kobkrit's picture
Add new data
e4f03d0
raw
history blame
2.42 kB
import os
import pandas as pd
from PIL import Image
import codecs
import numpy as np
import glob
import io
def create_dataset():
print("Starting dataset creation...")
# Create output directory for images
os.makedirs("processed_images", exist_ok=True)
# Find all label files matching pattern
print("Finding label files...")
label_files = glob.glob("./original/test/round3?_best2019.label")
print(f"Found {len(label_files)} label files")
# Parse image filenames and captions
data = []
for i, label_path in enumerate(label_files):
print(f"\nProcessing label file {i+1}/{len(label_files)}: {label_path}")
# Read label file with Windows-874 encoding
print("Reading label file...")
with codecs.open(label_path, 'r', encoding='cp874') as f:
lines = f.readlines()
print(f"Found {len(lines)} entries")
for j, line in enumerate(lines):
if j % 100 == 0:
print(f"Processing entry {j}/{len(lines)}")
filename, caption = line.strip().split(' ', 1)
# Get folder name from first 3 chars of filename
folder = filename[:3]
image_path = f"./original/test/{folder}/{filename}"
# Load and verify image exists
if os.path.exists(image_path):
try:
# Load image and convert to bytes
img = Image.open(image_path)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG') # Force PNG format
img_bytes = {"bytes":bytearray(img_byte_arr.getvalue())}
data.append({
'image': img_bytes, # Store as numpy array of bytes
'text': caption,
'label_file': os.path.basename(label_path)
})
except Exception as e:
print(f"Error processing image {image_path}: {e}")
print(f"\nProcessed {len(data)} total images successfully")
# Convert to dataframe and save as parquet
print("Converting to dataframe...")
df = pd.DataFrame(data)
print("Saving to parquet file...")
df.to_parquet("train.parquet", index=False)
print("Dataset creation complete!")
if __name__ == "__main__":
create_dataset()