedness=.01, ... n_components=10, ... random_state=0) >>> X_features = chi2_feature.fit_transform(X, y) >>> clf = SGDClassifier(max_iter=10) >>> clf.fit(X_features, y) SGDClassifier(alpha=0.0001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=10, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='l2', power_t=0.5, random_state=None, shuffle=True, tol=None, validation_fraction=0.1, verbose=0, warm_start=False) >>> clf.score(X_features, y) 1.0 References ---------- See "Random Fourier Approximations for Skewed Multiplicative Histogram Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. See also -------- AdditiveChi2Sampler : A different approach for approximating an additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. """ def __init__(self, skewedness=1., n_components=100, random_state=None): self.skewedness = skewedness self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X) random_state = check_random_state(self.random_state) n_features = X.shape[1] uniform = random_state.uniform(size=(n_features, self.n_components)) # transform by inverse CDF of sech self.random_weights_ = (1. / np.pi * np.log(np.tan(np.pi / 2. * uniform))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X): """Apply the approximate feature map to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. All values of X must be strictly greater than "-skewedness". Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = as_float_array(X, copy=True) X = check_array(X, copy=False) if (X <= -self.skewedness).any(): raise ValueError("X may not contain entries smaller than" " -skewedness.") X += self.skewedness np.log(X, X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class AdditiveChi2Sampler(BaseEstimator, TransformerMixin): """Approximate feature map for additive chi2 kernel. Uses sampling the fourier transform of the kernel characteristic at regular intervals. Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3. Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable. Read more in the :ref:`User Guide <additive_chi_kernel_approx>`. Parameters ---------- sample_steps : int, optional Gives the number of (complex) sampling points. sample_interval : float, optional Sampling interval. Must be specified when sample_steps not in {1,2,3}. Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.linear_model import SGDClassifier >>> from sklearn.kernel_approximation import AdditiveChi2Sampler >>> X, y = load_digits(return_X_y=True) >>> chi2sampler = AdditiveChi2Sampler(sample_steps=2) >>> X_transformed = chi2sampler.fit_transform(X, y) >>> clf = SGDClassifier(max_iter=5, random_state=0) >>> clf.fit(X_transformed, y) SGDClassifier(alpha=0.0001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=5, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='l2', power_t=0.5, random_state=0, shuffle=True, tol=None, validation_fraction=0.1, verbose=0, warm_start=False) >>> clf.score(X_transformed, y) # doctest: +ELLIPSIS 0.9543... Notes ----- This estimator approximates a slightly different version of the additive chi squared kernel then ``metric.additive_chi2`` computes. See also -------- SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi squared kernel. References ---------- See `"Efficient additive kernels via explicit feature maps" <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_ A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, 2011 """ def __init__(self, sample_steps=2, sample_interval=None): self.sample_steps = sample_steps self.sample_interval = sample_interval def fit(self, X, y=None): """Set the parameters Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X, accept_sparse='csr') if self.sample_interval is None: # See reference, figure 2 c) if self.sample_steps == 1: self.sample_interval_ = 0.8 elif self.sample_steps == 2: self.sample_interval_ = 0.5 elif self.sample_steps == 3: self.sample_interval_ = 0.4 else: raise ValueError("If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval") else: self.sample_interval_ = self.sample_interval return self def transform(self, X): """Apply approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Returns ------- X_new : {array, sparse matrix}, \ shape = (n_samples, n_features * (2*sample_steps + 1)) Whether the return value is an array of sparse matrix depends on the type of the input X. """ msg = ("%(name)s is not fitted. Call fit to set the parameters before" " calling transform") check_is_fitted(self, "sample_interval_", msg=msg) X = check_array(X, accept_sparse='csr') sparse = sp.issparse(X) # check if X has negative values. Doesn't play well with np.log. if ((X.data if sparse else X) < 0).any(): raise ValueError("Entries of X must be non-negative.") # zeroth component # 1/cosh = sech # cosh(0) = 1.0 transf = self._transform_sparse if sparse else self._transform_dense return transf(X) def _transform_dense(self, X): non_zero = (X != 0.0) X_nz = X[non_zero] X_step = np.zeros_like(X) X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X_nz) step_nz = 2 * X_nz * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.cos(j * log_step_nz) X_new.append(X_step) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.sin(j * log_step_nz) X_new.append(X_step) return np.hstack(X_new) def _transform_sparse(self, X): indices = X.indices.copy() indptr = X.indptr.copy() data_step = np.sqrt(X.data * self.sample_interval_) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X.data) step_nz = 2 * X.data * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) data_step = factor_nz * np.cos(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) data_step = factor_nz * np.sin(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) return sp.hstack(X_new) class Nystroem(BaseEstimator, TransformerMixin): """Approximate a kernel map using a subset of the training data. Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis. Read more in the :ref:`User Guide <nystroem_kernel_approx>`. Parameters ---------- kernel : string or callable, default="rbf" Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. coef0 : float, default=None Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. degree : float, default=None Degree of the polynomial kernel. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. n_components : int Number of features to construct. How many data points will be used to construct the mapping. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- components_ : array, shape (n_components, n_features) Subset of training points used to construct the feature map. component_indices_ : array, shape (n_components) Indices of ``components_`` in the training set. normalization_ : array, shape (n_components, n_components) Normalization matrix needed for embedding. Square root of the kernel matrix on ``components_``. Examples -------- >>> from sklearn import datasets, svm >>> from sklearn.kernel_approximation import Nystroem >>> digits = datasets.load_digits(n_class=9) >>> data = digits.data / 16. >>> clf = svm.LinearSVC() >>> feature_map_nystroem = Nystroem(gamma=.2, ... random_state=1, ... n_components=300) >>> data_transformed = feature_map_nystroem.fit_transform(data) >>> clf.fit(data_transformed, digits.target) ... # doctest: +NORMALIZE_WHITESPACE LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) >>> clf.score(data_transformed, digits.target) # doctest: +ELLIPSIS 0.9987... References ---------- * Williams, C.K.I. and Seeger, M. "Using the Nystroem method to speed up kernel machines", Advances in neural information processing systems 2001 * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison", Advances in Neural Information Processing Systems 2012 See also -------- RBFSampler : An approximation to the RBF kernel using random Fourier features. sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. """ def __init__(self, kernel="rbf", gamma=None, coef0=None, degree=None, kernel_params=None, n_components=100, random_state=None): self.kernel = kernel self.gamma = gamma self.coef0 = coef0 self.degree = degree self.kernel_params = kernel_params self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit estimator to data. Samples a subset of training points, computes kernel on these and computes normalization matrix. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Training data. """ X = check_array(X, accept_sparse='csr') rnd = check_random_state(self.random_state) n_samples = X.shape[0] # get basis vectors if self.n_components > n_samples: # XXX should we just bail? n_components = n_samples warnings.warn("n_components > n_samples. This is not possible.\n" "n_components was set to n_samples, which results" " in inefficient evaluation of the full kernel.") else: n_components = self.n_components n_components = min(n_samples, n_components) inds = rnd.permutation(n_samples) basis_inds = inds[:n_components] basis = X[basis_inds] basis_kernel = pairwise_kernels(basis, metric=self.kernel, filter_params=True, **self._get_kernel_params()) # sqrt of kernel matrix on basis vectors U, S, V = svd(basis_kernel) S = np.maximum(S, 1e-12) self.normalization_ = np.dot(U / np.sqrt(S), V) self.components_ = basis self.component_indices_ = inds return self def transform(self, X): """Apply feature map to X. Computes an approximate feature map using the kernel between some training points and X. Parameters ---------- X : array-like, shape=(n_samples, n_features) Data to transform. Returns ------- X_transformed : array, shape=(n_samples, n_components) Transformed data. """ check_is_fitted(self, 'components_') X = check_array(X, accept_sparse='csr') kernel_params = self._get_kernel_params() embedded = pairwise_kernels(X, self.components_, metric=self.kernel, filter_params=True, **kernel_params) return np.dot(embedded, self.normalization_.T) def _get_kernel_params(self): params = self.kernel_params if params is None: params = {} if not callable(self.kernel): for param in (KERNEL_PARAMS[self.kernel]): if getattr(self, param) is not None: params[param] = getattr(self, param) else: if (self.gamma is not None or self.coef0 is not None or self.degree is not None): warnings.warn( "Passing gamma, coef0 or degree to Nystroem when using a" " callable kernel is deprecated in version 0.19 and will" " raise an error in 0.21, as they are ignored. Use " "kernel_params instead.", DeprecationWarning) return params
bsd-3-clause
evanthebouncy/nnhmm
uai_network/draw.py
7
2929
import numpy as np import matplotlib.pylab as plt import multiprocessing as mp from matplotlib import figure from data import * FIG = plt.figure() def draw_coord(coord, name, lab=[1.0, 0.0]): color = 1.0 if lab[0] > lab[1] else -1.0 ret = np.zeros(shape=[L,L,1]) coord_x, coord_y = coord coord_x_idx = np.argmax(coord_x) coord_y_idx = np.argmax(coord_y) ret[coord_x_idx][coord_y_idx][0] = color draw(ret, name) def draw(m, name, extra=None): FIG.clf() matrix = m orig_shape = np.shape(matrix) # lose the channel shape in the end of orig_shape new_shape = orig_shape[:-1] matrix = np.reshape(matrix, new_shape) ax = FIG.add_subplot(1,1,1) ax.set_aspect('equal') plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray) # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() if extra != None: greens, reds = extra grn_x, grn_y, = greens red_x, red_y = reds plt.scatter(x=grn_x, y=grn_y, c='g', s=40) plt.scatter(x=red_x, y=red_y, c='r', s=40) # # put a blue dot at (10, 20) # plt.scatter([10], [20]) # # put a red dot, size 40, at 2 locations: # plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40) # # plt.plot() plt.savefig(name) def draw_orig(img, name): ret = np.reshape(img, [L,L,1]) draw(ret, name) def draw_allob(img, name, ob_prefix): ret = np.zeros([L,L,1]) for ii in range(L): for jj in range(L): labb = img[ii][jj][0] - img[ii][jj][1] ret[ii][jj][0] = labb grn_x = [] grn_y = [] red_x = [] red_y = [] for obob in ob_prefix: ob_c, labb = obob if labb[0] > labb[1]: grn_x.append(ob_c[0]) grn_y.append(ob_c[1]) else: red_x.append(ob_c[0]) red_y.append(ob_c[1]) draw(ret, name, ((grn_y, grn_x), (red_y, red_x))) def draw_obs(obs, name): ret_shape = [L, L, 1] ret = np.zeros(shape=ret_shape) for ob, lab in obs: ii, jj = ob labb = 1.0 if lab[0] > lab[1] else -1.0 # labb = lab[0] ret[ii][jj][0] = labb draw(ret, name) def draw_annotate(x_cords, y_cords, anns, name): FIG.clf() y = x_cords z = y_cords n = anns fig = FIG ax = fig.add_subplot(1,1,1) ax.set_xlim([0,L]) ax.set_ylim([0,L]) ax.set_ylim(ax.get_ylim()[::-1]) ax.scatter(z, y) for i, txt in enumerate(n): ax.annotate(txt, (z[i],y[i])) fig.savefig(name) def draw_obs_trace(obs, name): x_coords = [] y_coords = [] anno = [] for i, ob in enumerate(obs): ob_coord, ob_outcome = ob x_coords.append(ob_coord[0]) y_coords.append(ob_coord[1]) anno.append("O"+str(i)+str(int(ob_outcome[0]))) draw_annotate(x_coords, y_coords, anno, name) def draw_all_preds(all_preds, name): ret_shape = [L, L, 1] ret = np.zeros(shape=ret_shape) for qq, labb in all_preds: i, j = qq # ret[i][j][0] = 1.0 if labb[0] > labb[1] else 0.0 # ret[i][j][0] = labb[0] ret[i][j][0] = labb[0] draw(ret, name)
mit
droter/trading-with-python
lib/backtest.py
74
7381
#------------------------------------------------------------------------------- # Name: backtest # Purpose: perform routine backtesting tasks. # This module should be useable as a stand-alone library outide of the TWP package. # # Author: Jev Kuznetsov # # Created: 03/07/2014 # Copyright: (c) Jev Kuznetsov 2013 # Licence: BSD #------------------------------------------------------------------------------- import pandas as pd import matplotlib.pyplot as plt import sys import numpy as np def tradeBracket(price,entryBar,upper=None, lower=None, timeout=None): ''' trade a bracket on price series, return price delta and exit bar # Input ------ price : numpy array of price values entryBar: entry bar number, *determines entry price* upper : high stop lower : low stop timeout : max number of periods to hold Returns exit price and number of bars held ''' assert isinstance(price, np.ndarray) , 'price must be a numpy array' # create list of exit indices and add max trade duration. Exits are relative to entry bar if timeout: # set trade length to timeout or series length exits = [min(timeout,len(price)-entryBar-1)] else: exits = [len(price)-entryBar-1] p = price[entryBar:entryBar+exits[0]+1] # subseries of price # extend exits list with conditional exits # check upper bracket if upper: assert upper>p[0] , 'Upper bracket must be higher than entry price ' idx = np.where(p>upper)[0] # find where price is higher than the upper bracket if idx.any(): exits.append(idx[0]) # append first occurence # same for lower bracket if lower: assert lower<p[0] , 'Lower bracket must be lower than entry price ' idx = np.where(p<lower)[0] if idx.any(): exits.append(idx[0]) exitBar = min(exits) # choose first exit return p[exitBar], exitBar class Backtest(object): """ Backtest class, simple vectorized one. Works with pandas objects. """ def __init__(self,price, signal, signalType='capital',initialCash = 0, roundShares=True): """ Arguments: *price* Series with instrument price. *signal* Series with capital to invest (long+,short-) or number of shares. *sitnalType* capital to bet or number of shares 'capital' mode is default. *initialCash* starting cash. *roundShares* round off number of shares to integers """ #TODO: add auto rebalancing # check for correct input assert signalType in ['capital','shares'], "Wrong signal type provided, must be 'capital' or 'shares'" #save internal settings to a dict self.settings = {'signalType':signalType} # first thing to do is to clean up the signal, removing nans and duplicate entries or exits self.signal = signal.ffill().fillna(0) # now find dates with a trade tradeIdx = self.signal.diff().fillna(0) !=0 # days with trades are set to True if signalType == 'shares': self.trades = self.signal[tradeIdx] # selected rows where tradeDir changes value. trades are in Shares elif signalType =='capital': self.trades = (self.signal[tradeIdx]/price[tradeIdx]) if roundShares: self.trades = self.trades.round() # now create internal data structure self.data = pd.DataFrame(index=price.index , columns = ['price','shares','value','cash','pnl']) self.data['price'] = price self.data['shares'] = self.trades.reindex(self.data.index).ffill().fillna(0) self.data['value'] = self.data['shares'] * self.data['price'] delta = self.data['shares'].diff() # shares bought sold self.data['cash'] = (-delta*self.data['price']).fillna(0).cumsum()+initialCash self.data['pnl'] = self.data['cash']+self.data['value']-initialCash @property def sharpe(self): ''' return annualized sharpe ratio of the pnl ''' pnl = (self.data['pnl'].diff()).shift(-1)[self.data['shares']!=0] # use only days with position. return sharpe(pnl) # need the diff here as sharpe works on daily returns. @property def pnl(self): '''easy access to pnl data column ''' return self.data['pnl'] def plotTrades(self): """ visualise trades on the price chart long entry : green triangle up short entry : red triangle down exit : black circle """ l = ['price'] p = self.data['price'] p.plot(style='x-') # ---plot markers # this works, but I rather prefer colored markers for each day of position rather than entry-exit signals # indices = {'g^': self.trades[self.trades > 0].index , # 'ko':self.trades[self.trades == 0].index, # 'rv':self.trades[self.trades < 0].index} # # # for style, idx in indices.iteritems(): # if len(idx) > 0: # p[idx].plot(style=style) # --- plot trades #colored line for long positions idx = (self.data['shares'] > 0) | (self.data['shares'] > 0).shift(1) if idx.any(): p[idx].plot(style='go') l.append('long') #colored line for short positions idx = (self.data['shares'] < 0) | (self.data['shares'] < 0).shift(1) if idx.any(): p[idx].plot(style='ro') l.append('short') plt.xlim([p.index[0],p.index[-1]]) # show full axis plt.legend(l,loc='best') plt.title('trades') class ProgressBar: def __init__(self, iterations): self.iterations = iterations self.prog_bar = '[]' self.fill_char = '*' self.width = 50 self.__update_amount(0) def animate(self, iteration): print '\r',self, sys.stdout.flush() self.update_iteration(iteration + 1) def update_iteration(self, elapsed_iter): self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0) self.prog_bar += ' %d of %s complete' % (elapsed_iter, self.iterations) def __update_amount(self, new_amount): percent_done = int(round((new_amount / 100.0) * 100.0)) all_full = self.width - 2 num_hashes = int(round((percent_done / 100.0) * all_full)) self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']' pct_place = (len(self.prog_bar) // 2) - len(str(percent_done)) pct_string = '%d%%' % percent_done self.prog_bar = self.prog_bar[0:pct_place] + \ (pct_string + self.prog_bar[pct_place + len(pct_string):]) def __str__(self): return str(self.prog_bar) def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std()
bsd-3-clause
Upward-Spiral-Science/claritycontrol
code/scripts/roi_analysis.py
1
2744
#!/usr/bin/python #-*- coding:utf-8 -*- __author__ = 'david' from __builtin__ import * import gc import numpy as np from skimage.feature import greycomatrix, greycoprops import matplotlib as mpl mpl.use('TkAgg') # Solve runtime issue import matplotlib.pyplot as plt ## Fake imge and label volumes to fast test functionality def loadImg(): return np.random.random_sample((100,100,100)) def loadAtlas(): atlas_volume = np.zeros((100,100,100),dtype=np.uint32) atlas_volume[10:50,10:50,10:50]=np.ones((40,40,40),dtype=np.uint32)*1 atlas_volume[50:90,10:50,10:50]=np.ones((40,40,40),dtype=np.uint32)*2 atlas_volume[10:50,50:90,10:50]=np.ones((40,40,40),dtype=np.uint32)*3 atlas_volume[50:90,50:90,10:50]=np.ones((40,40,40),dtype=np.uint32)*4 atlas_volume[10:50,10:50,50:90]=np.ones((40,40,40),dtype=np.uint32)*5 atlas_volume[50:90,10:50,50:90]=np.ones((40,40,40),dtype=np.uint32)*6 atlas_volume[10:50,50:90,50:90]=np.ones((40,40,40),dtype=np.uint32)*7 atlas_volume[50:90,50:90,50:90]=np.ones((40,40,40),dtype=np.uint32)*8 return atlas_volume ## END ## True data # path = "~/Workspaces/claritycontrol/code/data/raw/" # token = "Fear199" # pathname = path+token+".img" # # img_volume = nib.load(pathname).get_data()[:,:,:,0] ## END ## get atlas values atlas_volume = loadAtlas() print atlas_volume.shape atlas_values, atlas_count = np.unique(atlas_volume,return_counts=True) atlas_values = atlas_values[1:] # remove background ## get img img_volume = loadImg() print img_volume.shape class_id = 0 # Fear, Control, Cocaine subject_id = 199 ## normalize volume Z-standardization img_volume = (img_volume-np.mean(img_volume))/np.std(img_volume) ## prepare results matrix columns = ['class_id', 'subject_id', 'roi', 'mean', 'std', 'energy', 'entropy', 'correlation', 'contrast', 'variance', 'sumMean', 'inertial', 'clusterShade', 'clusterTendency', 'homogeneity', 'maxProbability', 'inverseVariance'] features = np.zeros((len(atlas_values), len(columns)), dtype=np.float32) ## compute GLCM and properties for roi_id in range(len(atlas_values)): features[roi_id, 0] = class_id features[roi_id, 1] = subject_id features[roi_id, 2] = atlas_values[roi_id] ## mask img and get roi block mask_volume = (atlas_volume == atlas_values[roi_id]) xs, ys, zs = mask_volume.nonzero() roi_block = np.multiply(img_volume, mask_volume)[min(xs):max(xs), min(ys):max(ys), min(zs):max(zs)] del mask_volume # memory collect ## compute mean and std features[roi_id, 3] = np.mean(roi_block[roi_block != 0]) features[roi_id, 4] = np.std(roi_block[roi_block != 0]) ## compute GLCM and properties # features[roi_id, 5] = 0 # features[roi_id, 6] = 0
apache-2.0
kostajaitachi/shogun
examples/undocumented/python_modular/graphical/regression_lars.py
26
3327
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt from modshogun import RegressionLabels, RealFeatures from modshogun import LeastAngleRegression, LinearRidgeRegression, LeastSquaresRegression from modshogun import MeanSquaredError # we compare LASSO with ordinary least-squares (OLE) # in the ideal case, the MSE of OLE should coincide # with LASSO at the end of the path # # if OLE is unstable, we may use RidgeRegression (with # a small regularization coefficient) to simulate OLE use_ridge = False np.random.seed(1024) n = 200 ntrain = 100 p = 7 correlation = 0.6 mean = np.zeros(p) cov = correlation*np.ones((p,p)) + (1-correlation)*np.eye(p) Xall = np.random.multivariate_normal(mean, cov, n) # model is the linear combination of the first three variables plus noise yall = 2*Xall[:,0] + 5*Xall[:,1] + -3*Xall[:,2] + 0.5*np.random.randn(n) X = Xall[0:ntrain,:] y = yall[0:ntrain] Xtest = Xall[ntrain:,:] ytest = yall[ntrain:] # preprocess data for i in xrange(p): X[:,i] -= np.mean(X[:,i]) X[:,i] /= np.linalg.norm(X[:,i]) y -= np.mean(y) # train LASSO LeastAngleRegression = LeastAngleRegression() LeastAngleRegression.set_labels(RegressionLabels(y)) LeastAngleRegression.train(RealFeatures(X.T)) # train ordinary LSR if use_ridge: lsr = LinearRidgeRegression(0.01, RealFeatures(X.T), Labels(y)) lsr.train() else: lsr = LeastSquaresRegression() lsr.set_labels(RegressionLabels(y)) lsr.train(RealFeatures(X.T)) # gather LASSO path path = np.zeros((p, LeastAngleRegression.get_path_size())) for i in xrange(path.shape[1]): path[:,i] = LeastAngleRegression.get_w(i) evaluator = MeanSquaredError() # apply on training data mse_train = np.zeros(LeastAngleRegression.get_path_size()) for i in xrange(mse_train.shape[0]): LeastAngleRegression.switch_w(i) ypred = LeastAngleRegression.apply(RealFeatures(X.T)) mse_train[i] = evaluator.evaluate(ypred, RegressionLabels(y)) ypred = lsr.apply(RealFeatures(X.T)) mse_train_lsr = evaluator.evaluate(ypred, RegressionLabels(y)) # apply on test data mse_test = np.zeros(LeastAngleRegression.get_path_size()) for i in xrange(mse_test.shape[0]): LeastAngleRegression.switch_w(i) ypred = LeastAngleRegression.apply(RealFeatures(Xtest.T)) mse_test[i] = evaluator.evaluate(ypred, RegressionLabels(y)) ypred = lsr.apply(RealFeatures(Xtest.T)) mse_test_lsr = evaluator.evaluate(ypred, RegressionLabels(y)) fig = plt.figure() ax_path = fig.add_subplot(1,2,1) plt.plot(xrange(path.shape[1]), path.T, '.-') plt.legend(['%d' % (x+1) for x in xrange(path.shape[0])]) plt.xlabel('iteration') plt.title('LASSO path') ax_tr = fig.add_subplot(2,2,2) plt.plot(range(mse_train.shape[0])[1:], mse_train[1:], 'k.-') plt.plot(range(mse_train.shape[0])[1:], np.zeros(mse_train.shape[0])[1:] + mse_train_lsr, 'r-') plt.legend(('LASSO', 'LeastSquares')) plt.xlabel('# of non-zero variables') plt.ylabel('MSE') plt.title('MSE on training data') ax_tt = fig.add_subplot(2,2,4) plt.plot(range(mse_test.shape[0])[1:], mse_test[1:], 'k.-') plt.plot(range(mse_test.shape[0])[1:], np.zeros(mse_test.shape[0])[1:] + mse_test_lsr, 'r-') plt.legend(('LASSO', 'LeastSquares'), loc='lower right') plt.xlabel('# of non-zero variables') plt.ylabel('MSE') plt.title('MSE on test data') plt.show()
gpl-3.0
kmiernik/Pyspectr
bin/spectrum_fitter.py
1
6663
#!/usr/bin/env python3 """ K. Miernik 2013 k.a.miernik@gmail.com GPL v3 Spectrum fitting code """ import argparse import math import numpy import os import sys import time import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from lmfit import minimize, Parameters, report_errors from Pyspectr.hisfile import HisFile as HisFile from Pyspectr.peak_fitter import PeakFitter as PeakFitter from Pyspectr.exceptions import GeneralError as GeneralError class SpectrumParser: def __init__(self, file_name): self.base_name, ext = os.path.splitext(file_name) if len(ext) > 0 and ext in (".gz", ".his", ".tgz"): self.file_type = 'his' self.data_file = HisFile(file_name) elif len(ext) > 0 and ext in ".txt": self.file_type = 'txt' self.data_file = numpy.loadtxt(file_name) else: raise GeneralError( 'Files other than txt, his, tgz and gz are not supported') def parse(self, spectrum, show, pause): spectra_ids = spectrum.get('id') id_list = [] if self.file_type == 'his': for element in spectra_ids.split(','): element = element.split('-') if len(element) > 1: new_elements = [] for i in range(int(element[0]), int(element[1]) + 1): id_list.append(i) else: id_list.append(int(element[0])) elif self.file_type == 'txt': if spectra_ids != '': raise GeneralError('Spectrum id not supported for txt files') else: id_list.append('') peaks = spectrum.findall('peak') x_min = int(spectrum.get('min')) x_max = int(spectrum.get('max')) smin = spectrum.get('smin') smax = spectrum.get('smax') for spectrum_id in id_list: plot_name = '{}_{}'.format(self.base_name, spectrum_id) PF = PeakFitter(peaks, spectrum.get('baseline'), plot_name) if self.file_type == 'txt': data_x = self.data_file[x_min:x_max, 0] data_y = self.data_file[x_min:x_max, 1] if self.data_file.shape[1] == 2: data_dy = [] for y in data_y: dy = numpy.sqrt(y) if y > 0 else 1.0 data_dy.append(dy) data_dy = numpy.array(data_dy) else: data_dy = self.data_file[x_min:x_max, 2] for iy, y in enumerate(data_dy): if y <= 0: data_dy[iy] = 1.0 elif self.file_type == 'his': data = self.data_file.load_histogram(spectrum_id) if data[0] != 1: raise GeneralError('Only 1D histograms are supported') data_x = data[1][x_min:x_max] data_y = data[3][x_min:x_max] data_dy = [] for y in data_y: dy = numpy.sqrt(y) if y > 0 else 1.0 data_dy.append(dy) data_dy = numpy.array(data_dy) if smin is not None and smax is not None: width = [float(smin), float(smax)] else: width = None fit_result = PF.fit(data_x, data_y, data_dy, width=width) if show == 'plot' or show == 'svg': plt.clf() plt.xlabel('Channel') plt.ylabel('Counts') plt.plot(data_x, data_y, linestyle='steps-mid') plt.plot(data_x, fit_result['baseline'], linestyle='--') plt.plot(fit_result['x_axis'], fit_result['fit'], linewidth=1.0) if show == 'svg': svg_name = 'fit_{0}_{1}_{2}'.format(plot_name, int(data_x[0]), int(data_x[-1])) svg_name = svg_name.replace('.', '').\ replace('/', '') + '.svg' plt.savefig(svg_name) else: plt.show() plt.draw() time.sleep(pause) elif show == 'quiet': pass for i, peak in enumerate(peaks): if peak.get('ignore') == 'True': continue x0 = PF.params['x{}'.format(i)].value dx = PF.params['x{}'.format(i)].stderr A = PF.params['A{}'.format(i)].value dA = PF.params['A{}'.format(i)].stderr s = PF.params['s{}'.format(i)].value E = peaks[i].get('E') name = peaks[i].get('name') if name is None: name = "" Area = PF.find_area(data_x, i) print('{:>8} {:>8} {:>8.2f} {:>8.2f}'.\ format(name, E, x0, dx), '{:>8.1f} {:>8.1f} {:>8.3f} {:>8.1f}'.\ format(A, dA, s, Area)) if __name__ == "__main__": parser = argparse.ArgumentParser(description='') parser.add_argument('config', nargs=1, help='Config files') parser.add_argument('--pause', '-p', nargs=1, type=float, default=[0.5], help='Pause time in seconds') out_group = parser.add_mutually_exclusive_group() out_group.add_argument('--plot', action='store_true', help='Plot window during fitting') out_group.add_argument('--svg', action='store_true', help='SVG files saved during fitting') out_group.add_argument('--quiet', action='store_true', help='No output during fitting') args = parser.parse_args() show = 'plot' if args.svg: show = 'svg' elif args.quiet: show = 'quiet' try: tree = ET.parse(args.config[0]) except (xml.parsers.expat.ExpatError, xml.etree.ElementTree.ParseError) as err: print("File '{0}' parsing error: {1}".format( args.config[0], err)) exit() root = tree.getroot() for data_file in root.findall('data_file'): SP = SpectrumParser(data_file.get('name')) print('# File: ', data_file.get('name')) print('# {: ^8} {:^7} {:^8} {:^8} {:^8} {:^8} {:^8} {:^8}' .format('Name', 'E', 'x0', 'dx', 'A', 'dA', 's', 'Area')) for spectrum in data_file.findall('spectrum'): SP.parse(spectrum, show, args.pause[0])
gpl-3.0
SeldonIO/seldon-server
python/seldon/pipeline/sklearn_transform.py
2
1944
from collections import defaultdict import pandas as pd import numpy as np from sklearn.base import BaseEstimator,TransformerMixin from seldon.util import DeprecationHelper class SklearnTransform(BaseEstimator,TransformerMixin): """ Allow sklearn transformers to be run on Pandas dataframes. Parameters ---------- input_features : list str input columns to use output_features : list str, optional names of output columns transformer : scikit learn Transformer transformer to run on data """ def __init__(self,input_features=None,output_features=None,output_features_prefix=None,transformer=None): self.input_features=input_features self.output_features=output_features self.transformer=transformer self.output_features_prefix=output_features_prefix def fit(self,df): """ Parameters ---------- df : pandas dataframe Returns ------- self: object """ self.transformer.fit(df[self.input_features].values) return self def transform(self,df): """ transform the input columns and merge result into input dataframe using column names if provided Parameters ---------- df : pandas dataframe Returns ------- Transformed pandas dataframe """ Y = self.transformer.transform(df[self.input_features].values) df_Y = pd.DataFrame(Y) if not self.output_features_prefix is None: cols = [self.output_features_prefix+"_"+str(c) for c in df_Y.columns] df_Y.columns = cols elif not self.output_features is None and len(df_Y.columns) == len(self.output_features): df_Y.columns = self.output_features df_2 = pd.concat([df,df_Y],axis=1) return df_2 sklearn_transform = DeprecationHelper(SklearnTransform)
apache-2.0
mlperf/training_results_v0.6
NVIDIA/benchmarks/minigo/implementations/tensorflow/minigo/oneoffs/embeddings_graphs.py
8
3394
#!/usr/bin/env python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import subprocess import time from absl import app, flags from sklearn.decomposition import PCA from sklearn.manifold import TSNE from tqdm import tqdm flags.DEFINE_string('embedding_file', None, 'Where to save the embeddings.') flags.DEFINE_integer( 'pca_dims', None, help='None to skip PCA, else number of dimensions to reduce to') flags.DEFINE_bool( 'produce_pngs', False, help='if true call sgftopng for all positions') flags.mark_flag_as_required('embedding_file') flags.register_validator( 'embedding_file', lambda ef: ef.endswith('.pickle') and os.path.isfile(ef), 'embedding_file must be an existing .pickle file') FLAGS = flags.FLAGS def main(argv): t0 = time.time() embedding_file = FLAGS.embedding_file with open(embedding_file, 'rb') as pickle_file: metadata, embeddings = pickle.load(pickle_file) t1 = time.time() reduced = embeddings if FLAGS.pca_dims: pca = PCA(n_components=FLAGS.pca_dims) pca_result = pca.fit_transform(embeddings) print('Explained variation per principal component:') print(pca.explained_variance_ratio_) print('Total Explained: {:.4f}'.format( sum(pca.explained_variance_ratio_))) print() reduced = pca_result t2 = time.time() print('Shape:', reduced.shape) tsne = TSNE( n_components=2, verbose=4, perplexity=40, n_iter=2000, min_grad_norm=5e-5) coords = tsne.fit_transform(reduced) assert len(coords.shape) == 2, coords.shape[1] == 2 # scale coords to be [0,1] in both dims coords -= [min(coords[:, 0]), min(coords[:, 1])] coords /= max(coords.flatten()) t3 = time.time() for i, (path, move) in enumerate(tqdm(metadata)): assert path.endswith('.sgf'), path png = '{}_{}.png'.format(path[:-4], move) assert '/eval/' in png, png png = png.replace('/eval/', '/thumbnails/') if FLAGS.produce_pngs and not os.path.exists(png): # NOTE: sgftopng is a pain to install, sorry. with open(path) as sgf_file: subprocess.run( ['sgftopng', png, '-' + str(move + 1)], stdin=sgf_file) metadata[i] = (path, move, png) t4 = time.time() print('Read {:.2f}s, PCA {:.2f}s t-SNE {:.2f}s, PNGs {:.2f}s'.format( t1 - t0, t2 - t1, t3 - t2, t4 - t3)) new_file = embedding_file.replace('.pickle', '.graph.pickle') assert new_file != embedding_file, (new_file, embedding_file) with open(new_file, 'wb') as pickle_file: pickle.dump([metadata, embeddings, coords], pickle_file) print('TSNE cords added to', new_file) if __name__ == '__main__': app.run(main)
apache-2.0
erp12/pyshgp
pyshgp/gp/evaluation.py
1
7737
"""The :mod:`evaluation` module defines classes to evaluate program CodeBlocks.""" from abc import ABC, abstractmethod from typing import Sequence, Union, Callable from collections import defaultdict import numpy as np import pandas as pd from pyshgp.push.interpreter import PushInterpreter, Program from pyshgp.tap import tap from pyshgp.utils import Token def damerau_levenshtein_distance(a: Union[str, Sequence], b: Union[str, Sequence]) -> int: """Damerau-Levenshtein Distance that works for both strings and lists. https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance. This implementation is heavily inspired by the implementation in the jellyfish package. https://github.com/jamesturk/jellyfish """ a_is_str = isinstance(a, str) b_is_str = isinstance(b, str) if a_is_str or b_is_str: assert a_is_str and b_is_str len1 = len(a) len2 = len(b) infinite = len1 + len2 da = defaultdict(int) score = [[0] * (len2 + 2) for x in range(len1 + 2)] score[0][0] = infinite for i in range(0, len1 + 1): score[i + 1][0] = infinite score[i + 1][1] = i for i in range(0, len2 + 1): score[0][i + 1] = infinite score[1][i + 1] = i for i in range(1, len1 + 1): db = 0 for j in range(1, len2 + 1): i1 = da[b[j - 1]] j1 = db cost = 1 if a[i - 1] == b[j - 1]: cost = 0 db = j score[i + 1][j + 1] = min(score[i][j] + cost, score[i + 1][j] + 1, score[i][j + 1] + 1, score[i1][j1] + (i - i1 - 1) + 1 + (j - j1 - 1)) da[a[i - 1]] = i return score[len1 + 1][len2 + 1] class Evaluator(ABC): """Base class or evaluators. Parameters ---------- interpreter : PushInterpreter, optional PushInterpreter used to run program and get their output. Default is an interpreter with the default configuration and all core instructions registered. penalty : float, optional When a program's output cannot be evaluated on a particular case, the penalty error is assigned. Default is 5e5. verbosity_config : Optional[VerbosityConfig] (default = None) A VerbosityConfig controlling what is logged during evaluation. Default is no verbosity. """ def __init__(self, interpreter: PushInterpreter = "default", penalty: float = 1e6): self.penalty = penalty if interpreter == "default": self.interpreter = PushInterpreter() else: self.interpreter = interpreter def default_error_function(self, actuals, expecteds) -> np.array: """Produce errors of actual program output given expected program output. The default error function is intended to be a universal error function for Push programs which only output a subset of the standard data types. Parameters ---------- actuals : list The values produced by running a Push program on a sequences of cases. expecteds: list The ground truth values for the sequence of cases used to produce the actuals. Returns ------- np.array An array of error values describing the program's performance. """ errors = [] for ndx, actual in enumerate(actuals): expected = expecteds[ndx] if actual is Token.no_stack_item: errors.append(self.penalty) elif isinstance(expected, (bool, np.bool_)): errors.append(int(not (bool(actual) == expected))) elif isinstance(expected, (int, np.int64, float, np.float64)): try: errors.append(abs(float(actual) - expected)) except OverflowError: errors.append(self.penalty) elif isinstance(expected, str): errors.append(damerau_levenshtein_distance(str(actual), expected)) elif isinstance(expected, list): errors += list(self.default_error_function(list(actual), expected)) else: raise ValueError("Unknown expected type for {e}".format(e=expected)) return np.array(errors) @tap @abstractmethod def evaluate(self, program: Program) -> np.ndarray: """Evaluate the program and return the error vector. Parameters ---------- program Program (CodeBlock of Push code) to evaluate. Returns ------- np.ndarray The error vector of the program. """ pass class DatasetEvaluator(Evaluator): """Evaluator driven by a labeled dataset.""" def __init__(self, X, y, interpreter: PushInterpreter = "default", penalty: float = 1e6): """Create Evaluator based on a labeled dataset. Inspired by sklearn. Parameters ---------- X : list, array-like, or pandas dataframe of shape = [n_samples, n_features] The inputs to evaluate each program on. y : list, array-like, or pandas dataframe. The target values. Shape = [n_samples] or [n_samples, n_outputs] interpreter : PushInterpreter or {"default"} The interpreter used to run the push programs. penalty : float If no response is given by the program on a given input, assign this error as the error. """ super().__init__(interpreter, penalty) self.X = pd.DataFrame(X) self.y = pd.DataFrame(y) @tap def evaluate(self, program: Program) -> np.array: """Evaluate the program and return the error vector. Parameters ---------- program Program (CodeBlock of Push code) to evaluate. Returns ------- np.ndarray The error vector of the program. """ super().evaluate(program) errors = [] for ndx in range(self.X.shape[0]): inputs = self.X.iloc[ndx].to_list() expected = self.y.iloc[ndx].to_list() actual = self.interpreter.run(program, inputs) errors.append(self.default_error_function(actual, expected)) return np.array(errors).flatten() class FunctionEvaluator(Evaluator): """Evaluator driven by an error function.""" def __init__(self, error_function: Callable): """Create Evaluator driven by an error function. The given error function must take a push program in the form of a CodeBlock and then return an np.ndarray of numeric errors. These errors will be used as the program's error vector. The error functions will typically instantiate its own PushInterpreter and run the given program as needed. Parameters ---------- error_function : Callable A function which takes a program to evaluate and returns a np.ndarray of errors. """ super().__init__() self.error_function = error_function @tap def evaluate(self, program: Program) -> np.ndarray: """Evaluate the program and return the error vector. Parameters ---------- program Program (CodeBlock of Push code) to evaluate. Returns ------- np.ndarray The error vector of the program. """ super().evaluate(program) return self.error_function(program)
mit
madjelan/scikit-learn
sklearn/semi_supervised/label_propagation.py
128
15312
# coding=utf8 """ Label propagation in the context of this module refers to a set of semisupervised classification algorithms. In the high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supprots RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD from abc import ABCMeta, abstractmethod from scipy import sparse import numpy as np from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import rbf_kernel from ..utils.graph import graph_laplacian from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_X_y, check_is_fitted from ..externals import six from ..neighbors.unsupervised import NearestNeighbors ### Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_neighbors : integer > 0 Parameter for knn kernel """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " are supported at this time" % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') if sparse.isspmatrix(X): X_2d = X else: X_2d = np.atleast_2d(X) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
calatre/epidemics_network
treat/excel_clipper.py
1
1352
# Universidade de Aveiro - Physics Department # 2016/2017 Project - Andre Calatre, 73207 # "Simulation of an epidemic" - 28/6/2017 # Selecting Data from an excel file to another #import numpy as np import pandas as pd from openpyxl import load_workbook #r = [0, 301, 302, 303, 304, 305, 306] #desired = ['S_Avg', 'I_Avg', 'R_Avg', 'S_StD', 'I_StD', 'R_StD'] cvalues = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75, 1] rvalues = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75, 1] book = load_workbook('data/ns_shift.xlsx') writer = pd.ExcelWriter('data/nd_shift.xlsx', engine='openpyxl') writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) for cvar in cvalues: for rvar in rvalues: print('retrieving...') tblnm = 'c='+str(cvar)+'|r='+ str(rvar) data = pd.read_excel('data/ns_shift.xlsx', sheetname = tblnm, index_col = 0) print('...retrieved') #data.drop(data.columns[r], axis = 1, inplace= True) sel = data[:1000] print('copying...............................'+str(tblnm)) sel.to_excel(writer,'c='+str(cvar)+'|r='+ str(rvar)) print('copied!') writer.save()
apache-2.0
piskvorky/gensim
gensim/sklearn_api/atmodel.py
4
10965
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: Chinmaya Pancholi <chinmayapancholi13@gmail.com> # Copyright (C) 2017 Radim Rehurek <radimrehurek@seznam.cz> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """Scikit learn interface for :class:`~gensim.models.atmodel.AuthorTopicModel`. Follows scikit-learn API conventions to facilitate using gensim along with scikit-learn. Examples -------- .. sourcecode:: pycon >>> from gensim.test.utils import common_dictionary, common_corpus >>> from gensim.sklearn_api.atmodel import AuthorTopicTransformer >>> >>> # Pass a mapping from authors to the documents they contributed to. >>> author2doc = { ... 'john': [0, 1, 2, 3, 4, 5, 6], ... 'jane': [2, 3, 4, 5, 6, 7, 8], ... 'jack': [0, 2, 4, 6, 8] ... } >>> >>> # Lets use the model to discover 2 different topics. >>> model = AuthorTopicTransformer(id2word=common_dictionary, author2doc=author2doc, num_topics=2, passes=100) >>> >>> # In which of those 2 topics does jack mostly contribute to? >>> topic_dist = model.fit(common_corpus).transform('jack') """ import numpy as np from sklearn.base import TransformerMixin, BaseEstimator from sklearn.exceptions import NotFittedError from gensim import models from gensim import matutils class AuthorTopicTransformer(TransformerMixin, BaseEstimator): """Base Author Topic module, wraps :class:`~gensim.models.atmodel.AuthorTopicModel`. The model's internal workings are heavily based on `"The Author-Topic Model for Authors and Documents", Osen-Zvi et. al 2004 <https://mimno.infosci.cornell.edu/info6150/readings/398.pdf>`_. """ def __init__(self, num_topics=100, id2word=None, author2doc=None, doc2author=None, chunksize=2000, passes=1, iterations=50, decay=0.5, offset=1.0, alpha='symmetric', eta='symmetric', update_every=1, eval_every=10, gamma_threshold=0.001, serialized=False, serialization_path=None, minimum_probability=0.01, random_state=None): """ Parameters ---------- num_topics : int, optional Number of requested latent topics to be extracted from the training corpus. id2word : :class:`~gensim.corpora.dictionary.Dictionary`, optional Mapping from a words' ID to the word itself. Used to determine the vocabulary size, as well as for debugging and topic printing. author2doc : dict of (str, list of int), optional Maps an authors name to a list of document IDs where has has contributed. Either `author2doc` or `doc2author` **must be supplied**. doc2author : dict of (int, list of str) Maps a document (using its ID) to a list of author names that contributed to it. Either `author2doc` or `doc2author` **must be supplied**. chunksize : int, optional Number of documents to be processed by the model in each mini-batch. passes : int, optional Number of times the model can make a pass over the corpus during training. iterations : int, optional Maximum number of times the model before convergence during the M step of the EM algorithm. decay : float, optional A number between (0.5, 1] to weight what percentage of the previous lambda value is forgotten when each new document is examined. Corresponds to Kappa from `"The Author-Topic Model for Authors and Documents", Osen-Zvi et. al 2004 <https://mimno.infosci.cornell.edu/info6150/readings/398.pdf>`_. offset : float, optional Hyper-parameter that controls how much we will slow down the first steps the first few iterations. Corresponds to Tau_0 from `"The Author-Topic Model for Authors and Documents", Osen-Zvi et. al 2004 <https://mimno.infosci.cornell.edu/info6150/readings/398.pdf>`_. alpha : {np.ndarray, str}, optional Can be set to an 1D array of length equal to the number of expected topics that expresses our a-priori belief for the each topics' probability. Alternatively default prior selecting strategies can be employed by supplying a string: * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. * 'auto': Learns an asymmetric prior from the corpus. eta : {float, np.array, str}, optional A-priori belief on word probability, this can be: * scalar for a symmetric prior over topic/word probability, * vector of length num_words to denote an asymmetric user defined probability for each word, * matrix of shape (num_topics, num_words) to assign a probability for each word-topic combination, * the string 'auto' to learn the asymmetric prior from the data. update_every : int, optional Number of mini-batches between each model update. eval_every : int, optional Number of updates between two log perplexity estimates. Set to None to disable perplexity estimation. gamma_threshold : float, optional Minimum change in the value of the gamma parameters to continue iterating. serialized : bool, optional Indicates whether the input corpora to the model are simple in-memory lists (`serialized = False`) or saved to the hard-drive (`serialized = True`). Note that this behaviour is quite different from other Gensim models. If your data is too large to fit in to memory, use this functionality. serialization_path : str, optional Path to file that used for storing the serialized object, **must be supplied if `serialized = True`**. An existing file *cannot* be overwritten, either delete the old file or choose a different name. minimum_probability : float, optional Topics with a probability lower than this threshold will be filtered out. random_state : {np.random.RandomState, int}, optional Either a randomState object or a seed to generate one. Useful for reproducibility. """ self.gensim_model = None self.num_topics = num_topics self.id2word = id2word self.author2doc = author2doc self.doc2author = doc2author self.chunksize = chunksize self.passes = passes self.iterations = iterations self.decay = decay self.offset = offset self.alpha = alpha self.eta = eta self.update_every = update_every self.eval_every = eval_every self.gamma_threshold = gamma_threshold self.serialized = serialized self.serialization_path = serialization_path self.minimum_probability = minimum_probability self.random_state = random_state def fit(self, X, y=None): """Fit the model according to the given training data. Parameters ---------- X : iterable of list of (int, number) Sequence of documents in BoW format. Returns ------- :class:`~gensim.sklearn_api.atmodel.AuthorTopicTransformer` The trained model. """ self.gensim_model = models.AuthorTopicModel( corpus=X, num_topics=self.num_topics, id2word=self.id2word, author2doc=self.author2doc, doc2author=self.doc2author, chunksize=self.chunksize, passes=self.passes, iterations=self.iterations, decay=self.decay, offset=self.offset, alpha=self.alpha, eta=self.eta, update_every=self.update_every, eval_every=self.eval_every, gamma_threshold=self.gamma_threshold, serialized=self.serialized, serialization_path=self.serialization_path, minimum_probability=self.minimum_probability, random_state=self.random_state ) return self def transform(self, author_names): """Infer the topic probabilities for each author. Parameters ---------- author_names : {iterable of str, str} Author name or sequence of author names whose topics will be identified. Returns ------- numpy.ndarray Topic distribution for each input author. """ if self.gensim_model is None: raise NotFittedError( "This model has not been fitted yet. Call 'fit' with appropriate arguments before using this method." ) # The input as array of arrays if not isinstance(author_names, list): author_names = [author_names] # returning dense representation for compatibility with sklearn # but we should go back to sparse representation in the future topics = [matutils.sparse2full(self.gensim_model[author_name], self.num_topics) for author_name in author_names] return np.reshape(np.array(topics), (len(author_names), self.num_topics)) def partial_fit(self, X, author2doc=None, doc2author=None): """Train model over a potentially incomplete set of documents. This method can be used in two ways: * On an unfitted model in which case the model is initialized and trained on `X`. * On an already fitted model in which case the model is **updated** by `X`. Parameters ---------- X : iterable of list of (int, number) Sequence of documents in BoW format. author2doc : dict of (str, list of int), optional Maps an authors name to a list of document IDs where has has contributed. Either `author2doc` or `doc2author` **must be supplied**. doc2author : dict of (int, list of str) Maps a document (using its ID) to a list of author names that contributed to it. Either `author2doc` or `doc2author` **must be supplied**. Returns ------- :class:`~gensim.sklearn_api.atmodel.AuthorTopicTransformer` The trained model. """ if self.gensim_model is None: self.gensim_model = models.AuthorTopicModel( corpus=X, num_topics=self.num_topics, id2word=self.id2word, author2doc=self.author2doc, doc2author=self.doc2author, chunksize=self.chunksize, passes=self.passes, iterations=self.iterations, decay=self.decay, offset=self.offset, alpha=self.alpha, eta=self.eta, update_every=self.update_every, eval_every=self.eval_every, gamma_threshold=self.gamma_threshold, serialized=self.serialized, serialization_path=self.serialization_path, minimum_probability=self.minimum_probability, random_state=self.random_state ) self.gensim_model.update(corpus=X, author2doc=author2doc, doc2author=doc2author) return self
lgpl-2.1
wesleybowman/karsten
project/rawADCPclass.py
1
4107
from __future__ import division import numpy as np import sys sys.path.append('/home/wesley/github/UTide/') from utide import ut_solv, ut_reconstr #from shortest_element_path import shortest_element_path #import matplotlib.pyplot as plt #import matplotlib.tri as Tri #import matplotlib.ticker as ticker #import seaborn import scipy.io as sio import h5py from os import path class Struct: def __init__(self, **entries): self.__dict__.update(entries) class rawADCP: def __init__(self, filename): self.QC = ['raw data'] self.load(filename) self.Params_Stn4_SWNSreport(filename) self.load_rbrdata() ## set options self.options = {} self.options['showPA'] = 1 self.options['showRBRavg'] = 1 ## save a flow file in BPformat #save_FlowFile_BPFormat(fileinfo,adcp,rbr,saveparams,options) def load(self, filename): try: self.mat = sio.loadmat(filename, struct_as_record=False, squeeze_me=True) self.adcp = self.mat['adcp'] except NotImplementedError: self.mat = h5py.File(filename) self.adcp = self.mat['adcp'] #self.adcp = Struct(**self.mat['adcp']) def Params_Stn4_SWNSreport(self, filename): fname = filename.split('/') filebase = fname[-1].split('_')[0] self.fileinfo = {} self.fileinfo['datadir'] = path.join(*fname[:-1]) + '/' self.fileinfo['ADCP'] = filebase + '_raw' self.fileinfo['outdir'] = path.join(*fname[:-1]) + '/' self.fileinfo['flowfile'] = filebase + '_Flow' self.fileinfo['rbr']= 'station4_grandPassageII_RBRSN_011857.mat' self.fileinfo['paramfile']= 'Params_Stn4_SWNSreport' #%% ADCP parameters self.saveparams = {} self.saveparams['tmin'] = 209 self.saveparams['tmax'] = 240 self.saveparams['zmin'] = 0 self.saveparams['zmax'] = 20 self.saveparams['approxdepth'] = 15.5 self.saveparams['flooddir'] = 0 self.saveparams['declination'] = -17.25 self.saveparams['lat'] = 44.2605 self.saveparams['lon'] = -66.3354 self.saveparams['dabADCP'] = 0.5 self.saveparams['dabPS'] = -0.6 self.saveparams['rbr_hr_offset'] = 3 def load_rbrdata(self): rbrFile = self.fileinfo['datadir'] + self.fileinfo['rbr'] try: rbrMat = sio.loadmat(rbrFile, struct_as_record=False, squeeze_me=True) except NotImplementedError: rbrMat = h5py.File(rbrFile) rbr = rbrMat['rbr'] rbrout = {} rbrout['mtime'] = rbr.yd rbrout['temp'] = rbr.temperature rbrout['pres'] = rbr.pressure rbrout['depth'] = rbr.depth rbrout['mtime'] = rbr.yd self.rbr = rbrout if __name__ == '__main__': #filename = 'GP-120726-BPd_raw.mat' filename = '140703-EcoEII_database/data/GP-120726-BPd_raw.mat' data = rawADCP(filename) #stn = 'GP-120726-BPd'; #%% File information #fileinfo.datadir = '../data/'; %path to raw data files #fileinfo.ADCP = [stn '_raw']; %name of ADCP file #fileinfo.outdir = '../data/'; %path to output directory #fileinfo.flowfile = [stn,'_Flow']; %name of output file with Flow data #fileinfo.rbr = ['station4_grandPassageII_RBRSN_011857.mat']; #fileinfo.paramfile = mfilename; # #%% ADCP parameters #saveparams.tmin = 209; %tmin (year day) #saveparams.tmax = 240; %tmax (year day) #saveparams.zmin = 0; %minimum z to include in saves file #saveparams.zmax = 20; #saveparams.approxdepth = 15.5; %Approximate depth #saveparams.flooddir= 0; %Flood direction (relative to true north, CW is positive) #saveparams.declination = -17.25;%Declination angle #saveparams.lat = 44.2605; %latitude #saveparams.lon = -66.3354; %longitude #saveparams.dabADCP = 0.5; %depth above bottom of ADCP #saveparams.dabPS = -0.6; %depth above bottom of pressure sensor #saveparams.rbr_hr_offset = 3; % hour offset to convert rbr time to UTC
mit
lancezlin/ml_template_py
lib/python2.7/site-packages/sklearn/semi_supervised/tests/test_label_propagation.py
5
1998
""" test the label propagation module """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
mit
RPGOne/Skynet
scikit-learn-0.18.1/sklearn/manifold/tests/test_mds.py
99
1873
import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.manifold import mds from sklearn.utils.testing import assert_raises def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
runt18/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/colors.py
1
31702
""" A module for converting numbers or color arguments to *RGB* or *RGBA* *RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the range 0-1. This module includes functions and classes for color specification conversions, and for mapping numbers to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data array is first mapped onto the range 0-1 using an instance of :class:`Normalize` or of a subclass; then this number in the 0-1 range is mapped to a color using an instance of a subclass of :class:`Colormap`. Two are provided here: :class:`LinearSegmentedColormap`, which is used to generate all the built-in colormap instances, but is also useful for making custom colormaps, and :class:`ListedColormap`, which is used for generating a custom colormap from a list of color specifications. The module also provides a single instance, *colorConverter*, of the :class:`ColorConverter` class providing methods for converting single color specifications or sequences of them to *RGB* or *RGBA*. Commands which take color arguments can use several formats to specify the colors. For the basic builtin colors, you can use a single letter - b : blue - g : green - r : red - c : cyan - m : magenta - y : yellow - k : black - w : white Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:: color = '0.75' For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an *R* , *G* , *B* tuple, where each of *R* , *G* , *B* are in the range [0,1]. Finally, legal html names for colors, like 'red', 'burlywood' and 'chartreuse' are supported. """ import re import numpy as np from numpy import ma import matplotlib.cbook as cbook parts = np.__version__.split('.') NP_MAJOR, NP_MINOR = map(int, parts[:2]) # true if clip supports the out kwarg NP_CLIP_OUT = NP_MAJOR>=1 and NP_MINOR>=2 cnames = { 'aliceblue' : '#F0F8FF', 'antiquewhite' : '#FAEBD7', 'aqua' : '#00FFFF', 'aquamarine' : '#7FFFD4', 'azure' : '#F0FFFF', 'beige' : '#F5F5DC', 'bisque' : '#FFE4C4', 'black' : '#000000', 'blanchedalmond' : '#FFEBCD', 'blue' : '#0000FF', 'blueviolet' : '#8A2BE2', 'brown' : '#A52A2A', 'burlywood' : '#DEB887', 'cadetblue' : '#5F9EA0', 'chartreuse' : '#7FFF00', 'chocolate' : '#D2691E', 'coral' : '#FF7F50', 'cornflowerblue' : '#6495ED', 'cornsilk' : '#FFF8DC', 'crimson' : '#DC143C', 'cyan' : '#00FFFF', 'darkblue' : '#00008B', 'darkcyan' : '#008B8B', 'darkgoldenrod' : '#B8860B', 'darkgray' : '#A9A9A9', 'darkgreen' : '#006400', 'darkkhaki' : '#BDB76B', 'darkmagenta' : '#8B008B', 'darkolivegreen' : '#556B2F', 'darkorange' : '#FF8C00', 'darkorchid' : '#9932CC', 'darkred' : '#8B0000', 'darksalmon' : '#E9967A', 'darkseagreen' : '#8FBC8F', 'darkslateblue' : '#483D8B', 'darkslategray' : '#2F4F4F', 'darkturquoise' : '#00CED1', 'darkviolet' : '#9400D3', 'deeppink' : '#FF1493', 'deepskyblue' : '#00BFFF', 'dimgray' : '#696969', 'dodgerblue' : '#1E90FF', 'firebrick' : '#B22222', 'floralwhite' : '#FFFAF0', 'forestgreen' : '#228B22', 'fuchsia' : '#FF00FF', 'gainsboro' : '#DCDCDC', 'ghostwhite' : '#F8F8FF', 'gold' : '#FFD700', 'goldenrod' : '#DAA520', 'gray' : '#808080', 'green' : '#008000', 'greenyellow' : '#ADFF2F', 'honeydew' : '#F0FFF0', 'hotpink' : '#FF69B4', 'indianred' : '#CD5C5C', 'indigo' : '#4B0082', 'ivory' : '#FFFFF0', 'khaki' : '#F0E68C', 'lavender' : '#E6E6FA', 'lavenderblush' : '#FFF0F5', 'lawngreen' : '#7CFC00', 'lemonchiffon' : '#FFFACD', 'lightblue' : '#ADD8E6', 'lightcoral' : '#F08080', 'lightcyan' : '#E0FFFF', 'lightgoldenrodyellow' : '#FAFAD2', 'lightgreen' : '#90EE90', 'lightgrey' : '#D3D3D3', 'lightpink' : '#FFB6C1', 'lightsalmon' : '#FFA07A', 'lightseagreen' : '#20B2AA', 'lightskyblue' : '#87CEFA', 'lightslategray' : '#778899', 'lightsteelblue' : '#B0C4DE', 'lightyellow' : '#FFFFE0', 'lime' : '#00FF00', 'limegreen' : '#32CD32', 'linen' : '#FAF0E6', 'magenta' : '#FF00FF', 'maroon' : '#800000', 'mediumaquamarine' : '#66CDAA', 'mediumblue' : '#0000CD', 'mediumorchid' : '#BA55D3', 'mediumpurple' : '#9370DB', 'mediumseagreen' : '#3CB371', 'mediumslateblue' : '#7B68EE', 'mediumspringgreen' : '#00FA9A', 'mediumturquoise' : '#48D1CC', 'mediumvioletred' : '#C71585', 'midnightblue' : '#191970', 'mintcream' : '#F5FFFA', 'mistyrose' : '#FFE4E1', 'moccasin' : '#FFE4B5', 'navajowhite' : '#FFDEAD', 'navy' : '#000080', 'oldlace' : '#FDF5E6', 'olive' : '#808000', 'olivedrab' : '#6B8E23', 'orange' : '#FFA500', 'orangered' : '#FF4500', 'orchid' : '#DA70D6', 'palegoldenrod' : '#EEE8AA', 'palegreen' : '#98FB98', 'palevioletred' : '#AFEEEE', 'papayawhip' : '#FFEFD5', 'peachpuff' : '#FFDAB9', 'peru' : '#CD853F', 'pink' : '#FFC0CB', 'plum' : '#DDA0DD', 'powderblue' : '#B0E0E6', 'purple' : '#800080', 'red' : '#FF0000', 'rosybrown' : '#BC8F8F', 'royalblue' : '#4169E1', 'saddlebrown' : '#8B4513', 'salmon' : '#FA8072', 'sandybrown' : '#FAA460', 'seagreen' : '#2E8B57', 'seashell' : '#FFF5EE', 'sienna' : '#A0522D', 'silver' : '#C0C0C0', 'skyblue' : '#87CEEB', 'slateblue' : '#6A5ACD', 'slategray' : '#708090', 'snow' : '#FFFAFA', 'springgreen' : '#00FF7F', 'steelblue' : '#4682B4', 'tan' : '#D2B48C', 'teal' : '#008080', 'thistle' : '#D8BFD8', 'tomato' : '#FF6347', 'turquoise' : '#40E0D0', 'violet' : '#EE82EE', 'wheat' : '#F5DEB3', 'white' : '#FFFFFF', 'whitesmoke' : '#F5F5F5', 'yellow' : '#FFFF00', 'yellowgreen' : '#9ACD32', } # add british equivs for k, v in cnames.items(): if k.find('gray')>=0: k = k.replace('gray', 'grey') cnames[k] = v def is_color_like(c): 'Return *True* if *c* can be converted to *RGB*' try: colorConverter.to_rgb(c) return True except ValueError: return False def rgb2hex(rgb): 'Given a len 3 rgb tuple of 0-1 floats, return the hex string' return '#{0:02x}{1:02x}{2:02x}'.format(*tuple([round(val*255) for val in rgb])) hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z") def hex2color(s): """ Take a hex string *s* and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725, 0.93725) """ if not isinstance(s, basestring): raise TypeError('hex2color requires a string argument') if hexColorPattern.match(s) is None: raise ValueError('invalid hex color string "{0!s}"'.format(s)) return tuple([int(n, 16)/255.0 for n in (s[1:3], s[3:5], s[5:7])]) class ColorConverter: """ Provides methods for converting color specifications to *RGB* or *RGBA* Caching is used for more efficient conversion upon repeated calls with the same argument. Ordinarily only the single instance instantiated in this module, *colorConverter*, is needed. """ colors = { 'b' : (0.0, 0.0, 1.0), 'g' : (0.0, 0.5, 0.0), 'r' : (1.0, 0.0, 0.0), 'c' : (0.0, 0.75, 0.75), 'm' : (0.75, 0, 0.75), 'y' : (0.75, 0.75, 0), 'k' : (0.0, 0.0, 0.0), 'w' : (1.0, 1.0, 1.0), } cache = {} def to_rgb(self, arg): """ Returns an *RGB* tuple of three floats from 0-1. *arg* can be an *RGB* or *RGBA* sequence or a string in any of several forms: 1) a letter from the set 'rgbcmykw' 2) a hex color string, like '#00FFFF' 3) a standard name, like 'aqua' 4) a float, like '0.4', indicating gray on a 0-1 scale if *arg* is *RGBA*, the *A* will simply be discarded. """ try: return self.cache[arg] except KeyError: pass except TypeError: # could be unhashable rgb seq arg = tuple(arg) try: return self.cache[arg] except KeyError: pass except TypeError: raise ValueError( 'to_rgb: arg "{0!s}" is unhashable even inside a tuple'.format(str(arg))) try: if cbook.is_string_like(arg): color = self.colors.get(arg, None) if color is None: str1 = cnames.get(arg, arg) if str1.startswith('#'): color = hex2color(str1) else: fl = float(arg) if fl < 0 or fl > 1: raise ValueError( 'gray (string) must be in range 0-1') color = tuple([fl]*3) elif cbook.iterable(arg): if len(arg) > 4 or len(arg) < 3: raise ValueError( 'sequence length is {0:d}; must be 3 or 4'.format(len(arg))) color = tuple(arg[:3]) if [x for x in color if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbg sequence outside 0-1 range') else: raise ValueError('cannot convert argument to rgb sequence') self.cache[arg] = color except (KeyError, ValueError, TypeError), exc: raise ValueError('to_rgb: Invalid rgb arg "{0!s}"\n{1!s}'.format(str(arg), exc)) # Error messages could be improved by handling TypeError # separately; but this should be rare and not too hard # for the user to figure out as-is. return color def to_rgba(self, arg, alpha=None): """ Returns an *RGBA* tuple of four floats from 0-1. For acceptable values of *arg*, see :meth:`to_rgb`. If *arg* is an *RGBA* sequence and *alpha* is not *None*, *alpha* will replace the original *A*. """ try: if not cbook.is_string_like(arg) and cbook.iterable(arg): if len(arg) == 4: if [x for x in arg if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbga sequence outside 0-1 range') if alpha is None: return tuple(arg) if alpha < 0.0 or alpha > 1.0: raise ValueError("alpha must be in range 0-1") return arg[0], arg[1], arg[2], arg[3] * alpha r,g,b = arg[:3] if [x for x in (r,g,b) if (float(x) < 0) or (x > 1)]: raise ValueError('number in rbg sequence outside 0-1 range') else: r,g,b = self.to_rgb(arg) if alpha is None: alpha = 1.0 return r,g,b,alpha except (TypeError, ValueError), exc: raise ValueError('to_rgba: Invalid rgba arg "{0!s}"\n{1!s}'.format(str(arg), exc)) def to_rgba_array(self, c, alpha=None): """ Returns a numpy array of *RGBA* tuples. Accepts a single mpl color spec or a sequence of specs. Special case to handle "no color": if *c* is "none" (case-insensitive), then an empty array will be returned. Same for an empty list. """ try: if c.lower() == 'none': return np.zeros((0,4), dtype=np.float_) except AttributeError: pass if len(c) == 0: return np.zeros((0,4), dtype=np.float_) try: result = np.array([self.to_rgba(c, alpha)], dtype=np.float_) except ValueError: if isinstance(c, np.ndarray): if c.ndim != 2 and c.dtype.kind not in 'SU': raise ValueError("Color array must be two-dimensional") result = np.zeros((len(c), 4)) for i, cc in enumerate(c): result[i] = self.to_rgba(cc, alpha) # change in place return np.asarray(result, np.float_) colorConverter = ColorConverter() def makeMappingArray(N, data): """Create an *N* -element 1-d lookup table *data* represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. The function returns an array "result" where ``result[x*(N-1)]`` gives the closest value for values of x between 0 and 1. """ try: adata = np.array(data) except: raise TypeError("data must be convertable to an array") shape = adata.shape if len(shape) != 2 and shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:,0] y0 = adata[:,1] y1 = adata[:,2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0. and end with x=1") if np.sometrue(np.sort(x)-x): raise ValueError( "data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N-1) lut = np.zeros((N,), np.float) xind = np.arange(float(N)) ind = np.searchsorted(x, xind)[1:-1] lut[1:-1] = ( ((xind[1:-1] - x[ind-1]) / (x[ind] - x[ind-1])) * (y0[ind] - y1[ind-1]) + y1[ind-1]) lut[0] = y1[0] lut[-1] = y0[-1] # ensure that the lut is confined to values between 0 and 1 by clipping it np.clip(lut, 0.0, 1.0) #lut = where(lut > 1., 1., lut) #lut = where(lut < 0., 0., lut) return lut class Colormap: """Base class for all scalar to rgb mappings Important methods: * :meth:`set_bad` * :meth:`set_under` * :meth:`set_over` """ def __init__(self, name, N=256): """ Public class attributes: :attr:`N` : number of rgb quantization levels :attr:`name` : name of colormap """ self.name = name self.N = N self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. self._rgba_under = None self._rgba_over = None self._i_under = N self._i_over = N+1 self._i_bad = N+2 self._isinit = False def __call__(self, X, alpha=1.0, bytes=False): """ *X* is either a scalar or an array (of any dimension). If scalar, a tuple of rgba values is returned, otherwise an array with the new shape = oldshape+(4,). If the X-values are integers, then they are used as indices into the array. If they are floating point, then they must be in the interval (0.0, 1.0). Alpha must be a scalar. If bytes is False, the rgba values will be floats on a 0-1 scale; if True, they will be uint8, 0-255. """ if not self._isinit: self._init() alpha = min(alpha, 1.0) # alpha must be between 0 and 1 alpha = max(alpha, 0.0) self._lut[:-3, -1] = alpha mask_bad = None if not cbook.iterable(X): vtype = 'scalar' xa = np.array([X]) else: vtype = 'array' xma = ma.asarray(X) xa = xma.filled(0) mask_bad = ma.getmask(xma) if xa.dtype.char in np.typecodes['Float']: np.putmask(xa, xa==1.0, 0.9999999) #Treat 1.0 as slightly less than 1. # The following clip is fast, and prevents possible # conversion of large positive values to negative integers. if NP_CLIP_OUT: np.clip(xa * self.N, -1, self.N, out=xa) else: xa = np.clip(xa * self.N, -1, self.N) xa = xa.astype(int) # Set the over-range indices before the under-range; # otherwise the under-range values get converted to over-range. np.putmask(xa, xa>self.N-1, self._i_over) np.putmask(xa, xa<0, self._i_under) if mask_bad is not None and mask_bad.shape == xa.shape: np.putmask(xa, mask_bad, self._i_bad) if bytes: lut = (self._lut * 255).astype(np.uint8) else: lut = self._lut rgba = np.empty(shape=xa.shape+(4,), dtype=lut.dtype) lut.take(xa, axis=0, mode='clip', out=rgba) # twice as fast as lut[xa]; # using the clip or wrap mode and providing an # output array speeds it up a little more. if vtype == 'scalar': rgba = tuple(rgba[0,:]) return rgba def set_bad(self, color = 'k', alpha = 1.0): '''Set color to be used for masked values. ''' self._rgba_bad = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_under(self, color = 'k', alpha = 1.0): '''Set color to be used for low out-of-range values. Requires norm.clip = False ''' self._rgba_under = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_over(self, color = 'k', alpha = 1.0): '''Set color to be used for high out-of-range values. Requires norm.clip = False ''' self._rgba_over = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def _set_extremes(self): if self._rgba_under: self._lut[self._i_under] = self._rgba_under else: self._lut[self._i_under] = self._lut[0] if self._rgba_over: self._lut[self._i_over] = self._rgba_over else: self._lut[self._i_over] = self._lut[self.N-1] self._lut[self._i_bad] = self._rgba_bad def _init(): '''Generate the lookup table, self._lut''' raise NotImplementedError("Abstract class only") def is_gray(self): if not self._isinit: self._init() return (np.alltrue(self._lut[:,0] == self._lut[:,1]) and np.alltrue(self._lut[:,0] == self._lut[:,2])) class LinearSegmentedColormap(Colormap): """Colormap objects based on lookup tables using linear segments. The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments. """ def __init__(self, name, segmentdata, N=256): """Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of *x*, *y0*, *y1* tuples, forming rows in a table. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]} Each row in the table for a given color is a sequence of *x*, *y0*, *y1* tuples. In each sequence, *x* must increase monotonically from 0 to 1. For any input value *z* falling between *x[i]* and *x[i+1]*, the output value of a given color will be linearly interpolated between *y1[i]* and *y0[i+1]*:: row i: x y0 y1 / / row i+1: x y0 y1 Hence y0 in the first row and y1 in the last row are never used. .. seealso:: :func:`makeMappingArray` """ self.monochrome = False # True only if all colors in map are identical; # needed for contouring. Colormap.__init__(self, name, N) self._segmentdata = segmentdata def _init(self): self._lut = np.ones((self.N + 3, 4), np.float) self._lut[:-3, 0] = makeMappingArray(self.N, self._segmentdata['red']) self._lut[:-3, 1] = makeMappingArray(self.N, self._segmentdata['green']) self._lut[:-3, 2] = makeMappingArray(self.N, self._segmentdata['blue']) self._isinit = True self._set_extremes() class ListedColormap(Colormap): """Colormap object generated from a list of colors. This may be most useful when indexing directly into a colormap, but it can also be used to generate special colormaps for ordinary mapping. """ def __init__(self, colors, name = 'from_list', N = None): """ Make a colormap from a list of colors. *colors* a list of matplotlib color specifications, or an equivalent Nx3 floating point array (*N* rgb values) *name* a string to identify the colormap *N* the number of entries in the map. The default is *None*, in which case there is one colormap entry for each element in the list of colors. If:: N < len(colors) the list will be truncated at *N*. If:: N > len(colors) the list will be extended by repetition. """ self.colors = colors self.monochrome = False # True only if all colors in map are identical; # needed for contouring. if N is None: N = len(self.colors) else: if cbook.is_string_like(self.colors): self.colors = [self.colors] * N self.monochrome = True elif cbook.iterable(self.colors): self.colors = list(self.colors) # in case it was a tuple if len(self.colors) == 1: self.monochrome = True if len(self.colors) < N: self.colors = list(self.colors) * N del(self.colors[N:]) else: try: gray = float(self.colors) except TypeError: pass else: self.colors = [gray] * N self.monochrome = True Colormap.__init__(self, name, N) def _init(self): rgb = np.array([colorConverter.to_rgb(c) for c in self.colors], np.float) self._lut = np.zeros((self.N + 3, 4), np.float) self._lut[:-3, :-1] = rgb self._lut[:-3, -1] = 1 self._isinit = True self._set_extremes() class Normalize: """ Normalize a given value to the 0-1 range """ def __init__(self, vmin=None, vmax=None, clip=False): """ If *vmin* or *vmax* is not given, they are taken from the input's minimum and maximum value respectively. If *clip* is *True* and the given value falls outside the range, the returned value will be 0 or 1, whichever is closer. Returns 0 if:: vmin==vmax Works with scalars or arrays, including masked arrays. If *clip* is *True*, masked values are set to 1; otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and masked colors in the colormap, so it is likely to lead to surprises; therefore the default is *clip* = *False*. """ self.vmin = vmin self.vmax = vmax self.clip = clip def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (val-vmin) * (1.0/(vmax-vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin + val * (vmax - vmin) else: return vmin + value * (vmax - vmin) def autoscale(self, A): ''' Set *vmin*, *vmax* to min, max of *A*. ''' self.vmin = ma.minimum(A) self.vmax = ma.maximum(A) def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is None: self.vmin = ma.minimum(A) if self.vmax is None: self.vmax = ma.maximum(A) def scaled(self): 'return true if vmin and vmax set' return (self.vmin is not None and self.vmax is not None) class LogNorm(Normalize): """ Normalize a given value to the 0-1 range on a log scale """ def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin<=0: raise ValueError("values must all be positive") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin * ma.power((vmax/vmin), val) else: return vmin * pow((vmax/vmin), value) class BoundaryNorm(Normalize): ''' Generate a colormap index based on discrete intervals. Unlike :class:`Normalize` or :class:`LogNorm`, :class:`BoundaryNorm` maps values to integers instead of to the interval 0-1. Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using integers seems simpler, and reduces the number of conversions back and forth between integer and floating point. ''' def __init__(self, boundaries, ncolors, clip=False): ''' *boundaries* a monotonically increasing sequence *ncolors* number of colors in the colormap to be used If:: b[i] <= v < b[i+1] then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1. Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices by :meth:`Colormap.__call__` . ''' self.clip = clip self.vmin = boundaries[0] self.vmax = boundaries[-1] self.boundaries = np.asarray(boundaries) self.N = len(self.boundaries) self.Ncmap = ncolors if self.N-1 == self.Ncmap: self._interp = False else: self._interp = True def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax+1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx>=b] = i if self._interp: iret = (iret * (float(self.Ncmap-1)/(self.N-2))).astype(np.int16) iret[xx<self.vmin] = -1 iret[xx>=self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret def inverse(self, value): return ValueError("BoundaryNorm is not invertible") class NoNorm(Normalize): ''' Dummy replacement for Normalize, for the case where we want to use indices directly in a :class:`~matplotlib.cm.ScalarMappable` . ''' def __call__(self, value, clip=None): return value def inverse(self, value): return value # compatibility with earlier class names that violated convention: normalize = Normalize no_norm = NoNorm
agpl-3.0
agoose77/hivesystem
manual/movingpanda/panda-11d.py
1
6687
import dragonfly import dragonfly.pandahive import bee from bee import connect import math, functools from panda3d.core import NodePath import dragonfly.scene.unbound, dragonfly.scene.bound import dragonfly.std import dragonfly.io import dragonfly.canvas import Spyder # ## random matrix generator from random import random def random_matrix_generator(): while 1: a = Spyder.AxisSystem() a.rotateZ(360 * random()) a.origin = Spyder.Coordinate(15 * random() - 7.5, 15 * random() - 7.5, 0) yield dragonfly.scene.matrix(a, "AxisSystem") def id_generator(): n = 0 while 1: n += 1 yield "spawnedpanda" + str(n) from dragonfly.canvas import box2d from bee.mstr import mstr class parameters: pass class myscene(dragonfly.pandahive.spyderframe): a = Spyder.AxisSystem() a *= 0.25 a.origin += (-8, 42, 0) env = Spyder.Model3D("models/environment", "egg", a) a = Spyder.AxisSystem() a *= 0.005 mypanda = Spyder.Actor3D("models/panda-model", "egg", [("walk", "models/panda-walk4", "egg")], a, entityname="mypanda") a = Spyder.AxisSystem() a *= 0.005 pandaclass = Spyder.ActorClass3D("models/panda-model", "egg", [("walk", "models/panda-walk4", "egg")], a, actorclassname="pandaclass") box = Spyder.Box2D(50, 470, 96, 96) icon = Spyder.Icon("pandaicon.png", "pandaicon", box, transparency=True) camcenter = Spyder.Entity3D( "camcenter", ( Spyder.NewMaterial("white", color=(255, 255, 255)), Spyder.Block3D((1, 1, 1), material="white"), ) ) del a, box class pandawalkhive(bee.inithive): animation = dragonfly.scene.bound.animation() walk = dragonfly.std.variable("str")("walk") connect(walk, animation.animation_name) key_w = dragonfly.io.keyboardsensor_trigger("W") connect(key_w, animation.loop) key_s = dragonfly.io.keyboardsensor_trigger("S") connect(key_s, animation.stop) setPos = dragonfly.scene.bound.setPos() setHpr = dragonfly.scene.bound.setHpr() interval = dragonfly.time.interval_time(18) connect(key_w, interval.start) connect(key_s, interval.pause) sequence = dragonfly.time.sequence(4)(8, 1, 8, 1) connect(interval.value, sequence.inp) ip1 = dragonfly.time.interpolation("Coordinate")((0, 0, 0), (0, -10, 0)) connect(sequence.outp1, ip1) connect(ip1, setPos) connect(key_w, ip1.start) connect(key_s, ip1.stop) ip2 = dragonfly.time.interpolation("Coordinate")((0, 0, 0), (180, 0, 0)) connect(sequence.outp2, ip2) connect(ip2, setHpr) connect(key_w, ip2.start) connect(key_s, ip2.stop) ip3 = dragonfly.time.interpolation("Coordinate")((0, -10, 0), (0, 0, 0)) connect(sequence.outp3, ip3) connect(ip3, setPos) connect(key_w, ip3.start) connect(key_s, ip3.stop) ip4 = dragonfly.time.interpolation("Coordinate")((180, 0, 0), (0, 0, 0)) connect(sequence.outp4, ip4) connect(ip4, setHpr) connect(key_w, ip4.start) connect(key_s, ip4.stop) connect(ip4.reach_end, interval.start) from bee.staticbind import staticbind_baseclass class pandawalkbind(staticbind_baseclass, dragonfly.event.bind, dragonfly.io.bind, dragonfly.sys.bind, dragonfly.scene.bind, dragonfly.time.bind): hive = pandawalkhive class camerabindhive(bee.inithive): interval = dragonfly.time.interval_time(30) sequence = dragonfly.time.sequence(2)(1, 1) connect(interval.value, sequence.inp) startsensor = dragonfly.sys.startsensor() ip1 = dragonfly.time.interpolation("Coordinate")((180, -20, 0), (360, -20, 0)) ip2 = dragonfly.time.interpolation("Coordinate")((0, -20, 0), (180, -20, 0)) connect(sequence.outp1, ip1.inp) connect(sequence.outp2, ip2.inp) connect(startsensor, interval.start) connect(startsensor, ip1.start) connect(ip1.reach_end, ip1.stop) connect(ip1.reach_end, ip2.start) connect(ip2.reach_end, ip2.stop) connect(ip2.reach_end, ip1.start) connect(ip2.reach_end, interval.start) sethpr = dragonfly.scene.bound.setHpr() connect(ip1, sethpr) connect(ip2, sethpr) class camerabind(staticbind_baseclass, dragonfly.event.bind, dragonfly.io.bind, dragonfly.sys.bind, dragonfly.scene.bind, dragonfly.time.bind): hive = camerabindhive class myhive(dragonfly.pandahive.pandahive): pandaname = "mypanda" pandaname_ = bee.attribute("pandaname") pandaclassname = "pandaclass" pandaclassname_ = bee.attribute("pandaclassname") canvas = dragonfly.pandahive.pandacanvas() mousearea = dragonfly.canvas.mousearea() raiser = bee.raiser() connect("evexc", raiser) z_pandawalk = pandawalkbind().worker() pandaid = dragonfly.std.variable("id")(pandaname_) connect(pandaid, z_pandawalk.bindname) camerabind = camerabind().worker() camcenter = dragonfly.std.variable("id")("camcenter") connect(camcenter, camerabind.bindname) startsensor = dragonfly.sys.startsensor() cam = dragonfly.scene.get_camera() camparent = dragonfly.scene.unbound.parent() connect(cam, camparent.entityname) connect(camcenter, camparent.entityparentname) connect(startsensor, camparent) cphide = dragonfly.scene.unbound.hide() connect(camcenter, cphide) connect(startsensor, cphide) pandaspawn = dragonfly.scene.spawn_actor() v_panda = dragonfly.std.variable("id")(pandaclassname_) connect(v_panda, pandaspawn) panda_id = dragonfly.std.generator("id", id_generator)() random_matrix = dragonfly.std.generator(("object", "matrix"), random_matrix_generator)() w_spawn = dragonfly.std.weaver(("id", ("object", "matrix")))() connect(panda_id, w_spawn.inp1) connect(random_matrix, w_spawn.inp2) do_spawn = dragonfly.std.transistor(("id", ("object", "matrix")))() connect(w_spawn, do_spawn) connect(do_spawn, pandaspawn.spawn_matrix) key_z = dragonfly.io.keyboardsensor_trigger("Z") connect(key_z, do_spawn) pandaicon_click = dragonfly.io.mouseareasensor("pandaicon") connect(pandaicon_click, do_spawn) myscene = myscene( scene="scene", canvas=canvas, mousearea=mousearea, ) wininit = bee.init("window") wininit.camera.setPos(0, 45, 25) wininit.camera.setHpr(180, -20, 0) main = myhive().getinstance() main.build("main") main.place() main.close() main.init() main.run()
bsd-2-clause
smunaut/gnuradio
gr-filter/examples/fir_filter_ccc.py
6
4023
#!/usr/bin/env python # # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, filter from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_ccc(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fir_filter_ccc(self._decim, taps) self.vsnk_src = blocks.vector_sink_c() self.vsnk_out = blocks.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_ccc(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
harisbal/pandas
pandas/core/reshape/merge.py
2
61308
""" SQL-style merge routines """ import copy import string import warnings import numpy as np from pandas._libs import hashtable as libhashtable, join as libjoin, lib import pandas.compat as compat from pandas.compat import filter, lzip, map, range, zip from pandas.errors import MergeError from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_object, is_array_like, is_bool, is_bool_dtype, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike, is_dtype_equal, is_float_dtype, is_int64_dtype, is_int_or_datetime_dtype, is_integer, is_integer_dtype, is_list_like, is_number, is_numeric_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import isnull, na_value_for_dtype from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timedelta import pandas.core.algorithms as algos from pandas.core.arrays.categorical import _recode_for_categories import pandas.core.common as com from pandas.core.frame import _merge_doc from pandas.core.internals import ( concatenate_block_managers, items_overlap_with_suffix) import pandas.core.sorting as sorting from pandas.core.sorting import is_int64_overflow_possible @Substitution('\nleft : DataFrame') @Appender(_merge_doc, indents=0) def merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None): op = _MergeOperation(left, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate) return op.get_result() if __debug__: merge.__doc__ = _merge_doc % '\nleft : DataFrame' def _groupby_and_merge(by, on, left, right, _merge_pieces, check_duplicates=True): """ groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group on: duplicates field left: left frame right: right frame _merge_pieces: function for merging check_duplicates: boolean, default True should we check & clean duplicates """ pieces = [] if not isinstance(by, (list, tuple)): by = [by] lby = left.groupby(by, sort=False) # if we can groupby the rhs # then we can get vastly better perf try: # we will check & remove duplicates if indicated if check_duplicates: if on is None: on = [] elif not isinstance(on, (list, tuple)): on = [on] if right.duplicated(by + on).any(): right = right.drop_duplicates(by + on, keep='last') rby = right.groupby(by, sort=False) except KeyError: rby = None for key, lhs in lby: if rby is None: rhs = right else: try: rhs = right.take(rby.indices[key]) except KeyError: # key doesn't exist in left lcols = lhs.columns.tolist() cols = lcols + [r for r in right.columns if r not in set(lcols)] merged = lhs.reindex(columns=cols) merged.index = range(len(merged)) pieces.append(merged) continue merged = _merge_pieces(lhs, rhs) # make sure join keys are in the merged # TODO, should _merge_pieces do this? for k in by: try: if k in merged: merged[k] = key except KeyError: pass pieces.append(merged) # preserve the original order # if we have a missing piece this can be reset from pandas.core.reshape.concat import concat result = concat(pieces, ignore_index=True) result = result.reindex(columns=pieces[0].columns, copy=False) return result, lby def merge_ordered(left, right, on=None, left_on=None, right_on=None, left_by=None, right_by=None, fill_method=None, suffixes=('_x', '_y'), how='outer'): """Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally perform group-wise merge (see examples) Parameters ---------- left : DataFrame right : DataFrame on : label or list Field names to join on. Must be found in both DataFrames. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs left_by : column name or list of column names Group left DataFrame by group columns and merge piece by piece with right DataFrame right_by : column name or list of column names Group right DataFrame by group columns and merge piece by piece with left DataFrame fill_method : {'ffill', None}, default None Interpolation method for data suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively how : {'left', 'right', 'outer', 'inner'}, default 'outer' * left: use only keys from left frame (SQL: left outer join) * right: use only keys from right frame (SQL: right outer join) * outer: use union of keys from both frames (SQL: full outer join) * inner: use intersection of keys from both frames (SQL: inner join) .. versionadded:: 0.19.0 Examples -------- >>> A >>> B key lvalue group key rvalue 0 a 1 a 0 b 1 1 c 2 a 1 c 2 2 e 3 a 2 d 3 3 a 1 b 4 c 2 b 5 e 3 b >>> merge_ordered(A, B, fill_method='ffill', left_by='group') group key lvalue rvalue 0 a a 1 NaN 1 a b 1 1.0 2 a c 2 2.0 3 a d 2 3.0 4 a e 3 3.0 5 b a 1 NaN 6 b b 1 1.0 7 b c 2 2.0 8 b d 2 3.0 9 b e 3 3.0 Returns ------- merged : DataFrame The output type will the be same as 'left', if it is a subclass of DataFrame. See also -------- merge merge_asof """ def _merger(x, y): # perform the ordered merge operation op = _OrderedMerge(x, y, on=on, left_on=left_on, right_on=right_on, suffixes=suffixes, fill_method=fill_method, how=how) return op.get_result() if left_by is not None and right_by is not None: raise ValueError('Can only group either left or right frames') elif left_by is not None: result, _ = _groupby_and_merge(left_by, on, left, right, lambda x, y: _merger(x, y), check_duplicates=False) elif right_by is not None: result, _ = _groupby_and_merge(right_by, on, right, left, lambda x, y: _merger(y, x), check_duplicates=False) else: result = _merger(left, right) return result def merge_asof(left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=('_x', '_y'), tolerance=None, allow_exact_matches=True, direction='backward'): """Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest". Optionally match on equivalent keys with 'by' before searching with 'on'. .. versionadded:: 0.19.0 Parameters ---------- left : DataFrame right : DataFrame on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : boolean Use the index of the left DataFrame as the join key. .. versionadded:: 0.19.2 right_index : boolean Use the index of the right DataFrame as the join key. .. versionadded:: 0.19.2 by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. .. versionadded:: 0.19.2 right_by : column name Field names to match on in the right DataFrame. .. versionadded:: 0.19.2 suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : integer or Timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : boolean, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than) direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. .. versionadded:: 0.20.0 Returns ------- merged : DataFrame Examples -------- >>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7], ... 'right_val': [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on='a') a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on='a', allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on='a', direction='forward') a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on='a', direction='nearest') a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c >>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]}, ... index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker') time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('2ms')) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However *prior* data will propagate forward >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('10ms'), ... allow_exact_matches=False) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN See also -------- merge merge_ordered """ op = _AsOfMerge(left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, by=by, left_by=left_by, right_by=right_by, suffixes=suffixes, how='asof', tolerance=tolerance, allow_exact_matches=allow_exact_matches, direction=direction) return op.get_result() # TODO: transformations?? # TODO: only copy DataFrames when modification necessary class _MergeOperation(object): """ Perform a database (SQL) merge operation between two DataFrame objects using either columns as keys or their row indexes """ _merge_type = 'merge' def __init__(self, left, right, how='inner', on=None, left_on=None, right_on=None, axis=1, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None): left = validate_operand(left) right = validate_operand(right) self.left = self.orig_left = left self.right = self.orig_right = right self.how = how self.axis = axis self.on = com.maybe_make_list(on) self.left_on = com.maybe_make_list(left_on) self.right_on = com.maybe_make_list(right_on) self.copy = copy self.suffixes = suffixes self.sort = sort self.left_index = left_index self.right_index = right_index self.indicator = indicator if isinstance(self.indicator, compat.string_types): self.indicator_name = self.indicator elif isinstance(self.indicator, bool): self.indicator_name = '_merge' if self.indicator else None else: raise ValueError( 'indicator option can only accept boolean or string arguments') if not is_bool(left_index): raise ValueError( 'left_index parameter must be of type bool, not ' '{left_index}'.format(left_index=type(left_index))) if not is_bool(right_index): raise ValueError( 'right_index parameter must be of type bool, not ' '{right_index}'.format(right_index=type(right_index))) # warn user when merging between different levels if left.columns.nlevels != right.columns.nlevels: msg = ('merging between different levels can give an unintended ' 'result ({left} levels on the left, {right} on the right)' ).format(left=left.columns.nlevels, right=right.columns.nlevels) warnings.warn(msg, UserWarning) self._validate_specification() # note this function has side effects (self.left_join_keys, self.right_join_keys, self.join_names) = self._get_merge_keys() # validate the merge keys dtypes. We may need to coerce # to avoid incompat dtypes self._maybe_coerce_merge_keys() # If argument passed to validate, # check if columns specified as unique # are in fact unique. if validate is not None: self._validate(validate) def get_result(self): if self.indicator: self.left, self.right = self._indicator_pre_merge( self.left, self.right) join_index, left_indexer, right_indexer = self._get_join_info() ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = items_overlap_with_suffix(ldata.items, lsuf, rdata.items, rsuf) lindexers = {1: left_indexer} if left_indexer is not None else {} rindexers = {1: right_indexer} if right_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) if self.indicator: result = self._indicator_post_merge(result) self._maybe_add_join_keys(result, left_indexer, right_indexer) self._maybe_restore_index_levels(result) return result def _indicator_pre_merge(self, left, right): columns = left.columns.union(right.columns) for i in ['_left_indicator', '_right_indicator']: if i in columns: raise ValueError("Cannot use `indicator=True` option when " "data contains a column named {name}" .format(name=i)) if self.indicator_name in columns: raise ValueError( "Cannot use name of an existing column for indicator column") left = left.copy() right = right.copy() left['_left_indicator'] = 1 left['_left_indicator'] = left['_left_indicator'].astype('int8') right['_right_indicator'] = 2 right['_right_indicator'] = right['_right_indicator'].astype('int8') return left, right def _indicator_post_merge(self, result): result['_left_indicator'] = result['_left_indicator'].fillna(0) result['_right_indicator'] = result['_right_indicator'].fillna(0) result[self.indicator_name] = Categorical((result['_left_indicator'] + result['_right_indicator']), categories=[1, 2, 3]) result[self.indicator_name] = ( result[self.indicator_name] .cat.rename_categories(['left_only', 'right_only', 'both'])) result = result.drop(labels=['_left_indicator', '_right_indicator'], axis=1) return result def _maybe_restore_index_levels(self, result): """ Restore index levels specified as `on` parameters Here we check for cases where `self.left_on` and `self.right_on` pairs each reference an index level in their respective DataFrames. The joined columns corresponding to these pairs are then restored to the index of `result`. **Note:** This method has side effects. It modifies `result` in-place Parameters ---------- result: DataFrame merge result Returns ------- None """ names_to_restore = [] for name, left_key, right_key in zip(self.join_names, self.left_on, self.right_on): if (self.orig_left._is_level_reference(left_key) and self.orig_right._is_level_reference(right_key) and name not in result.index.names): names_to_restore.append(name) if names_to_restore: result.set_index(names_to_restore, inplace=True) def _maybe_add_join_keys(self, result, left_indexer, right_indexer): left_has_missing = None right_has_missing = None keys = zip(self.join_names, self.left_on, self.right_on) for i, (name, lname, rname) in enumerate(keys): if not _should_fill(lname, rname): continue take_left, take_right = None, None if name in result: if left_indexer is not None and right_indexer is not None: if name in self.left: if left_has_missing is None: left_has_missing = (left_indexer == -1).any() if left_has_missing: take_right = self.right_join_keys[i] if not is_dtype_equal(result[name].dtype, self.left[name].dtype): take_left = self.left[name]._values elif name in self.right: if right_has_missing is None: right_has_missing = (right_indexer == -1).any() if right_has_missing: take_left = self.left_join_keys[i] if not is_dtype_equal(result[name].dtype, self.right[name].dtype): take_right = self.right[name]._values elif left_indexer is not None \ and is_array_like(self.left_join_keys[i]): take_left = self.left_join_keys[i] take_right = self.right_join_keys[i] if take_left is not None or take_right is not None: if take_left is None: lvals = result[name]._values else: lfill = na_value_for_dtype(take_left.dtype) lvals = algos.take_1d(take_left, left_indexer, fill_value=lfill) if take_right is None: rvals = result[name]._values else: rfill = na_value_for_dtype(take_right.dtype) rvals = algos.take_1d(take_right, right_indexer, fill_value=rfill) # if we have an all missing left_indexer # make sure to just use the right values mask = left_indexer == -1 if mask.all(): key_col = rvals else: key_col = Index(lvals).where(~mask, rvals) if result._is_label_reference(name): result[name] = key_col elif result._is_level_reference(name): if isinstance(result.index, MultiIndex): idx_list = [result.index.get_level_values(level_name) if level_name != name else key_col for level_name in result.index.names] result.set_index(idx_list, inplace=True) else: result.index = Index(key_col, name=name) else: result.insert(i, name or 'key_{i}'.format(i=i), key_col) def _get_join_indexers(self): """ return the join indexers """ return _get_join_indexers(self.left_join_keys, self.right_join_keys, sort=self.sort, how=self.how) def _get_join_info(self): left_ax = self.left._data.axes[self.axis] right_ax = self.right._data.axes[self.axis] if self.left_index and self.right_index and self.how != 'asof': join_index, left_indexer, right_indexer = \ left_ax.join(right_ax, how=self.how, return_indexers=True, sort=self.sort) elif self.right_index and self.how == 'left': join_index, left_indexer, right_indexer = \ _left_join_on_index(left_ax, right_ax, self.left_join_keys, sort=self.sort) elif self.left_index and self.how == 'right': join_index, right_indexer, left_indexer = \ _left_join_on_index(right_ax, left_ax, self.right_join_keys, sort=self.sort) else: (left_indexer, right_indexer) = self._get_join_indexers() if self.right_index: if len(self.left) > 0: join_index = self.left.index.take(left_indexer) else: join_index = self.right.index.take(right_indexer) left_indexer = np.array([-1] * len(join_index)) elif self.left_index: if len(self.right) > 0: join_index = self.right.index.take(right_indexer) else: join_index = self.left.index.take(left_indexer) right_indexer = np.array([-1] * len(join_index)) else: join_index = Index(np.arange(len(left_indexer))) if len(join_index) == 0: join_index = join_index.astype(object) return join_index, left_indexer, right_indexer def _get_merge_keys(self): """ Note: has side effects (copy/delete key columns) Parameters ---------- left right on Returns ------- left_keys, right_keys """ left_keys = [] right_keys = [] join_names = [] right_drop = [] left_drop = [] left, right = self.left, self.right is_lkey = lambda x: is_array_like(x) and len(x) == len(left) is_rkey = lambda x: is_array_like(x) and len(x) == len(right) # Note that pd.merge_asof() has separate 'on' and 'by' parameters. A # user could, for example, request 'left_index' and 'left_by'. In a # regular pd.merge(), users cannot specify both 'left_index' and # 'left_on'. (Instead, users have a MultiIndex). That means the # self.left_on in this function is always empty in a pd.merge(), but # a pd.merge_asof(left_index=True, left_by=...) will result in a # self.left_on array with a None in the middle of it. This requires # a work-around as designated in the code below. # See _validate_specification() for where this happens. # ugh, spaghetti re #733 if _any(self.left_on) and _any(self.right_on): for lk, rk in zip(self.left_on, self.right_on): if is_lkey(lk): left_keys.append(lk) if is_rkey(rk): right_keys.append(rk) join_names.append(None) # what to do? else: if rk is not None: right_keys.append( right._get_label_or_level_values(rk)) join_names.append(rk) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) join_names.append(right.index.name) else: if not is_rkey(rk): if rk is not None: right_keys.append( right._get_label_or_level_values(rk)) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) if lk is not None and lk == rk: # avoid key upcast in corner case (length-0) if len(left) > 0: right_drop.append(rk) else: left_drop.append(lk) else: right_keys.append(rk) if lk is not None: left_keys.append(left._get_label_or_level_values(lk)) join_names.append(lk) else: # work-around for merge_asof(left_index=True) left_keys.append(left.index) join_names.append(left.index.name) elif _any(self.left_on): for k in self.left_on: if is_lkey(k): left_keys.append(k) join_names.append(None) else: left_keys.append(left._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.right.index, MultiIndex): right_keys = [lev._values.take(lab) for lev, lab in zip(self.right.index.levels, self.right.index.labels)] else: right_keys = [self.right.index.values] elif _any(self.right_on): for k in self.right_on: if is_rkey(k): right_keys.append(k) join_names.append(None) else: right_keys.append(right._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.left.index, MultiIndex): left_keys = [lev._values.take(lab) for lev, lab in zip(self.left.index.levels, self.left.index.labels)] else: left_keys = [self.left.index.values] if left_drop: self.left = self.left._drop_labels_or_levels(left_drop) if right_drop: self.right = self.right._drop_labels_or_levels(right_drop) return left_keys, right_keys, join_names def _maybe_coerce_merge_keys(self): # we have valid mergees but we may have to further # coerce these if they are originally incompatible types # # for example if these are categorical, but are not dtype_equal # or if we have object and integer dtypes for lk, rk, name in zip(self.left_join_keys, self.right_join_keys, self.join_names): if (len(lk) and not len(rk)) or (not len(lk) and len(rk)): continue lk_is_cat = is_categorical_dtype(lk) rk_is_cat = is_categorical_dtype(rk) # if either left or right is a categorical # then the must match exactly in categories & ordered if lk_is_cat and rk_is_cat: if lk.is_dtype_equal(rk): continue elif lk_is_cat or rk_is_cat: pass elif is_dtype_equal(lk.dtype, rk.dtype): continue msg = ("You are trying to merge on {lk_dtype} and " "{rk_dtype} columns. If you wish to proceed " "you should use pd.concat".format(lk_dtype=lk.dtype, rk_dtype=rk.dtype)) # if we are numeric, then allow differing # kinds to proceed, eg. int64 and int8, int and float # further if we are object, but we infer to # the same, then proceed if is_numeric_dtype(lk) and is_numeric_dtype(rk): if lk.dtype.kind == rk.dtype.kind: pass # check whether ints and floats elif is_integer_dtype(rk) and is_float_dtype(lk): if not (lk == lk.astype(rk.dtype))[~np.isnan(lk)].all(): warnings.warn('You are merging on int and float ' 'columns where the float values ' 'are not equal to their int ' 'representation', UserWarning) elif is_float_dtype(rk) and is_integer_dtype(lk): if not (rk == rk.astype(lk.dtype))[~np.isnan(rk)].all(): warnings.warn('You are merging on int and float ' 'columns where the float values ' 'are not equal to their int ' 'representation', UserWarning) # let's infer and see if we are ok elif lib.infer_dtype(lk) == lib.infer_dtype(rk): pass # Check if we are trying to merge on obviously # incompatible dtypes GH 9780, GH 15800 # boolean values are considered as numeric, but are still allowed # to be merged on object boolean values elif ((is_numeric_dtype(lk) and not is_bool_dtype(lk)) and not is_numeric_dtype(rk)): raise ValueError(msg) elif (not is_numeric_dtype(lk) and (is_numeric_dtype(rk) and not is_bool_dtype(rk))): raise ValueError(msg) elif is_datetimelike(lk) and not is_datetimelike(rk): raise ValueError(msg) elif not is_datetimelike(lk) and is_datetimelike(rk): raise ValueError(msg) elif is_datetime64tz_dtype(lk) and not is_datetime64tz_dtype(rk): raise ValueError(msg) elif not is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk): raise ValueError(msg) # Houston, we have a problem! # let's coerce to object if the dtypes aren't # categorical, otherwise coerce to the category # dtype. If we coerced categories to object, # then we would lose type information on some # columns, and end up trying to merge # incompatible dtypes. See GH 16900. else: if name in self.left.columns: typ = lk.categories.dtype if lk_is_cat else object self.left = self.left.assign( **{name: self.left[name].astype(typ)}) if name in self.right.columns: typ = rk.categories.dtype if rk_is_cat else object self.right = self.right.assign( **{name: self.right[name].astype(typ)}) def _validate_specification(self): # Hm, any way to make this logic less complicated?? if self.on is None and self.left_on is None and self.right_on is None: if self.left_index and self.right_index: self.left_on, self.right_on = (), () elif self.left_index: if self.right_on is None: raise MergeError('Must pass right_on or right_index=True') elif self.right_index: if self.left_on is None: raise MergeError('Must pass left_on or left_index=True') else: # use the common columns common_cols = self.left.columns.intersection( self.right.columns) if len(common_cols) == 0: raise MergeError( 'No common columns to perform merge on. ' 'Merge options: left_on={lon}, right_on={ron}, ' 'left_index={lidx}, right_index={ridx}' .format(lon=self.left_on, ron=self.right_on, lidx=self.left_index, ridx=self.right_index)) if not common_cols.is_unique: raise MergeError("Data columns not unique: {common!r}" .format(common=common_cols)) self.left_on = self.right_on = common_cols elif self.on is not None: if self.left_on is not None or self.right_on is not None: raise MergeError('Can only pass argument "on" OR "left_on" ' 'and "right_on", not a combination of both.') self.left_on = self.right_on = self.on elif self.left_on is not None: n = len(self.left_on) if self.right_index: if len(self.left_on) != self.right.index.nlevels: raise ValueError('len(left_on) must equal the number ' 'of levels in the index of "right"') self.right_on = [None] * n elif self.right_on is not None: n = len(self.right_on) if self.left_index: if len(self.right_on) != self.left.index.nlevels: raise ValueError('len(right_on) must equal the number ' 'of levels in the index of "left"') self.left_on = [None] * n if len(self.right_on) != len(self.left_on): raise ValueError("len(right_on) must equal len(left_on)") def _validate(self, validate): # Check uniqueness of each if self.left_index: left_unique = self.orig_left.index.is_unique else: left_unique = MultiIndex.from_arrays(self.left_join_keys ).is_unique if self.right_index: right_unique = self.orig_right.index.is_unique else: right_unique = MultiIndex.from_arrays(self.right_join_keys ).is_unique # Check data integrity if validate in ["one_to_one", "1:1"]: if not left_unique and not right_unique: raise MergeError("Merge keys are not unique in either left" " or right dataset; not a one-to-one merge") elif not left_unique: raise MergeError("Merge keys are not unique in left dataset;" " not a one-to-one merge") elif not right_unique: raise MergeError("Merge keys are not unique in right dataset;" " not a one-to-one merge") elif validate in ["one_to_many", "1:m"]: if not left_unique: raise MergeError("Merge keys are not unique in left dataset;" "not a one-to-many merge") elif validate in ["many_to_one", "m:1"]: if not right_unique: raise MergeError("Merge keys are not unique in right dataset;" " not a many-to-one merge") elif validate in ['many_to_many', 'm:m']: pass else: raise ValueError("Not a valid argument for validate") def _get_join_indexers(left_keys, right_keys, sort=False, how='inner', **kwargs): """ Parameters ---------- left_keys: ndarray, Index, Series right_keys: ndarray, Index, Series sort: boolean, default False how: string {'inner', 'outer', 'left', 'right'}, default 'inner' Returns ------- tuple of (left_indexer, right_indexer) indexers into the left_keys, right_keys """ from functools import partial assert len(left_keys) == len(right_keys), \ 'left_key and right_keys must be the same length' # bind `sort` arg. of _factorize_keys fkeys = partial(_factorize_keys, sort=sort) # get left & right join labels and num. of levels at each location llab, rlab, shape = map(list, zip(* map(fkeys, left_keys, right_keys))) # get flat i8 keys from label lists lkey, rkey = _get_join_keys(llab, rlab, shape, sort) # factorize keys to a dense i8 space # `count` is the num. of unique keys # set(lkey) | set(rkey) == range(count) lkey, rkey, count = fkeys(lkey, rkey) # preserve left frame order if how == 'left' and sort == False kwargs = copy.copy(kwargs) if how == 'left': kwargs['sort'] = sort join_func = _join_functions[how] return join_func(lkey, rkey, count, **kwargs) class _OrderedMerge(_MergeOperation): _merge_type = 'ordered_merge' def __init__(self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, axis=1, suffixes=('_x', '_y'), copy=True, fill_method=None, how='outer'): self.fill_method = fill_method _MergeOperation.__init__(self, left, right, on=on, left_on=left_on, left_index=left_index, right_index=right_index, right_on=right_on, axis=axis, how=how, suffixes=suffixes, sort=True # factorize sorts ) def get_result(self): join_index, left_indexer, right_indexer = self._get_join_info() # this is a bit kludgy ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = items_overlap_with_suffix(ldata.items, lsuf, rdata.items, rsuf) if self.fill_method == 'ffill': left_join_indexer = libjoin.ffill_indexer(left_indexer) right_join_indexer = libjoin.ffill_indexer(right_indexer) else: left_join_indexer = left_indexer right_join_indexer = right_indexer lindexers = { 1: left_join_indexer} if left_join_indexer is not None else {} rindexers = { 1: right_join_indexer} if right_join_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) self._maybe_add_join_keys(result, left_indexer, right_indexer) return result def _asof_function(direction): name = 'asof_join_{dir}'.format(dir=direction) return getattr(libjoin, name, None) def _asof_by_function(direction): name = 'asof_join_{dir}_on_X_by_Y'.format(dir=direction) return getattr(libjoin, name, None) _type_casters = { 'int64_t': ensure_int64, 'double': ensure_float64, 'object': ensure_object, } def _get_cython_type_upcast(dtype): """ Upcast a dtype to 'int64_t', 'double', or 'object' """ if is_integer_dtype(dtype): return 'int64_t' elif is_float_dtype(dtype): return 'double' else: return 'object' class _AsOfMerge(_OrderedMerge): _merge_type = 'asof_merge' def __init__(self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, axis=1, suffixes=('_x', '_y'), copy=True, fill_method=None, how='asof', tolerance=None, allow_exact_matches=True, direction='backward'): self.by = by self.left_by = left_by self.right_by = right_by self.tolerance = tolerance self.allow_exact_matches = allow_exact_matches self.direction = direction _OrderedMerge.__init__(self, left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, axis=axis, how=how, suffixes=suffixes, fill_method=fill_method) def _validate_specification(self): super(_AsOfMerge, self)._validate_specification() # we only allow on to be a single item for on if len(self.left_on) != 1 and not self.left_index: raise MergeError("can only asof on a key for left") if len(self.right_on) != 1 and not self.right_index: raise MergeError("can only asof on a key for right") if self.left_index and isinstance(self.left.index, MultiIndex): raise MergeError("left can only have one index") if self.right_index and isinstance(self.right.index, MultiIndex): raise MergeError("right can only have one index") # set 'by' columns if self.by is not None: if self.left_by is not None or self.right_by is not None: raise MergeError('Can only pass by OR left_by ' 'and right_by') self.left_by = self.right_by = self.by if self.left_by is None and self.right_by is not None: raise MergeError('missing left_by') if self.left_by is not None and self.right_by is None: raise MergeError('missing right_by') # add 'by' to our key-list so we can have it in the # output as a key if self.left_by is not None: if not is_list_like(self.left_by): self.left_by = [self.left_by] if not is_list_like(self.right_by): self.right_by = [self.right_by] if len(self.left_by) != len(self.right_by): raise MergeError('left_by and right_by must be same length') self.left_on = self.left_by + list(self.left_on) self.right_on = self.right_by + list(self.right_on) # check 'direction' is valid if self.direction not in ['backward', 'forward', 'nearest']: raise MergeError('direction invalid: {direction}' .format(direction=self.direction)) @property def _asof_key(self): """ This is our asof key, the 'on' """ return self.left_on[-1] def _get_merge_keys(self): # note this function has side effects (left_join_keys, right_join_keys, join_names) = super(_AsOfMerge, self)._get_merge_keys() # validate index types are the same for i, (lk, rk) in enumerate(zip(left_join_keys, right_join_keys)): if not is_dtype_equal(lk.dtype, rk.dtype): raise MergeError("incompatible merge keys [{i}] {lkdtype} and " "{rkdtype}, must be the same type" .format(i=i, lkdtype=lk.dtype, rkdtype=rk.dtype)) # validate tolerance; must be a Timedelta if we have a DTI if self.tolerance is not None: if self.left_index: lt = self.left.index else: lt = left_join_keys[-1] msg = ("incompatible tolerance {tolerance}, must be compat " "with type {lkdtype}".format( tolerance=type(self.tolerance), lkdtype=lt.dtype)) if is_datetime64_dtype(lt) or is_datetime64tz_dtype(lt): if not isinstance(self.tolerance, Timedelta): raise MergeError(msg) if self.tolerance < Timedelta(0): raise MergeError("tolerance must be positive") elif is_int64_dtype(lt): if not is_integer(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") elif is_float_dtype(lt): if not is_number(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") else: raise MergeError("key must be integer, timestamp or float") # validate allow_exact_matches if not is_bool(self.allow_exact_matches): msg = "allow_exact_matches must be boolean, passed {passed}" raise MergeError(msg.format(passed=self.allow_exact_matches)) return left_join_keys, right_join_keys, join_names def _get_join_indexers(self): """ return the join indexers """ def flip(xs): """ unlike np.transpose, this returns an array of tuples """ labels = list(string.ascii_lowercase[:len(xs)]) dtypes = [x.dtype for x in xs] labeled_dtypes = list(zip(labels, dtypes)) return np.array(lzip(*xs), labeled_dtypes) # values to compare left_values = (self.left.index.values if self.left_index else self.left_join_keys[-1]) right_values = (self.right.index.values if self.right_index else self.right_join_keys[-1]) tolerance = self.tolerance # we require sortedness and non-null values in the join keys msg_sorted = "{side} keys must be sorted" msg_missings = "Merge keys contain null values on {side} side" if not Index(left_values).is_monotonic: if isnull(left_values).any(): raise ValueError(msg_missings.format(side='left')) else: raise ValueError(msg_sorted.format(side='left')) if not Index(right_values).is_monotonic: if isnull(right_values).any(): raise ValueError(msg_missings.format(side='right')) else: raise ValueError(msg_sorted.format(side='right')) # initial type conversion as needed if needs_i8_conversion(left_values): left_values = left_values.view('i8') right_values = right_values.view('i8') if tolerance is not None: tolerance = tolerance.value # a "by" parameter requires special handling if self.left_by is not None: # remove 'on' parameter from values if one existed if self.left_index and self.right_index: left_by_values = self.left_join_keys right_by_values = self.right_join_keys else: left_by_values = self.left_join_keys[0:-1] right_by_values = self.right_join_keys[0:-1] # get tuple representation of values if more than one if len(left_by_values) == 1: left_by_values = left_by_values[0] right_by_values = right_by_values[0] else: left_by_values = flip(left_by_values) right_by_values = flip(right_by_values) # upcast 'by' parameter because HashTable is limited by_type = _get_cython_type_upcast(left_by_values.dtype) by_type_caster = _type_casters[by_type] left_by_values = by_type_caster(left_by_values) right_by_values = by_type_caster(right_by_values) # choose appropriate function by type func = _asof_by_function(self.direction) return func(left_values, right_values, left_by_values, right_by_values, self.allow_exact_matches, tolerance) else: # choose appropriate function by type func = _asof_function(self.direction) return func(left_values, right_values, self.allow_exact_matches, tolerance) def _get_multiindex_indexer(join_keys, index, sort): from functools import partial # bind `sort` argument fkeys = partial(_factorize_keys, sort=sort) # left & right join labels and num. of levels at each location rlab, llab, shape = map(list, zip(* map(fkeys, index.levels, join_keys))) if sort: rlab = list(map(np.take, rlab, index.labels)) else: i8copy = lambda a: a.astype('i8', subok=False, copy=True) rlab = list(map(i8copy, index.labels)) # fix right labels if there were any nulls for i in range(len(join_keys)): mask = index.labels[i] == -1 if mask.any(): # check if there already was any nulls at this location # if there was, it is factorized to `shape[i] - 1` a = join_keys[i][llab[i] == shape[i] - 1] if a.size == 0 or not a[0] != a[0]: shape[i] += 1 rlab[i][mask] = shape[i] - 1 # get flat i8 join keys lkey, rkey = _get_join_keys(llab, rlab, shape, sort) # factorize keys to a dense i8 space lkey, rkey, count = fkeys(lkey, rkey) return libjoin.left_outer_join(lkey, rkey, count, sort=sort) def _get_single_indexer(join_key, index, sort=False): left_key, right_key, count = _factorize_keys(join_key, index, sort=sort) left_indexer, right_indexer = libjoin.left_outer_join( ensure_int64(left_key), ensure_int64(right_key), count, sort=sort) return left_indexer, right_indexer def _left_join_on_index(left_ax, right_ax, join_keys, sort=False): if len(join_keys) > 1: if not ((isinstance(right_ax, MultiIndex) and len(join_keys) == right_ax.nlevels)): raise AssertionError("If more than one join key is given then " "'right_ax' must be a MultiIndex and the " "number of join keys must be the number of " "levels in right_ax") left_indexer, right_indexer = \ _get_multiindex_indexer(join_keys, right_ax, sort=sort) else: jkey = join_keys[0] left_indexer, right_indexer = \ _get_single_indexer(jkey, right_ax, sort=sort) if sort or len(left_ax) != len(left_indexer): # if asked to sort or there are 1-to-many matches join_index = left_ax.take(left_indexer) return join_index, left_indexer, right_indexer # left frame preserves order & length of its index return left_ax, None, right_indexer def _right_outer_join(x, y, max_groups): right_indexer, left_indexer = libjoin.left_outer_join(y, x, max_groups) return left_indexer, right_indexer _join_functions = { 'inner': libjoin.inner_join, 'left': libjoin.left_outer_join, 'right': _right_outer_join, 'outer': libjoin.full_outer_join, } def _factorize_keys(lk, rk, sort=True): if is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk): lk = lk.values rk = rk.values # if we exactly match in categories, allow us to factorize on codes if (is_categorical_dtype(lk) and is_categorical_dtype(rk) and lk.is_dtype_equal(rk)): klass = libhashtable.Int64Factorizer if lk.categories.equals(rk.categories): rk = rk.codes else: # Same categories in different orders -> recode rk = _recode_for_categories(rk.codes, rk.categories, lk.categories) lk = ensure_int64(lk.codes) rk = ensure_int64(rk) elif is_int_or_datetime_dtype(lk) and is_int_or_datetime_dtype(rk): klass = libhashtable.Int64Factorizer lk = ensure_int64(com.values_from_object(lk)) rk = ensure_int64(com.values_from_object(rk)) else: klass = libhashtable.Factorizer lk = ensure_object(lk) rk = ensure_object(rk) rizer = klass(max(len(lk), len(rk))) llab = rizer.factorize(lk) rlab = rizer.factorize(rk) count = rizer.get_count() if sort: uniques = rizer.uniques.to_array() llab, rlab = _sort_labels(uniques, llab, rlab) # NA group lmask = llab == -1 lany = lmask.any() rmask = rlab == -1 rany = rmask.any() if lany or rany: if lany: np.putmask(llab, lmask, count) if rany: np.putmask(rlab, rmask, count) count += 1 return llab, rlab, count def _sort_labels(uniques, left, right): if not isinstance(uniques, np.ndarray): # tuplesafe uniques = Index(uniques).values llength = len(left) labels = np.concatenate([left, right]) _, new_labels = sorting.safe_sort(uniques, labels, na_sentinel=-1) new_labels = ensure_int64(new_labels) new_left, new_right = new_labels[:llength], new_labels[llength:] return new_left, new_right def _get_join_keys(llab, rlab, shape, sort): # how many levels can be done without overflow pred = lambda i: not is_int64_overflow_possible(shape[:i]) nlev = next(filter(pred, range(len(shape), 0, -1))) # get keys for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype='i8') lkey = stride * llab[0].astype('i8', subok=False, copy=False) rkey = stride * rlab[0].astype('i8', subok=False, copy=False) for i in range(1, nlev): with np.errstate(divide='ignore'): stride //= shape[i] lkey += llab[i] * stride rkey += rlab[i] * stride if nlev == len(shape): # all done! return lkey, rkey # densify current keys to avoid overflow lkey, rkey, count = _factorize_keys(lkey, rkey, sort=sort) llab = [lkey] + llab[nlev:] rlab = [rkey] + rlab[nlev:] shape = [count] + shape[nlev:] return _get_join_keys(llab, rlab, shape, sort) def _should_fill(lname, rname): if (not isinstance(lname, compat.string_types) or not isinstance(rname, compat.string_types)): return True return lname == rname def _any(x): return x is not None and com._any_not_none(*x) def validate_operand(obj): if isinstance(obj, DataFrame): return obj elif isinstance(obj, Series): if obj.name is None: raise ValueError('Cannot merge a Series without a name') else: return obj.to_frame() else: raise TypeError('Can only merge Series or DataFrame objects, ' 'a {obj} was passed'.format(obj=type(obj)))
bsd-3-clause
ajm/pulp
explore/management/commands/okapibm25.py
2
2542
# This file is part of PULP. # # PULP is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PULP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PULP. If not, see <http://www.gnu.org/licenses/>. from django.core.management.base import BaseCommand, CommandError from sklearn.feature_extraction.text import CountVectorizer from scipy.sparse import csr_matrix from explore.models import Article from explore.utils import * import numpy as np class Command(BaseCommand) : args = 'no arguments' help = '(re)builds the okapibm25 matrix' def handle(self, *args, **options) : articles = Article.objects.all() N = len(articles) v = CountVectorizer(min_df=10, max_df=0.5, stop_words=get_stop_words()) self.stdout.write("Running TFIDF on %d articles... " % N, ending='\n') self.stdout.flush() tf = v.fit_transform(build_corpus()) self.stdout.write("Running OKAPI BM25 on %d articles... " % N, ending='\n') self.stdout.flush() # free parameters k1 = 1.2 # from [1.2, 2.0] b = 0.75 D = tf.sum(axis=1) # TF tf_num = (tf * (k1 + 1)) # make sure everything is CSR tf_tmp = csr_matrix(k1 * (1 - b + b * (D / D.mean()))) # mask to ensure matrix is sparse tf_mask = tf.copy() tf_mask[tf_mask != 0] = 1 tf_den = tf + tf_mask.multiply(tf_tmp) # avoid NaN in element-wise divide tf_num.sort_indices() tf_den.sort_indices() tf_num.data = np.divide(tf_num.data, tf_den.data) # IDF n = np.bincount(tf.nonzero()[1]) idf_term = np.log((N - n + 0.5) / (n + 0.5)) # bm25 should still be sparse bm25 = tf_num.multiply(csr_matrix(idf_term)) print type(bm25), bm25.shape self.stdout.write("done\n") self.stdout.write("writing to disk...\n") features = v.get_feature_names() save_sparse_bm25(bm25) save_features_bm25(dict([ (y,x) for x,y in enumerate(features) ])) self.stdout.write("done\n")
gpl-3.0
Aasmi/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
xzturn/tensorflow
tensorflow/lite/micro/examples/micro_speech/apollo3/compare_1k.py
9
5012
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debugging script for checking calculation values.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import struct import matplotlib.pyplot as plt import numpy as np # import soundfile as sf def new_data_to_array(fn, datatype='int16'): """Converts file information to an in-memory array.""" vals = [] with open(fn) as f: for n, line in enumerate(f): if n != 0: vals.extend([int(v, 16) for v in line.split()]) b = ''.join(map(chr, vals)) if datatype == 'int8': typestr = 'b' arraylen = int(len(b)) elif datatype == 'int16': typestr = 'h' arraylen = int(len(b) // 2) elif datatype == 'int32': typestr = 'i' arraylen = int(len(b) // 4) if datatype == 'uint8': typestr = 'B' arraylen = int(len(b)) elif datatype == 'uint16': typestr = 'H' arraylen = int(len(b) // 2) elif datatype == 'uint32': typestr = 'I' arraylen = int(len(b) // 4) y = np.array(struct.unpack('<' + typestr * arraylen, b)) return y # x is the fixed-point input in Qm.n format def to_float(x, n): return x.astype(float) * 2**(-n) micro_windowed_input = new_data_to_array( 'micro_windowed_input.txt', datatype='int32') cmsis_windowed_input = new_data_to_array( 'cmsis_windowed_input.txt', datatype='int16') micro_dft = new_data_to_array('micro_dft.txt', datatype='int32') cmsis_dft = new_data_to_array('cmsis_dft.txt', datatype='int16') py_dft = np.fft.rfft(to_float(cmsis_windowed_input, 15), n=512) py_result = np.empty((2 * py_dft.size), dtype=np.float) py_result[0::2] = np.real(py_dft) py_result[1::2] = np.imag(py_dft) micro_power = new_data_to_array('micro_power.txt', datatype='int32') cmsis_power = new_data_to_array('cmsis_power.txt', datatype='int16') py_power = np.square(np.abs(py_dft)) micro_power_avg = new_data_to_array('micro_power_avg.txt', datatype='uint8') cmsis_power_avg = new_data_to_array('cmsis_power_avg.txt', datatype='uint8') plt.figure(1) plt.subplot(311) plt.plot(micro_windowed_input, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_windowed_input, label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_windowed_input, 30), label='Micro to float') plt.plot(to_float(cmsis_windowed_input, 15), label='CMSIS to float') plt.legend() plt.figure(2) plt.subplot(311) plt.plot(micro_dft, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_dft, label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_dft, 22), label='Micro to float') # CMSIS result has 6 fractionanl bits (not 7) due to documentation error (see # README.md) plt.plot(to_float(cmsis_dft, 6), label='CMSIS to float') plt.plot(py_result, label='Python result') plt.legend() plt.figure(3) plt.subplot(311) plt.plot(micro_power, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_power[0:256], label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_power, 22), label='Micro to float') plt.plot(to_float(cmsis_power[0:256], 6), label='CMSIS to float') plt.plot(py_power, label='Python result') plt.legend() plt.figure(4) plt.plot(micro_power_avg, label='Micro fixed') plt.plot(cmsis_power_avg, label='CMSIS fixed') plt.legend() plt.show() # t = np.arange(16000.*0.03)/16000. # # Factor of 10 because micro preprocessing overflows otherwise # sin1k = 0.1*np.sin(2*np.pi*1000*t) # # plt.figure(1) # plt.subplot(511) # plt.plot(sin1k) # plt.title('Input sine') # # plt.subplot(512) # plt.plot(to_float(micro_windowed_input, 30), label='Micro-Lite') # plt.plot(to_float(cmsis_windowed_input, 15), label='CMSIS') # plt.title('Windowed sine') # plt.legend(loc='center right') # # plt.subplot(513) # plt.plot(to_float(micro_dft, 22), label='Micro-Lite') # plt.plot(to_float(cmsis_dft, 6), label='CMSIS') # plt.title('FFT') # plt.legend(loc='center') # # plt.subplot(514) # plt.plot(to_float(micro_power, 22), label='Micro-Lite') # plt.plot(to_float(cmsis_power[0:256], 6), label='CMSIS') # plt.title('|FFT|^2') # plt.legend(loc='center right') # # plt.subplot(515) # plt.plot(micro_power_avg, label='Micro-Lite') # plt.plot(cmsis_power_avg, label='CMSIS') # plt.title('Averaged |FFT|^2') # plt.legend(loc='center right') # # plt.tight_layout(pad=0, w_pad=0.2, h_pad=0.2) # # plt.show() #
apache-2.0
djgagne/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
natasasdj/OpenWPM
analysis/05_images_pixels.py
2
6264
import os import sqlite3 import pandas as pd from matplotlib.colors import LogNorm import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from statsmodels.distributions.empirical_distribution import ECDF def thousands(x, pos): if x>=1e9: return '%dB' % (x*1e-9) elif x>=1e6: return '%dM' % (x*1e-6) elif x>=1e3: return '%dK' % (x*1e-3) else: return x formatter = FuncFormatter(thousands) res_dir = res_dir = '/home/nsarafij/project/OpenWPM/analysis/results/' db = res_dir + 'images.sqlite' conn = sqlite3.connect(db) query = 'SELECT * FROM Images' df = pd.read_sql_query(query,conn) df['pixels']=map(int,df['pixels']) df['pixels'].max() #178,560,000 df['pixels'].isnull().sum() #2,797,214 df['pixels'].isnull().sum()/float(df.shape[0])*100 #8.8% pixels = df['pixels'].fillna(-1).map(int) def ecdf_for_plot(sample): #x = np.linspace(min(sample), max(sample)) print "sample: ",type(sample) x = sample.sort_values(ascending = False) ecdf = ECDF(x) # print ecdf print "ecdf: ",type(ecdf) y = ecdf(x) #print y print "y: ", type(y) return (x,y) fig_dir = '/home/nsarafij/project/OpenWPM/analysis/figs_10k/' (x,y) = ecdf_for_plot(pixels) plt.figure() plt.step(x,y) plt.title('CDF of the total number of pixels') plt.xlabel('total number of pixels') plt.grid(True) plt.xscale('symlog') plt.savefig(os.path.join(fig_dir,'04a_pix_distr.png')) plt.show() grouped = df.groupby('pixels') s_pix_count = grouped.size() s_pix_count_=s_pix_count/float(df.shape[0])*100 df_pix_count = pd.DataFrame(s_pix_count,columns=['count']) # count of total number of pixels fig,ax=plt.subplots() plt.scatter(s_pix_count.index,s_pix_count,marker='.',color='darkblue') #s_pix_count_lim = s_pix_count[s_pix_count > 0.0001*df.shape[0]] #plt.scatter(s_pix_count_lim.index,s_pix_count_lim, marker='.',color='lightblue') plt.xscale('symlog') plt.yscale('log') plt.xlabel('total number of pixels') plt.ylabel('number of images') plt.xlim([-1,1e8]) plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_count.png',format='png') fig.savefig(fig_dir + 'pix_count.eps',format='eps') fig,ax=plt.subplots() plt.scatter(s_pix_count_.index,s_pix_count_,marker='.',color='darkblue') plt.xlabel('total number of pixels') plt.ylabel('percentage of total number of images') plt.xscale('symlog') plt.yscale('log') plt.xlim([-1,1e8]) plt.ylim([1e-6,1e2]) plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_perc.png',format='png') fig.savefig(fig_dir + 'pix_perc.eps',format='eps') # Top 20 size counts of images s_pix_count_sort = s_pix_count.sort_values(ascending=False) s_pix_perc_sort = s_pix_count_sort/float(df.shape[0])*100 x=range(1,21) labels = map(str,[ int(a) for a in list(s_pix_count_sort.index[0:20]) ]) fig, ax = plt.subplots() plt.bar(x,s_pix_count_sort.iloc[0:20],align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('count') plt.xlabel('total number of pixels') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_count_top20.png',format='png') fig.savefig(fig_dir + 'pix_count_top20.eps',format='eps') x=range(1,21) labels = map(str,[ int(a) for a in list(s_pix_perc_sort.index[0:20]) ]) fig, ax = plt.subplots() plt.bar(x,s_pix_perc_sort.iloc[0:20],align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('percentage of total number of images') plt.xlabel('total number of pixels') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_perc_top20.png',format='png') fig.savefig(fig_dir + 'pix_perc_top20.eps',format='eps') #s=df['size'][df['size']!=df['cont_length']] #l=s.tolist() #df['pixels'].fillna(value=-100,inplace=True) ''' grouped = df.groupby(['pixels','type']) s_pix_type_count = grouped.size() df_pix_type_count = pd.DataFrame(s_type_count,columns=['count']) ''' # scatter plot no of pixels vs size with the color showing count of a pixel-size pair grouped = df.groupby(['pixels','size']) pix_size_count = grouped.size().sort_values() pixels = pix_size_count.index.get_level_values(level='pixels') size = pix_size_count.index.get_level_values(level='size') fig,ax=plt.subplots() plt.scatter(pixels,size,c=pix_size_count,cmap="Reds", norm=LogNorm(),edgecolors='none') cbar = plt.colorbar() cbar.set_label('count of images') plt.grid(True) plt.xscale('symlog') plt.yscale('symlog') plt.xlim([-1,1e8]) plt.ylim([-1,1e8]) plt.xlabel('total no of pixels') plt.ylabel('file size [bytes]') #plt.show() fig.savefig(fig_dir + 'pix_size_count.png',format='png') fig.savefig(fig_dir + 'pix_size_count.eps',format='eps') fig,ax=plt.subplots() plt.scatter(pixels,size,c=pix_size_count/float(df.shape[0])*100,cmap="Reds", norm=LogNorm(),edgecolors='none') cbar = plt.colorbar() cbar.set_label('percentage of total number of images') plt.grid(True) plt.xscale('symlog') plt.yscale('symlog') plt.xlim([-1,1e8]) plt.ylim([-1,1e8]) plt.xlabel('total no of pixels') plt.ylabel('file size [bytes]') #plt.show() fig.savefig(fig_dir + 'pix_size_perc.png',format='png') fig.savefig(fig_dir + 'pix_size_perc.eps',format='eps') # top 20 pixel size count pix_size_count.sort_values(ascending = False,inplace = True) x=range(1,21) labels = map(str,[(int(a),int(b)) for (a,b) in pix_size_count.index[0:20]]) fig, ax = plt.subplots() plt.bar(x,pix_size_count.iloc[0:20],align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('count') plt.xlabel('total number of pixels, file size [bytes]') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_size_count_top20.png',format='png') fig.savefig(fig_dir + 'pix_size_count_top20.eps',format='eps') fig, ax = plt.subplots() plt.bar(x,pix_size_count.iloc[0:20]/float(df.shape[0])*100,align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('percentage of total number of images') plt.xlabel('total number of pixels, file size [bytes]') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_size_perc_top20.png',format='png') fig.savefig(fig_dir + 'pix_size_perc_top20.eps',format='eps')
gpl-3.0
semiautomaticgit/SemiAutomaticClassificationPlugin
semiautomaticclassificationplugin.py
1
86616
# -*- coding: utf-8 -*- ''' /************************************************************************************************************************** SemiAutomaticClassificationPlugin The Semi-Automatic Classification Plugin for QGIS allows for the supervised classification of remote sensing images, providing tools for the download, the preprocessing and postprocessing of images. ------------------- begin : 2012-12-29 copyright : (C) 2012-2021 by Luca Congedo email : ing.congedoluca@gmail.com **************************************************************************************************************************/ /************************************************************************************************************************** * * This file is part of Semi-Automatic Classification Plugin * * Semi-Automatic Classification Plugin is free software: you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software Foundation, * version 3 of the License. * * Semi-Automatic Classification Plugin is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * Semi-Automatic Classification Plugin. If not, see <http://www.gnu.org/licenses/>. * **************************************************************************************************************************/ ''' global PluginCheck PluginCheck = 'Yes' import os import sys try: from .core import config as cfg except: PluginCheck = 'No' # try importing different path from PyQt5.QtCore import QSettings rK = QSettings() mPythonSettings = rK.value(cfg.regPythonModulesPathSettings, str(cfg.PythonModulesPathSettings)) if len(mPythonSettings) > 0: for ppS in mPythonSettings.split(';'): if len(ppS) > 0: sys.path.insert(1, ppS) import platform import inspect import shutil import time import datetime import subprocess import numpy as np import urllib import requests import ssl import smtplib import gc from http.cookiejar import CookieJar import itertools import zipfile import tarfile import base64 import random import re import xml.etree.cElementTree as ET from xml.dom import minidom import json import hashlib import ctypes import shlex from collections import Counter import multiprocessing as mp try: mp.set_start_method('spawn') except: pass from multiprocessing import Pool, Manager # Import the PyQt libraries from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt, QObject, QFileInfo, QSettings, QDir, QDate, QVariant, pyqtSignal from PyQt5.QtWidgets import QApplication, QTreeWidgetItem from PyQt5.QtNetwork import QNetworkRequest # Import the QGIS libraries import qgis.core as qgisCore import qgis.gui as qgisGui import qgis.utils as qgisUtils from osgeo import gdal from osgeo import ogr from osgeo import osr # Initialize Qt ui from .ui.resources_rc import * from .ui.ui_semiautomaticclassificationplugin import Ui_SemiAutomaticClassificationPlugin from .ui.ui_semiautomaticclassificationplugin_welcome import Ui_SCP_Welcome from .ui.semiautomaticclassificationplugindialog import SemiAutomaticClassificationPluginDialog from .ui.semiautomaticclassificationplugindialog import SpectralSignatureDialog from .ui.semiautomaticclassificationplugindialog import WelcomeDialog from .ui.semiautomaticclassificationplugindialog import ScatterPlotDialog from .ui.semiautomaticclassificationplugindialog import DockClassDialog # Import plugin version from .__init__ import version as semiautomaticclassVersion # required by other modules cfg.QObjectSCP = QObject cfg.pyqtSignalSCP = pyqtSignal if PluginCheck == 'Yes': try: from .core.messages import Messages as msgs from .core.utils import Utils from .core.signature_importer import Signature_Importer from .maininterface.downloadproductpointer import DownloadProductPointer from .maininterface.downloadproducts import DownloadProducts from .spectralsignature.spectralsignatureplot import SpectralSignaturePlot from .spectralsignature.scatter_plot import Scatter_Plot from .dock.manualroi import ManualROI from .dock.regionroi import RegionROI from .dock.scpdock import SCPDock from .dock.classificationpreview import ClassificationPreview from .maininterface.multipleroiTab import MultipleROITab from .spectralsignature.usgs_spectral_lib import USGS_Spectral_Lib from .maininterface.landsatTab import LandsatTab from .maininterface.asterTab import ASTERTab from .maininterface.modisTab import MODISTab from .maininterface.sentinel1Tab import Sentinel1Tab from .maininterface.sentinel2Tab import Sentinel2Tab from .maininterface.sentinel3Tab import Sentinel3Tab from .maininterface.GOESTab import GOESTab from .maininterface.accuracy import Accuracy from .maininterface.crossclassificationTab import CrossClassification from .maininterface.bandcombination import BandCombination from .maininterface.splitTab import SplitTab from .maininterface.reprojectrasterbands import ReprojectRasterBands from .maininterface.pcaTab import PcaTab from .maininterface.clusteringTab import ClusteringTab from .maininterface.classSignatureTab import ClassSignatureTab from .maininterface.zonalStatRasterTab import ZonalStatRasterTab from .maininterface.vectortorasterTab import VectorToRasterTab from .maininterface.bandsetTab import BandsetTab from .maininterface.algorithmWeightTab import AlgWeightTab from .maininterface.signatureThresholdTab import SigThresholdTab from .maininterface.LCSignatureThresholdTab import LCSigThresholdTab from .maininterface.rgblistTab import RGBListTab from .maininterface.bandsetlistTab import BandSetListTab from .maininterface.LCSignaturePixel import LCSigPixel from .maininterface.LCSignaturePixel2 import LCSigPixel2 from .maininterface.bandcalcTab import BandCalcTab from .maininterface.batchTab import BatchTab from .maininterface.clipmultiplerasters import ClipMultipleRasters from .maininterface.stackrasterbands import StackRasterBands from .maininterface.mosaicbandsets import MosaicBandSets from .maininterface.cloudmasking import CloudMasking from .maininterface.spectraldistancebandsets import SpectralDistanceBandsets from .maininterface.randomForestTab import ClassRandomForestTab from .maininterface.editraster import EditRaster from .maininterface.sieveTab import SieveRaster from .maininterface.erosionTab import ErosionRaster from .maininterface.dilationTab import DilationRaster from .maininterface.neighborpixelsTab import NeighborPixels from .maininterface.clipmultiplerasterspointer import ClipMultiplerastersPointer from .maininterface.landcoverchange import LandCoverChange from .maininterface.classreportTab import ClassReportTab from .maininterface.classificationTab import ClassificationTab from .maininterface.classtovectorTab import ClassToVectorTab from .maininterface.reclassificationTab import ReclassificationTab from .maininterface.settings import Settings from .core.input import Input from .ui.ui_utils import Ui_Utils except: PluginCheck = 'No' qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please, restart QGIS for executing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info) try: import scipy.stats.distributions as statdistr from scipy.spatial.distance import cdist from scipy import signal from scipy.ndimage import label from scipy.cluster.vq import vq, kmeans, whiten cfg.scipyCheck = 'Yes' except: cfg.scipyCheck = 'No' try: from matplotlib.ticker import MaxNLocator import matplotlib.pyplot as mplplt import matplotlib.colors as mplcolors cfg.matplotlibCheck = 'Yes' except Exception as err: cfg.testMatplotlibV = err cfg.matplotlibCheck = 'No' class SemiAutomaticClassificationPlugin: def __init__(self, iface): try: cfg.osSCP = os cfg.sysSCP = sys cfg.platformSCP = platform cfg.shutilSCP = shutil cfg.inspectSCP = inspect cfg.timeSCP = time cfg.datetimeSCP = datetime cfg.subprocessSCP = subprocess cfg.urllibSCP = urllib cfg.requestsSCP = requests cfg.itertoolsSCP = itertools cfg.zipfileSCP = zipfile cfg.tarfileSCP = tarfile cfg.base64SCP = base64 cfg.randomSCP = random cfg.QtCoreSCP = QtCore cfg.QtGuiSCP = QtGui cfg.QtWidgetsSCP = QtWidgets cfg.QTreeWidgetItemSCP = QTreeWidgetItem cfg.QNetworkRequestSCP = QNetworkRequest cfg.QtSCP = Qt cfg.QVariantSCP = QVariant cfg.QFileInfoSCP = QFileInfo cfg.QSettingsSCP = QSettings cfg.QDirSCP = QDir cfg.QDateSCP = QDate cfg.qgisCoreSCP = qgisCore cfg.qgisGuiSCP = qgisGui cfg.gdalSCP = gdal cfg.ogrSCP = ogr cfg.osrSCP = osr cfg.sslSCP = ssl cfg.smtplibSCP = smtplib cfg.CookieJarSCP = CookieJar cfg.gcSCP = gc cfg.reSCP = re cfg.ETSCP = ET cfg.minidomSCP = minidom cfg.jsonSCP = json cfg.hashlibSCP = hashlib cfg.ctypesSCP = ctypes cfg.shlexSCP = shlex cfg.counterSCP = Counter cfg.multiPSCP = mp cfg.poolSCP = Pool cfg.MultiManagerSCP = Manager except: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please, restart QGIS for executing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info) return try: cfg.np = np except: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Error. Check Python Numpy installation for the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Critical) try: if cfg.scipyCheck == 'Yes': cfg.statdistrSCP = statdistr cfg.cdistSCP = cdist cfg.signalSCP = signal cfg.labelSCP = label cfg.vqSCP = vq cfg.kmeansSCP = kmeans cfg.whitenSCP = whiten if cfg.matplotlibCheck == 'Yes': cfg.MaxNLocatorSCP = MaxNLocator cfg.mplpltSCP = mplplt cfg.mplcolorsSCP = mplcolors except: pass if cfg.scipyCheck == 'No': qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Error. Check Python Scipy installation for the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Critical) if cfg.matplotlibCheck == 'No': qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Error. Check Python Matplotlib installation for the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Critical) if PluginCheck == 'Yes': # reference to QGIS interface cfg.iface = iface # reference to map canvas cfg.cnvs = iface.mapCanvas() # create the dialog cfg.dlg = SemiAutomaticClassificationPluginDialog() # reference to ui cfg.ui = cfg.dlg.ui # class dock dialog cfg.dockclassdlg = DockClassDialog(cfg.iface.mainWindow(), cfg.iface) # reference dock class ui cfg.uidc = cfg.dockclassdlg.ui # welcome dialog cfg.welcomedlg = WelcomeDialog() # spectral signature plot dialog cfg.spectralplotdlg = SpectralSignatureDialog() cfg.uisp = cfg.spectralplotdlg.ui # scatter plot dialog cfg.scatterplotdlg = ScatterPlotDialog() cfg.uiscp = cfg.scatterplotdlg.ui cfg.mx = msgs(cfg.iface) cfg.utls = Utils() cfg.SCPD = SCPDock() cfg.classPrev = ClassificationPreview(cfg.cnvs) cfg.spSigPlot = SpectralSignaturePlot() cfg.scaPlT = Scatter_Plot() cfg.multiROI = MultipleROITab() cfg.usgsLib = USGS_Spectral_Lib() cfg.acc = Accuracy() cfg.crossC = CrossClassification() cfg.bsComb = BandCombination() cfg.splitT = SplitTab() cfg.rprjRstBndsT = ReprojectRasterBands() cfg.pcaT = PcaTab() cfg.clusteringT = ClusteringTab() cfg.classSigT = ClassSignatureTab() cfg.znlSttRstT = ZonalStatRasterTab() cfg.vctRstrT = VectorToRasterTab() cfg.bst = BandsetTab() cfg.algWT = AlgWeightTab() cfg.signT = SigThresholdTab() cfg.LCSignT = LCSigThresholdTab() cfg.RGBLT = RGBListTab() cfg.bstLT = BandSetListTab() cfg.bCalc = BandCalcTab() cfg.batchT= BatchTab() cfg.clipMulti = ClipMultipleRasters() cfg.stackRstr = StackRasterBands() cfg.mosaicBS = MosaicBandSets() cfg.cloudMsk = CloudMasking() cfg.spclDstBS = SpectralDistanceBandsets() cfg.rndmFrst = ClassRandomForestTab() cfg.editRstr = EditRaster() cfg.sieveRstr = SieveRaster() cfg.ersnRstr = ErosionRaster() cfg.dltnRstr = DilationRaster() cfg.clssNghbr = NeighborPixels() cfg.downProd = DownloadProducts() cfg.landsatT = LandsatTab() cfg.ASTERT = ASTERTab() cfg.MODIST = MODISTab() cfg.sentinel1T = Sentinel1Tab() cfg.sentinel2T = Sentinel2Tab() cfg.sentinel3T = Sentinel3Tab() cfg.goesT = GOESTab() cfg.landCC = LandCoverChange() cfg.classRep = ClassReportTab() cfg.classTab = ClassificationTab() cfg.classVect = ClassToVectorTab() cfg.reclassification = ReclassificationTab() cfg.sigImport = Signature_Importer() cfg.mnlROI = ManualROI(cfg.cnvs) cfg.regionROI = RegionROI(cfg.cnvs) cfg.dwnlPrdPnt = DownloadProductPointer(cfg.cnvs) cfg.clipMultiP = ClipMultiplerastersPointer(cfg.cnvs) cfg.LCSPixel = LCSigPixel(cfg.cnvs) cfg.LCSPixel2 = LCSigPixel2(cfg.cnvs) cfg.sets = Settings() cfg.uiUtls = Ui_Utils() cfg.ipt = Input() # connect when map is clicked cfg.mnlROI.rightClicked.connect(cfg.SCPD.clckR) cfg.mnlROI.leftClicked.connect(cfg.SCPD.clckL) cfg.mnlROI.moved.connect(cfg.SCPD.movedPointer) cfg.regionROI.ROIleftClicked.connect(cfg.SCPD.pointerClickROI) cfg.regionROI.ROIrightClicked.connect(cfg.SCPD.pointerRightClickROI) cfg.regionROI.moved.connect(cfg.SCPD.movedPointer) cfg.clipMultiP.leftClicked.connect(cfg.clipMulti.pointerLeftClick) cfg.clipMultiP.rightClicked.connect(cfg.clipMulti.pointerRightClick) cfg.dwnlPrdPnt.leftClicked.connect(cfg.downProd.pointerLeftClick) cfg.dwnlPrdPnt.rightClicked.connect(cfg.downProd.pointerRightClick) cfg.classPrev.leftClicked.connect(cfg.SCPD.pointerClickPreview) cfg.classPrev.rightClicked.connect(cfg.SCPD.pointerRightClickPreview) cfg.LCSPixel.MaprightClicked.connect(cfg.LCSignT.pointerLeftClick) cfg.LCSPixel.MapleftClicked.connect(cfg.LCSignT.pointerLeftClick) cfg.LCSPixel2.MaprightClicked.connect(cfg.spSigPlot.pointerLeftClick) cfg.LCSPixel2.MapleftClicked.connect(cfg.spSigPlot.pointerLeftClick) # system variables cfg.utls.findSystemSpecs() cfg.utls.readVariables() # set font try: f, s, i = cfg.utls.readQGISVariableFont() font = cfg.QtGuiSCP.QFont() font.setFamily(f) font.setPointSize(int(s)) cfg.dlg.setFont(font) cfg.ui.menu_treeWidget.setFont(font) except: pass # initialize plugin directory cfg.plgnDir = cfg.QFileInfoSCP(cfg.qgisCoreSCP.QgsApplication.qgisUserDatabaseFilePath()).path() + '/python/plugins/' + str(__name__).split('.')[0] # locale name lclNm = cfg.QSettingsSCP().value('locale/userLocale')[0:2] self.registryKeys() if len(cfg.PythonPathSettings) > 0: mp.set_executable(cfg.PythonPathSettings) # temporary directory tmpDir = cfg.utls.getTempDirectory() cfg.ui.temp_directory_label.setText(tmpDir) # log file path cfg.logFile = cfg.tmpDir.replace('//', '/') + '/__0semiautomaticclass.log' # locale lclPth = '' if cfg.QFileInfoSCP(cfg.plgnDir).exists(): lclPth = cfg.plgnDir + '/i18n/semiautomaticclassificationplugin_' + lclNm + '.qm' if cfg.QFileInfoSCP(lclPth).exists(): trnsltr = cfg.QtCoreSCP.QTranslator() trnsltr.load(lclPth) if cfg.QtCoreSCP.qVersion() > '4.3.3': cfg.QtCoreSCP.QCoreApplication.installTranslator(trnsltr) # info cfg.sysSCPInfo = str(' SemiAutomaticClass ' + semiautomaticclassVersion() + ' - QGIS v. ' + str(cfg.QGISVer) + ' L:' + lclNm + ' - OS ' + str(cfg.sysSCPNm) + ' - 64bit =' + cfg.sysSCP64bit) # multiprocess Windows if cfg.sysSCPNm == 'Windows': mp.set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe')) # Mac OS elif cfg.sysSCPNm == 'Darwin': dPref = os.environ['PATH'].split(':') for flPref in dPref: flPrefPy = os.path.join(flPref, 'python3') # first test if os.path.isfile(flPrefPy): mp.set_executable(flPrefPy) cfg.sysSCPInfo = cfg.sysSCPInfo + ' - python path =' + flPrefPy # second test if 'library' in flPref.lower(): if os.path.isfile(flPrefPy): mp.set_executable(flPrefPy) cfg.sysSCPInfo = cfg.sysSCPInfo + ' - python path =' + flPrefPy break # GDAL config try: cfg.gdalSCP.SetConfigOption('GDAL_NUM_THREADS', str(cfg.threads)) cfg.gdalSCP.SetCacheMax(int(cfg.RAMValue * 0.3 * 1000000)) cfg.gdalSCP.SetConfigOption('GDAL_DISABLE_READDIR_ON_OPEN', 'TRUE') cfg.gdalSCP.SetConfigOption('GDAL_CACHEMAX', '4') cfg.gdalSCP.SetConfigOption('VSI_CACHE', 'FALSE') except: pass # read registry keys def registryKeys(self): ''' registry keys ''' cfg.firstInstallVal = cfg.utls.readRegistryKeys(cfg.regFirstInstall, cfg.firstInstallVal) cfg.logSetVal = cfg.utls.readRegistryKeys(cfg.regLogKey, cfg.logSetVal) cfg.downNewsVal = cfg.utls.readRegistryKeys(cfg.downNewsKey, cfg.downNewsVal) cfg.vrtRstProjVal = cfg.utls.readRegistryKeys(cfg.vrtRstProjKey, cfg.vrtRstProjVal) cfg.ROIClrVal = cfg.utls.readRegistryKeys(cfg.regROIClr, cfg.ROIClrVal) cfg.ROITrnspVal = int(cfg.utls.readRegistryKeys(cfg.regROITransp, cfg.ROITrnspVal)) cfg.outTempRastFormat = cfg.utls.readRegistryKeys(cfg.regTempRasterFormat, str(cfg.outTempRastFormat)) cfg.rasterCompression = cfg.utls.readRegistryKeys(cfg.regRasterCompression, str(cfg.rasterCompression)) cfg.parallelWritingCheck = cfg.utls.readRegistryKeys(cfg.regparallelWritingCheck, str(cfg.parallelWritingCheck)) cfg.RAMValue = int(cfg.utls.readRegistryKeys(cfg.regRAMValue, str(cfg.RAMValue))) cfg.threads = int(cfg.utls.readRegistryKeys(cfg.regThreadsValue, str(cfg.threads))) cfg.gdalPath = cfg.utls.readRegistryKeys(cfg.regGDALPathSettings, str(cfg.gdalPath)) cfg.PythonPathSettings = cfg.utls.readRegistryKeys(cfg.regPythonPathSettings, str(cfg.PythonPathSettings)) cfg.PythonModulesPathSettings = cfg.utls.readRegistryKeys(cfg.regPythonModulesPathSettings, str(cfg.PythonModulesPathSettings)) cfg.tmpDir = cfg.utls.readRegistryKeys(cfg.regTmpDir, cfg.tmpDir) cfg.fldID_class = cfg.utls.readRegistryKeys(cfg.regIDFieldName, cfg.fldID_class) cfg.fldMacroID_class = cfg.utls.readRegistryKeys(cfg.regMacroIDFieldName, cfg.fldMacroID_class) cfg.macroclassCheck = cfg.utls.readRegistryKeys(cfg.regConsiderMacroclass, cfg.macroclassCheck) cfg.sentinelAlternativeSearch = cfg.utls.readRegistryKeys(cfg.regSentinelAlternativeSearch, cfg.sentinelAlternativeSearch) cfg.LCsignatureCheckBox = cfg.utls.readRegistryKeys(cfg.regLCSignature, cfg.LCsignatureCheckBox) cfg.fldROI_info = cfg.utls.readRegistryKeys(cfg.regInfoFieldName, cfg.fldROI_info) cfg.fldROIMC_info = cfg.utls.readRegistryKeys(cfg.regMCInfoFieldName, cfg.fldROIMC_info) cfg.variableName = cfg.utls.readRegistryKeys(cfg.regVariableName, cfg.variableName) cfg.vectorVariableName = cfg.utls.readRegistryKeys(cfg.regVectorVariableName, cfg.vectorVariableName) cfg.SMTPCheck = cfg.utls.readRegistryKeys(cfg.regSMTPCheck, cfg.SMTPCheck) cfg.SMTPServer = cfg.utls.readRegistryKeys(cfg.regSMTPServer, cfg.SMTPServer) cfg.SMTPtoEmails = cfg.utls.readRegistryKeys(cfg.regSMTPtoEmails, cfg.SMTPtoEmails) cfg.SMTPUser = cfg.utls.readRegistryKeys(cfg.regSMTPUser, cfg.SMTPUser) cfg.SMTPPassword = cfg.utls.readRegistryKeys(cfg.regSMTPPassword, cfg.SMTPPassword) cfg.USGSUser = cfg.utls.readRegistryKeys(cfg.regUSGSUser, cfg.USGSUser) cfg.USGSPass = cfg.utls.readRegistryKeys(cfg.regUSGSPass, cfg.USGSPass) cfg.USGSUserASTER = cfg.utls.readRegistryKeys(cfg.regUSGSUserASTER, cfg.USGSUserASTER) cfg.USGSPassASTER = cfg.utls.readRegistryKeys(cfg.regUSGSPassASTER, cfg.USGSPassASTER) cfg.SciHubUser = cfg.utls.readRegistryKeys(cfg.regSciHubUser, cfg.SciHubUser) cfg.SciHubService = cfg.utls.readRegistryKeys(cfg.regSciHubService, cfg.SciHubService) cfg.SciHubPass = cfg.utls.readRegistryKeys(cfg.regSciHubPass, cfg.SciHubPass) cfg.sigPLRoundCharList = cfg.roundCharList cfg.scatPlRoundCharList = cfg.roundCharList cfg.grpNm = cfg.utls.readRegistryKeys(cfg.regGroupName, cfg.grpNm) cfg.rasterDataType = cfg.utls.readRegistryKeys(cfg.regRasterDataType, cfg.rasterDataType) cfg.expressionListBC = cfg.utls.readRegistryKeys(cfg.regExpressionListBC, cfg.expressionListBC) cfg.soundVal = cfg.utls.readRegistryKeys(cfg.regSound, cfg.soundVal) cfg.windowSizeW = cfg.utls.readRegistryKeys(cfg.regWindowSizeW, cfg.windowSizeW) cfg.windowSizeH = cfg.utls.readRegistryKeys(cfg.regWindowSizeH, cfg.windowSizeH) cfg.splitterSizeS = cfg.utls.readRegistryKeys(cfg.regSplitterSizeS, cfg.splitterSizeS) def initGui(self): if PluginCheck == 'Yes': try: cfg.iface.addDockWidget(cfg.QtSCP.LeftDockWidgetArea, cfg.dockclassdlg) except: msg = '' try: import scipy.stats.distributions as statdistr except: msg = 'SciPy' try: from matplotlib.ticker import MaxNLocator except: msg = 'Matplotlib' try: import numpy as np except: msg = 'NumPy' try: from osgeo import gdal except: msg = 'Gdal' if len(msg) > 0: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Semi-Automatic Classification Plugin possible missing dependecies: ' + msg), level=qgisCore.Qgis.Info) else: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please restart QGIS for installing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info) return from .modules.modules import Modules cfg.SCPModules = Modules() cfg.SCPModules.loading() cfg.ipt.loadInputToolbar() cfg.algName = cfg.algMinDist cfg.ui.algorithm_combo.setCurrentIndex(0) # vector to raster type of conversion cfg.ui.conversion_type_combo.addItem(cfg.convCenterPixels) cfg.ui.conversion_type_combo.addItem(cfg.convAllPixelsTouch) cfg.centerOfPixels = cfg.ui.conversion_type_combo.itemText(0) ''' menu ''' cfg.ipt.loadMenu() # set plugin version cfg.ui.plugin_version_label.setText(semiautomaticclassVersion()) cfg.uidc.plugin_version_label2.setText('SCP ' + semiautomaticclassVersion()) # row height cfg.ui.download_images_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.tableWidget_band_calc.verticalHeader().setDefaultSectionSize(24) cfg.ui.landsat_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.sentinel_2_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.sentinel_2_tableWidget, [[0, 400], [1, 200], [2, 60]]) cfg.ui.ASTER_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.ASTER_tableWidget, [[0, 400], [1, 200], [2, 60]]) cfg.ui.MODIS_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.MODIS_tableWidget, [[0, 400], [1, 200], [2, 60]]) cfg.ui.LCS_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.signature_threshold_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.point_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.log_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.log_tableWidget, [[0, 100], [1, 200], [2, 800]]) # spectral signature plot list cfg.utls.insertTableColumn(cfg.uisp.signature_list_plot_tableWidget, 6, cfg.tableColString, None, 'Yes') cfg.utls.sortTableColumn(cfg.uisp.signature_list_plot_tableWidget, 3) cfg.utls.setColumnWidthList(cfg.uisp.signature_list_plot_tableWidget, [[0, 30], [1, 40], [2, 100], [3, 40], [4, 100], [5, 30]]) try: cfg.uisp.signature_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(2, cfg.QtWidgetsSCP.QHeaderView.Stretch) cfg.uisp.signature_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(4, cfg.QtWidgetsSCP.QHeaderView.Stretch) except: pass cfg.SCPD.clearTree() # passwords cfg.ui.smtp_password_lineEdit.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) cfg.ui.password_usgs_lineEdit.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) cfg.ui.password_usgs_lineEdit_2.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) cfg.ui.password_scihub_lineEdit.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) # scatter plot list cfg.utls.insertTableColumn(cfg.uiscp.scatter_list_plot_tableWidget, 6, cfg.tableColString, None, 'Yes') cfg.utls.sortTableColumn(cfg.uiscp.scatter_list_plot_tableWidget, 3) cfg.utls.setColumnWidthList(cfg.uiscp.scatter_list_plot_tableWidget, [[0, 30], [1, 40], [2, 100], [3, 40], [4, 100], [5, 30]]) try: cfg.uiscp.scatter_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(2, cfg.QtWidgetsSCP.QHeaderView.Stretch) cfg.uiscp.scatter_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(4, cfg.QtWidgetsSCP.QHeaderView.Stretch) except: pass # signature threshold cfg.utls.insertTableColumn(cfg.ui.signature_threshold_tableWidget, 7, cfg.tableColString, None, 'Yes') cfg.utls.setColumnWidthList(cfg.ui.signature_threshold_tableWidget, [[4, 100], [5, 100], [6, 100]]) try: cfg.ui.signature_threshold_tableWidget.horizontalHeader().setSectionResizeMode(1, cfg.QtWidgetsSCP.QHeaderView.Stretch) cfg.ui.signature_threshold_tableWidget.horizontalHeader().setSectionResizeMode(3, cfg.QtWidgetsSCP.QHeaderView.Stretch) except: pass # product download tab cfg.utls.setColumnWidthList(cfg.ui.download_images_tableWidget, [[0, 100], [1, 400]]) # USGS spectral lbrary cfg.usgsLib.addSpectralLibraryToCombo(cfg.usgs_lib_list) cfg.usgs_C1p = cfg.plgnDir + '/' + cfg.usgs_C1p cfg.usgs_C2p = cfg.plgnDir + '/' + cfg.usgs_C2p cfg.usgs_C3p = cfg.plgnDir + '/' + cfg.usgs_C3p cfg.usgs_C4p = cfg.plgnDir + '/' + cfg.usgs_C4p cfg.usgs_C5p = cfg.plgnDir + '/' + cfg.usgs_C5p cfg.usgs_C6p = cfg.plgnDir + '/' + cfg.usgs_C6p cfg.usgs_C7p = cfg.plgnDir + '/' + cfg.usgs_C7p # band calc expression cfg.bCalc.createExpressionList(cfg.expressionListBC) cfg.batchT.addFunctionsToTable(cfg.functionNames) cfg.bst.addSatelliteToCombo(cfg.satWlList) cfg.downProd.addSatelliteToCombo(cfg.downProductList) cfg.scaPlT.addColormapToCombo(cfg.scatterColorMap) cfg.bst.addUnitToCombo(cfg.unitList) cfg.SCPD.previewSize() # set log state if cfg.logSetVal == 'Yes': cfg.ui.log_checkBox.setCheckState(2) cfg.mx.msg19() elif cfg.logSetVal == 'No': cfg.ui.log_checkBox.setCheckState(0) # set download news state cfg.ui.download_news_checkBox.setCheckState(int(cfg.downNewsVal)) # set download news state cfg.ui.virtual_raster_load_checkBox.setCheckState(int(cfg.vrtRstProjVal)) # set raster format if cfg.outTempRastFormat == 'VRT': cfg.ui.virtual_raster_checkBox.setCheckState(2) elif cfg.outTempRastFormat == 'GTiff': cfg.ui.virtual_raster_checkBox.setCheckState(0) # set raster compression if cfg.rasterCompression == 'Yes': cfg.ui.raster_compression_checkBox.setCheckState(2) elif cfg.rasterCompression == 'No': cfg.ui.raster_compression_checkBox.setCheckState(0) # set raster compression if cfg.parallelWritingCheck == 'Yes': cfg.ui.parallel_writing_checkBox.setCheckState(2) elif cfg.parallelWritingCheck == 'No': cfg.ui.parallel_writing_checkBox.setCheckState(0) # set SMTP checkbox state cfg.ui.smtp_checkBox.setCheckState(int(cfg.SMTPCheck)) # set sound state cfg.ui.sound_checkBox.setCheckState(int(cfg.soundVal)) # connect to project loaded cfg.qgisCoreSCP.QgsProject.instance().readProject.connect(self.projectLoaded) cfg.qgisCoreSCP.QgsProject.instance().projectSaved.connect(self.projectSaved) cfg.iface.newProjectCreated.connect(self.newProjectLoaded) #cfg.qgisCoreSCP.QgsProject.instance().readMapLayer.connect(self.test) #cfg.qgisCoreSCP.QgsProject.instance().layerLoaded.connect(self.test) ''' Help tab ''' cfg.utls.makeDirectory(cfg.tmpDir + '/_images/') cfg.ui.help_textBrowser.setSearchPaths([cfg.tmpDir]) ''' Docks ''' # set ROI color cfg.ui.change_color_Button.setStyleSheet('background-color :' + cfg.ROIClrVal) # set ROI transparency cfg.ui.transparency_Slider.setValue(cfg.ROITrnspVal) # set RAM value cfg.ui.RAM_spinBox.setValue(cfg.RAMValue) # set CPU value cfg.ui.CPU_spinBox.setValue(cfg.threads) # macroclass checkbox if cfg.macroclassCheck == 'No': cfg.ui.macroclass_checkBox.setCheckState(0) cfg.ui.class_checkBox.blockSignals(True) cfg.ui.class_checkBox.setCheckState(2) cfg.ui.class_checkBox.blockSignals(False) elif cfg.macroclassCheck == 'Yes': cfg.ui.macroclass_checkBox.setCheckState(2) cfg.ui.class_checkBox.blockSignals(True) cfg.ui.class_checkBox.setCheckState(0) cfg.ui.class_checkBox.blockSignals(False) # macroclass checkbox if cfg.macroclassCheckRF == 'No': cfg.ui.macroclass_checkBox_rf.setCheckState(0) cfg.ui.class_checkBox_rf.blockSignals(True) cfg.ui.class_checkBox_rf.setCheckState(2) cfg.ui.class_checkBox_rf.blockSignals(False) elif cfg.macroclassCheckRF == 'Yes': cfg.ui.macroclass_checkBox_rf.setCheckState(2) cfg.ui.class_checkBox_rf.blockSignals(True) cfg.ui.class_checkBox_rf.setCheckState(0) cfg.ui.class_checkBox_rf.blockSignals(False) # LC signature checkbox if cfg.LCsignatureCheckBox == 'No': cfg.ui.LC_signature_checkBox.setCheckState(0) elif cfg.LCsignatureCheckBox == 'Yes': cfg.ui.LC_signature_checkBox.setCheckState(2) try: # set SMTP server cfg.ui.smtp_server_lineEdit.setText(cfg.SMTPServer) # set SMTP to emails cfg.ui.to_email_lineEdit.setText(cfg.SMTPtoEmails) # set SMTP user and password cfg.ui.smtp_user_lineEdit.setText(cfg.SMTPUser) if cfg.SMTPPassword is not None: SMTPPsw = cfg.utls.decryptPassword(cfg.SMTPPassword[2:-1]) cfg.ui.smtp_password_lineEdit.setText(str(SMTPPsw)[2:-1]) cfg.SMTPPassword = str(SMTPPsw)[2:-1] # set USGS user and password cfg.ui.user_usgs_lineEdit.setText(cfg.USGSUser) if cfg.USGSPass is not None: USGSPsw = cfg.utls.decryptPassword(cfg.USGSPass[2:-1]) cfg.ui.password_usgs_lineEdit.setText(str(USGSPsw)[2:-1]) cfg.ui.user_usgs_lineEdit_2.setText(cfg.USGSUserASTER) if cfg.USGSPassASTER is not None: USGSPsw2 = cfg.utls.decryptPassword(cfg.USGSPassASTER[2:-1]) cfg.ui.password_usgs_lineEdit_2.setText(str(USGSPsw2)[2:-1]) # set SciHub user and password cfg.ui.sentinel_service_lineEdit.setText(cfg.SciHubService) cfg.ui.user_scihub_lineEdit.setText(cfg.SciHubUser) if cfg.SciHubPass is not None: sciHubPsw = cfg.utls.decryptPassword(cfg.SciHubPass[2:-1]) cfg.ui.password_scihub_lineEdit.setText(str(sciHubPsw)[2:-1]) except Exception as err: # logger cfg.utls.logCondition(str(__name__) + '-' + (cfg.inspectSCP.stack()[0][3])+ ' ' + cfg.utls.lineOfCode(), ' ERROR exception: ' + str(err)) cfg.ui.sentinel2_alternative_search_checkBox.blockSignals(True) cfg.ui.sentinel2_alternative_search_checkBox.setCheckState(int(cfg.sentinelAlternativeSearch)) cfg.ui.sentinel2_alternative_search_checkBox.blockSignals(False) ''' SCP tab ''' cfg.ui.SCP_tabs.currentChanged.connect(cfg.ipt.SCPTabChanged) cfg.ui.main_tabWidget.currentChanged.connect(cfg.ipt.mainTabChanged) # hide tabs cfg.ui.SCP_tabs.setStyleSheet('QTabBar::tab {padding: 0px; max-height: 0px;}') # set window size cfg.dlg.resize(int(cfg.windowSizeW), int(cfg.windowSizeH)) cfg.ui.widget.setMinimumSize(cfg.QtCoreSCP.QSize(50, 0)) cfg.ui.widget.setMaximumSize(cfg.QtCoreSCP.QSize(400, 16777215)) cfg.ui.splitter.setSizes(eval(cfg.splitterSizeS)) cfg.ui.splitter.splitterMoved.connect(cfg.ipt.movedSplitter) cfg.ui.menu_treeWidget.itemSelectionChanged.connect(cfg.ipt.menuIndex) cfg.ui.f_filter_lineEdit.textChanged.connect(cfg.ipt.filterTree) ''' Multiple ROI tab ''' # connect to add point cfg.ui.add_point_pushButton.clicked.connect(cfg.multiROI.addPointToTable) # connect to create random points cfg.ui.add_random_point_pushButton.clicked.connect(cfg.multiROI.createRandomPoint) # connect to remove point cfg.ui.remove_point_pushButton.clicked.connect(cfg.multiROI.removePointFromTable) # connect to save point ROIs cfg.ui.save_point_rois_pushButton.clicked.connect(cfg.multiROI.createROIfromPoint) # connect to import points cfg.ui.import_point_list_pushButton.clicked.connect(cfg.multiROI.importPoints) # connect to export point list cfg.ui.export_point_list_pushButton.clicked.connect(cfg.multiROI.exportPointList) # connect the signature calculation checkBox 2 cfg.ui.signature_checkBox2.stateChanged.connect(cfg.multiROI.signatureCheckbox2) # connect to text changed cfg.ui.stratified_lineEdit.textChanged.connect(cfg.multiROI.textChanged) ''' Import spectral signature tab ''' # connect the import library cfg.ui.open_library_pushButton.clicked.connect(cfg.SCPD.openLibraryFile) # connect the open shapefile cfg.ui.open_shapefile_pushButton.clicked.connect(cfg.sigImport.openShapefileI) # connect the import shapefile cfg.ui.import_shapefile_pushButton.clicked.connect(cfg.utls.importShapefile) # connect the chapter changed cfg.ui.usgs_chapter_comboBox.currentIndexChanged.connect(cfg.usgsLib.chapterChanged) # connect the library changed cfg.ui.usgs_library_comboBox.currentIndexChanged.connect(cfg.usgsLib.libraryChanged) # connect the close library cfg.ui.add_usgs_library_pushButton.clicked.connect(cfg.usgsLib.addSignatureToList) ''' Export spectral signature tab ''' # connect to export signature to SCP file cfg.ui.export_SCP_pushButton.clicked.connect(cfg.SCPD.exportSignatureFile) cfg.ui.export_SHP_pushButton.clicked.connect(cfg.SCPD.exportSignatureShapefile) # connect to export signature to CSV cfg.ui.export_CSV_library_toolButton.clicked.connect(cfg.SCPD.exportToCSVLibrary) ''' Algorithm weight tab ''' cfg.ui.reset_weights_pushButton.clicked.connect(cfg.algWT.resetWeights) cfg.ui.set_weight_value_pushButton.clicked.connect(cfg.algWT.setWeights) ''' Signature threshold tab ''' # edited cell cfg.ui.signature_threshold_tableWidget.cellChanged.connect(cfg.signT.editedThresholdTable) cfg.ui.reset_threshold_pushButton.clicked.connect(cfg.signT.resetThresholds) cfg.ui.automatic_threshold_pushButton.clicked.connect(cfg.signT.setAllWeightsVariance) cfg.ui.set_threshold_value_pushButton.clicked.connect(cfg.signT.setThresholds) cfg.ui.signature_threshold_tableWidget.horizontalHeader().sectionClicked.connect(cfg.signT.orderedTable) ''' LC Signature threshold tab ''' cfg.ui.LCS_tableWidget.cellChanged.connect(cfg.LCSignT.editedThresholdTable) cfg.ui.LCS_tableWidget.horizontalHeader().sectionClicked.connect(cfg.LCSignT.orderedTable) cfg.ui.automatic_threshold_pushButton_2.clicked.connect(cfg.LCSignT.setAllWeightsVariance) # connect to activate pointer cfg.ui.LCS_pointerButton.clicked.connect(cfg.LCSignT.pointerActive) cfg.ui.LCS_ROI_button.clicked.connect(cfg.LCSignT.ROIThreshold) cfg.ui.set_min_max_Button.clicked.connect(cfg.LCSignT.setMinimumMaximum) # connect the include signature checkBox cfg.ui.LCS_include_checkBox.stateChanged.connect(cfg.LCSignT.includeCheckbox) cfg.ui.LCS_cut_checkBox.stateChanged.connect(cfg.LCSignT.cutCheckbox) # add to spectral signature plot cfg.ui.signature_spectral_plot_toolButton_2.clicked.connect(cfg.LCSignT.addSignatureToSpectralPlot) ''' RGB List tab ''' cfg.ui.RGB_tableWidget.cellChanged.connect(cfg.RGBLT.editedTable) cfg.ui.add_RGB_pushButton.clicked.connect(cfg.RGBLT.addRGBToTable) cfg.ui.remove_RGB_toolButton.clicked.connect(cfg.RGBLT.removeRGBFromTable) cfg.ui.sort_by_name_toolButton_2.clicked.connect(cfg.RGBLT.sortRGBName) cfg.ui.clear_RGB_list_toolButton.clicked.connect(cfg.RGBLT.clearTableAction) cfg.ui.move_up_toolButton_3.clicked.connect(cfg.RGBLT.moveUpRGB) cfg.ui.move_down_toolButton_3.clicked.connect(cfg.RGBLT.moveDownRGB) cfg.ui.all_RGB_list_toolButton.clicked.connect(cfg.RGBLT.allRGBListAction) cfg.ui.export_RGB_List_toolButton.clicked.connect(cfg.RGBLT.exportRGBList) cfg.ui.import_RGB_List_toolButton.clicked.connect(cfg.RGBLT.importRGB) ''' Band set List tab ''' cfg.ui.add_bandset_pushButton.clicked.connect(cfg.bstLT.addBandSetToTable) cfg.ui.rgb_toolButton.clicked.connect(cfg.bstLT.displayRGB) cfg.ui.remove_bandset_toolButton.clicked.connect(cfg.bstLT.removeBandSetFromTable) cfg.ui.move_up_toolButton_4.clicked.connect(cfg.bstLT.moveUpBandset) cfg.ui.move_down_toolButton_4.clicked.connect(cfg.bstLT.moveDownBandset) # connect to double click cfg.ui.band_set_list_tableWidget.doubleClicked.connect(cfg.bstLT.doubleClick) cfg.ui.export_bandset_List_toolButton.clicked.connect(cfg.bstLT.exportList) cfg.ui.import_bandset_List_toolButton.clicked.connect(cfg.bstLT.importList) # connect to filter cfg.ui.band_set_filter_lineEdit.textChanged.connect(cfg.bstLT.filterTable) ''' Download product tab ''' # connect to find images button cfg.ui.find_images_toolButton.clicked.connect(cfg.downProd.findImages) cfg.ui.selectUL_toolButton_3.clicked.connect(cfg.downProd.pointerActive) # connect to display button cfg.ui.toolButton_display.clicked.connect(cfg.downProd.displayImages) cfg.ui.toolButton_OSM.clicked.connect(cfg.downProd.displayOSM) cfg.ui.remove_image_toolButton.clicked.connect(cfg.downProd.removeImageFromTable) cfg.ui.clear_table_toolButton.clicked.connect(cfg.downProd.clearTable) cfg.ui.download_images_Button.clicked.connect(cfg.downProd.downloadImages) cfg.ui.export_links_Button.clicked.connect(cfg.downProd.exportLinks) cfg.ui.import_table_pushButton.clicked.connect(cfg.downProd.importTableText) cfg.ui.export_table_pushButton.clicked.connect(cfg.downProd.exportTableText) cfg.ui.check_toolButton.clicked.connect(cfg.downProd.checkAllBands) cfg.ui.show_area_radioButton_2.clicked.connect(cfg.downProd.showHideArea) cfg.ui.remember_user_checkBox_2.stateChanged.connect(cfg.downProd.rememberUserCheckbox) cfg.ui.user_usgs_lineEdit.editingFinished.connect(cfg.downProd.rememberUser) cfg.ui.password_usgs_lineEdit.editingFinished.connect(cfg.downProd.rememberUser) cfg.ui.reset_sentinel_service_toolButton.clicked.connect(cfg.downProd.resetService) cfg.ui.remember_user_checkBox.stateChanged.connect(cfg.downProd.rememberUserCheckboxSentinel2) cfg.ui.sentinel2_alternative_search_checkBox.stateChanged.connect(cfg.downProd.alternativeCheckboxSentinel2) cfg.ui.user_scihub_lineEdit.editingFinished.connect(cfg.downProd.rememberUserSentinel2) cfg.ui.password_scihub_lineEdit.editingFinished.connect(cfg.downProd.rememberUserSentinel2) cfg.ui.sentinel_service_lineEdit.editingFinished.connect(cfg.downProd.rememberService) cfg.ui.check_toolButton_2.clicked.connect(cfg.downProd.checkAllBandsSentinel2) cfg.ui.check_toolButton_3.clicked.connect(cfg.downProd.checkAllBandsSentinel3) cfg.ui.check_toolButton_4.clicked.connect(cfg.downProd.checkAllBandsGOES) cfg.ui.remember_user_checkBox_3.stateChanged.connect(cfg.downProd.rememberUserCheckboxEarthdata) cfg.ui.user_usgs_lineEdit_2.editingFinished.connect(cfg.downProd.rememberUserEarthdata) cfg.ui.password_usgs_lineEdit_2.editingFinished.connect(cfg.downProd.rememberUserEarthdata) cfg.ui.download_images_tableWidget.itemSelectionChanged.connect(cfg.downProd.tableClick) # connect to filter cfg.ui.products_filter_lineEdit.textChanged.connect(cfg.downProd.filterTable) ''' Classification dock ''' # button band set cfg.uidc.bandset_toolButton.clicked.connect(cfg.utls.bandSetTab) cfg.uidc.band_processing_toolButton.clicked.connect(cfg.utls.bandProcessingTab) cfg.uidc.preprocessing_toolButton_2.clicked.connect(cfg.utls.preProcessingTab) cfg.uidc.postprocessing_toolButton_2.clicked.connect(cfg.utls.postProcessingTab) cfg.uidc.bandcalc_toolButton_2.clicked.connect(cfg.utls.bandCalcTab) cfg.uidc.download_images_toolButton_2.clicked.connect(cfg.utls.selectTabDownloadImages) cfg.uidc.basic_tools_toolButton.clicked.connect(cfg.utls.basicToolsTab) cfg.uidc.batch_toolButton.clicked.connect(cfg.utls.batchTab) cfg.uidc.userguide_toolButton_2.clicked.connect(cfg.ipt.quickGuide) cfg.uidc.help_toolButton_2.clicked.connect(cfg.ipt.askHelp) cfg.uidc.support_toolButton.clicked.connect(cfg.ipt.supportSCP) cfg.uidc.tabWidget_dock.currentChanged.connect(cfg.ipt.dockTabChanged) # button new input cfg.uidc.button_new_input.clicked.connect(cfg.SCPD.createInput) # button reset cfg.uidc.button_reset_input.clicked.connect(cfg.SCPD.resetInput) # connect to save to shapefile cfg.uidc.button_Save_ROI.clicked.connect(cfg.SCPD.saveROItoShapefile) # connect to undo save ROI cfg.uidc.undo_save_Button.clicked.connect(cfg.SCPD.undoSaveROI) cfg.uidc.redo_save_Button.clicked.connect(cfg.SCPD.redoSaveROI) # connect the signature calculation checkBox cfg.uidc.signature_checkBox.stateChanged.connect(cfg.SCPD.signatureCheckbox) cfg.uidc.scatterPlot_toolButton.clicked.connect(cfg.SCPD.addROIToScatterPlot) # connect the save input checkBox cfg.uidc.save_input_checkBox.stateChanged.connect(cfg.SCPD.saveInputCheckbox) # connect to open training file cfg.uidc.trainingFile_toolButton.clicked.connect(cfg.SCPD.openTrainingFile) # connect to export signature list file cfg.uidc.export_signature_list_toolButton.clicked.connect(cfg.utls.exportSignaturesTab) # connect to import library file cfg.uidc.import_library_toolButton.clicked.connect(cfg.utls.importSignaturesTab) # add to spectral signature plot cfg.uidc.signature_spectral_plot_toolButton.clicked.connect(cfg.SCPD.addSignatureToSpectralPlot) # connect to filter cfg.uidc.ROI_filter_lineEdit.textChanged.connect(cfg.SCPD.filterTree) # connect to delete signature cfg.uidc.delete_Signature_Button.clicked.connect(cfg.SCPD.removeSelectedSignatures) # connect to merge signatures cfg.uidc.merge_signature_toolButton.clicked.connect(cfg.SCPD.mergeSelectedSignatures) cfg.uidc.calculate_signature_toolButton.clicked.connect(cfg.SCPD.calculateSignatures) # connect the ROI macroclass ID cfg.uidc.ROI_Macroclass_ID_spin.valueChanged.connect(cfg.SCPD.setROIMacroID) # connect the ROI Macroclass cfg.uidc.ROI_Macroclass_line.editingFinished.connect(cfg.SCPD.roiMacroclassInfo) # custom expression cfg.uidc.custom_index_lineEdit.editingFinished.connect(cfg.SCPD.customExpressionEdited) # connect the ROI Class ID cfg.uidc.ROI_ID_spin.valueChanged.connect(cfg.SCPD.setROIID) # connect the ROI Class cfg.uidc.ROI_Class_line.editingFinished.connect(cfg.SCPD.roiClassInfo) # connect the rapid ROI checkBox cfg.uidc.display_cursor_checkBox.stateChanged.connect(cfg.SCPD.vegetationIndexCheckbox) # connect the vegetation index combo cfg.uidc.vegetation_index_comboBox.currentIndexChanged.connect(cfg.SCPD.vegetationIndexName) # connect the rapid ROI checkBox cfg.uidc.rapid_ROI_checkBox.stateChanged.connect(cfg.SCPD.rapidROICheckbox) # connect the vegetation index display checkbox cfg.uidc.rapidROI_band_spinBox.valueChanged.connect(cfg.SCPD.rapidROIband) ''' Classification tab ''' # connect to algorithm weight button cfg.ui.algorithm_weight_button.clicked.connect(cfg.utls.algorithmBandWeightTab) # connect to threshold button cfg.ui.algorithm_threshold_button.clicked.connect(cfg.utls.signatureThresholdTab) # connect to LCS threshold button cfg.ui.LC_signature_button.clicked.connect(cfg.utls.LCSThresholdTab) # connect the algorithm combo cfg.ui.algorithm_combo.currentIndexChanged.connect(cfg.classTab.algorithmName) # connect the algorithm threshold cfg.ui.alg_threshold_SpinBox.valueChanged.connect(cfg.classTab.algorithmThreshold) # connect to run classification cfg.ui.button_classification.clicked.connect(cfg.classTab.runClassificationAction) cfg.ui.classification.clicked.connect(cfg.batchT.setFunctionButton) # connect the macroclass checkBox cfg.ui.macroclass_checkBox.stateChanged.connect(cfg.classTab.macroclassCheckbox) cfg.ui.class_checkBox.stateChanged.connect(cfg.classTab.classCheckbox) # connect the LC signature checkBox cfg.ui.LC_signature_checkBox.stateChanged.connect(cfg.classTab.LCSignature_Checkbox) # connect the mask checkBox cfg.ui.mask_checkBox.stateChanged.connect(cfg.classTab.maskCheckbox) # connect to reset qml button cfg.ui.resetQmlButton.clicked.connect(cfg.classTab.resetQmlStyle) # connect to reset mask button cfg.ui.resetMaskButton.clicked.connect(cfg.classTab.resetMask) # connect to qml button cfg.ui.qml_Button.clicked.connect(cfg.classTab.selectQmlStyle) ''' Spectral signature plot ''' # connect the sigma checkBox cfg.uisp.sigma_checkBox.stateChanged.connect(cfg.spSigPlot.sigmaCheckbox) cfg.uisp.band_lines_checkBox.stateChanged.connect(cfg.spSigPlot.refreshPlot) cfg.uisp.grid_checkBox.stateChanged.connect(cfg.spSigPlot.refreshPlot) # connect to remove signature button cfg.uisp.remove_Signature_Button.clicked.connect(cfg.spSigPlot.removeSignature) # connect to calculate spectral distances button cfg.uisp.calculate_spectral_distance_Button.clicked.connect(cfg.spSigPlot.calculateSpectralDistances) # connect to fit to axes cfg.uisp.fitToAxes_pushButton.clicked.connect(cfg.spSigPlot.fitPlotToAxes) # connect to plot spinbox cfg.uisp.plot_text_spinBox.valueChanged.connect(cfg.spSigPlot.setPlotLegendLenght) # connect to value range cfg.uisp.value_range_pushButton.clicked.connect(cfg.spSigPlot.editValueRange) cfg.uisp.set_min_max_Button.clicked.connect(cfg.spSigPlot.setMinimumMaximum) cfg.uisp.automatic_threshold_pushButton_2.clicked.connect(cfg.spSigPlot.setAllWeightsVariance) # connect to activate pointer cfg.uisp.LCS_pointerButton_2.clicked.connect(cfg.spSigPlot.pointerActive) cfg.uisp.LCS_ROI_button_2.clicked.connect(cfg.spSigPlot.ROIThreshold) # undo threshold cfg.uisp.undo_threshold_Button.clicked.connect(cfg.spSigPlot.undoThreshold) # connect the include signature checkBox cfg.uisp.LCS_include_checkBox_2.stateChanged.connect(cfg.spSigPlot.includeCheckbox) cfg.uisp.LCS_cut_checkBox_2.stateChanged.connect(cfg.spSigPlot.cutCheckbox) # connect to add to signature list cfg.uisp.add_signature_list_pushButton.clicked.connect(cfg.spSigPlot.addToSignatureList) # connect to save plot cfg.uisp.save_plot_pushButton.clicked.connect(cfg.spSigPlot.savePlot) # connect to edited cell cfg.uisp.signature_list_plot_tableWidget.cellChanged.connect(cfg.spSigPlot.editedCell) cfg.uisp.signature_list_plot_tableWidget.horizontalHeader().sectionClicked.connect(cfg.spSigPlot.orderedTable) # connect to signature plot list double click cfg.uisp.signature_list_plot_tableWidget.doubleClicked.connect(cfg.spSigPlot.signatureListDoubleClick) ''' Scatter plot tab ''' # connect to scatter plot button cfg.uiscp.scatter_ROI_Button.clicked.connect(cfg.scaPlT.scatterPlotCalc) # connect to Band X spinbox cfg.uiscp.bandX_spinBox.valueChanged.connect(cfg.scaPlT.bandXPlot) # connect to Band Y spinbox cfg.uiscp.bandY_spinBox.valueChanged.connect(cfg.scaPlT.bandYPlot) # connect double click ROI list to zoom cfg.uiscp.scatter_list_plot_tableWidget.doubleClicked.connect(cfg.scaPlT.scatterPlotDoubleClick) # connect to edited cell cfg.uiscp.scatter_list_plot_tableWidget.cellChanged.connect(cfg.scaPlT.editedCell) # connect to remove signature button cfg.uiscp.remove_Signature_Button.clicked.connect(cfg.scaPlT.removeScatter) # connect to save plot cfg.uiscp.save_plot_pushButton_2.clicked.connect(cfg.scaPlT.savePlot) # connect to fit to axes cfg.uiscp.fitToAxes_pushButton_2.clicked.connect(cfg.scaPlT.fitPlotToAxes) cfg.uiscp.plot_temp_ROI_pushButton.clicked.connect(cfg.scaPlT.addTempROIToScatterPlot) cfg.uiscp.plot_display_pushButton.clicked.connect(cfg.scaPlT.addDisplayToScatterPlot) cfg.uiscp.plot_image_pushButton.clicked.connect(cfg.scaPlT.addImageToScatterPlot) # connect to change color button cfg.uiscp.polygon_color_Button.clicked.connect(cfg.scaPlT.changePolygonColor) cfg.uiscp.plot_color_ROI_pushButton.clicked.connect(cfg.scaPlT.colorPlot) # connect to select value range cfg.uiscp.draw_polygons_pushButton.clicked.connect(cfg.scaPlT.selectRange) cfg.uiscp.remove_polygons_pushButton.clicked.connect(cfg.scaPlT.removePolygons) cfg.uiscp.show_polygon_area_pushButton.clicked.connect(cfg.scaPlT.showScatterPolygonArea) cfg.uiscp.add_signature_list_pushButton.clicked.connect(cfg.scaPlT.addToSignatureList) ''' Band set tab ''' # connect to refresh button cfg.ui.toolButton_reload_3.clicked.connect(cfg.bst.rasterBandName) # button reload cfg.ui.toolButton_reload.clicked.connect(cfg.ipt.checkRefreshRasterLayer) # connect to add file button cfg.ui.toolButton_input_raster.clicked.connect(cfg.bst.addFileToBandSetAction) # connect to add raster band button cfg.ui.add_raster_bands_Button.clicked.connect(cfg.bst.addBandToSet) # connect to select all bands button cfg.ui.select_all_bands_Button.clicked.connect(cfg.bst.selectAllBands) # connect to clear band set button cfg.ui.clear_bandset_toolButton.clicked.connect(cfg.bst.clearBandSetAction) # connect to move up band button cfg.ui.move_up_toolButton.clicked.connect(cfg.bst.moveUpBand) # connect to move down band button cfg.ui.move_down_toolButton.clicked.connect(cfg.bst.moveDownBand) # connect to sort by name button cfg.ui.sort_by_name_toolButton.clicked.connect(cfg.bst.sortBandName) # connect to remove band button cfg.ui.remove_toolButton.clicked.connect(cfg.bst.removeBand) # connect add band set cfg.ui.add_band_set_toolButton.clicked.connect(cfg.bst.addBandSetTabAction) # connect to changed tab cfg.ui.Band_set_tabWidget.currentChanged.connect(cfg.bst.tabBandSetChanged) # connect close tab cfg.ui.Band_set_tabWidget.tabCloseRequested.connect(cfg.bst.closeBandSetTab) # combo layer cfg.ui.image_raster_name_combo.currentIndexChanged.connect(cfg.bst.rasterLayerName) # connect to import band set button cfg.ui.import_bandset_toolButton.clicked.connect(cfg.bst.importBandSet) # connect to export band set button cfg.ui.export_bandset_toolButton.clicked.connect(cfg.bst.exportBandSet) # connect to satellite wavelength combo cfg.ui.wavelength_sat_combo.currentIndexChanged.connect(cfg.bst.satelliteWavelength) # connect to unit combo cfg.ui.unit_combo.currentIndexChanged.connect(cfg.bst.setBandUnit) # connect to date edit cfg.ui.bandset_dateEdit.dateChanged.connect(cfg.bst.setBandsetDate) # connect to band set process button cfg.ui.band_set_process_toolButton.clicked.connect(cfg.bst.performBandSetTools) # connect to filter cfg.ui.bands_filter_lineEdit.textChanged.connect(cfg.bst.filterTable) ''' Pre processing tab ''' ''' Clip multiple rasters ''' # connect to clip button cfg.ui.clip_Button.clicked.connect(cfg.clipMulti.clipRastersAction) cfg.ui.clip_multiple_rasters.clicked.connect(cfg.batchT.setFunctionButton) # connect to activate UL pointer cfg.ui.selectUL_toolButton.clicked.connect(cfg.clipMulti.pointerActive) # connect to refresh shape button cfg.ui.toolButton_reload_8.clicked.connect(cfg.clipMulti.refreshShapeClip) cfg.ui.show_area_radioButton_3.clicked.connect(cfg.clipMulti.showHideArea) cfg.ui.shapefile_checkBox.stateChanged.connect(cfg.clipMulti.checkboxShapeChanged) cfg.ui.temporary_ROI_checkBox.stateChanged.connect(cfg.clipMulti.checkboxTempROIChanged) # connect the shapefile combo cfg.ui.shapefile_comboBox.currentIndexChanged.connect(cfg.clipMulti.referenceLayerName) ''' Stack raster bands ''' # connect to stack button cfg.ui.stack_Button.clicked.connect(cfg.stackRstr.stackAction) cfg.ui.stack_raster_bands.clicked.connect(cfg.batchT.setFunctionButton) ''' Spectral change band sets ''' # connect to calculate button cfg.ui.spectral_distance_bandsets_toolButton.clicked.connect(cfg.spclDstBS.calculateDistanceAction) cfg.ui.spectral_distance.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.min_distance_radioButton_2.clicked.connect(cfg.spclDstBS.radioMinDistChanged) cfg.ui.spectral_angle_map_radioButton_2.clicked.connect(cfg.spclDstBS.radioSAMChanged) ''' Mosaic band sets ''' # connect to mosaic button cfg.ui.mosaic_bandsets_toolButton.clicked.connect(cfg.mosaicBS.mosaicAction) cfg.ui.mosaic_bandsets.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.mosaic_band_sets_lineEdit.textChanged.connect(cfg.mosaicBS.textChanged) ''' Cloud masking ''' # connect to mask button cfg.ui.cloud_mask_toolButton.clicked.connect(cfg.cloudMsk.maskAction) cfg.ui.cloud_masking.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.cloud_mask_classes_lineEdit.textChanged.connect(cfg.cloudMsk.textChanged) # connect to refresh button cfg.ui.toolButton_reload_23.clicked.connect(cfg.utls.refreshClassificationLayer) ''' ASTER tab ''' # connect to input button cfg.ui.toolButton_directoryInput_ASTER.clicked.connect(cfg.ASTERT.inputASTER) cfg.ui.ASTER_tableWidget.cellChanged.connect(cfg.ASTERT.editedCell) cfg.ui.earth_sun_dist_lineEdit_2.textChanged.connect(cfg.ASTERT.editedEarthSunDist) cfg.ui.sun_elev_lineEdit_2.textChanged.connect(cfg.ASTERT.editedSunElevation) cfg.ui.date_lineEdit_2.textChanged.connect(cfg.ASTERT.editedDate) cfg.ui.pushButton_Conversion_3.clicked.connect(cfg.ASTERT.performASTERCorrection) cfg.ui.aster_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.pushButton_remove_band_2.clicked.connect(cfg.ASTERT.removeHighlightedBand) ''' MODIS tab ''' # connect to input button cfg.ui.toolButton_directoryInput_MODIS.clicked.connect(cfg.MODIST.inputMODIS) cfg.ui.MODIS_tableWidget.cellChanged.connect(cfg.MODIST.editedCell) cfg.ui.pushButton_Conversion_4.clicked.connect(cfg.MODIST.performMODISConversion) cfg.ui.modis_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.pushButton_remove_band_3.clicked.connect(cfg.MODIST.removeHighlightedBand) ''' Landsat tab ''' # connect to input button cfg.ui.toolButton_directoryInput.clicked.connect(cfg.landsatT.inputLandsat) cfg.ui.toolButton_directoryInput_MTL.clicked.connect(cfg.landsatT.inputMTL) cfg.ui.pushButton_Conversion.clicked.connect(cfg.landsatT.performLandsatCorrection) cfg.ui.landsat_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.pushButton_remove_band.clicked.connect(cfg.landsatT.removeHighlightedBand) cfg.ui.landsat_tableWidget.cellChanged.connect(cfg.landsatT.editedCell) cfg.ui.earth_sun_dist_lineEdit.textChanged.connect(cfg.landsatT.editedEarthSunDist) cfg.ui.sun_elev_lineEdit.textChanged.connect(cfg.landsatT.editedSunElevation) cfg.ui.date_lineEdit.textChanged.connect(cfg.landsatT.editedDate) cfg.ui.satellite_lineEdit.textChanged.connect(cfg.landsatT.editedSatellite) ''' Sentinel-1 tab ''' # connect to input button cfg.ui.S1_toolButton_fileInput.clicked.connect(cfg.sentinel1T.inputSentinel) cfg.ui.S1_toolButton_directoryInput_xml.clicked.connect(cfg.sentinel1T.inputXML) cfg.ui.pushButton_Conversion_6.clicked.connect(cfg.sentinel1T.performSentinelConversion) cfg.ui.sentinel1_conversion.clicked.connect(cfg.batchT.setFunctionButton) ''' Sentinel-2 tab ''' # connect to input button cfg.ui.S2_toolButton_directoryInput.clicked.connect(cfg.sentinel2T.inputSentinel) cfg.ui.pushButton_Conversion_2.clicked.connect(cfg.sentinel2T.performSentinelConversion) cfg.ui.sentinel2_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.S2_satellite_lineEdit.textChanged.connect(cfg.sentinel2T.editedSatellite) cfg.ui.S2_pushButton_remove_band.clicked.connect(cfg.sentinel2T.removeHighlightedBand) cfg.ui.sentinel_2_tableWidget.cellChanged.connect(cfg.sentinel2T.editedCell) cfg.ui.S2_toolButton_directoryInput_xml2.clicked.connect(cfg.sentinel2T.inputXML2) ''' Sentinel-3 tab ''' # connect to input button cfg.ui.S3_toolButton_directoryInput.clicked.connect(cfg.sentinel3T.inputSentinel) cfg.ui.pushButton_Conversion_5.clicked.connect(cfg.sentinel3T.performSentinelConversion) cfg.ui.sentinel3_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.S3_pushButton_remove_band.clicked.connect(cfg.sentinel3T.removeHighlightedBand) ''' GOES tab ''' # connect to input button cfg.ui.GOES_toolButton_directoryInput.clicked.connect(cfg.goesT.inputGOES) cfg.ui.pushButton_Conversion_8.clicked.connect(cfg.goesT.performGOESConversion) cfg.ui.goes_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.GOES_pushButton_remove_band.clicked.connect(cfg.goesT.removeHighlightedBand) ''' Classification neighbor tab''' cfg.ui.class_neighbor_toolButton.clicked.connect(cfg.clssNghbr.classNeighborAction) cfg.ui.neighbor_pixels.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.toolButton_input_matrix.clicked.connect(cfg.clssNghbr.inputMatrixFile) ''' Reproject raster bands tab ''' # connect to refresh button cfg.ui.toolButton_reload_25.clicked.connect(cfg.rprjRstBndsT.refreshClassificationLayer) cfg.ui.use_align_raster_checkBox.stateChanged.connect(cfg.rprjRstBndsT.checkboxAlignChanged) cfg.ui.use_epsg_checkBox.stateChanged.connect(cfg.rprjRstBndsT.checkboxEPSGChanged) # connect to reproject raster button cfg.ui.reproject_Button.clicked.connect(cfg.rprjRstBndsT.reprojectRasterBands) cfg.ui.reproject_raster_bands.clicked.connect(cfg.batchT.setFunctionButton) ''' Split tab ''' # connect the classification combo cfg.ui.raster_name_combo.currentIndexChanged.connect(cfg.splitT.rasterLayerName) # connect to refresh button cfg.ui.toolButton_reload_9.clicked.connect(cfg.splitT.refreshClassificationLayer) # connect to split raster button cfg.ui.split_Button.clicked.connect(cfg.splitT.splitRaster) cfg.ui.split_raster_bands.clicked.connect(cfg.batchT.setFunctionButton) ''' PCA tab ''' # connect to PCA button cfg.ui.pca_Button.clicked.connect(cfg.pcaT.calculatePCAAction) cfg.ui.pca.clicked.connect(cfg.batchT.setFunctionButton) ''' K-means tab ''' # connect to kmeans button cfg.ui.kmeans_Button.clicked.connect(cfg.clusteringT.calculateClusteringAction) cfg.ui.clustering.clicked.connect(cfg.batchT.setFunctionButton) # connect the algorithm combo cfg.ui.kmean_minmax_radioButton.clicked.connect(cfg.clusteringT.radiokmean_minmaxChanged) cfg.ui.kmean_siglist_radioButton.clicked.connect(cfg.clusteringT.radiokmean_siglistChanged) cfg.ui.kmean_randomsiglist_radioButton.clicked.connect(cfg.clusteringT.radiokmean_randomsiglistChanged) cfg.ui.kmeans_radioButton.clicked.connect(cfg.clusteringT.radioKmeansChanged) cfg.ui.isodata_radioButton.clicked.connect(cfg.clusteringT.radioIsodataChanged) cfg.ui.min_distance_radioButton.clicked.connect(cfg.clusteringT.radioMinDistChanged) cfg.ui.spectral_angle_map_radioButton.clicked.connect(cfg.clusteringT.radioSAMChanged) ''' Random forest tab ''' # connect to calculate button cfg.ui.button_random_forest.clicked.connect(cfg.rndmFrst.performRandomForest) cfg.ui.random_forest.clicked.connect(cfg.batchT.setFunctionButton) # connect the macroclass checkBox cfg.ui.macroclass_checkBox_rf.stateChanged.connect(cfg.rndmFrst.macroclassCheckbox) cfg.ui.class_checkBox_rf.stateChanged.connect(cfg.rndmFrst.classCheckbox) cfg.ui.classifier_Button.clicked.connect(cfg.rndmFrst.selectRFClassifier) # connect to reset classifier cfg.ui.resetClassifierButton.clicked.connect(cfg.rndmFrst.resetRFClassifier) ''' Vector to Raster tab ''' cfg.ui.toolButton_reload_16.clicked.connect(cfg.vctRstrT.reloadVectorList) cfg.ui.toolButton_reload_17.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.convert_vector_toolButton.clicked.connect(cfg.vctRstrT.convertToRasterAction) cfg.ui.vector_to_raster.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.vector_name_combo.currentIndexChanged.connect(cfg.utls.refreshVectorFields) cfg.ui.field_checkBox.stateChanged.connect(cfg.vctRstrT.checkboxFieldChanged) cfg.ui.constant_value_checkBox.stateChanged.connect(cfg.vctRstrT.checkboxConstantValueChanged) ''' Post processing tab ''' ''' accuracy tab ''' # connect the classification combo cfg.ui.classification_name_combo.currentIndexChanged.connect(cfg.acc.classificationLayerName) # connect to refresh button cfg.ui.toolButton_reload_4.clicked.connect(cfg.utls.refreshClassificationLayer) # connect the reference combo cfg.ui.reference_name_combo.currentIndexChanged.connect(cfg.acc.referenceLayerName) # connect to refresh button cfg.ui.buttonReload_shape_4.clicked.connect(cfg.acc.refreshReferenceLayer) # connect to calculate error matrix button cfg.ui.calculateMatrix_toolButton.clicked.connect(cfg.acc.calculateErrorMatrix) cfg.ui.accuracy.clicked.connect(cfg.batchT.setFunctionButton) ''' Land cover change ''' # connect to refresh button reference classification cfg.ui.toolButton_reload_5.clicked.connect(cfg.landCC.refreshClassificationReferenceLayer) # connect to refresh button new classification cfg.ui.toolButton_reload_6.clicked.connect(cfg.landCC.refreshNewClassificationLayer) # connect the classification reference combo cfg.ui.classification_reference_name_combo.currentIndexChanged.connect(cfg.landCC.classificationReferenceLayerName) # connect the new classification combo cfg.ui.new_classification_name_combo.currentIndexChanged.connect(cfg.landCC.newClassificationLayerName) # connect the mask unchanged checkBox cfg.ui.mask_unchanged_checkBox.stateChanged.connect(cfg.landCC.maskUnchangedCheckbox) # connect to calculate land cover change button cfg.ui.calculateLandCoverChange_toolButton.clicked.connect(cfg.landCC.landCoverChangeAction) cfg.ui.land_cover_change.clicked.connect(cfg.batchT.setFunctionButton) ''' Classification report ''' # connect to refresh button cfg.ui.toolButton_reload_10.clicked.connect(cfg.utls.refreshClassificationLayer) # connect to calculate button cfg.ui.calculateReport_toolButton.clicked.connect(cfg.classRep.calculateClassReport) cfg.ui.classification_report.clicked.connect(cfg.batchT.setFunctionButton) ''' Band set combination tab ''' # connect to calculate button cfg.ui.calculateBandSetComb_toolButton.clicked.connect(cfg.bsComb.calculateBandSetCombination) cfg.ui.band_combination.clicked.connect(cfg.batchT.setFunctionButton) ''' Cross classification tab ''' # connect the classification combo cfg.ui.classification_name_combo_2.currentIndexChanged.connect(cfg.crossC.classificationLayerName) # connect to refresh button cfg.ui.toolButton_reload_21.clicked.connect(cfg.utls.refreshClassificationLayer) # connect the reference combo cfg.ui.reference_name_combo_2.currentIndexChanged.connect(cfg.crossC.referenceLayerName) # connect to refresh button cfg.ui.buttonReload_shape_5.clicked.connect(cfg.crossC.refreshReferenceLayer) # connect to calculate error matrix button cfg.ui.calculatecrossClass_toolButton.clicked.connect(cfg.crossC.calculateCrossClassification) cfg.ui.cross_classification.clicked.connect(cfg.batchT.setFunctionButton) ''' Class signature ''' # connect to calculate signature cfg.ui.class_signature_Button.clicked.connect(cfg.classSigT.calculateClassSignatureAction) cfg.ui.class_signature.clicked.connect(cfg.batchT.setFunctionButton) # connect to refresh button cfg.ui.toolButton_reload_22.clicked.connect(cfg.utls.refreshClassificationLayer) ''' Classification to vector ''' # connect to refresh button cfg.ui.toolButton_reload_12.clicked.connect(cfg.utls.refreshClassificationLayer) # connect to convert button cfg.ui.convert_toolButton.clicked.connect(cfg.classVect.convertClassificationToVectorAction) cfg.ui.classification_to_vector.clicked.connect(cfg.batchT.setFunctionButton) ''' Reclassification ''' # connect to refresh button cfg.ui.toolButton_reload_11.clicked.connect(cfg.utls.refreshClassificationLayer) # connect to reclassify button cfg.ui.reclassify_toolButton.clicked.connect(cfg.reclassification.reclassifyAction) cfg.ui.reclassification.clicked.connect(cfg.batchT.setFunctionButton) # connect to calculate unique values button cfg.ui.calculate_unique_values_toolButton.clicked.connect(cfg.reclassification.calculateUniqueValues) # connect to incremental new values button cfg.ui.incremental_new_values_toolButton.clicked.connect(cfg.reclassification.incrementalNewValues) # connect to add value button cfg.ui.add_value_pushButton.clicked.connect(cfg.reclassification.addRowToTable) # connect to remove point cfg.ui.remove_row_pushButton.clicked.connect(cfg.reclassification.removePointFromTable) # connect to import band set button cfg.ui.import_reclass_toolButton.clicked.connect(cfg.reclassification.importReclass) # connect to export band set button cfg.ui.export_reclass_toolButton.clicked.connect(cfg.reclassification.exportReclass) # connect to edited cell cfg.ui.reclass_values_tableWidget.cellChanged.connect(cfg.reclassification.editedCell) ''' Edit Raster tab''' # connect to set value cfg.ui.raster_set_value_toolButton.clicked.connect(cfg.editRstr.setRasterValueAction) cfg.ui.edit_raster_using_vector.clicked.connect(cfg.batchT.setFunctionButton) # connect to refresh rasters button cfg.ui.toolButton_reload_14.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.undo_edit_Button.clicked.connect(cfg.editRstr.undoEdit) # connect the expression text cfg.ui.expression_lineEdit.textChanged.connect(cfg.editRstr.textChanged) cfg.ui.use_constant_val_checkBox.stateChanged.connect(cfg.editRstr.checkboxConstantValChanged) cfg.ui.use_field_vector_checkBox.stateChanged.connect(cfg.editRstr.checkboxVectorFieldChanged) cfg.ui.use_expression_checkBox.stateChanged.connect(cfg.editRstr.checkboxUseExpressionChanged) cfg.ui.edit_val_use_ROI_radioButton.clicked.connect(cfg.editRstr.radioUseROIPolygonChanged) cfg.ui.edit_val_use_vector_radioButton.clicked.connect(cfg.editRstr.radioUseVectorChanged) cfg.ui.toolButton_reload_20.clicked.connect(cfg.editRstr.reloadVectorList) cfg.ui.vector_name_combo_2.currentIndexChanged.connect(cfg.utls.refreshVectorFields2) ''' Classification sieve tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_15.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.sieve_toolButton.clicked.connect(cfg.sieveRstr.sieveClassificationAction) cfg.ui.classification_sieve.clicked.connect(cfg.batchT.setFunctionButton) ''' Classification erosion tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_18.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.class_erosion_toolButton.clicked.connect(cfg.ersnRstr.erosionClassificationAction) cfg.ui.classification_erosion.clicked.connect(cfg.batchT.setFunctionButton) # connect the value text cfg.ui.erosion_classes_lineEdit.textChanged.connect(cfg.ersnRstr.textChanged) ''' Classification dilation tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_19.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.class_dilation_toolButton.clicked.connect(cfg.dltnRstr.dilationClassificationAction) cfg.ui.classification_dilation.clicked.connect(cfg.batchT.setFunctionButton) # connect the value text cfg.ui.dilation_classes_lineEdit.textChanged.connect(cfg.dltnRstr.textChanged) ''' Classification zonal stat tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_24.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.buttonReload_shape_6.clicked.connect(cfg.znlSttRstT.refreshReferenceLayer) cfg.ui.zonal_stat_raster_toolButton.clicked.connect(cfg.znlSttRstT.zonalStatRasterAction) cfg.ui.zonal_stat_raster.clicked.connect(cfg.batchT.setFunctionButton) # connect the classification combo cfg.ui.classification_name_combo_5.currentIndexChanged.connect(cfg.znlSttRstT.classificationLayerName) # connect the reference combo cfg.ui.reference_name_combo_3.currentIndexChanged.connect(cfg.znlSttRstT.referenceLayerName) ''' Band Calc tab ''' # connect to refresh button cfg.ui.toolButton_reload_13.clicked.connect(cfg.bCalc.rasterBandName) # connect to calc button cfg.ui.toolButton_calculate.clicked.connect(cfg.bCalc.calculateButton) cfg.ui.band_calc.clicked.connect(cfg.batchT.setFunctionButton) # connect to import expression button cfg.ui.toolButton_import_expression.clicked.connect(cfg.bCalc.importExpressionList) # connect the expression text cfg.ui.plainTextEdit_calc.textChanged.connect(cfg.bCalc.textChanged) # connect double click table cfg.ui.tableWidget_band_calc.doubleClicked.connect(cfg.bCalc.doubleClick) # connect the intersection checkBox cfg.ui.intersection_checkBox.stateChanged.connect(cfg.bCalc.intersectionCheckbox) # connect the extent checkBox cfg.ui.extent_checkBox.stateChanged.connect(cfg.bCalc.extentCheckbox) # connect to raster type combo cfg.ui.raster_type_combo.currentIndexChanged.connect(cfg.bCalc.setRasterType) # connect to expression buttons cfg.ui.toolButton_plus.clicked.connect(cfg.bCalc.buttonPlus) cfg.ui.toolButton_minus.clicked.connect(cfg.bCalc.buttonMinus) cfg.ui.toolButton_product.clicked.connect(cfg.bCalc.buttonProduct) cfg.ui.toolButton_ratio.clicked.connect(cfg.bCalc.buttonRatio) cfg.ui.toolButton_power.clicked.connect(cfg.bCalc.buttonPower) cfg.ui.toolButton_sqrt.clicked.connect(cfg.bCalc.buttonSQRT) cfg.ui.toolButton_lbracket.clicked.connect(cfg.bCalc.buttonLbracket) cfg.ui.toolButton_rbracket.clicked.connect(cfg.bCalc.buttonRbracket) cfg.ui.toolButton_greater.clicked.connect(cfg.bCalc.buttonGreater) cfg.ui.toolButton_less.clicked.connect(cfg.bCalc.buttonLower) cfg.ui.toolButton_equal.clicked.connect(cfg.bCalc.buttonEqual) cfg.ui.toolButton_unequal.clicked.connect(cfg.bCalc.buttonUnequal) cfg.ui.band_calc_function_tableWidget.doubleClicked.connect(cfg.bCalc.setFunction) # decision rules cfg.ui.decision_rules_tableWidget.cellChanged.connect(cfg.bCalc.editedDecisionRulesTable) cfg.ui.band_calc_tabWidget.currentChanged.connect(cfg.bCalc.tabChanged) # connect to add rule cfg.ui.add_rule_toolButton.clicked.connect(cfg.bCalc.addRowToTable) cfg.ui.remove_rule_toolButton.clicked.connect(cfg.bCalc.removeHighlightedRule) # connect to clear button cfg.ui.clear_rules_toolButton.clicked.connect(cfg.bCalc.clearRulesAction) cfg.ui.export_rules_toolButton.clicked.connect(cfg.bCalc.exportRules) cfg.ui.import_rules_toolButton.clicked.connect(cfg.bCalc.importRules) cfg.ui.move_up_toolButton_2.clicked.connect(cfg.bCalc.moveUpRule) cfg.ui.move_down_toolButton_2.clicked.connect(cfg.bCalc.moveDownRule) # connect to filter cfg.ui.bandcalc_filter_lineEdit.textChanged.connect(cfg.bCalc.filterTable) ''' Batch tab ''' # connect the batch text #cfg.ui.plainTextEdit_batch.textChanged.connect(cfg.batchT.textChanged) # connect to calc button cfg.ui.toolButton_run_batch.clicked.connect(cfg.batchT.runButton) cfg.ui.check_batch.clicked.connect(cfg.batchT.textChanged) cfg.ui.clear_batch_toolButton.clicked.connect(cfg.batchT.clearBatch) cfg.ui.export_batch_toolButton.clicked.connect(cfg.batchT.exportBatch) cfg.ui.import_batch_toolButton.clicked.connect(cfg.batchT.importBatch) # connect to table double click cfg.ui.batch_tableWidget.doubleClicked.connect(cfg.batchT.setFunction) ''' Settings tab ''' # connect the ID field name line cfg.ui.ID_field_name_lineEdit.textChanged.connect(cfg.sets.IDFieldNameChange) # connect the macroclass ID field name line cfg.ui.MID_field_name_lineEdit.textChanged.connect(cfg.sets.MacroIDFieldNameChange) # connect the macroclass Info field name line cfg.ui.MCInfo_field_name_lineEdit.textChanged.connect(cfg.sets.MacroInfoFieldNameChange) # connect the Info field name line cfg.ui.Info_field_name_lineEdit.textChanged.connect(cfg.sets.InfoFieldNameChange) # connect the variable name line cfg.ui.variable_name_lineEdit.textChanged.connect(cfg.sets.VariableNameChange) # connect the group name line cfg.ui.group_name_lineEdit.textChanged.connect(cfg.sets.GroupNameChange) # connect the SMTP line cfg.ui.smtp_server_lineEdit.textChanged.connect(cfg.sets.SMTPServerChange) # connect the SMTP to emails line cfg.ui.to_email_lineEdit.textChanged.connect(cfg.sets.SMTPtoEmailsChange) # connect the SMTP user cfg.ui.smtp_user_lineEdit.editingFinished.connect(cfg.sets.rememberUser) # connect the SMTP password cfg.ui.smtp_password_lineEdit.editingFinished.connect(cfg.sets.rememberUser) # connect the SMTP checkbox cfg.ui.remeber_settings_checkBox.stateChanged.connect(cfg.sets.rememberUserCheckbox) # connect the SMTP checkBox cfg.ui.smtp_checkBox.stateChanged.connect(cfg.sets.SMTPCheckbox) # connect to reset field names button cfg.ui.reset_field_names_Button.clicked.connect(cfg.sets.resetFieldNames) # connect to reset variable name button cfg.ui.reset_variable_name_Button.clicked.connect(cfg.sets.resetVariableName) # connect to reset group name button cfg.ui.reset_group_name_Button.clicked.connect(cfg.sets.resetGroupName) # connect the log file checkBox cfg.ui.log_checkBox.stateChanged.connect(cfg.sets.logCheckbox) # connect the download news checkBox cfg.ui.download_news_checkBox.stateChanged.connect(cfg.sets.downloadNewsCheckbox) # connect the virtual raster checkBox cfg.ui.virtual_raster_load_checkBox.stateChanged.connect(cfg.sets.virtualRasterCheckbox) # connect the sound checkBox cfg.ui.sound_checkBox.stateChanged.connect(cfg.sets.soundCheckbox) # connect the virtual raster format checkBox cfg.ui.virtual_raster_checkBox.stateChanged.connect(cfg.sets.virtualRasterFormatCheckbox) # connect the raster compression checkBox cfg.ui.raster_compression_checkBox.stateChanged.connect(cfg.sets.rasterCompressionCheckbox) # connect the parallel writing checkBox cfg.ui.parallel_writing_checkBox.stateChanged.connect(cfg.sets.parallelWritingCheckbox) # connect to change temporary directory button cfg.ui.temp_directory_Button.clicked.connect(cfg.sets.changeTempDir) # connect to reset temporary directory button cfg.ui.reset_temp_directory_Button.clicked.connect(cfg.sets.resetTempDir) # connect to clear log button cfg.ui.clearLog_Button.clicked.connect(cfg.utls.clearLogFile) # connect to export log button cfg.ui.exportLog_Button.clicked.connect(cfg.sets.copyLogFile) # connect to test dependencies button cfg.ui.test_dependencies_Button.clicked.connect(cfg.sets.testDependencies) # connect to RAM spinbox cfg.ui.RAM_spinBox.valueChanged.connect(cfg.sets.RAMSettingChange) # connect to thread spinbox cfg.ui.CPU_spinBox.valueChanged.connect(cfg.sets.threadSettingChange) # connect the Python path line cfg.ui.python_path_lineEdit.textChanged.connect(cfg.sets.PythonPathSettingChange) # connect the Python modules path line cfg.ui.python_path_lineEdit_2.textChanged.connect(cfg.sets.PythonModulePathSettingChange) # connect the GDAL path line cfg.ui.gdal_path_lineEdit.textChanged.connect(cfg.sets.GDALPathSettingChange) # connect to change color button cfg.ui.change_color_Button.clicked.connect(cfg.sets.changeROIColor) # connect to change color button cfg.ui.reset_color_Button.clicked.connect(cfg.sets.resetROIStyle) # connect to transparency slider cfg.ui.transparency_Slider.valueChanged.connect(cfg.sets.changeROITransparency) # first install if cfg.firstInstallVal == 'Yes': cfg.utls.welcomeTab() cfg.utls.setQGISRegSetting(cfg.regFirstInstall, 'No') cfg.utls.findAvailableRAM() cfg.utls.findAvailableProcessors() # welcome message lWelcome = cfg.plgnDir + '/ui/welcome.html' htmlTextF = open(lWelcome, 'r') htmlText = htmlTextF.read() cfg.uidc.main_textBrowser.clear() cfg.uidc.main_textBrowser.setHtml(htmlText) htmlTextF.close() if cfg.osSCP.path.isfile(cfg.plgnDir + '/firstrun'): cfg.ipt.welcomeText('https://semiautomaticgit.github.io/SemiAutomaticClassificationPluginWelcome/changelog.html') cfg.osSCP.remove(cfg.plgnDir + '/firstrun') else: dateV = cfg.datetimeSCP.datetime.now() dStr = dateV.strftime('%Y_%m_%d') cfg.ipt.welcomeText('https://semiautomaticgit.github.io/SemiAutomaticClassificationPluginWelcome/welcome' + '_' + dStr + '.html', 'https://semiautomaticgit.github.io/SemiAutomaticClassificationPluginWelcome/welcome.html') cfg.utls.cleanOldTempDirectory() cfg.skipRegistry = False else: dockclassdlg = DockClassDialog(qgisUtils.iface.mainWindow(), qgisUtils.iface) qgisUtils.iface.removeDockWidget(dockclassdlg) # save signature list when saving project def projectSaved(self): if cfg.skipProjectSaved == 'No': if len(cfg.signIDs) > 0: cfg.SCPD.saveSignatureListToFile() if cfg.scpFlPath is not None: cfg.SCPD.saveMemToSHP(cfg.shpLay) cfg.utls.zipDirectoryInFile(cfg.scpFlPath, cfg.inptDir) cfg.downProd.saveDownloadTable() try: scpPath = cfg.utls.readProjectVariable('trainingLayer', '') name = cfg.utls.fileNameNoExt(scpPath) duplicateID = cfg.utls.layerID(name, cfg.shpLay.id()) cfg.qgisCoreSCP.QgsProject.instance().removeMapLayer(duplicateID) except: pass # reset all variables and interface def resetSCP(self): # logger cfg.utls.logToFile(str(__name__) + '-' + str(cfg.inspectSCP.stack()[0][3])+ ' ' + cfg.utls.lineOfCode(), 'LOG ACTIVE' + cfg.sysSCPInfo) cfg.scpFlPath = None cfg.ui.image_raster_name_combo.blockSignals(True) cfg.ui.Band_set_tabWidget.blockSignals(True) cfg.rasterComboEdited = 'No' cfg.projPath = cfg.qgisCoreSCP.QgsProject.instance().fileName() cfg.lastSaveDir = cfg.osSCP.path.dirname(cfg.projPath) cfg.projPath = cfg.qgisCoreSCP.QgsProject.instance().fileName() cfg.lastSaveDir = cfg.osSCP.path.dirname(cfg.projPath) cfg.signList = {} cfg.signIDs = {} cfg.spectrPlotList = {} cfg.signPlotIDs = {} cfg.scatterPlotIDs = {} cfg.scatterPlotList = {} cfg.undoIDList = {} cfg.undoSpectrPlotList = {} cfg.lstROI = None cfg.lstROI2 = None cfg.rpdROICheck = '2' cfg.vegIndexCheck = 2 cfg.sigClcCheck = 2 cfg.utls.clearTable(cfg.uisp.signature_list_plot_tableWidget) cfg.utls.clearTable(cfg.uiscp.scatter_list_plot_tableWidget) cfg.utls.clearTable(cfg.ui.signature_threshold_tableWidget) cfg.utls.clearTable(cfg.ui.download_images_tableWidget) cfg.utls.clearTable(cfg.ui.LCS_tableWidget) cfg.treeDockItm = {} cfg.treeDockMCItm = {} cfg.SCPD.clearTree() cfg.scaPlT.scatterPlotListTable(cfg.uiscp.scatter_list_plot_tableWidget) cfg.spSigPlot.refreshPlot() cfg.LCSignT.LCSignatureThresholdListTable() # reload layers in combos cfg.ipt.refreshRasterLayer() cfg.utls.refreshVectorLayer() cfg.utls.refreshClassificationLayer() cfg.utls.refreshRasterExtent() cfg.acc.refreshReferenceLayer() cfg.crossC.refreshReferenceLayer() cfg.znlSttRstT.refreshReferenceLayer() cfg.znlSttRstT.loadStatisticCombo() cfg.clssNghbr.loadStatisticCombo() cfg.landCC.refreshClassificationReferenceLayer() cfg.landCC.refreshNewClassificationLayer() # read variables cfg.utls.readVariables() # set ROI color cfg.ui.change_color_Button.setStyleSheet('background-color :' + cfg.ROIClrVal) # set ROI transparency cfg.ui.transparency_Slider.setValue(cfg.ROITrnspVal) # set RAM value cfg.ui.RAM_spinBox.setValue(cfg.RAMValue) # set CPU value cfg.ui.CPU_spinBox.setValue(cfg.threads) # rapid ROI band cfg.uidc.rapidROI_band_spinBox.setValue(int(cfg.ROIband)) # min ROI size cfg.Min_region_size_spin.setValue(int(cfg.minROISz)) # max ROI width cfg.Max_ROI_width_spin.setValue(int(cfg.maxROIWdth)) # range radius cfg.Range_radius_spin.setValue(float(cfg.rngRad)) # ROI ID field cfg.uidc.ROI_ID_spin.setValue(int(cfg.ROIID)) # ROI macro ID field cfg.uidc.ROI_Macroclass_ID_spin.setValue(int(cfg.ROIMacroID)) # preview size cfg.preview_size_spinBox.setValue(float(cfg.prvwSz)) # set ID field name line cfg.ui.ID_field_name_lineEdit.setText(cfg.fldID_class) cfg.ui.MID_field_name_lineEdit.setText(cfg.fldMacroID_class) # set Info field name line cfg.ui.Info_field_name_lineEdit.setText(cfg.fldROI_info) cfg.ui.MCInfo_field_name_lineEdit.setText(cfg.fldROIMC_info) cfg.ui.variable_name_lineEdit.setText(cfg.variableName) cfg.ui.group_name_lineEdit.setText(cfg.grpNm) # gdal path cfg.ui.gdal_path_lineEdit.setText(cfg.gdalPath) cfg.ui.python_path_lineEdit.setText(cfg.PythonPathSettings) cfg.ui.python_path_lineEdit_2.setText(cfg.PythonModulesPathSettings) # set signature calculation checkbox state try: cfg.uidc.rapid_ROI_checkBox.setCheckState(int(cfg.rpdROICheck)) except: pass # set vegetation index calculation checkbox state try: cfg.uidc.display_cursor_checkBox.setCheckState(int(cfg.vegIndexCheck)) except: pass # set signature calculation checkbox state try: cfg.uidc.signature_checkBox.setCheckState(int(cfg.sigClcCheck)) cfg.ui.signature_checkBox2.setCheckState(int(cfg.sigClcCheck)) except: pass # set save input checkbox state try: cfg.uidc.save_input_checkBox.setCheckState(int(cfg.saveInputCheck)) except: pass # load classification algorithm idAlg = cfg.ui.algorithm_combo.findText(cfg.algName) if idAlg >= 0: cfg.ui.algorithm_combo.setCurrentIndex(idAlg) else: cfg.ui.algorithm_combo.setCurrentIndex(0) cfg.algName = cfg.algMinDist # ROI info cfg.uidc.ROI_Class_line.setText(cfg.ROIInfo) cfg.uidc.ROI_Macroclass_line.setText(cfg.ROIMacroClassInfo) cfg.uidc.custom_index_lineEdit.setText(cfg.customExpression) # RGB list cfg.RGBLT.RGBListTable(cfg.RGBList) # reload raster bands in checklist cfg.bst.rasterBandName() cfg.rasterComboEdited = 'Yes' cfg.ui.image_raster_name_combo.blockSignals(False) cfg.ui.Band_set_tabWidget.blockSignals(False) # new project def newProjectLoaded(self): # clear band set t = cfg.ui.Band_set_tabWidget.count() for index in reversed(list(range(0, t))): cfg.bst.deleteBandSetTab(index) self.resetSCP() cfg.bCalc.rasterBandName() cfg.SCPD.openInput() cfg.bstLT.BandSetListTable() # read project variables def projectLoaded(self): self.resetSCP() # load product download table cfg.downProd.openDownloadTable() cfg.bCalc.rasterBandName() cfg.SCPD.openInput() cfg.bstLT.BandSetListTable() # run def run(self): # show the dialog cfg.dlg.show() # Run the dialog event loop pointer_result = cfg.dlg.exec_() # remove plugin menu and icon def unload(self): cfg.utls.createBackupFile(cfg.scpFlPath) # save window size try: cfg.utls.setQGISRegSetting(cfg.regWindowSizeW, cfg.dlg.size().width()) cfg.utls.setQGISRegSetting(cfg.regWindowSizeH, cfg.dlg.size().height()) except: pass try: qgisUtils.iface.removeDockWidget(cfg.dockclassdlg) del cfg.toolBar2 del cfg.toolBar3 cfg.menu.deleteLater() # remove temp files if cfg.tmpDir is not None and cfg.QDirSCP(cfg.tmpDir).exists(): cfg.shutilSCP.rmtree(cfg.tmpDir, True) oDir = cfg.utls.makeDirectory(str(cfg.QDirSCP.tempPath() + '/' + cfg.tempDirName)) except: if PluginCheck == 'Yes': qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please, restart QGIS for executing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info)
gpl-3.0
ran5515/DeepDecision
tensorflow/examples/learn/text_classification_cnn.py
29
5677
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for CNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 EMBEDDING_SIZE = 20 N_FILTERS = 10 WINDOW_SIZE = 20 FILTER_SHAPE1 = [WINDOW_SIZE, EMBEDDING_SIZE] FILTER_SHAPE2 = [WINDOW_SIZE, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 n_words = 0 MAX_LABEL = 15 WORDS_FEATURE = 'words' # Name of the input words feature. def cnn_model(features, labels, mode): """2 layer ConvNet to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features[WORDS_FEATURE], vocab_size=n_words, embed_dim=EMBEDDING_SIZE) word_vectors = tf.expand_dims(word_vectors, 3) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.layers.conv2d( word_vectors, filters=N_FILTERS, kernel_size=FILTER_SHAPE1, padding='VALID', # Add a ReLU for non linearity. activation=tf.nn.relu) # Max pooling across output of Convolution+Relu. pool1 = tf.layers.max_pooling2d( conv1, pool_size=POOLING_WINDOW, strides=POOLING_STRIDE, padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.layers.conv2d( pool1, filters=N_FILTERS, kernel_size=FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.layers.dense(pool2, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor( MAX_DOCUMENT_LENGTH) x_train = np.array(list(vocab_processor.fit_transform(x_train))) x_test = np.array(list(vocab_processor.transform(x_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model classifier = tf.estimator.Estimator(model_fn=cnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
drammock/mne-python
tutorials/stats-sensor-space/40_cluster_1samp_time_freq.py
10
5666
""" =============================================================== Non-parametric 1 sample cluster statistic on single trial power =============================================================== This script shows how to estimate significant clusters in time-frequency power estimates. It uses a non-parametric statistical procedure based on permutations and cluster level statistics. The procedure consists of: - extracting epochs - compute single trial power estimates - baseline line correct the power estimates (power ratios) - compute stats to see if ratio deviates from 1. """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.time_frequency import tfr_morlet from mne.stats import permutation_cluster_1samp_test from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters # -------------- data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' tmin, tmax, event_id = -0.3, 0.6, 1 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6)) # just use right temporal sensors for speed epochs.pick_channels(mne.read_vectorview_selection('Right-temporal')) evoked = epochs.average() # Factor to down-sample the temporal dimension of the TFR computed by # tfr_morlet. Decimation occurs after frequency decomposition and can # be used to reduce memory usage (and possibly computational time of downstream # operations such as nonparametric statistics) if you don't need high # spectrotemporal resolution. decim = 5 freqs = np.arange(8, 40, 2) # define frequencies of interest sfreq = raw.info['sfreq'] # sampling in Hz tfr_epochs = tfr_morlet(epochs, freqs, n_cycles=4., decim=decim, average=False, return_itc=False, n_jobs=1) # Baseline power tfr_epochs.apply_baseline(mode='logratio', baseline=(-.100, 0)) # Crop in time to keep only what is between 0 and 400 ms evoked.crop(-0.1, 0.4) tfr_epochs.crop(-0.1, 0.4) epochs_power = tfr_epochs.data ############################################################################### # Define adjacency for statistics # ------------------------------- # To compute a cluster-corrected value, we need a suitable definition # for the adjacency/adjacency of our values. So we first compute the # sensor adjacency, then combine that with a grid/lattice adjacency # assumption for the time-frequency plane: sensor_adjacency, ch_names = mne.channels.find_ch_adjacency( tfr_epochs.info, 'grad') # Subselect the channels we are actually using use_idx = [ch_names.index(ch_name.replace(' ', '')) for ch_name in tfr_epochs.ch_names] sensor_adjacency = sensor_adjacency[use_idx][:, use_idx] assert sensor_adjacency.shape == \ (len(tfr_epochs.ch_names), len(tfr_epochs.ch_names)) assert epochs_power.data.shape == ( len(epochs), len(tfr_epochs.ch_names), len(tfr_epochs.freqs), len(tfr_epochs.times)) adjacency = mne.stats.combine_adjacency( sensor_adjacency, len(tfr_epochs.freqs), len(tfr_epochs.times)) # our adjacency is square with each dim matching the data size assert adjacency.shape[0] == adjacency.shape[1] == \ len(tfr_epochs.ch_names) * len(tfr_epochs.freqs) * len(tfr_epochs.times) ############################################################################### # Compute statistic # ----------------- threshold = 3. n_permutations = 50 # Warning: 50 is way too small for real-world analysis. T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_1samp_test(epochs_power, n_permutations=n_permutations, threshold=threshold, tail=0, adjacency=adjacency, out_type='mask', verbose=True) ############################################################################### # View time-frequency plots # ------------------------- evoked_data = evoked.data times = 1e3 * evoked.times plt.figure() plt.subplots_adjust(0.12, 0.08, 0.96, 0.94, 0.2, 0.43) # Create new stats image with only significant clusters T_obs_plot = np.nan * np.ones_like(T_obs) for c, p_val in zip(clusters, cluster_p_values): if p_val <= 0.05: T_obs_plot[c] = T_obs[c] # Just plot one channel's data ch_idx, f_idx, t_idx = np.unravel_index( np.nanargmax(np.abs(T_obs_plot)), epochs_power.shape[1:]) # ch_idx = tfr_epochs.ch_names.index('MEG 1332') # to show a specific one vmax = np.max(np.abs(T_obs)) vmin = -vmax plt.subplot(2, 1, 1) plt.imshow(T_obs[ch_idx], cmap=plt.cm.gray, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.imshow(T_obs_plot[ch_idx], cmap=plt.cm.RdBu_r, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.colorbar() plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title(f'Induced power ({tfr_epochs.ch_names[ch_idx]})') ax2 = plt.subplot(2, 1, 2) evoked.plot(axes=[ax2], time_unit='s') plt.show()
bsd-3-clause
nikhilgahlawat/ThinkStats2
code/populations.py
68
2609
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import csv import logging import sys import numpy as np import pandas import thinkplot import thinkstats2 def ReadData(filename='PEP_2012_PEPANNRES_with_ann.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ df = pandas.read_csv(filename, header=None, skiprows=2, encoding='iso-8859-1') populations = df[7] populations.replace(0, np.nan, inplace=True) return populations.dropna() def MakeFigures(): """Plots the CDF of populations in several forms. On a log-log scale the tail of the CCDF looks like a straight line, which suggests a Pareto distribution, but that turns out to be misleading. On a log-x scale the distribution has the characteristic sigmoid of a lognormal distribution. The normal probability plot of log(sizes) confirms that the data fit the lognormal model very well. Many phenomena that have been described with Pareto models can be described as well, or better, with lognormal models. """ pops = ReadData() print('Number of cities/towns', len(pops)) log_pops = np.log10(pops) cdf = thinkstats2.Cdf(pops, label='data') cdf_log = thinkstats2.Cdf(log_pops, label='data') # pareto plot xs, ys = thinkstats2.RenderParetoCdf(xmin=5000, alpha=1.4, low=0, high=1e7) thinkplot.Plot(np.log10(xs), 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf_log, complement=True) thinkplot.Config(xlabel='log10 population', ylabel='CCDF', yscale='log') thinkplot.Save(root='populations_pareto') # lognormal plot thinkplot.PrePlot(cols=2) mu, sigma = log_pops.mean(), log_pops.std() xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=8) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel='log10 population', ylabel='CDF') thinkplot.SubPlot(2) thinkstats2.NormalProbabilityPlot(log_pops, label='data') thinkplot.Config(xlabel='z', ylabel='log10 population', xlim=[-5, 5]) thinkplot.Save(root='populations_normal') def main(): thinkstats2.RandomSeed(17) MakeFigures() if __name__ == "__main__": main()
gpl-3.0
pdamodaran/yellowbrick
tests/rand.py
1
3176
# tests.random # A visualizer that draws a random scatter plot for testing. # # Author: Benjamin Bengfort <bbengfort@districtdatalabs.com> # Created: Wed Mar 21 17:51:15 2018 -0400 # # ID: random.py [] benjamin@bengfort.com $ """ A visualizer that draws a random scatter plot for testing. """ ########################################################################## ## Imports ########################################################################## import numpy as np from yellowbrick.base import Visualizer from yellowbrick.style import resolve_colors from sklearn.datasets import make_blobs ########################################################################## ## Random Visualizer ########################################################################## class RandomVisualizer(Visualizer): """ Creates random scatter plots as a testing utility. Data generation uses scikit-learn make_blobs to create scatter plots that have reasonable visual features and multiple colors. Parameters ---------- ax : matplotlib Axes, default: None The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required). n_samples : int, default: 100 The number of points to generate for the scatter plot n_blobs : int or array of shape [n_centers, 2] Define the number of blobs to create or specify their centers. random_state : int, RandomState or None: Used to specify the seed of the random state to ensure tests work. """ def __init__(self, ax=None, n_samples=100, n_blobs=3, random_state=None, **kwargs): super(RandomVisualizer, self).__init__(ax=ax, **kwargs) if isinstance(random_state, (int, float)) or random_state is None: random_state = np.random.RandomState(random_state) self.set_params( n_samples=n_samples, n_blobs=n_blobs, random_state=random_state, ) def generate(self): """ Returns random data according to the visualizer specification. Returns ------- X : array of shape [n_samples, 2] 2 dimensional array of points to plot y : vector with length n_samples Center/blob each point belongs to (used for color) """ return make_blobs( self.n_samples, 2, self.n_blobs, random_state=self.random_state ) def fit(self, *args, **kwargs): X, c = self.generate() x = X[:,0] y = X[:,1] self.draw(x, y, c) return self def draw(self, x, y, c): colors = resolve_colors(self.n_blobs) for i in np.arange(self.n_blobs): mask = c==i label = "c{}".format(i) self.ax.scatter(x[mask], y[mask], label=label, c=colors[i]) return self.ax def finalize(self): self.ax.legend(frameon=True) self.ax.set_ylabel("$y$") self.ax.set_xlabel("$x$") self.ax.set_title("Random Scatter Plot") return self.ax if __name__ == '__main__': r = RandomVisualizer() r.fit() r.poof(outpath='test.png')
apache-2.0
mortada/tensorflow
tensorflow/examples/learn/boston.py
33
1981
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNRegressor for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import datasets from sklearn import metrics from sklearn import model_selection from sklearn import preprocessing import tensorflow as tf def main(unused_argv): # Load dataset boston = datasets.load_boston() x, y = boston.data, boston.target # Split dataset into train / test x_train, x_test, y_train, y_test = model_selection.train_test_split( x, y, test_size=0.2, random_state=42) # Scale data (training set) to 0 mean and unit standard deviation. scaler = preprocessing.StandardScaler() x_train = scaler.fit_transform(x_train) # Build 2 layer fully connected DNN with 10, 10 units respectively. feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( x_train) regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[10, 10]) # Fit regressor.fit(x_train, y_train, steps=5000, batch_size=1) # Transform x_transformed = scaler.transform(x_test) # Predict and score y_predicted = list(regressor.predict(x_transformed, as_iterable=True)) score = metrics.mean_squared_error(y_predicted, y_test) print('MSE: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
start-jsk/jsk_apc
jsk_apc2016_common/python/jsk_apc2016_common/rbo_segmentation/evaluate.py
1
7455
from apc_data import APCDataSet, APCSample from probabilistic_segmentation import ProbabilisticSegmentationRF, ProbabilisticSegmentationBP import pickle import os import matplotlib.pyplot as plt import numpy as np import copy import rospkg def _fast_hist(a, b, n): k = (a >= 0) & (a < n) hist = np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n) return hist def label_accuracy_score(label_true, label_pred, n_class): """Returns accuracy score evaluation result. - overall accuracy - mean accuracy - mean IU - fwavacc """ hist = _fast_hist(label_true.flatten(), label_pred.flatten(), n_class) acc = np.diag(hist).sum() / hist.sum().astype(np.float64) acc_cls = np.diag(hist) / hist.sum(axis=1).astype(np.float64) acc_cls = np.nanmean(acc_cls) iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)).astype(np.float64) mean_iu = np.nanmean(iu) freq = hist.sum(axis=1) / hist.sum().astype(np.float64) fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() return acc, acc_cls, mean_iu, fwavacc # previously declared in main.py def combine_datasets(datasets): samples = [] for d in datasets: samples += d.samples return APCDataSet(samples=samples) def load_datasets(dataset_names, data_path, cache_path): datasets = dict() for dataset_name in dataset_names: dataset_path = os.path.join( data_path, 'rbo_apc/{}'.format(dataset_name)) datasets[dataset_name] = APCDataSet( name=dataset_name, dataset_path=dataset_path, cache_path=cache_path, load_from_cache=True) return datasets def evaluate(bp, test_data): acc_list = [] acc_cls_list = [] mean_iu_list = [] fwavacc_list = [] for sample in test_data.samples: if len(sample.object_masks) == 0: continue pred_target = sample.object_masks.keys()[0] if pred_target == 'shelf': if len(sample.object_masks.keys()) == 1: continue pred_target = sample.object_masks.keys()[1] bp.predict(sample, pred_target) print 'done' images = [] images.append(bp.posterior_images_smooth['shelf']) objects = [] objects.append('shelf') for _object in bp.posterior_images_smooth.keys(): if _object != 'shelf': images.append(bp.posterior_images_smooth[_object]) objects.append(_object) pred = np.argmax(np.array(images), axis=0) # remove dataset that does not have complete set objects_copy = copy.copy(objects) object_masks_keys = sample.object_masks.keys() if 'shelf' in objects_copy: objects_copy.remove('shelf') if 'shelf' in object_masks_keys: object_masks_keys.remove('shelf') if set(objects_copy) != set(object_masks_keys): #print 'skip posterior_image keys ', objects_copy #print 'skip object_mask keys ', object_masks_keys continue true = np.zeros_like(pred) for i, _object in enumerate(objects): if _object != 'shelf': true[sample.object_masks[_object]] = i masked_pred = pred[sample.bin_mask] masked_true = true[sample.bin_mask] acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(masked_true, masked_pred, len(objects)) acc_list.append(acc) acc_cls_list.append(acc_cls) mean_iu_list.append(mean_iu) fwavacc_list.append(fwavacc) """ label_pred = np.zeros(pred.shape[1:]).astype(np.int64) label_true = np.zeros(pred.shape[1:]).astype(np.int64) for i in range(pred.shape[0]): label_pred[pred[i]] = i label_true[true[i]] = i label_pred_masked = label_pred[sample.bin_mask] label_true_masked = label_true[sample.bin_mask] """ return acc_list, acc_cls_list, mean_iu_list, fwavacc_list def create_dataset(dataset_path): # initialize empty dataset dataset = APCDataSet(from_pkl=False) data_file_prefixes = [] key = '.jpg' for dir_name, sub_dirs, files in os.walk(dataset_path): for f in files: if key == f[-len(key):]: data_file_prefixes.append( os.path.join(dir_name, f[:-len(key)])) print data_file_prefixes for file_prefix in data_file_prefixes: dataset.samples.append( APCSample(data_2016_prefix=file_prefix, labeled=True, is_2016=True, infer_shelf_mask=True)) return dataset ############################################################################### # prepare dataset # ############################################################################### #data_path = '/home/leus/ros/indigo/src/start-jsk/jsk_apc/jsk_apc2016_common/data' #cache_path = os.path.join(data_path, 'cache') #dataset_path = os.path.join(data_path, 'rbo_apc') rospack = rospkg.RosPack() common_path = rospack.get_path('jsk_apc2016_common') data_path = common_path + '/data/' dataset_name = 'tokyo_run/single_item_labeled' dataset_path = os.path.join(data_path, dataset_name) data = create_dataset(dataset_path) ############################################################################### # dataset # ############################################################################### train_data, test_data = data.split_simple(portion_training=0.7) ############################################################################### # all features # ############################################################################### all_features = ['color', 'height3D', 'dist2shelf'] params = { 'use_features': all_features, 'segmentation_method': "max_smooth", 'selection_method': "max_smooth", 'make_convex': True, 'do_shrinking_resegmentation': True, 'do_greedy_resegmentation': True} bp = ProbabilisticSegmentationBP(**params) bp.fit(train_data) acc_list, acc_cls_list, mean_iu_list, fwavacc_list = evaluate(bp, test_data) print 'all features acc ', np.mean(acc_list) print 'all features acc_cls ', np.mean(acc_cls_list) print 'all features mean_iu ', np.mean(mean_iu_list) print 'all features fwavcc ', np.mean(fwavacc_list) ############################################################################### # # Color only # ############################################################################### params = { 'use_features': ['color'], 'segmentation_method': "max_smooth", 'selection_method': "max_smooth", 'make_convex': True, 'do_shrinking_resegmentation': True, 'do_greedy_resegmentation': True} bp = ProbabilisticSegmentationBP(**params) bp.fit(train_data) acc_list, acc_cls_list, mean_iu_list, fwavacc_list = evaluate(bp, test_data) print 'trained only by color features acc ', np.mean(acc_list) print 'trained only by color features acc_cls ', np.mean(acc_cls_list) print 'trained only by color features mean_iu ', np.mean(mean_iu_list) print 'trained only by color features fwavcc ', np.mean(fwavacc_list)
bsd-3-clause
zaxtax/scikit-learn
sklearn/svm/tests/test_sparse.py
35
13182
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: svc = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo') clf = svc.fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catches some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
licco/zipline
zipline/history/history_container.py
1
18509
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from itertools import groupby import numpy as np import pandas as pd from six import itervalues, iteritems, iterkeys from . history import ( index_at_dt, ) from zipline.utils.data import RollingPanel # The closing price is referred to by multiple names, # allow both for price rollover logic etc. CLOSING_PRICE_FIELDS = frozenset({'price', 'close_price'}) def ffill_buffer_from_prior_values(field, buffer_frame, digest_frame, pre_digest_values): """ Forward-fill a buffer frame, falling back to the end-of-period values of a digest frame if the buffer frame has leading NaNs. """ # Get values which are NaN at the beginning of the period. first_bar = buffer_frame.iloc[0] def iter_nan_sids(): """ Helper for iterating over the remaining nan sids in first_bar. """ return (sid for sid in first_bar[first_bar.isnull()].index) # Try to fill with the last entry from the digest frame. if digest_frame is not None: # We don't store a digest frame for frequencies that only have a bar # count of 1. for sid in iter_nan_sids(): buffer_frame[sid][0] = digest_frame.ix[-1, sid] # If we still have nan sids, try to fill with pre_digest_values. for sid in iter_nan_sids(): prior_sid_value = pre_digest_values[field].get(sid) if prior_sid_value: # If the prior value is greater than the timestamp of our first # bar. if prior_sid_value.get('dt', first_bar.name) > first_bar.name: buffer_frame[sid][0] = prior_sid_value.get('value', np.nan) return buffer_frame.ffill() def ffill_digest_frame_from_prior_values(field, digest_frame, prior_values): """ Forward-fill a digest frame, falling back to the last known priof values if necessary. """ if digest_frame is not None: # Digest frame is None in the case that we only have length 1 history # specs for a given frequency. # It's possible that the first bar in our digest frame is storing NaN # values. If so, check if we've tracked an older value and use that as # an ffill value for the first bar. first_bar = digest_frame.ix[0] nan_sids = first_bar[first_bar.isnull()].index for sid in nan_sids: try: # Only use prior value if it is before the index, # so that a backfill does not accidentally occur. if prior_values[field][sid]['dt'] <= digest_frame.index[0]: digest_frame[sid][0] = prior_values[field][sid]['value'] except KeyError: # Allow case where there is no previous value. # e.g. with leading nans. pass digest_frame = digest_frame.ffill() return digest_frame def freq_str_and_bar_count(history_spec): """ Helper for getting the frequency string and bar count from a history spec. """ return (history_spec.frequency.freq_str, history_spec.bar_count) def group_by_frequency(history_specs): """ Takes an iterable of history specs and returns a dictionary mapping unique frequencies to a list of specs with that frequency. Within each list, the HistorySpecs are sorted by ascending bar count. Example: [HistorySpec(3, '1d', 'price', True), HistorySpec(2, '2d', 'open', True), HistorySpec(2, '1d', 'open', False), HistorySpec(5, '1m', 'open', True)] yields {Frequency('1d') : [HistorySpec(2, '1d', 'open', False)], HistorySpec(3, '1d', 'price', True), Frequency('2d') : [HistorySpec(2, '2d', 'open', True)], Frequency('1m') : [HistorySpec(5, '1m', 'open', True)]} """ return {key: list(group) for key, group in groupby( sorted(history_specs, key=freq_str_and_bar_count), key=lambda spec: spec.frequency)} class HistoryContainer(object): """ Container for all history panels and frames used by an algoscript. To be used internally by TradingAlgorithm, but *not* passed directly to the algorithm. Entry point for the algoscript is the result of `get_history`. """ def __init__(self, history_specs, initial_sids, initial_dt): # History specs to be served by this container. self.history_specs = history_specs self.frequency_groups = \ group_by_frequency(itervalues(self.history_specs)) # The set of fields specified by all history specs self.fields = set(spec.field for spec in itervalues(history_specs)) # This panel contains raw minutes for periods that haven't been fully # completed. When a frequency period rolls over, these minutes are # digested using some sort of aggregation call on the panel (e.g. `sum` # for volume, `max` for high, `min` for low, etc.). self.buffer_panel = self.create_buffer_panel( initial_sids, initial_dt, ) # Dictionaries with Frequency objects as keys. self.digest_panels, self.cur_window_starts, self.cur_window_closes = \ self.create_digest_panels(initial_sids, initial_dt) # Populating initial frames here, so that the cost of creating the # initial frames does not show up when profiling. These frames are # cached since mid-stream creation of containing data frames on every # bar is expensive. self.create_return_frames(initial_dt) # Helps prop up the prior day panel against having a nan, when the data # has been seen. self.last_known_prior_values = {field: {} for field in self.fields} @property def unique_frequencies(self): """ Return an iterator over all the unique frequencies serviced by this container. """ return iterkeys(self.frequency_groups) def create_digest_panels(self, initial_sids, initial_dt): """ Initialize a RollingPanel for each unique panel frequency being stored by this container. Each RollingPanel pre-allocates enough storage space to service the highest bar-count of any history call that it serves. Relies on the fact that group_by_frequency sorts the value lists by ascending bar count. """ # Map from frequency -> first/last minute of the next digest to be # rolled for that frequency. first_window_starts = {} first_window_closes = {} # Map from frequency -> digest_panels. panels = {} for freq, specs in iteritems(self.frequency_groups): # Relying on the sorting of group_by_frequency to get the spec # requiring the largest number of bars. largest_spec = specs[-1] if largest_spec.bar_count == 1: # No need to allocate a digest panel; this frequency will only # ever use data drawn from self.buffer_panel. first_window_starts[freq] = freq.window_open(initial_dt) first_window_closes[freq] = freq.window_close( first_window_starts[freq] ) continue initial_dates = index_at_dt(largest_spec, initial_dt) # Set up dates for our first digest roll, which is keyed to the # close of the first entry in our initial index. first_window_closes[freq] = initial_dates[0] first_window_starts[freq] = freq.window_open(initial_dates[0]) rp = RollingPanel(len(initial_dates) - 1, self.fields, initial_sids) panels[freq] = rp return panels, first_window_starts, first_window_closes def create_buffer_panel(self, initial_sids, initial_dt): """ Initialize a RollingPanel containing enough minutes to service all our frequencies. """ max_bars_needed = max(freq.max_minutes for freq in self.unique_frequencies) rp = RollingPanel( max_bars_needed, self.fields, initial_sids, # Restrict the initial data down to just the fields being used in # this container. ) return rp def convert_columns(self, values): """ If columns have a specific type you want to enforce, overwrite this method and return the transformed values. """ return values def create_return_frames(self, algo_dt): """ Populates the return frame cache. Called during init and at universe rollovers. """ self.return_frames = {} for spec_key, history_spec in iteritems(self.history_specs): index = pd.to_datetime(index_at_dt(history_spec, algo_dt)) frame = pd.DataFrame( index=index, columns=self.convert_columns( self.buffer_panel.minor_axis.values), dtype=np.float64) self.return_frames[spec_key] = frame def buffer_panel_minutes(self, buffer_panel=None, earliest_minute=None, latest_minute=None): """ Get the minutes in @buffer_panel between @earliest_minute and @last_minute, inclusive. @buffer_panel can be a RollingPanel or a plain Panel. If a RollingPanel is supplied, we call `get_current` to extract a Panel object. If no panel is supplied, we use self.buffer_panel. If no value is specified for @earliest_minute, use all the minutes we have up until @latest minute. If no value for @latest_minute is specified, use all values up until the latest minute. """ buffer_panel = buffer_panel or self.buffer_panel if isinstance(buffer_panel, RollingPanel): buffer_panel = buffer_panel.get_current() return buffer_panel.ix[:, earliest_minute:latest_minute, :] def update(self, data, algo_dt): """ Takes the bar at @algo_dt's @data, checks to see if we need to roll any new digests, then adds new data to the buffer panel. """ self.update_digest_panels(algo_dt, self.buffer_panel) fields = self.fields frame = pd.DataFrame( {sid: {field: bar[field] for field in fields} for sid, bar in data.iteritems() if (bar and bar['dt'] == algo_dt and # Only use data which is keyed in the data panel. # Prevents crashes due to custom data. sid in self.buffer_panel.minor_axis)}) self.buffer_panel.add_frame(algo_dt, frame) def update_digest_panels(self, algo_dt, buffer_panel, freq_filter=None): """ Check whether @algo_dt is greater than cur_window_close for any of our frequencies. If so, roll a digest for that frequency using data drawn from @buffer panel and insert it into the appropriate digest panels. If @freq_filter is specified, only use the given data to update frequencies on which the filter returns True. """ for frequency in self.unique_frequencies: if freq_filter is not None and not freq_filter(frequency): continue # We don't keep a digest panel if we only have a length-1 history # spec for a given frequency digest_panel = self.digest_panels.get(frequency, None) while algo_dt > self.cur_window_closes[frequency]: earliest_minute = self.cur_window_starts[frequency] latest_minute = self.cur_window_closes[frequency] minutes_to_process = self.buffer_panel_minutes( buffer_panel, earliest_minute=earliest_minute, latest_minute=latest_minute, ) # Create a digest from minutes_to_process and add it to # digest_panel. self.roll(frequency, digest_panel, minutes_to_process, latest_minute) # Update panel start/close for this frequency. self.cur_window_starts[frequency] = \ frequency.next_window_start(latest_minute) self.cur_window_closes[frequency] = \ frequency.window_close(self.cur_window_starts[frequency]) def roll(self, frequency, digest_panel, buffer_minutes, digest_dt): """ Package up minutes in @buffer_minutes insert that bar into @digest_panel at index @last_minute, and update self.cur_window_{starts|closes} for the given frequency. """ if digest_panel is None: # This happens if the only spec we have at this frequency has a bar # count of 1. return rolled = pd.DataFrame( index=self.fields, columns=buffer_minutes.minor_axis) for field in self.fields: if field in CLOSING_PRICE_FIELDS: # Use the last close, or NaN if we have no minutes. try: prices = buffer_minutes.loc[field].ffill().iloc[-1] except IndexError: # Scalar assignment sets the value for all entries. prices = np.nan rolled.ix[field] = prices elif field == 'open_price': # Use the first open, or NaN if we have no minutes. try: opens = buffer_minutes.loc[field].bfill().iloc[0] except IndexError: # Scalar assignment sets the value for all entries. opens = np.nan rolled.ix['open_price'] = opens elif field == 'volume': # Volume is the sum of the volumes during the # course of the period. volumes = buffer_minutes.ix['volume'].sum().fillna(0) rolled.ix['volume'] = volumes elif field == 'high': # Use the highest high. highs = buffer_minutes.ix['high'].max() rolled.ix['high'] = highs elif field == 'low': # Use the lowest low. lows = buffer_minutes.ix['low'].min() rolled.ix['low'] = lows for sid, value in rolled.ix[field].iterkv(): if not np.isnan(value): try: prior_values = \ self.last_known_prior_values[field][sid] except KeyError: prior_values = {} self.last_known_prior_values[field][sid] = \ prior_values prior_values['dt'] = digest_dt prior_values['value'] = value digest_panel.add_frame(digest_dt, rolled) def get_history(self, history_spec, algo_dt): """ Main API used by the algoscript is mapped to this function. Selects from the overarching history panel the values for the @history_spec at the given @algo_dt. """ field = history_spec.field bar_count = history_spec.bar_count do_ffill = history_spec.ffill index = pd.to_datetime(index_at_dt(history_spec, algo_dt)) return_frame = self.return_frames[history_spec.key_str] # Overwrite the index. # Not worrying about values here since the values are overwritten # in the next step. return_frame.index = index if bar_count > 1: # Get the last bar_count - 1 frames from our stored historical # frames. digest_panel = self.digest_panels[history_spec.frequency]\ .get_current() digest_frame = digest_panel[field].copy().ix[1 - bar_count:] else: digest_frame = None # Get minutes from our buffer panel to build the last row. buffer_frame = self.buffer_panel_minutes( earliest_minute=self.cur_window_starts[history_spec.frequency], )[field] if do_ffill: digest_frame = ffill_digest_frame_from_prior_values( field, digest_frame, self.last_known_prior_values, ) buffer_frame = ffill_buffer_from_prior_values( field, buffer_frame, digest_frame, self.last_known_prior_values, ) if digest_frame is not None: return_frame.ix[:-1] = digest_frame.ix[:] if field == 'volume': return_frame.ix[algo_dt] = buffer_frame.fillna(0).sum() elif field == 'high': return_frame.ix[algo_dt] = buffer_frame.max() elif field == 'low': return_frame.ix[algo_dt] = buffer_frame.min() elif field == 'open_price': return_frame.ix[algo_dt] = buffer_frame.iloc[0] else: return_frame.ix[algo_dt] = buffer_frame.loc[algo_dt] # Returning a copy of the DataFrame so that we don't crash if the user # adds columns to the frame. Ideally we would just drop any added # columns, but pandas 0.12.0 doesn't support in-place dropping of # columns. We should re-evaluate this implementation once we're on a # more up-to-date pandas. return return_frame.copy()
apache-2.0
JeanKossaifi/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
176
2169
from nose.tools import assert_equal import numpy as np from sklearn.preprocessing import FunctionTransformer def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X): def _func(X, *args, **kwargs): args_store.append(X) args_store.extend(args) kwargs_store.update(kwargs) return func(X) return _func def test_delegate_to_func(): # (args|kwargs)_store will hold the positional and keyword arguments # passed to the function inside the FunctionTransformer. args_store = [] kwargs_store = {} X = np.arange(10).reshape((5, 2)) np.testing.assert_array_equal( FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X), X, 'transform should have returned X unchanged', ) # The function should only have recieved X. assert_equal( args_store, [X], 'Incorrect positional arguments passed to func: {args}'.format( args=args_store, ), ) assert_equal( kwargs_store, {}, 'Unexpected keyword arguments passed to func: {args}'.format( args=kwargs_store, ), ) # reset the argument stores. args_store[:] = [] # python2 compatible inplace list clear. kwargs_store.clear() y = object() np.testing.assert_array_equal( FunctionTransformer( _make_func(args_store, kwargs_store), pass_y=True, ).transform(X, y), X, 'transform should have returned X unchanged', ) # The function should have recieved X and y. assert_equal( args_store, [X, y], 'Incorrect positional arguments passed to func: {args}'.format( args=args_store, ), ) assert_equal( kwargs_store, {}, 'Unexpected keyword arguments passed to func: {args}'.format( args=kwargs_store, ), ) def test_np_log(): X = np.arange(10).reshape((5, 2)) # Test that the numpy.log example still works. np.testing.assert_array_equal( FunctionTransformer(np.log1p).transform(X), np.log1p(X), )
bsd-3-clause
shashankrajput/seq2seq
seq2seq/tasks/dump_attention.py
6
4850
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Task where both the input and output sequence are plain text. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import numpy as np from matplotlib import pyplot as plt import tensorflow as tf from tensorflow import gfile from seq2seq.tasks.decode_text import _get_prediction_length from seq2seq.tasks.inference_task import InferenceTask, unbatch_dict def _get_scores(predictions_dict): """Returns the attention scores, sliced by source and target length. """ prediction_len = _get_prediction_length(predictions_dict) source_len = predictions_dict["features.source_len"] return predictions_dict["attention_scores"][:prediction_len, :source_len] def _create_figure(predictions_dict): """Creates and returns a new figure that visualizes attention scores for for a single model predictions. """ # Find out how long the predicted sequence is target_words = list(predictions_dict["predicted_tokens"]) prediction_len = _get_prediction_length(predictions_dict) # Get source words source_len = predictions_dict["features.source_len"] source_words = predictions_dict["features.source_tokens"][:source_len] # Plot fig = plt.figure(figsize=(8, 8)) plt.imshow( X=predictions_dict["attention_scores"][:prediction_len, :source_len], interpolation="nearest", cmap=plt.cm.Blues) plt.xticks(np.arange(source_len), source_words, rotation=45) plt.yticks(np.arange(prediction_len), target_words, rotation=-45) fig.tight_layout() return fig class DumpAttention(InferenceTask): """Defines inference for tasks where both the input and output sequences are plain text. Params: delimiter: Character by which tokens are delimited. Defaults to space. unk_replace: If true, enable unknown token replacement based on attention scores. unk_mapping: If `unk_replace` is true, this can be the path to a file defining a dictionary to improve UNK token replacement. Refer to the documentation for more details. dump_attention_dir: Save attention scores and plots to this directory. dump_attention_no_plot: If true, only save attention scores, not attention plots. dump_beams: Write beam search debugging information to this file. """ def __init__(self, params): super(DumpAttention, self).__init__(params) self._attention_scores_accum = [] self._idx = 0 if not self.params["output_dir"]: raise ValueError("Must specify output_dir for DumpAttention") @staticmethod def default_params(): params = {} params.update({"output_dir": "", "dump_plots": True}) return params def begin(self): super(DumpAttention, self).begin() gfile.MakeDirs(self.params["output_dir"]) def before_run(self, _run_context): fetches = {} fetches["predicted_tokens"] = self._predictions["predicted_tokens"] fetches["features.source_len"] = self._predictions["features.source_len"] fetches["features.source_tokens"] = self._predictions[ "features.source_tokens"] fetches["attention_scores"] = self._predictions["attention_scores"] return tf.train.SessionRunArgs(fetches) def after_run(self, _run_context, run_values): fetches_batch = run_values.results for fetches in unbatch_dict(fetches_batch): # Convert to unicode fetches["predicted_tokens"] = np.char.decode( fetches["predicted_tokens"].astype("S"), "utf-8") fetches["features.source_tokens"] = np.char.decode( fetches["features.source_tokens"].astype("S"), "utf-8") if self.params["dump_plots"]: output_path = os.path.join(self.params["output_dir"], "{:05d}.png".format(self._idx)) _create_figure(fetches) plt.savefig(output_path) plt.close() tf.logging.info("Wrote %s", output_path) self._idx += 1 self._attention_scores_accum.append(_get_scores(fetches)) def end(self, _session): scores_path = os.path.join(self.params["output_dir"], "attention_scores.npz") np.savez(scores_path, *self._attention_scores_accum) tf.logging.info("Wrote %s", scores_path)
apache-2.0
ldirer/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
souljourner/fab
EDA/FOMC.py
2
5156
from __future__ import print_function from bs4 import BeautifulSoup from urllib.request import urlopen import re import pandas as pd import pickle import threading import sys class FOMC (object): ''' A convenient class for extracting meeting minutes from the FOMC website Example Usage: fomc = FOMC() df = fomc.get_statements() fomc.pickle("./df_minutes.pickle") ''' def __init__(self, base_url='https://www.federalreserve.gov', calendar_url='https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm', historical_date = 2011, verbose = True, max_threads = 10): self.base_url = base_url self.calendar_url = calendar_url self.df = None self.links = None self.dates = None self.articles = None self.verbose = verbose self.HISTORICAL_DATE = historical_date self.MAX_THREADS = max_threads def _get_links(self, from_year): ''' private function that sets all the links for the FOMC meetings from the giving from_year to the current most recent year ''' if self.verbose: print("Getting links...") self.links = [] fomc_meetings_socket = urlopen(self.calendar_url) soup = BeautifulSoup(fomc_meetings_socket, 'html.parser') statements = soup.find_all('a', href=re.compile('^/newsevents/pressreleases/monetary\d{8}a.htm')) self.links = [statement.attrs['href'] for statement in statements] if from_year <= self.HISTORICAL_DATE: for year in range(from_year, self.HISTORICAL_DATE + 1): fomc_yearly_url = self.base_url + '/monetarypolicy/fomchistorical' + str(year) + '.htm' fomc_yearly_socket = urlopen(fomc_yearly_url) soup_yearly = BeautifulSoup(fomc_yearly_socket, 'html.parser') statements_historical = soup_yearly.findAll('a', text = 'Statement') for statement_historical in statements_historical: self.links.append(statement_historical.attrs['href']) def _date_from_link(self, link): date = re.findall('[0-9]{8}', link)[0] if date[4] == '0': date = "{}/{}/{}".format(date[:4], date[5:6], date[6:]) else: date = "{}/{}/{}".format(date[:4], date[4:6], date[6:]) return date def _add_article(self, link, index=None): ''' adds the related article for 1 link into the instance variable index is the index in the article to add to. Due to concurrent prcessing, we need to make sure the articles are stored in the right order ''' if self.verbose: sys.stdout.write(".") sys.stdout.flush() # date of the article content self.dates.append(self._date_from_link(link)) statement_socket = urlopen(self.base_url + link) statement = BeautifulSoup(statement_socket, 'html.parser') paragraphs = statement.findAll('p') self.articles[index]= "\n\n".join([paragraph.get_text().strip() for paragraph in paragraphs]) def _get_articles_multi_threaded(self): ''' gets all articles using multi-threading ''' if self.verbose: print("Getting articles - Multi-threaded...") self.dates, self.articles = [], ['']*len(self.links) jobs = [] # initiate and start threads: index = 0 while index < len(self.links): if len(jobs) < self.MAX_THREADS: t = threading.Thread(target=self._add_article, args=(self.links[index],index,)) jobs.append(t) t.start() index += 1 else: # wait for threads to complete and join them back into the main thread t = jobs.pop(0) t.join() for t in jobs: t.join() for row in range(len(self.articles)): self.articles[row] = self.articles[row].strip() def get_statements(self, from_year=1994): ''' Returns a Pandas DataFrame of meeting minutes with the date as the index uses a date range of from_year to the most current Input from_year is ignored if it is within the last 5 years as this is meant for parsing much older years ''' self._get_links(from_year) print("There are", len(self.links), 'statements') self._get_articles_multi_threaded() self.df = pd.DataFrame(self.articles, index = pd.to_datetime(self.dates)).sort_index() self.df.columns = ['statements'] return self.df def pick_df(self, filename="../data/minutes.pickle"): if filename: if self.verbose: print("Writing to", filename) with open(filename, "wb") as output_file: pickle.dump(self.df, output_file) if __name__ == '__main__': #Example Usage fomc = FOMC() df = fomc.get_statements() fomc.pickle("./df_minutes.pickle")
mit
gmartinvela/Incubator
Incubator/mongo_save.py
1
2777
from pymongo import MongoClient import urllib2 import time import datetime import json import sqlite3 import pandas.io.sql as psql from data_utils import retrieve_DBs, extract_data_from_DB mongo_client = MongoClient() mongo_db = mongo_client.incubator measures_collection = mongo_db.measures local_path_SHT1xdb = "/home/weblord/Desktop/Incubator/Incubator/static/data/SHT1x.db" SQL_execute_SHT1xdb = "select max(date), humi from READ" index_SHT1xdb = "date" SQL_remove_last_SHT1xdb = "select date, humi from READ" SHT1x = [local_path_SHT1xdb, SQL_execute_SHT1xdb, index_SHT1xdb, SQL_remove_last_SHT1xdb] local_path_thermodb = "/home/weblord/Desktop/Incubator/Incubator/static/data/thermo.db" SQL_execute_thermodb = "select max(DATE_LOG), TEMP_LOG from LOG" index_thermodb = "DATE_LOG" SQL_remove_last_thermodb = "select DATE_LOG, TEMP_LOG from LOG" THERMO = [local_path_thermodb, SQL_execute_thermodb, index_thermodb, SQL_remove_last_thermodb] DBs = [SHT1x, THERMO] retrieve_DBs() dataframes_sqlite = [] all_DBs_list = [] now = datetime.datetime.utcnow() now_without_seconds = now.strftime("%Y-%m-%d %H:%M") print "NOW:",now_without_seconds URL = 'http://localhost:8008/measures' data_lost = [] def retrieve_row_from_DBs(DBs, rows): for DB in DBs: with sqlite3.connect(DB[0], detect_types=sqlite3.PARSE_DECLTYPES) as conn: all_db = psql.frame_query(DB[3], con=conn) all_db.index = pd.to_datetime(all_db.pop(DB[2])) # TODO: This is an approximation. We need data every 15 seconds minimum. In these moments SHT1x go 1:13 seconds all_db = all_db.resample('15S', fill_method='bfill') all_DBs_list.append(all_db) concatenated_db = pd.concat([all_DBs_list[0], all_DBs_list[1]], axis=1) concatenated_db_filled = h.fillna(method='ffill') print "HUMI: %.2f" % dataframes_sqlite[0].humi.iloc[0] print "TEMP: %.2f" % dataframes_sqlite[1].TEMP_LOG.iloc[0] # Remove this row def request_without_proxy(URL): proxy_handler = urllib2.ProxyHandler({}) opener = urllib2.build_opener(proxy_handler) request = urllib2.Request(URL) request_data = opener.open(request).read() return request_data def save_in_mongo(): print "Saving all the data to mongodb" while(1): # if data_lost: # try: # retrieve_DBs() # retrieve_rows_from_DBS(DBs, len(data_lost)) # except: # print "Impossible to retrive DB. Fix the problems in the net!" # time.sleep(10) # else: # time.sleep(15) time.sleep(15) try: data = request_without_proxy(URL) json_data = json.loads(data) measure = { 'date': datetime.datetime.utcnow(), 'humi': json_data['HUMI'], 'temp': json_data['TEMP'] } measure_id = measures_collection.insert(measure) except: data_lost.append(datetime.datetime.utcnow()) #print measure_id
mit
chrisburr/scikit-learn
sklearn/metrics/ranking.py
17
26927
"""Metrics to assess performance on classification task given scores Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Arnaud Joly <a.joly@ulg.ac.be> # Jochen Wersdorfer <jochen@wersdoerfer.de> # Lars Buitinck <L.J.Buitinck@uva.nl> # Joel Nothman <joel.nothman@gmail.com> # Noel Dawe <noel@dawe.me> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import csr_matrix from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.fixes import isclose from ..utils.fixes import bincount from ..utils.fixes import array_equal from ..utils.stats import rankdata from ..utils.sparsefuncs import count_nonzero from ..exceptions import UndefinedMetricWarning from .base import _average_binary_score def auc(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 See also -------- roc_auc_score : Computes the area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 if reorder: # reorder the data points according to the x axis and using y to # break ties order = np.lexsort((y, x)) x, y = x[order], y[order] else: dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) area = direction * np.trapz(y, x) return area def average_precision_score(y_true, y_score, average="macro", sample_weight=None): """Compute average precision (AP) from prediction scores This score corresponds to the area under the precision-recall curve. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average_precision : float References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ See also -------- roc_auc_score : Area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS 0.79... """ def _binary_average_precision(y_true, y_score, sample_weight=None): precision, recall, thresholds = precision_recall_curve( y_true, y_score, sample_weight=sample_weight) return auc(recall, precision) return _average_binary_score(_binary_average_precision, y_true, y_score, average, sample_weight=sample_weight) def roc_auc_score(y_true, y_score, average="macro", sample_weight=None): """Compute Area Under the Curve (AUC) from prediction scores Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ See also -------- average_precision_score : Area under the precision-recall curve roc_curve : Compute Receiver operating characteristic (ROC) Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 """ def _binary_roc_auc_score(y_true, y_score, sample_weight=None): if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, tresholds = roc_curve(y_true, y_score, sample_weight=sample_weight) return auc(fpr, tpr, reorder=True) return _average_binary_score( _binary_roc_auc_score, y_true, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fps : array, shape = [n_thresholds] A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : array, shape = [n_thresholds <= len(np.unique(y_score))] An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : array, shape = [n_thresholds] Decreasing score values. """ check_consistent_length(y_true, y_score) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (array_equal(classes, [0, 1]) or array_equal(classes, [-1, 1]) or array_equal(classes, [0]) or array_equal(classes, [-1]) or array_equal(classes, [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # We need to use isclose to avoid spurious repeated thresholds # stemming from floating point roundoff errors. distinct_value_indices = np.where(np.logical_not(isclose( np.diff(y_score), 0)))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = (y_true * weight).cumsum()[threshold_idxs] if sample_weight is not None: fps = weight.cumsum()[threshold_idxs] - tps else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] def precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. probas_pred : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds <= len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True): """Compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class or confidence values. pos_label : int Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. drop_intermediate : boolean, optional (default=True) Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves. .. versionadded:: 0.17 parameter *drop_intermediate*. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See also -------- roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) # Attempt to drop thresholds corresponding to points in between and # collinear with other points. These are always suboptimal and do not # appear on a plotted ROC curve (and thus do not affect the AUC). # Here np.diff(_, 2) is used as a "second derivative" to tell if there # is a corner at the point. Both fps and tps must be tested to handle # thresholds with multiple data points (which are combined in # _binary_clf_curve). This keeps all cases where the point should be kept, # but does not drop more complicated cases like fps = [1, 3, 7], # tps = [1, 2, 4]; there is no harm in keeping too many thresholds. if drop_intermediate and len(fps) > 2: optimal_idxs = np.where(np.r_[True, np.logical_or(np.diff(fps, 2), np.diff(tps, 2)), True])[0] fps = fps[optimal_idxs] tps = tps[optimal_idxs] thresholds = thresholds[optimal_idxs] if tps.size == 0 or fps[0] != 0: # Add an extra threshold position if necessary tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds def label_ranking_average_precision_score(y_true, y_score): """Compute ranking-based average precision Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) \ # doctest: +ELLIPSIS 0.416... """ check_consistent_length(y_true, y_score) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formated array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. out += 1. continue scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') out += (L / rank).mean() return out / n_samples def coverage_error(y_true, y_score, sample_weight=None): """Coverage error measure Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : array, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) def label_ranking_loss(y_true, y_score, sample_weight=None): """Compute Ranking loss measure Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. .. versionadded:: 0.17 A function *label_ranking_loss* Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight)
bsd-3-clause
ZENGXH/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <kemal@kemaleren.com> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/subplots_axes_and_figures/custom_figure_class.py
1
1517
""" =================== Custom Figure Class =================== You can pass a custom Figure constructor to figure if you want to derive from the default Figure. This simple example creates a figure with a figure title. """ import matplotlib.pyplot as plt #import figure, show from matplotlib.figure import Figure # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end class MyFigure(Figure): def __init__(self, *args, **kwargs): """ custom kwarg figtitle is a figure title """ figtitle = kwargs.pop('figtitle', 'hi mom') Figure.__init__(self, *args, **kwargs) self.text(0.5, 0.95, figtitle, ha='center') fig = plt.figure(FigureClass=MyFigure, figtitle='my title') ax = fig.add_subplot(111) ax.plot([1, 2, 3]) pltshow(plt)
mit
hanteng/babel
scripts/geoname_cldr.py
1
2479
#!/usr/bin/env python # -*- coding: utf-8 -*- #歧視無邊,回頭是岸。鍵起鍵落,情真情幻。 # url_target="https://raw.githubusercontent.com/datasets/country-codes/master/data/country-codes.csv" import csv import pandas as pd import codecs def export_to_csv(df, ex_filename, sep=','): if sep==',': df.to_csv(ex_filename, sep=sep, quoting=csv.QUOTE_ALL, na_rep='{na}', encoding='utf-8') #+'.csv' if sep=='\t': df.to_csv(ex_filename, sep=sep, quoting=csv.QUOTE_NONE, na_rep='{na}', encoding='utf-8') #+'.tsv' , escapechar="'", quotechar="" def import_from_babel_cldr(): from babel import Locale #staring from the en-US to retrieve keys locale = Locale('en', 'US') completelist_territories = locale.territories.keys() completelist_languages = locale.languages.keys() #intiate the output dataframe from this df_cldr=pd.DataFrame.from_dict(locale.territories, orient="index") df_cldr.index.name='geocode' df_cldr.columns = ['name_en'] df_cldr.sort_index(inplace=True) for i_lang in completelist_languages: #print(i_lang) try: locale = Locale.parse(i_lang) df=pd.DataFrame.from_dict(locale.territories, orient="index") df.columns = ['name_{0}'.format(i_lang)] df.sort_index(inplace=True) df_cldr=df_cldr.join(df) except: pass return df_cldr ###################### MAIN ######################## import os path_script=os.path.dirname(os.path.abspath(__file__)) #print path_script import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="""Fetch and generate the country and territory names in languages that are supported by the Unicode CLDR 25.""") parser.add_argument("-o", "--output", dest="outputpath", default="geoname_CLDR25_babel.csv", help="write data to a csv file or a tsv file", metavar="OUTPUTPATH") args = parser.parse_args() fn = args.outputpath #print fn df_cldr=import_from_babel_cldr() if fn[-3:]=='csv': print ("Outputing to {}".format(fn)) export_to_csv(df_cldr, ex_filename=os.path.join(path_script, fn), sep=',') elif fn[-3:]=='tsv': print ("Outputing to {}".format(fn)) export_to_csv(df_cldr, ex_filename=os.path.join(path_script, fn), sep='\t') else: print ("Only csv and tsv formats can be generated. Sorry.")
bsd-3-clause
kdebrab/pandas
pandas/tests/indexes/multi/test_set_ops.py
2
8078
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (CategoricalIndex, DatetimeIndex, MultiIndex, PeriodIndex, Series, TimedeltaIndex) def test_setops_errorcases(idx): # # non-iterable input cases = [0.5, 'xxx'] methods = [idx.intersection, idx.union, idx.difference, idx.symmetric_difference] for method in methods: for case in cases: tm.assert_raises_regex(TypeError, "Input must be Index " "or array-like", method, case) def test_intersection_base(idx): first = idx[:5] second = idx[:3] intersect = first.intersection(second) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with tm.assert_raises_regex(ValueError, msg): result = first.intersection(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.intersection(case) assert tm.equalContents(result, second) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with tm.assert_raises_regex(TypeError, msg): result = first.intersection([1, 2, 3]) def test_union_base(idx): first = idx[3:] second = idx[:5] everything = idx union = first.union(second) assert tm.equalContents(union, everything) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with tm.assert_raises_regex(ValueError, msg): result = first.union(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.union(case) assert tm.equalContents(result, everything) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with tm.assert_raises_regex(TypeError, msg): result = first.union([1, 2, 3]) def test_difference_base(idx): first = idx[2:] second = idx[:4] answer = idx[4:] result = first.difference(second) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with tm.assert_raises_regex(ValueError, msg): result = first.difference(case) elif isinstance(idx, CategoricalIndex): pass elif isinstance(idx, (DatetimeIndex, TimedeltaIndex)): assert result.__class__ == answer.__class__ tm.assert_numpy_array_equal(result.sort_values().asi8, answer.sort_values().asi8) else: result = first.difference(case) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with tm.assert_raises_regex(TypeError, msg): result = first.difference([1, 2, 3]) def test_symmetric_difference(idx): first = idx[1:] second = idx[:-1] if isinstance(idx, CategoricalIndex): pass else: answer = idx[[0, -1]] result = first.symmetric_difference(second) assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with tm.assert_raises_regex(ValueError, msg): result = first.symmetric_difference(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.symmetric_difference(case) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with tm.assert_raises_regex(TypeError, msg): first.symmetric_difference([1, 2, 3]) def test_empty(idx): # GH 15270 assert not idx.empty assert idx[:0].empty def test_difference(idx): first = idx result = first.difference(idx[-3:]) expected = MultiIndex.from_tuples(sorted(idx[:-3].values), sortorder=0, names=idx.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == idx.names # empty difference: reflexive result = idx.difference(idx) expected = idx[:0] assert result.equals(expected) assert result.names == idx.names # empty difference: superset result = idx[-3:].difference(idx) expected = idx[:0] assert result.equals(expected) assert result.names == idx.names # empty difference: degenerate result = idx[:0].difference(idx) expected = idx[:0] assert result.equals(expected) assert result.names == idx.names # names not the same chunklet = idx[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = idx.difference(idx.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_union(idx): piece1 = idx[:5][::-1] piece2 = idx[3:] the_union = piece1 | piece2 tups = sorted(idx.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = idx.union(idx) assert the_union is idx the_union = idx.union(idx[:0]) assert the_union is idx # won't work in python 3 # tuples = _index.values # result = _index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(idx) # assert ('foo', 'one') in result # assert 'B' in result # result2 = _index.union(other) # assert result.equals(result2) def test_intersection(idx): piece1 = idx[:5][::-1] piece2 = idx[3:] the_int = piece1 & piece2 tups = sorted(idx[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = idx.intersection(idx) assert the_int is idx # empty intersection: disjoint empty = idx[:2] & idx[2:] expected = idx[:0] assert empty.equals(expected) # can't do in python 3 # tuples = _index.values # result = _index & tuples # assert result.equals(tuples)
bsd-3-clause
LiaoPan/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
atantet/ergoPack
example/numericalFP/numericalFP_Hopf.py
1
5115
import numpy as np import pylibconfig2 from scipy import sparse from scipy.sparse import linalg import matplotlib.pyplot as plt from matplotlib import cm from ergoNumAna import ChangCooper readEigVal = False #readEigVal = True def hopf(x, mu, omega): f = np.empty((2,)) f[0] = x[0] * (mu - (x[0]**2 + x[1]**2)) - omega*x[1] f[1] = x[1] * (mu - (x[0]**2 + x[1]**2)) + omega*x[0] return f # Get model omega = 1. #q = 0.5 #q = 0.75 #q = 1. #q = 1.25 #q = 1.5 #q = 1.75 #q = 2. #q = 2.25 #q = 2.5 #q = 2.75 #q = 3. #q = 3.25 #q = 3.5 #q = 3.75 q = 4. muRng = np.arange(-10, 15., 0.1) k0 = 0 #muRng = np.arange(6.6, 15., 0.1) #k0 = 166 #muRng = np.arange(-4, 2, 0.1) #k0 = 60 #muRng = np.arange(2, 8, 0.1) #k0 = 120 #muRng = np.arange(8, 15, 0.1) #k0 = 180 #muRng = np.arange(5., 10., 0.1) #k0 = 150 #muRng = np.array([8.]) #k0 = 180 # Grid definition dim = 2 nx0 = 100 #nx0 = 200 # give limits for the size of the periodic orbit # at maximum value of control parameter (when noise # effects transversally are small) xlim = np.ones((dim,)) * np.sqrt(15) * 2 # Number of eigenvalues nev = 100 tol = 1.e-6 B = np.eye(dim) * q # Get standard deviations Q = np.dot(B, B.T) # Get grid points and steps x = [] dx = np.empty((dim,)) nx = np.ones((dim,), dtype=int) * nx0 for d in np.arange(dim): x.append(np.linspace(-xlim[d], xlim[d], nx[d])) dx[d] = x[d][1] - x[d][0] N = np.prod(nx) idx = np.indices(nx).reshape(dim, -1) X = np.meshgrid(*x, indexing='ij') points = np.empty((dim, N)) for d in np.arange(dim): points[d] = X[d].flatten() alpha = 0.0 levels = 20 fs_default = 'x-large' fs_latex = 'xx-large' fs_xlabel = fs_default fs_ylabel = fs_default fs_xticklabels = fs_default fs_yticklabels = fs_default fs_legend_title = fs_default fs_legend_labels = fs_default fs_cbar_label = fs_default #figFormat = 'png' figFormat = 'eps' dpi = 300 msize = 32 bbox_inches = 'tight' plt.rc('font',**{'family':'serif'}) print 'For q = ', q for k in np.arange(muRng.shape[0]): mu = muRng[k] print 'For mu = ', mu if mu < 0: signMu = 'm' else: signMu = 'p' postfix = '_nx%d_k%03d_mu%s%02d_q%03d' \ % (nx0, k0 + k, signMu, int(round(np.abs(mu) * 10)), int(round(q * 100))) if not readEigVal: # Define drift def drift(x): return hopf(x, mu, omega) # Get discretized Fokker-Planck operator print 'Discretizing Fokker-Planck operator' FPO = ChangCooper(points, nx, dx, drift, Q) print 'Solving eigenvalue problem' (w, v) = linalg.eigs(FPO, k=nev, which='LR', tol=tol) isort = np.argsort(-w.real) w = w[isort] v = v[:, isort] rho0 = v[:, 0].real rho0 /= rho0.sum() rho0_tile = np.tile(rho0, (dim, 1)) meanPoints = (points * rho0_tile).sum(1) stdPoints = np.sqrt(((points - np.tile(meanPoints, (N, 1)).T)**2 * rho0_tile).sum(1)) print 'Mean points = ', meanPoints print 'Std points = ', stdPoints print 'Saving eigenvalues' np.savetxt('../results/numericalFP/w_hopf%s.txt' % postfix, w) np.savetxt('../results/numericalFP/statDist_hopf%s.txt' % postfix, rho0) else: print 'Reading eigenvalues' srcFile = '../results/numericalFP/w_hopf%s.txt' % postfix fp = open(srcFile, 'r') w = np.empty((nev,), dtype=complex) for ev in np.arange(nev): line = fp.readline() line = line.replace('+-', '-') w[ev] = complex(line) rho0 = np.loadtxt('../results/numericalFP/statDist_hopf%s.txt' % postfix) print 'Plotting' fig = plt.figure() #fig.set_visible(False) ax = fig.add_subplot(111) ax.scatter(w.real, w.imag, edgecolors='face') ax.set_xlim(-30, 0.1) ax.set_ylim(-10, 10) ax.text(-29, -9, r'$\mu = %.1f$' % mu, fontsize='xx-large') fig.savefig('../results/plot/numericalFP/numFP_hopf%s.%s' \ % (postfix, figFormat), bbox_inches='tight', dpi=300) fig = plt.figure() ax = fig.add_subplot(111) vect = rho0.copy() vecAlpha = vect[vect != 0] if alpha > 0: vmax = np.sort(vecAlpha)[int((1. - alpha) \ * vecAlpha.shape[0])] vect[vect > vmax] = vmax else: vmax = np.max(vect) h = ax.contourf(X[0].T, X[1].T, vect.reshape(nx), levels, cmap=cm.hot_r, vmin=0., vmax=vmax) ax.set_xlim(X[0][:, 0].min(), X[0][:, 0].max()) ax.set_ylim(X[1][0].min(), X[1][0].max()) #cbar = plt.colorbar(h) ax.set_xlabel(r'$x$', fontsize=fs_latex) ax.set_ylabel(r'$y$', fontsize=fs_latex) # plt.setp(cbar.ax.get_yticklabels(), fontsize=fs_yticklabels) plt.setp(ax.get_xticklabels(), fontsize=fs_xticklabels) plt.setp(ax.get_yticklabels(), fontsize=fs_yticklabels) ax.text(-7, -7, r'$\mu = %.1f$' % mu, fontsize='xx-large') fig.savefig('../results/plot/numericalFP/statDist_hopf%s.%s' \ % (postfix, figFormat), bbox_inches='tight', dpi=300) plt.close()
gpl-3.0